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Chapter 5
Current Progress and Prospects 
for a Buruli Ulcer Vaccine

Justice Boakye-Appiah, Belinda Hall, Rajko Reljic, and Rachel E. Simmonds

Abstract Buruli ulcer (BU), one of the skin-related neglected tropical diseases 
(skin NTDs), is a necrotizing and disabling cutaneous disease caused by subcutane-
ous infection with Mycobacterium ulcerans. Leading on from the World Health 
Organization’s (WHO) establishment of a global BU initiative in 1998, >67,000 
cases of BU have been reported from over 32 countries, mostly from West Africa 
and Australia. While treatment is currently in the transition period from rifampicin 
plus streptomycin (injection) to an all-oral regimen, it cannot hope to eradicate this 
opportunistic environmental pathogen. M. ulcerans is genetically very similar to 
related pathogenic organisms M. marinum, M. leprae and M. tuberculosis. However, 
M. ulcerans carries a unique megaplasmid, pMUM001, encoding the biosynthetic 
machinery responsible for production of a lipid-like exotoxin virulence factor, 
mycolactone. This diffusible compound causes the substantial divergence in BU’s 
pathogenic aetiology from other mycobacterial infections. Hence, mycolactone is 
cytotoxic and immunosuppressive and causes vascular dysfunction in infected skin. 
A major recent advance in our understanding of BU pathogenesis has been agree-
ment on the mycolactone’s mechanism of action in host cells, targeting the Sec61 
translocon during a major step in secretory and membrane protein biogenesis. While 
vaccine development for all mycobacteria has been challenging, mycolactone pro-
duction likely presents a particular challenge in the development of a BU vaccine. 
The live-attenuated vaccine BCG is known to provide only partial and transient 
protection in humans but provides a convenient baseline in mouse preclinical stud-
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ies where it can delay, but not prevent, disease progression. No experimental vac-
cine strategy has yet conferred greater protection than BCG. However, there is now 
the prospect of developing a vaccine against mycolactone itself, which may provide 
hope for the future.

Keywords Mycobacterium ulcerans · Buruli ulcer · Vaccine · Mycolactone · 
Whole cell · Subunit

5.1  Buruli Ulcer

The neglected tropical disease (NTD) Buruli ulcer (BU) is caused by subcutaneous 
infection with Mycobacterium ulcerans, resulting in necrosis of subcutaneous fatty 
tissue and the formation of ulcers with undermined edges which can extend to 15% 
of body surface area [1]. Much of its obscurity may be attributed to the fact that it 
predominantly affects the poor [2, 3], usually in remote rural areas with limited 
access to health services [4, 5]. Hence, while BU is considered a rare disease on a 
global scale, its impact on endemic communities should not be underestimated. BU 
is associated with social stigma [6] and presents a large financial [7, 8] and psycho-
logical [9] burden to patients and their care-givers, especially since most patients 
are young teenagers. A major global intervention came in 1998 when the WHO 
launched its Global BU Initiative (GBUI). This served as a forum for disease control 
and research efforts. Its success is clear from the global decrease in BU prevalence 
since 2010 [4], although this does not take into account under-reporting in countries 
without effective national control programmes [5]. Moreover, it brought about much 
of the research described in this chapter, and its success has underpinned the WHO’s 
most recent integrated approach to control all skin NTDs [10].

5.1.1  Epidemiology and Transmission

Infections that were most likely BU were first described by Sir Albert Cook at the 
turn of the twentieth century [11]. However, it was not until 1948 that the causative 
organism was identified by Peter MacCallum [12], due to the fortuitous breakdown 
of an incubator. To date, a total of >67,000 cases of BU have been reported world-
wide in 32 countries including Japan, Papua New Guinea and Central and South 
America. At present, the highest prevalence of BU is in West Africa although there 
has recently been a worrying increase in cases in Australia’s state of Victoria [13]. 
The disease burden is difficult to objectively assess in many endemic countries 
(especially those that are lower-middle-income countries or least developed coun-
tries) due to the remote location of affected communities and lack of credible health 
system data [5] (Fig. 5.1).
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Buruli ulcer endemicity
Evidence consensus score

100 (consensus presence)
75 to 99 (very strong)
50 to 74 (strong)
25 to 49 (moderate)
0 to 24 (indeterminate)
–24 to –1 (weak)

–74 to –50 (strong)
–99 to –75 (very strong)
–100 (consensus absence)

–49 to –25 (moderate)

Fig. 5.1 Evidence consensus for Buruli ulcer presence and absence worldwide. These findings 
were based on a comprehensive systematic review of peer-reviewed evidence in the scientific lit-
erature as well as surveillance and laboratory data from country programmes. (From Simpson 
et al. [5])

The exact mode of transmission of M. ulcerans is unknown; however it seems 
almost certain that this opportunistic environmental pathogen enters the body by 
mechanical transfer. No incidences of person-to-person transmission have been 
reported, with the notable exception of a case involving a human bite [14]. Cases 
linked to other types of minor trauma, such as abrasions and even snake bite [15, 
16], suggest that skin surface contamination may be important. Insects have been 
implicated in both Australia and West Africa, but this topic remains controversial 
and may vary between different environments (recently reviewed in [17–19]).

5.1.2  Clinical Presentations and Current Treatments

BU presents clinically as painless skin lesion(s) in one of five forms, nodule, papule, 
plaque or oedema and ulcers (Fig. 5.2), and, in some cases, bone involvement can 
result in osteomyelitis [20]. Nodules/papules are the first sign of (localised) infec-
tion, and the WHO has categorised more advanced lesions according to severity, 
with Category I including single small ulcers <5 cm diameter; Category II including 
larger ulcers of 5–15 cm, as well as plaques and oedema; and Category III including 
large ulcers >15 cm, multiple ulcers or ulcers that have spread to include particu-
larly sensitive sites such as the eyes, bones, joints or genitals [20]. The more serious 
manifestations are much more common in African countries than Australia, most 
likely due to differences in health infrastructure.

Hence, the most common presentation of BU is a necrotising skin ulcer [1, 20]. 
Typically, the edges of these ulcers are ‘undermined’ due to subcutaneous necrosis, 
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Papule Plaque Oedematous form
Ulceration

Pre-ulcerative formsNodule

a b c d

Fig. 5.2 Clinical presentations of Buruli ulcer. BU can present clinically through a spectrum 
including a papule or nodule a painless palpable lump under the skin; (a) or plaque an area of tough 
necrotic skin which can be of any size, but the epidermis remains intact; (b), which can also be 
found with or without oedema (c). If the epidermis breaks down, ulcers of varying sizes can form, 
but due to the characteristic undermined edges (d), the true lesion size is often much larger than the 
ulcerated region. Images by kind courtesy of Prof Richard Phillips. (Kumasi Centre for 
Collaborative Research, Ghana)

meaning that ulcers are frequently larger than the area of dermal breakdown. 
Remarkably, given the extensive tissue loss that can occur, BU patients are usually 
otherwise well, rarely experiencing the severe pain that might be expected based on 
the physical appearance of the lesions.

Until 2004, the only medical intervention available was radical surgery, either in 
the form of wide excision and debridement some 10  cm beyond the extent of 
affected tissue, or even limb amputation [21]. Although M. ulcerans was known to 
be sensitive to a range of antimycobacterial antibiotics from an early stage [22–25], 
a key success of the WHO GBUI was the testing [26] and introduction [20] of effec-
tive antibiotic regimens. Initially, a combination of rifampicin and streptomycin (for 
8 weeks) was used [27–29]. To tackle the poor compliance and ototoxicity from 
injectable streptomycin [30], this is now transitioning to an all-oral combination 
including clarithromycin [31]. While antibiotic therapy can cause so-called para-
doxical reactions, where lesions can appear to worsen or appear in new locations, 
this should not be confused as treatment failure [1, 32]. Fortunately, antimicrobial 
resistance has not yet been reported in Buruli ulcer, which supports its classification 
as an opportunistic environmental pathogen and argues against ‘re-seeding’ of envi-
ronmental niches from patient lesions.

J. Boakye-Appiah et al.
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Since antibiotics were introduced, there has been a significant reduction in surgi-
cal intervention for BU [33, 34]. Indeed, antibiotic treatment of BU at an early 
nodule/papule stage can result in healing before ulceration [35]. Therefore, surgery 
is now usually reserved for patients with severe disease [36], although clinical 
decision- making varies from clinic to clinic [37]. With or without surgery, BU 
comes with a high burden of disability and deformity due to the extensive tissue 
damage caused and the risk of contractures [20]. Careful wound management and 
physiotherapy are critical to minimise these risks. Consequently, improved diagnos-
tic tools and public health measures aimed at early detection of BU are now a key 
goal of the WHO.

5.2  Mycobacterium ulcerans

The closest genetic relative of M. ulcerans is M. marinum, another pathogenic 
mycobacterium that causes ‘fish tank granuloma’, to which its genome is 98% iden-
tical [38, 39]. Despite this phylogenetic similarity, major changes in the M. ulcerans 
genome have altered its interaction with the host [38, 39]. First, ‘reductive evolu-
tion’ has occurred with pseudogene accumulation and gene deletion due to the 
accumulation of single nucleotide polymorphisms (SNPs). Second, two different 
insertion sequences (IS2404 and IS2606 [40]) have proliferated throughout the 
genome leading to disruption and loss of virulence regions. These include the well- 
characterised Early Secreted Antigenic Target 6 kDa (ESAT-6) secretion system 1 
(ESX-1) that allows other mycobacteria to escape the phagosome [41, 42]. Third, it 
has acquired a plasmid, pMUM, which carries the only virulence genes identified to 
date [43]. These genes encode the polyketide synthases and accessory proteins that 
manufacture mycolactone. Notably, there are two lineages of M. ulcerans, which 
may explain some of the divergence between findings in Africa and Australia [44], 
including subtle differences in mycolactone structure and function [45].

5.2.1  Mycolactone

The identification of mycolactone [46], and the subsequent understanding of its 
effects on host cells and tissues, has been critical to the understanding of BU patho-
genesis [47]. Mycolactone is a lipid-like molecule with a 12-membered lactone ring 
that can vary in the hydroxylation and methylation pattern on the longer polyketide 
side chain. The most potent congener found in most African strains is known as 
mycolactone A/B (Fig.  5.3a). Purified mycolactone can replicate the ulceration 
caused by M. ulcerans [46, 49], and strains that cannot produce it lose their viru-
lence [50]. To date, the best characterised consequences of mycolactone exposure 
are cytopathic/cytotoxic effects and immune suppression, although vascular dys-
function has also recently been described [51, 52]. All of these have now been 
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Fig. 5.3 Structure and function of mycolactone, the M. ulcerans virulence exotoxin. (a) The 
chemical structure of mycolactone. (b) Sec61-dependent co-translational translocation of proteins 
into the ER involves recognition of a signal peptide or signal anchor by the signal recognition 
particle and its receptor (not shown), which transfers it to Sec61. This results in reorganization of 
the translocon and movement of the Sec61α plug domain, opening the central pore and allowing 
transit of the translating protein into the ER. Mycolactone binds Sec61α, preventing the signal 
peptide from accessing its binding site at the lateral gate. Although the lateral gate is open, the plug 
remains closed, and the translocon is locked in an inactive state. (c) The structure of inhibited 
Sec61, with mycolactone bound inside the lateral gate of Sec61α. Dark purple, Sec61α; light pur-
ple, Sec61β; pink. Sec61γ; yellow/red, mycolactone (from PDB:6Z3T). Two views are shown, 
looking down from the cytosol towards the ER and from the side, as in (a). (Adapted from [48])
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shown to be dependent on activity of mycolactone against the normal function of 
the Sec61 translocon [53–57], which is the main entry point to the canonical secre-
tory pathway of secreted proteins, type I and type II transmembrane proteins and 
multi-pass membrane proteins [58, 59] (Fig. 5.3b). Indeed, the structure of myco-
lactone bound to Sec61 has recently been solved (Fig. 5.3c) [57].

Mycolactone has a cytopathic effect on cultured mammalian cells characterized 
by cytoskeletal rearrangement, followed by rounding up and detachment from tis-
sue culture plates [50, 60, 61]. It is also cytotoxic and induces apoptosis several days 
after exposure [50, 62–64] as well as cell cycle arrest in G0/G1 phase [46, 65]. We 
now know that the pathway to apoptosis involves changes in intracellular Ca2+ gra-
dients [66, 67], the so-called integrated stress response [64, 68], and autophagy 
[69]. Cells carrying mutations in the gene encoding the major Sec61 subunit, 
Sec61α, are highly resistant to the cytopathic and cytotoxic effects of mycolactone 
and can proliferate in its presence [54, 57, 64, 67].

Mycolactone’s immunosuppressive effects are wide-ranging, which is unsurpris-
ing considering its inhibition of Sec61 and the consequent loss of secretory proteins 
(most cytokines and chemokines) and receptors (constitutive and induced), which 
normally act in elegant concert to mediate both innate and adaptive immune 
responses [48, 70]. Mycolactone has been shown to strongly suppress innate immu-
nity by limiting phagocytosis [71] and inflammatory responses by monocytes, mac-
rophages and dendritic cells [53, 71–74]. It limits adaptive immunity by suppressing 
both antigen presentation by dendritic cells and T cell activation [75–77]. Specific 
evidence demonstrated Sec61-dependent effects on TNF, IL-6 and Cox-2 produc-
tion, antigen processing mediated by invariant chain during MHC class II process-
ing and T cell activation [53, 54, 78]. A notable exception here is the recent discovery 
that mycolactone can induce the production of the cytokine IL-1β, by acting as the 
‘second signal’ during inflammasome activation [48, 79]. This observation is 
entirely in line with Sec61 inhibition by mycolactone, since IL-1β does not use the 
canonical secretory pathway for its production.

Yet, there are no drugs described that can counteract the effect of mycolactone on 
the Sec61 translocon. Indeed, other inhibitors of Sec61 recapitulate the effects of 
mycolactone [80, 81] (R Simmonds, unpublished observation), and so this is not a 
viable treatment option. However, inhibitors of apoptosis such as Z-VAD-FMK, or 
genetic deletion of Bim, are able to at least delay cytotoxicity, both in vitro and 
in vivo [63, 82].

5.2.2  Immune Response to M. ulcerans Infection

The immunosuppressive properties of mycolactone described above are thought to 
explain the histopathology of BU lesions. Here, the lesions display coagulative 
necrosis, with clusters of extracellular acid-fast bacilli visible at the base of the 
subcutaneous tissue, and epidermal hyperplasia [3]. The cellular infiltrate of 
immune cells, normally expected in a microbial infection, is reduced and limited to 
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the periphery of the lesion. In their elegant work, Ruf and Pluschke have shown 
that, in both humans and pigs, the infiltrating leukocytes are restricted to a ‘belt’ 
outside the necrotic core of the early ulcerative lesions [83, 84]. This contains T 
cells, CD68- positive macrophages and neutrophils, as well as clusters of B cells 
[83]. However, the immune cells are not able to access the necrotic core containing 
M. ulcerans, which contains neutrophilic debris and stains strongly and diffusely 
for apoptotic markers [83, 84]. Notably this picture changes remarkably during 
antibiotic therapy [85–87], which is presumed to be a result of a drop in mycolac-
tone production.

Despite this, there is considerable evidence that both human and animal hosts 
can mount an immune response to M. ulcerans [88]. Critically, spontaneous recov-
ery from BU without treatment reported in both humans [89–92] and animal mod-
els [93, 94] shows that the immune system can contain the infection in some 
circumstances. Both T cell [95–99] and serological [100–102] responses to 
M. ulcerans antigens have been demonstrated in the blood of BU patients. 
Moreover, their household contacts also display similar responses although they 
had never experienced clinical disease [100, 102–104]. Experimentally, IFN-γ pro-
tects against M. ulcerans infection in mice [105], and similarly a human genome 
SNP in the IFNG gene increases susceptibility to BU [106]. Such genetic studies 
in BU patients have identified a range of disease-modifying SNPs in genes involved 
in the cellular response to infection, including iNOS, the inducible nitric oxide 
synthase that generates bactericidal NO in macrophages [106]. Although the intra-
macrophage stage of M. ulcerans infection is thought to be transient [71], SNPs in 
genes involved in this response also impact BU, including in PARK2, NOD2 and 
ATG16L1 [106–108].

5.3  Vaccine Candidates

Notwithstanding the obvious serious sequelae of infection, the motivation for a BU 
vaccine also encompasses the origins of the infection from the environment. It is 
now clear that there are certain environments where M. ulcerans is highly prevalent, 
especially those disturbed by human activity, such as mining or agricultural land use 
[109, 110]. Unfortunately those living in such environments are at high risk of 
developing BU [111], even if they adhere to risk-reducing guidance [112–115]. 
Therefore, a vaccine may be the only realistic hope of BU eradication.

Although studies aimed at developing a vaccine against M. ulcerans infection date 
back to the 1950s and the work of the Australian microbiologist Frank Fenner [116, 117] 
(https://www.science.org.au/learning/general- audience/history/interviews- australian- 
scientists/professor- frank- fenner), there is still currently no effective vaccine that pro-
vides long-term protection from BU [118]. Early attention focussed on the Bacillus 
Calmette-Guérin (BCG) strain of M. bovis that is primarily known as the vaccine for 
M. tuberculosis [119]. Indeed, most countries endemic for BU have a current national 
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BCG vaccination policy for all citizens (www.bcgatlas.org), although Australia now 
only vaccinates special groups.

5.3.1  Human Studies with BCG

In two early randomised controlled trials using BCG in Uganda, there was evidence 
that BCG did confer some protection against BU even though this was thought to 
be short-lived [120, 121]. However, it should be noted that these studies were con-
founded by many factors. For example, in the first randomised trial with Rwandan 
refugees [120], participants were selected based on their tuberculin skin test (TST) 
negativity, which ruled out TB and latent TB infection, but almost certainly included 
both BCG-vaccinated and unvaccinated individuals (as TST in response to BCG 
wanes dramatically over time [122]). Moreover, this trial could not be fully com-
pleted, as the participants were lost to follow-up due to relocation of refugees. The 
second [121] was more successful in that the trial aims were fully achieved, but the 
outcomes were similar, in that partial and short-term protection was observed. 
Thus, an overall efficacy of BCG vaccination of 47% was reported, which declined 
sharply after 12 months, and was also notably highly variable depending on the 
immune status of participants on the outset. In that study, included participants had 
a broad spectrum of immune status, including those with known previous BU dis-
ease, presence or absence of BCG scar and even individuals with latent TB infec-
tion [121].

Since then, multiple other clinical studies found no evidence that BCG confers 
any long-term protection. For example, an observational study by Phillips et  al. 
[123] found no association between BCG (presence of scar) and BU disease inci-
dence amongst participants recruited from Congo, Ghana and Togo, replicating 
results from Benin [124]. For further reading on these studies, we refer the readers 
to two excellent recent reviews on the subject [125, 126].

The poor efficacy of BCG from these human studies is most likely due to insuf-
ficient immune cross-reactivity with M. ulcerans and suboptimal performance of 
BCG in countries with high exposure to non-tuberculous mycobacteria (NTM). In 
the case of cross-protection, this is likely the result of the divergent pathophysiolo-
gies of the infections they cause despite a high degree of genetic homology 
between different mycobacterial species. Thus, similarly to M. ulcerans, BCG 
vaccine offers only partial protection against M. leprae in human clinical trials 
[127, 128]. Furthermore, while multiple other environmental and non-environ-
mental factors are undoubtedly involved, it is well known that BCG efficacy 
against TB is drastically reduced in geographical settings with high burden of non-
pathogenic mycobacteria due to immunological interference (reviewed in [129]). 
In other words, the reasons for failure of BCG to impart better, longer-lasting 
protection against BU disease may be the same as those that also undermine its 
efficacy against TB.

5 Current Progress and Prospects for a Buruli Ulcer Vaccine
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5.3.2  Mouse Studies of BU Vaccine Candidates

Development of BU vaccines that offer improved protection over BCG has fre-
quently involved in vivo models of M. ulcerans infection [130]. The mouse hind 
footpad model of M. ulcerans infection was originally developed by Fenner [116] 
and continually refined over many decades, predominantly in the BALB/c and 
C57BL/6 strains of mice. Today, it is the gold standard for studying treatment inter-
ventions and new vaccine candidates against BU disease. M. ulcerans bacteria are 
injected subcutaneously into the footpad, and (depending on the injected dose and 
mouse strain) the initial signs of swelling may appear over the metatarsal area 
approximately 2–5  weeks later. If untreated, the swelling progresses and then 
extends into the leg, finally leading to onset of ulceration. These stages of experi-
mental pathogenesis of M. ulcerans infection in mouse footpads can be graded 
according to their physical appearance, according to a process originally proposed 
by Stanford [23] and later refined by Converse [34] in line with modern animal 
welfare legislation (Fig.  5.4). This allows for experimental humane points to be 
achieved without causing undue suffering to animals, usually before the point of 
ulceration. Notably, the analgesic effects of mycolactone [131, 132] mean that the 
animals do not experience inflammatory, hypoxic or tissue pressure pain even at the 
more severe grades. Objective measures of the intervention can also be taken in 
terms of physical parameters (footpad diameter), enumeration of bacteria in footpad 
via either culturable bacilli or quantification of bacterial DNA and measurement of 
inflammatory markers in blood or tissue.

An alternative model involving subcutaneous injection of M. ulcerans into the 
central portion of the tail has also been described [71]. The main outcome measure 

Fig. 5.4 Pathogenesis after subcutaneous M. ulcerans injection in the mouse (BALB/c) footpad. 
Subcutaneous (s.c.) injection of M. ulcerans into the healthy mouse footpad (0) leads to progres-
sive swelling and inflammation. (1) Grade 1, slight swelling; (2 and 2+) Grade 2, swelling with 
inflammation; (3 and 3+) Grade 3, swelling with inflammation of the leg; (4) Grade 4, swelling 
with inflammation and possible ulceration [130]. For most vaccine studies, the human endpoint is 
when cage bedding is observed sticking to the sole of the foot, indicating ulceration. Despite the 
dramatic appearance, the analgesic effects of mycolactone mean that the mice do not display signs 
of pain nor lose mobility
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here was time to ulceration in days (60–70  days in unvaccinated C57BL/6 and 
BALB/c mice, respectively) [133, 134]. A low-dose infection model using a recom-
binant bioluminescent strain of M. ulcerans allowing for bacteria enumeration in 
live animals [135, 136] has also been used [137].

Here, we have categorised the various vaccine candidates tested in mice under 
two broad arms: whole bacteria and subunit vaccines, including those based on 
mycolactone (Table 5.1). Despite its lack of efficacy in human clinical trials, BCG 
has proven useful as a baseline to compare the efficacy of other vaccine candidates 
(recently reviewed in [125, 126]), as it provides short-lived but measurable protec-
tion against mouse footpad infections. This has been reproducible since Fenner’s 
first attempts at a vaccine in the 1950s [116, 117] and is seen even when BCG 
booster approaches are used [148]. These studies showed that vaccine-mediated 
protection from M. ulcerans infection may be Th1-mediated, via sustained levels of 
IFN-γ and TNF and the absence of IL-4, IL-10 and IL-17 [139].

5.3.2.1  Whole Bacteria Vaccines

In concert with the earliest BCG studies in mice, several reports have attempted to 
use M. marinum as a vaccine against M. ulcerans infection. Early attempts showed 
increased efficacy over BCG, but these were also still short-lived and waned with 
time [116, 117]. More recently, there has been some interest in overexpressing anti-
gens in BCG and M. marinum and using these recombinant strains as whole bacteria 
vaccines. By this design, M. ulcerans-specific antigens were presented in a vaccine 
which lacked the virulent and immunomodulatory potential of mycolactone. These 
studies have focused on antigens that are known to be immunodominant in M. tuber-
culosis including EsxH, the M. ulcerans ortholog of M. tuberculosis TB10.4 antigen 
and proteins of the Ag85 complex. The latter is made up of Ag85A, Ag85B and 
Ag85C and is known to be secreted from BCG and to elicit strong Th1 responses 
[149]. Each of these 30–32 kDa proteins is highly conserved between different spe-
cies of mycobacteria, being involved in the synthesis of cord factor and the organ-
isation of mycolic acids in the bacterial cell wall. Notably Ag85A induced 
measurable, but relatively weak, IFN-γ responses during whole blood restimula-
tions of BU patients and their household contacts [103].

Hart et al. [142] used recombinant M. marinum expressing M. ulcerans Ag85A 
(MU-Ag85A). Although this did not seem to delay the onset of ulceration (the 
experimental endpoint), it did significantly reduce the bacterial load of the chal-
lenged footpads. Hart et al. applied this same technology to generate BCG express-
ing M. ulcerans Ag85B with and without a fusion with EsxH. Mice challenged with 
M. ulcerans following a single subcutaneous vaccination with BCG MU-Ag85B- 
EsxH [144] or BCG MU-Ag85B [143] displayed significantly less bacterial burden 
at 6 and 12 weeks post-infection, reduced histopathological tissue damage and sig-
nificantly delayed (but not prevented) onset in ulceration compared to vaccination 
with BCG.

5 Current Progress and Prospects for a Buruli Ulcer Vaccine
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Others have attempted vaccines using various doses and strains of M. ulcerans 
itself. Once again, Fenner paved the way and found that low, but not high, doses of 
M. ulcerans (1615E) provided protection against footpad infections [117]. Though 
not explained, this may have been due to the immunomodulatory action of mycolac-
tone. In an attempt to bypass this, Fraga et al. [139] used a mycolactone-deficient 
strain of M. ulcerans (5114) that had lost the MUP038 gene involved in mycolac-
tone biosynthesis [150]. This strain delayed the onset of footpad swelling post- 
challenge similarly to BCG. Finally, an interesting approach was taken by Watanabe 
et  al. [138], who inactivated and dewaxed M. ulcerans by organic solvent treat-
ments, prior to using it as a vaccine in mice. This candidate conferred complete 
protection against swelling at 28 days post-challenge, though the authors did not 
investigate if this protection was long-lasting.

5.3.2.2  Subunit Vaccines for BU

An alternative approach has been the use of acellular/subunit vaccines formulated 
with adjuvants and delivered as proteins or DNA. Tanghe et al. [140] demonstrated 
that a DNA vaccine based on BCG-Ag85A was able to confer partial protection 
(like BCG) against M. ulcerans infection in mice, as measured by reduced bacterial 
load. This was further improved on with MU-Ag85A, particularly when used as a 
DNA-prime protein-boost regimen, with a 100-fold reduction of bacterial load com-
pared to unvaccinated mice [141]. These experiments also demonstrated that the 
protective immune responses were localised and Th1-mediated, with strong roles 
for IL-2 and IFN-γ. However, while this vaccine delayed the onset of footpad ulcer-
ation, it was less effective than BCG, a finding later replicated by Roupie et al. [147].

Other immunodominant antigens of M. ulcerans that have been investigated as 
vaccine candidates include MUL_2232 (also known as Hsp18, homologous to an 
immunodominant cell wall antigen of M. leprae that is reactive with the sera of 
patients with BU [100]) and MUL_3720 (a highly expressed 21 kDa protein with 
unknown function [151, 152]). However, despite their strong induction of IgG anti-
bodies, they failed to provide any protection in either the footpad or tail infection 
models [133, 145]. No further improvement was reported when vesicular stomatitis 
virus-based RNA replicon particles encoding these proteins were used [146]. Prior 
to this, Coutanceau et al. [134] had tried a DNA vaccine using M. leprae Hsp65 
antigen, but this did not confer any protection despite inducing strong IgG antibody 
responses. These studies give credence to the thinking that T cell responses, rather 
than antibodies, may have a more significant role in M. ulcerans immunity.

Moreover, different domains of the three large mycolactone polyketide synthases 
mlsA1, mlsA2 and mlsB encoded by pMUM001 and found associated with the 
M. ulcerans cell wall [150] have been investigated as vaccine candidates. These 
included the acyl carrier protein type 1, 2 and 3 (ACP-1, ACP-2 and ACP-3), type 1 
and type 2 acyltransferases (acetate) (ATac-1 and ATac-2), acyltransferase (propio-
nate) (ATp), enoylreductase (ER), ketoreductase A (KR-A) and the load module 
ketosynthase domain (KS). Many of these domains have been shown to induce 
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humoral or cellular responses, supporting their immunogenicity. Of these, ER, ATp 
and KR-A have been shown to discriminate serological responses between BU 
patients and controls in non-endemic regions [102]. Other domains, particularly ER 
and KS, were able to successfully induce IFN-γ and IL-5 during whole blood 
restimulations of BU patients and their household contacts [103].

Unfortunately, vaccine trials using this strategy have been disappointing. Roupie 
et al. [147] used a DNA prime/protein boost protocol and found that the antibody 
and cellular (IL-2 and IFN-γ) immune responses to these antigens varied, with ATp 
providing the strongest response amongst the nine domains in line with, or better 
than, the MU-Ag85A control. However, this did not significantly extend the time for 
mice to display 4 mm footpad swelling or reduce bacterial numbers in infected feet. 
More recently, an approach that involved electrostatically coupling the ER domain 
to the Toll-Like receptor 2 (TLR-2) agonist adjuvant R4Pam2Cys was tested [137]. 
In this low-dose challenge tail model, this vaccine provided reduced protection 
compared to BCG and was associated with ER-specific serum IgG titres and IL-2/
IL-4 in the draining lymph nodes.

With limited success so far with both whole bacteria and subunit protein candi-
dates, it has been postulated that a vaccine design based on mycolactone could 
provide the much sought-after protection against BU. Evidence that such a toxin- 
blocking vaccine might be fruitful comes from the successful generation of 
mycolactone- neutralising antibodies using a truncated and non-cytotoxic mycolac-
tone derivative. This compound (PG-203) lacking the so-called ‘Southern’ chain 
and conjugated to BSA via a diethylene glycol-based linker, it elicited protein-based 
immune responses as determined by ELISA and other neutralisation assays [153]. 
The vaccine potential of mycolactone has also been demonstrated using in  vitro 
display methods comprising both phage and yeast [154].

5.4  Prospects

So, what are the prospects of a BU vaccine in the future? Based on the available 
evidence with BCG, a BU-specific vaccine is needed. While none of the promising 
preclinical candidates described here fully meet the criteria to be advanced to human 
studies, these partial successes strongly suggest that, with further improvements, 
such a vaccine may yet be achievable.

To that end, we would like to conclude this review with a preliminary report from 
our own attempts of developing a subunit-based vaccine against BU.  Using our 
expertise from BCG-boost subunit vaccines studies for TB [155–157], we have 
recently developed several formulations that were tested in the mouse footpad 
model of M. ulcerans infection. These formulations contain individual or combina-
tions of M. ulcerans antigens, as well as mycolactone itself, mixed with different 
types of adjuvants and delivery systems. While the data are yet to be published, we 
were very encouraged to observe that one of these formulations, which we have 
termed ‘BuruliVac’, was particularly effective in preventing swelling and ulceration 
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of the mouse footpad and completely prevented footpad swelling in all experimental 
animals. This was corroborated by absence of C-reactive protein and other inflam-
matory markers in the tissue (Boakye-Appiah and Reljic, unpublished).

These ongoing proof-of-principle vaccine studies demonstrate that it is feasible 
to prevent M. ulcerans infection in this experimental model and that future efforts 
should be concentrated on further optimising and advancing such second- generation 
vaccine candidates against BU. Recent developments in vaccination strategies that 
allow specific targeting of skin resident memory T cells may be of value here [158]. 
However, it should also be noted that unlike BCG, a new BU-specific vaccine will 
come with a significant caveat, in that its clinical development and eventual licen-
sure will depend on it being able to attract sufficient interest from pharmaceutical 
industry. BU, despite being the most significant mycobacterial disease after TB and 
leprosy, is an NTD that affects a relatively small proportion of population, mostly in 
the endemic areas in Western Africa. Vaccine development is an extremely costly 
undertaking for the pharmaceutical industry, amounting to hundreds of millions of 
US dollars. This investment can only be recouped by selling enough doses and over 
a prolonged period. The battle to develop a BU vaccine will therefore be fought on 
two separate fronts, in research laboratories and in the commercial arena. We, the 
scientific community, have the responsibility to ensure that if it comes to that second 
battle, we have something to fight with, a vaccine that has a real chance to eradicate 
the terrible affliction that is BU.
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