Skip to main content

Energy Geostructures

  • Chapter
  • First Online:
Geothermal Heat Pump Systems

Abstract

Energy geostructures are a special type of closed Ground Source Heat Pump (GSHP) system in which heat exchange pipes are installed in the foundation elements (e.g., piles, walls) to extract or inject thermal energy from/to the ground. Due to its dual function and high-energy efficiency, this technology is an alternative to reduce the environmental impact of the growing energy demand for space conditioning while avoiding the high initial cost of traditional GSHP systems. This chapter summarizes the basic concepts of energy geostructures, with emphasis on energy piles, including heat transfer mechanism, site investigations procedures, thermal and mechanical analysis approaches. Additionally, the chapter discusses the most recent design considerations and some construction recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. García A, Martínez I (2012) Estado actual de desarrollo de las Bombas de Calor Geotérmico. Geotermia 25(2):58–68

    Google Scholar 

  2. Lee S, Park S, Ahn D, Choi H (2022) Thermal performance of novel cast-in-place energy piles equipped with multipurpose steel pipe heat exchangers (SPHXs). Geothermics 102:102389

    Article  Google Scholar 

  3. Cherati DY, Ghasemi-Fare O (2021) Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences. Renew Sustain Energy Rev 140:110748

    Article  Google Scholar 

  4. Brandl H (2013) Thermo-active ground-source structures for heating and cooling. Procedia Eng 57:9–18

    Article  Google Scholar 

  5. Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122

    Article  Google Scholar 

  6. Asociación Técnica Española de Climatización y Refrigeración (ATECYR) (2012) Guía Técnica de Diseño de Sistemas de Intercambio Geotérmico de Circuito Cerrado. Instituto para la Diversificación y Ahorro de la Energía, Madrid

    Google Scholar 

  7. Suryatriyastuti ME, Mroueh H, Burlon S (2012) Understanding the temperature-induced mechanical behaviour of energy pile foundations. Renew Sustain Energy Rev 16(5):3344–3354

    Article  Google Scholar 

  8. De Moel M, Bach PM, Bouazza A, Singh RM, Sun JO (2010) Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew Sustain Energy Rev 14(9):2683–2696

    Article  Google Scholar 

  9. Sanner B (2001) Shallow geothermal energy. Geo-Heat Center Bull 22(2):19–25

    Google Scholar 

  10. Kovačević MS, Bačić M, Arapov I (2013) Possibilities of underground engineering for the use of shallow geothermal energy. Gradevinar 64(12):1019–1028

    Google Scholar 

  11. Florides G, Kalogirou S (2007) Ground heat exchangers—a review of systems, models and applications. Renew Energy 32(15):2461–2478

    Article  Google Scholar 

  12. Aresti L, Christodoulides P, Florides G (2018) A review of the design aspects of ground heat exchangers. Renew Sustain Energy Rev 92:757–773

    Article  Google Scholar 

  13. Cui P, Man Y, Fang Z (2015) Geothermal heat pumps. In: Yan J (ed) Handbook of clean energy systems. Wiley, pp 1–22

    Google Scholar 

  14. Loveridge F, Powrie W (2013) Temperature response functions (G-functions) for single pile heat exchangers. Energy 57:554–564

    Article  Google Scholar 

  15. Mimouni T (2014) Thermomechanical Characterization of Energy Geostructures with Emphasis on Energy Piles. PhD thesis, Ecole Polytechnique Federale de Lausanne

    Google Scholar 

  16. Sekaine K, Ooka R, Yokoi M, Shiba Y, Hwang S (2007) Development of a ground source heat pump system with Ground heat exchanger utilizing the cast-in-place concrete pile foundations of a building. ASHRAE Trans 113:558–566

    Google Scholar 

  17. Soga K, Rui Y (2016) Energy geostructures. In: Rees SJ (ed) Advances in ground-source heat pump systems. Woodhead Publishing, pp 185–221

    Chapter  Google Scholar 

  18. Park S, Sung C, Jung K, Sohn B, Chauchois A, Choi H (2015) Constructability and heat exchange efficiency of large diameter cast-in-place energy piles with various configurations of heat exchange pipe. Appl Therm Eng 90:1061–1071

    Article  Google Scholar 

  19. Carotenuto A, Marotta P, Massarotti N, Mauro A, Normino G (2017) Energy piles for ground source heat pump applications: comparison of heat transfer performance for different design and operating parameters. Appl Therm Eng 124:1492–1504

    Article  Google Scholar 

  20. Laloui L, Di Donna A (2011) Understanding the behaviour of energy geo-structures. Proc ICE-Civ Eng 164:184–191

    Google Scholar 

  21. Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3):229–236

    Article  Google Scholar 

  22. Pahud D, Hubbuch M (2007) Measured thermal performances of the energy pile system of the dock midfield at Zürich Airport. In: Proceedings European geothermal congress, unterhaching, Germany, 30 May–1 June 2007

    Google Scholar 

  23. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30(8):763–781

    Article  Google Scholar 

  24. Mimouni T, Laloui L (2015) Behaviour of a group of energy piles. Can Geotech J 52(12):1913–1929

    Article  Google Scholar 

  25. Fisch MN, Himmler R (2005) International solar centre, berlin-a comprehensive energy design. In: Proceedings of the fifth international conference for enhanced building operations, Pittsburgh, Pennsylvania, 11–13 October 2005

    Google Scholar 

  26. Lennon DJ, Watt E, Suckling TP (2008) Energy piles in Scotland. In: Van Impe P (ed) Van Impe WF. Deep foundations on bored and auger piles-BAP V, CRC Press, pp 361–368

    Google Scholar 

  27. Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248

    Article  Google Scholar 

  28. Laloui L, Rotta-Loria A (2019) Analysis and design of energy geostructures: theoretical essentials and practical application. Academic Press

    Google Scholar 

  29. Abdelaziz SL, Olgun CG, Martin JR (2011) Design and operational considerations of geothermal energy piles. In: Geo-Frontiers 2011. Advances in geotechnical engineering, Dallas, Texas, 13–16 March 2011

    Google Scholar 

  30. Chiasson AD, Rees SJ, Spitler JD (2000) A preliminary assessment of the effects of groundwater flow on closed-loop ground source heat pump systems. ASHRAE Trans 106(1):DA-00-13-5(4365)

    Google Scholar 

  31. Li M, Lai AC (2015) Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales. Appl Energy 151:178–191

    Article  Google Scholar 

  32. Li M, Zhu K, Fang Z (2016) Analytical methods for thermal analysis of vertical ground heat exchangers. In: Rees SJ (ed) Advances in ground-source heat pump systems. Woodhead Publishing, pp 157–183

    Chapter  Google Scholar 

  33. Freitas R (2014) Thermal and thermal-mechanical analysis of thermo-active pile foundations civil engineering. MSc thesis, Instituto Superior Técnico de Lisboa

    Google Scholar 

  34. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (2011) ASHRAE handbook: HVAC applications. ASHRAE, Atlanta, GA

    Google Scholar 

  35. Loveridge F (2012) The thermal performance of foundation piles used as heat exchangers in ground energy systems. PhD thesis, University of Southampton

    Google Scholar 

  36. Jaeger JC, Carlslaw HS (1959) Conduction of heat in solids. Clarendon P Oxford, UK

    Google Scholar 

  37. Zeng H, Diao N, Fang Z (2003) Heat transfer analysis of boreholes in vertical ground heat exchangers. Int J Heat Mass Transf 46(23):4467–4481

    Article  Google Scholar 

  38. Ingersoll LR, Zabel OJ, Ingersoll AC (1954) Heat conduction with engineering, geological, and other applications. University of Wisconsin Press, Madison, Wisconsin

    MATH  Google Scholar 

  39. Diao N, Li Q, Fang Z (2004) Heat transfer in ground heat exchangers with groundwater advection. Int J Therm Sci 43(12):1203–1211

    Article  Google Scholar 

  40. Ozisik MN (1993) Heat conduction. Wiley, New York

    Google Scholar 

  41. Spitler JD, Bernier M (2016) Vertical borehole ground heat exchanger design methods. In: Rees SJ (ed) Advances in ground-source heat pump systems. Woodhead Publishing, pp 29–61

    Chapter  Google Scholar 

  42. Eskilson P (1987) Thermal analysis of heat extraction boreholes. PhD thesis, Sweden: University of Lund

    Google Scholar 

  43. Yavuzturk C, Spitler JD, Rees SJ (1999) A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans 105(2):465–474

    Google Scholar 

  44. He M, Rees S, Shao L (2011) Simulation of a domestic ground source heat pump system using a three-dimensional numerical borehole heat exchanger model. J Build Perform Simul 4(2):141–155

    Article  Google Scholar 

  45. Lee CK, Lam HN (2013) A simplified model of energy pile for ground-source heat pump systems. Energy 55:838–845

    Article  Google Scholar 

  46. Gashti EHN, Uotinen VM, Kujala K (2014) Numerical modelling of thermal regimes in steel energy pile foundations: a case study. Energy Build 69:165–174

    Article  Google Scholar 

  47. Dupray F, Laloui L, Kazangba A (2014) Numerical analysis of seasonal heat storage in an energy pile foundation. Comput Geotech 55:67–77

    Article  Google Scholar 

  48. Laloui L, Moreni M, Fromentin A, Pahud D, Steinmann G (1999) Heat exchanger pile: effect of the thermal solicitations on its mechanical properties. Bull D’hydrogeologie 17:331–338

    Google Scholar 

  49. Bourne-Webb PJ, Soga K, Amatya B (2013) A framework for understanding energy pile behaviour. Geotech Eng 166(GE2):170–177

    Article  Google Scholar 

  50. Amatya BL, Soga K, Bourne-Webb PJ, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  51. Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10(2):179–195

    Article  Google Scholar 

  52. Bourne-Webb PJ, Burlon S, Javed S, Kürten S, Loveridge F (2016) Analysis and design methods for energy geostructures. Renew Sustain Energy Rev 65:402–419

    Article  Google Scholar 

  53. Makasis N, Narsilio GA, Bidarmaghz A (2018) A machine learning approach to energy pile design. Comput Geotech 97:189–203

    Article  Google Scholar 

  54. López-Acosta NP, Barba-Galdámez DF (2022) Diseño térmico preliminar del primer proyecto de pilas de energía en México. In: López-Acosta NP, Martínez-Hernández E (eds) 5° Simposio internacional de cimentaciones profundas, sociedad mexicana de ingeniería geotécnica, México, pp 71–77

    Google Scholar 

  55. Bourne-Webb P, Pereira J-M, Bowers G, Mimouni T, Loveridge F, Burlon S, Olgun CG, McCartney JS, Sutman M (2014) Design tools for thermoactive geotechnical systems. DFI J: J Deep Found Inst 8(2):121–129

    Article  Google Scholar 

  56. Verein Deutsecher Ingenieure (VDI) (2001) 4640. Part 2. Thermal use of the underground–ground source heat pump systems

    Google Scholar 

  57. Société suisse des Ingénieurs et des Architectes (SIA) (2005. Utilisation de la chaleur du sol par des ouvrages de fondation et de soutènement en béton. Guide pour la conception, la réalisation et la maintenance. Zurich, Switzerland

    Google Scholar 

  58. Ground Source Heat Pump Association (GSHPA) (2012) Thermal pile design, installation and materials standards. Ground Source Heat Pump Association, Milton Keynes, UK

    Google Scholar 

  59. CFMS-SYNTEC-SOFFONS-FNTP (2017) Recommandations pour la conception, le dimensionnement et la mise en úuvre des géostructures thermiques. Rev Fr Geotech 149:1–120

    Google Scholar 

  60. Kavanaugh S (1991) Ground and water source heat pumps. A manual for the design and installation of ground-coupled, ground water and lake water heating and cooling systems in southern climates. University of Alabama, Tuscaloosa, AL

    Google Scholar 

  61. Kavanaugh S (1995) A decision method for commercial ground-coupled heat pumps (No. CONF-950624). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia

    Google Scholar 

  62. Cullin JR, Spitler JD (2011) A computationally efficient hybrid time step methodology for simulation of ground heat exchangers. Geothermics 40(2):144–156

    Article  Google Scholar 

  63. Javed S, Spitler JD (2016) Calculation of borehole thermal resistance. In: Rees SJ (ed) Advances in ground-source heat pump systems. Woodhead Publishing, pp 63–95

    Chapter  Google Scholar 

  64. Claesson J, Javed S (2020) Explicit multipole formula for the local thermal resistance in an energy pile—the line-source approximation. Energies 13(20):5445

    Article  Google Scholar 

  65. Kavanaugh S (2008) A 12-step method for closed-loop ground heat-pump design source. ASHRAE Trans 114(2):328–337

    Google Scholar 

  66. Fadejev J, Simson R, Kurnitski J, Haghighat F (2017) A review on energy piles design, sizing and modelling. Energy 122:390–407

    Article  Google Scholar 

  67. International Ground Source Heat Pump Association (IGSHPA) (2009) Ground source heat pump residential and light commercial: design and installation guide. Oklahoma State University, Oklahoma, USA

    Google Scholar 

  68. Kavanaugh SP, Rafferty KD (2014) Geothermal heating and cooling: design of ground-source heat pump systems. ASHRAE, Atlanta, GA

    Google Scholar 

  69. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (2015) ASHRAE Handbook e Applications. ASHRAE, Atlanta, GA

    Google Scholar 

  70. Rotta-Loria AF, Bocco M, Garbellini C, Muttoni A, Laloui L (2020) The role of thermal loads in the performance-based design of energy piles. Geomech Energy Environ 21:100153

    Article  Google Scholar 

  71. Gulvanessian H (2001) EN1990 Eurocode-basis of structural design. Proc ICE-Civ Eng 144(6):8–13

    Google Scholar 

  72. Abdelaziz SL, Ozudogru TY (2016) Selection of the design temperature change for energy piles. Appl Therm Eng 107:1036–1045

    Article  Google Scholar 

  73. Song H, Pei H, Zhou C, Zou D, Cui C (2022) Calculation of the representative temperature change for the thermomechanical design of energy piles. Geomech Energy Environ 29:100264

    Article  Google Scholar 

  74. Loveridge F, Low J, Powrie W (2017) Site investigation for energy geostructures. Q J Eng GeolHydrogeol 50(2):158–168

    Article  Google Scholar 

  75. Olgun CG, Ozudogru TY, Abdelaziz SL, Senol A (2015) Long-term performance of heat exchanger piles. Acta Geotech 10(5):553–569

    Article  Google Scholar 

  76. Gashti EHN, Malaska M, Kujala K (2015) Analysis of thermo-active pile structures and their performance under groundwater flow conditions. Energy Build 105:1–8

    Article  Google Scholar 

  77. Rotta Loria AF, Laloui L (2017) The equivalent pier method for energy pile groups. Géotechnique 67(8):691–702

    Article  Google Scholar 

  78. Dong Y, McCartney JS, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33(2):207–221

    Article  Google Scholar 

  79. Jia GS, Tao ZY, Meng XZ, Ma CF, Chai JC, Jin LW (2019) Review of effective thermal conductivity models of rock-soil for geothermal energy applications. Geothermics 77:1–11

    Article  Google Scholar 

  80. López-Acosta NP, Zaragoza-Cardiel AI, Barba-Galdámez DF (2021) Determination of thermal conductivity properties of coastal soils for GSHPs and energy geostructures applications in Mexico. Energies 14:5479

    Google Scholar 

  81. López-Acosta NP, Portillo-Arreguín DM, Barba-Galdámez DF, Singh RM (2022) Thermal properties of soft clayey soils from the former Lake Texcoco in Mexico. Geomechanics for Energy and the Environment: 100376

    Google Scholar 

  82. Barry-Macaulay D, Bouazza A, Singh RM, Wang B, Ranjith PG (2013) Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng Geol 164:131–138

    Article  Google Scholar 

  83. Akrouch GA, Briaud J-L, Sanchez M, Yilmaz R (2016) Thermal cone test to determine soil thermal properties. J Geotech Geoenviron Eng 142(3):04015085

    Article  Google Scholar 

  84. Vieira A, Alberdi-Pagola M, Christodoulides P, Javed S, Loveridge F, Nguyen F et al (2017) Characterisation of ground thermal and thermo-mechanical behaviour for shallow geothermal energy applications. Energies 10(12):2044

    Article  Google Scholar 

  85. Abuel-Naga H, Bergado D, Bouazza A, Pender M (2009) Thermal conductivity of soft Bangkok clay from laboratory and field measurements. Eng Geol 105:211–219

    Article  Google Scholar 

  86. Farouki O (1981) Thermal properties of soils. CRREL Monograph 81-1. Cold Regions Research and Engineering Laboratory, Hanover, NH

    Google Scholar 

  87. Franco A, Conti P (2020) Clearing a path for ground heat exchange systems: a review on thermal response test (TRT) methods and a geotechnical routine test for estimating soil thermal properties. Energies 13(11):2965

    Article  Google Scholar 

  88. IEA ECES (2013) Annex 21 thermal response test. Final report

    Google Scholar 

  89. Loveridge FA, Brettmann T, Olgun CG, Powrie W (2014) Assessing the applicability of thermal response testing to energy piles. In: Global perspectives on the sustainable execution of foundations works, Stockholm, Sweden, 21–23 May 2014

    Google Scholar 

  90. Low JE, Loveridge FA, Powrie W, Nicholson D (2015) A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications. Acta Geotech 10(2):209–218

    Article  Google Scholar 

  91. American Society for Testing and Materials (ASTM) (2016) Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. ASTM C177-13. ASTM International, West Conshohocken, PA

    Google Scholar 

  92. Kersten MS (1949) Laboratory research for the determination of the thermal properties of soils. ACFEL Technical Rep. 23. AD712516. Engineering Experiment Station, University of Minnesota

    Google Scholar 

  93. Mochlinski K (1964) Some industrial measurements of thermal properties of soil. International study group on soils, lectures at meeting in Cambridge, international study group on Soils, Cambridge

    Google Scholar 

  94. American Society for Testing and Materials (ASTM) (2015) Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. ASTM C518-15. ASTM International, West Conshohocken, PA

    Google Scholar 

  95. Scott RF (1969) The freezing process and mechanics of frozen ground. CRREL Monograph II-D1. Cold Regions Research and Engineering Laboratory, Hanover, NH

    Google Scholar 

  96. American Society for Testing and Materials (ASTM) (2016) Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM D5334-14. ASTM International, West Conshohocken, PA

    Google Scholar 

  97. De Vries DA, Peck AJ (1958) On the cylindrical probe method of measuring thermal conductivity with special reference to soils. Austr J Phys 11:409–423

    Article  Google Scholar 

  98. Hoekstra P, Delaney A, Atkins R (1973) Measuring the thermal properties of cylindrical specimens by the use of sinusoidal temperature waves. CRREL Technical Report 244, AD770425. Cold Regions Research and Engineering Laboratory, Hanover, NH

    Google Scholar 

  99. Shannon WL, Wells WA (1947) Tests for thermal diffusivity of granular materials. Proc ASCE 47:1044–1055

    Google Scholar 

  100. American Society for Testing and Materials (ASTM) (2016) Standard specification for polyethylene (PE) plastic pipe (DR-PR) based on controlled outside diameter. ASTM D3035-15. ASTM International, West Conshohocken, PA

    Google Scholar 

  101. American Society for Testing and Materials (ASTM) (2013) Standard specification for polyethylene (PE) plastic pipe (DRPR) based on outside diameter. ASTM F714-13. ASTM International, West Conshohocken, PA

    Google Scholar 

  102. American Society for Testing and Materials (ASTM) (2014) Standard specification for polyethylene plastics pipe and fittings materials. ASTM D3350-14. ASTM International, West Conshohocken, PA

    Google Scholar 

  103. American Society for Testing and Materials (ASTM) (2013) Standard test method for obtaining hydrostatic design basis for thermoplastic pipe materials or pressure design basis for thermoplastic pipe products. ASTM D2837-13. ASTM International, West Conshohocken, PA

    Google Scholar 

  104. American Society for Testing and Materials (ASTM) (2013) Standard specification for polyethylene (PE) gas pressure pipe. Tubing, and fittings. ASTM D2513–13. ASTM International, West Conshohocken, PA

    Google Scholar 

  105. American Society for Testing and Materials (ASTM) (2016) Standard specification for butt heat fusion polyethylene (PE) plastic fittings for polyethylene (PE) plastic pipe and tubing. ASTM D3261-16. ASTM International, West Conshohocken, PA

    Google Scholar 

  106. American Society for Testing and Materials (ASTM) (2013) Standard test method for obtaining hydrostatic design basis for thermoplastic pipe materials or pressure design basis for thermoplastic pipe products. ASTM D2683-13. ASTM International, West Conshohocken, PA

    Google Scholar 

  107. American Society for Testing and Materials (ASTM) (2016) Standard specification for electrofusion type polyethylene fittings for outside diameter controlled polyethylene and crosslinked polyethylene (PEX) pipe and tubing. ASTM F1055-16. ASTM International, West Conshohocken, PA

    Google Scholar 

  108. American Society for Testing and Materials (ASTM) (2020) Standard specification for crosslinked polyethylene (PEX) tubing. ASTM F876-20. ASTM International, West Conshohocken, PA

    Google Scholar 

  109. American Society for Testing and Materials (ASTM) (2020) Standard specification for crosslinked polyethylene (PEX) hot- and cold-water distribution systems. ASTM F877-20. ASTM International, West Conshohocken, PA

    Google Scholar 

  110. American Society for Testing and Materials (ASTM) (2019) Standard specification for cold-expansion fittings with metal compression-sleeves for crosslinked polyethylene (PEX) pipe and SDR9 polyethylene of raised temperature (PE-RT) pipe. ASTM F2080-19. ASTM International, West Conshohocken, PA

    Google Scholar 

  111. American Society for Testing and Materials (ASTM) (2016) Standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics. ASTM F2765-16. ASTM International, West Conshohocken, PA

    Google Scholar 

  112. American Society for Testing and Materials (ASTM) (2021) Standard practice for field leak testing of polyethylene (PE) and crosslinked polyethylene (PEX) pressure piping systems using hydrostatic pressure. ASTM F2164-21. ASTM International, West Conshohocken, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Patricia López-Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Acosta, N.P., Barba-Galdámez, D.F., Arizmendi-López, K.J. (2023). Energy Geostructures. In: Borge-Diez, D., Rosales-Asensio, E. (eds) Geothermal Heat Pump Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-24524-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24524-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24523-7

  • Online ISBN: 978-3-031-24524-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics