Skip to main content

The CF4 Influence on the Interruption Ability of the High Voltage Gas-Blast Interrupters

  • Conference paper
  • First Online:
Energy Ecosystems: Prospects and Challenges (EcoSystConfKlgtu 2022)

Abstract

A large number of requirements are imposed on the modern high-voltage equipment, including environmental ones. For example, SF6 gas is widely used in the high-voltage gas-blast extinguishing device with heating volume (CB). This gas is dangerous due to its high value of the global warming potential for environment. The carbon dioxide (CO2) is the alternative gas for CB today. It is well known that fluorides released from the gas generating wall (PTFE) in the heating volume of extinguish device have a positive effect on the thermal mode interruption ability. In the same time the influence of the CF4 gas fraction on the interruption ability of the CO2 extinguishing device with heating volume has been much less studied. Nonetheless, the CO2 can substitute SF6 in the extinguishing device with heating volume, and therefore it is necessary to study of the properties of a mixture of CO2 with CF4 careful and qualitative.

This paper presents the results of calculation of the thermodynamic and transport properties of a mixture of CO2 and CF4 with a CF4 content of up to 10% in the temperature range of 300–30,000 K at pressures of 1 atm and 13 atm, the influence of pressure on the properties of a mixture of CF4 with CO2 is considered, and a qualitative analysis of the influence CF4 for the thermal mode of the CB interruption ability is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeger, M.: Future perspectives on high voltage circuit breaker research. Plasma Phys. Technol. 2(3), 271–279 (2015)

    Google Scholar 

  2. Uchii, T., et al.: Thermal interruption capabilities of CO2 gas and CO2-based gas mixtures. In: Proceedings of International Conference on Gas Discharges and their Applications (Gd 2010), pp. 78–81 (2010)

    Google Scholar 

  3. Yumoto, M., et al.: Influence of CF3I on the number of supplied electrons under high pressure nitrogen. In: Proceedings of International Conference on Gas Discharges and their Applications (Gd 2010), pp. 334–337 (2010)

    Google Scholar 

  4. Technologies for operation with SF6 by DILO: in harmony with nature. http://eknis.net/uploads/files/dilo_korr_2.pdf. Accessed 13 Nov 2022

  5. Ragaller, K. (ed.): Current Interruption in the High Voltage Networks. Plenum Press, New York (1978)

    Google Scholar 

  6. Tonkonogov, E.N.: Electrical and electronic devices. High voltage switches. SPb Polytechn. Univ. Publ. House, Saint Petersburg (2012)

    Google Scholar 

  7. Nicolic, P.G., Forschelen, M., Wetzeler, S., Schnettler, A.: Design and test of a technology demonstrator for a CO2 filled circuit breaker with two heating volumes. Plasma Phys. Technol. 2(2), 175–178 (2015)

    Google Scholar 

  8. Dresvin, S. (ed.): Physics and Technology of low-temperature plasmas. Iowa State Univ, Press (1977)

    Google Scholar 

  9. Boulos, M.I., Fauchais, P., Pfender, E.: Thermal Plasmas: Fundamentals and Applications, vol. 1. Plenum Press, New York (1994)

    Google Scholar 

  10. White, W.B., Johnson, S.M., Dantzig, G.B.: Chemical equilibrium in complex mixtures. J. Chem. Phys 28(5), 751–755 (1958)

    Article  Google Scholar 

  11. Glushko, V.P.: Thermodynamic and Thermophysical Properties of Combustion Products, vols. 1 (1971)

    Google Scholar 

  12. Suris, A.L.: Thermodynamics of High-Temperature Processes. Metallurgija, Moscow (1985)

    Google Scholar 

  13. Dresvin, S.V., Ivanov, D.V.: Plasma Physics. SPb Polytechn. Univ. Publ. House, Saint Petersburg (2013)

    Google Scholar 

  14. Capitelli, M., Colonna, G., D’Angola, A.: Fundamental Aspects of Plasma Chemical Physics: Thermodynamics. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8182-0

    Book  Google Scholar 

  15. NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database. Accessed 13 Nov 2022

  16. Glushko, V.P.: Thermodynamic Properties of Individual Substances, 3rd edn, vols. 1–4. Reference Book (1978–1982)

    Google Scholar 

  17. Wang, W.Z., Wu, Y., Rong, M.Z., Ehn, L., Cernusak, I.: Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasmas. J. Phys. D: Appl. Phys. 45, 285201 (2012)

    Article  Google Scholar 

  18. Yang, A., et al.: Thermodynamic properties and transport coefficients of CO2–Cu thermal plasmas. Plasma Chem. Plasma Process 36, 1141–1160 (2016)

    Article  Google Scholar 

  19. Capitelli, M., Bruno, D., Laricchiuta, A.: Fundamental Aspects of Plasma Chemical Physics: Transport. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-8172-1

    Book  Google Scholar 

  20. NIST Computational Chemistry Comparison and Benchmark DataBase, NIST Standard Reference Database 101, Release 22 (2022). http://cccbdb.nist.gov/. Accessed 13 Nov 2022

  21. Fauchais, P., Elchinger, M.F., Aubreton, J.: Thermodynamic and transport properties of thermal plasmas. High Temp. Mater. Process. 4(1), 21–42 (2000)

    Article  Google Scholar 

  22. Mason, E.A., Munn, R.J., Smith, F.J.: Transport coefficients of ionized gases. Phys. Fluids 10(8), 1827–1832 (1967)

    Article  Google Scholar 

  23. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  24. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: The Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    MATH  Google Scholar 

  25. Devoto, R.S.: Transport properties of ionized monatomic gases. Phys. Fluids 9(6), 1230–1240 (1966)

    Article  Google Scholar 

  26. Devoto, R.S.: Simplified expressions for the transport properties of ionized monatomic gases. Phys. Fluids 10(10), 2105–2112 (1967)

    Article  Google Scholar 

  27. Rat, V., Murphy, A.B., Aubreton, J., Elchinger, M.F., Faushais, P.: Treatment of non-equilibrium phenomena in thermal plasma flows. J. Phys. D: Appl. Phys. 41(18), 183001 (2008)

    Article  Google Scholar 

  28. Aubreton, J., Elchinger, M.F., Fauchais, P.: New method to calculate thermodynamic and transport properties of a multi-temperature plasma: application to N2 plasma. Plasma Chem. Plasma Process. 18(1), 1–27 (1998)

    Article  Google Scholar 

  29. Butler, J.N., Brokaw, R.S.: Thermal conductivity of gas mixtures in chemical equilibrium. J. Chem. Phys. 26(6), 1636–1643 (1957)

    Article  Google Scholar 

  30. Engel’sht, V.S., Uryukov, B.A. (eds.): Electric Arc Column Theory. Nauka, Novosibirsk (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frolov, V., Averyanova, S., Ivanov, D. (2023). The CF4 Influence on the Interruption Ability of the High Voltage Gas-Blast Interrupters. In: Kostrikova, N. (eds) Energy Ecosystems: Prospects and Challenges. EcoSystConfKlgtu 2022. Lecture Notes in Networks and Systems, vol 626. Springer, Cham. https://doi.org/10.1007/978-3-031-24820-7_12

Download citation

Publish with us

Policies and ethics