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Chapter 4
Leprosy Vaccines: Developments 
for Prevention and Treatment

Hua Wang

Abstract  Over 200,000 new leprosy cases are reported globally every year. A vac-
cine for leprosy can eliminate the debilitating, biblical, and stigmatised disease in 
the twenty-first century. Since the 1940s, many clinical studies have consistently 
shown that the BCG vaccine offers some level of protection but ranging between 
18% and 90%. Throughout this time, different versions of BCG and new develop-
ments have resulted in new leprosy vaccine candidates and prevention strategies. 
Examples are the vaccine and drug combinatory therapy that has shown promise in 
decreasing transmission and the subunit vaccine candidate, LepVax, which has been 
shown to reduce bacterial count and delay nerve function impairment in animal 
models and safe in healthy adults in early studies. The WHO officially recom-
mended the BCG vaccine as a leprosy vaccine in 2018, a century later after it was 
first used as a tuberculosis vaccine in 1921. However, a better leprosy vaccine and 
prevention strategy is still needed because we do not exactly know how 
Mycobacterium leprae spreads and causes neurological damage in leprosy patients. 
The history and latest developments in leprosy vaccines are explored in this chapter.

Keywords  Mycobacterium leprae · BCG · Vaccine · LepVax · Drug treatments

4.1 � Introduction

Leprosy is an age-old infectious disease that continues to be endemic in some 
regions of the Americas, Africa, and South-east Asia [1]. It is caused by the bacte-
rium called Mycobacterium leprae, discovered by Gerhard Armauer Hansen in 
1874 [2]. Hence, leprosy is also called Hansen’s disease. Leprosy primarily affects 
the skin and peripheral nerves. Every year, over 200,000 new leprosy cases are 
reported globally [1]. In 2019, India, Brazil, and Indonesia accounted for 79% of the 
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Fig. 4.1  The hand of a leprosy patient (right) with terminal phalanges examined by a health 
worker (left) in Bhutan. (Image source: Wellcome Collection. The Leprosy Mission International. 
Attribution 4.0 International (CC BY 4.0))

202,166 newly registered leprosy cases [1]. A third of the diagnosed patients experi-
ence disabilities because of nerve damage (Fig. 4.1). Consequently, leprosy is the 
leading infectious cause of disability worldwide [3, 4], and an estimated three to 
four million people are living with disabilities caused by leprosy [5].

Multi-drug therapy (MDT)1 introduced by the World Health Organization 
(WHO) in 1981 remains highly effective to cure leprosy, but early diagnosis and 
treatment are paramount to preventing permanent nerve damage that can progres-
sively lead to deformity and disability. Alarmingly, cases of drug resistance and 
disease relapses have been reported [6–8]. There have been many leprosy vaccine 
candidates and a leprosy vaccine does exist: in 2018, the WHO recommended one 
dose of the Bacille Calmette-Guérin (BCG) vaccine for healthy neonates at the ear-
liest opportunity to reduce the risk of leprosy in countries or settings where it is 
common [9] (Fig. 4.2). However, meta-data analyses of clinical trials found that the 
BCG vaccine has variable protection ranging from 18% to 90% against leprosy 
[10–12].

1 Rifampicin, clofazimine, and dapsone.
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Fig. 4.2  Photographs of vaccines. Left: a leprosy vaccine of unknown composition produced by 
the Wellcome Physiological Research Laboratories in London, United Kingdom, circa 1978. 
(Image source: Wellcome Collection. Attribution 4.0 International (CC BY 4.0)). Right: a BCG 
vaccine to prevent tuberculosis, manufactured by Aventis Pasteur Canada in 2002. (Image source: 
Sanofi Pasteur Canada Archives)

In the next decade, the WHO Global Leprosy Strategy, 2021–2030, boldly aims 
‘towards zero leprosy’ [5], focusing on interrupting transmission and achieving zero 
autochthonous cases. To ultimately bring leprosy to zero, an effective leprosy vaccine 
is essential and pivotal as part of the global strategic effort to eradicate the debilitat-
ing disease in the twenty-first century. In this chapter, we highlight the leprosy vac-
cine successes and investigate current leprosy vaccine developments and strategies.

4.2 � The BCG Vaccine Has Variable Protection 
Against Leprosy

A misconception is that there is no leprosy vaccine. Studies show that the BCG vac-
cine used to prevent tuberculosis caused by M. tuberculosis, a bacterium closely 
related to M. leprae, offers more protection against leprosy than against tuberculosis 
[12, 13]!

The BCG vaccine is live attenuated M. bovis BCG strain. It was originally devel-
oped by Jean-Marie Camille Guérin and Léon Charles Albert Calmette in the early 
1900s using attenuated M. bovis, a bacterium more closely related to M. tuberculo-
sis, as an experimental vaccine to protect cattle from bovine tuberculosis [14]. In 
1921, BCG was administered for the first time to a newborn baby in Paris to prevent 
human tuberculosis [15]. Now, BCG is one of the most widely used vaccines world-
wide. In 1987, the Brazilian Ministry of Health recommended BCG vaccination or 
repeat vaccination of contacts to reduce the incidence of leprosy [16]. However, it 
was only in 2018 that leprosy was included in the WHO BCG vaccine program. 
Why did it take so long?

4  Leprosy Vaccines: Developments for Prevention and Treatment
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BCG vaccination against leprosy was first suggested by J. M. M. Fernandez in 
1939 [17], who reported lepromin2 conversation among children following BCG 
administration. It was postulated that BCG may confer some protection against lep-
rosy due to possible common antigens between M. bovis BCG and M. leprae. The 
finding initiated five early small-scale trials in the 1950s in Brazil [18], India [19], 
Argentina [20], Venezuela [21], and Japan [22]. The trials showed that BCG vaccine 
has partial or wide protection (26–96%) against leprosy, but they had inadequate 
controls to draw any definitive conclusion. Furthermore, because leprosy has a long 
incubation period, on average of 5 or more years before the disease manifests in a 
clinically diagnosable form [5], long follow-ups and large-scale trials are needed to 
provide the necessary robust data. A plethora of clinical trials and community sur-
veys then followed from the 1960s to the 2000s in Uganda [23–25], New Guinea 
[26, 27], India [11, 28–33], Myanmar (Burma) [34–38], Malawi [39–41], Kenya 
[42], Venezuela [43], Vietnam [44, 45], Brazil [46–53], and Indonesia [54]. 
Interestingly, the trial data in BCG protection were heterogeneous but showed pro-
tection wherever they were studied. To make sense of the heterogeneity, Setia et al. 
[10], Zodpey [11], and Merle et al. [12] carried out meta-data analyses and found 
that BCG protection against leprosy remained variable, between 18% and 90%. 
While the extrema are wide and with no definitive reasons for the heterogeneity, the 
authors agreed the trials consistently showed that BCG protects against leprosy. The 
authors commented that the variability between studies was due to several factors: 
study population (genetics, household contact, geography), environmental bacteria 
(cross-reaction), BCG dose number, M. bovis BCG diversity of sub-strains (geno-
type, phenotype, and vaccine manufacturer), nutrition, economic background, study 
bias, publication bias, and data collection/methodology.3 These are ongoing factors 
to consider and to address for future studies.

In 2013, the WHO published new recommendations for manufacturing and eval-
uating BCG vaccine (for tuberculosis) [55]. In 2018, the WHO officially included 
leprosy in the single-dose BCG vaccination recommendation [9]. The inclusion of 
leprosy for BCG vaccination has huge implications for public health and research 
moving forward. It recognises that the BCG vaccine is important to prevent both 
tuberculosis and leprosy.

2 Lepromin is a skin test to classify the type of leprosy. It is carried out by an intradermal injection 
of inactivated M. leprae extract to check if the body responds to the bacterial antigens. An early 
reaction within 48 h (Fernández reaction) of erythema and induration indicates tuberculoid lep-
rosy. A late reaction at 3 weeks (Mitsuda reaction) of nodule and indurated lesion indicates border-
line tuberculoid leprosy. A lepromatous leprosy patient will not have a positive reaction.
3 Numerous classifications have been used over the years to recognise leprosy as a disease that can 
be characterised on a spectrum due to the different immune responses. There are two classification 
systems that are commonly used, the Ridley and Jopling classification and the WHO classification. 
The Ridley and Jopling classification of leprosy was proposed in 1966 and is based on clinical and 
histopathologic observations: polar tuberculoid (TT), borderline tuberculoid (BT), borderline 
(BB), borderline lepromatous (BL), subpolar lepromatous (LLs), and polar lepromatous (LLp). In 
1982, the WHO simplified the classification with paucibacillary (PB) leprosy that correlates with 
TT and BT and multibacillary (MB) leprosy that correlates with BB, BL, and LL.
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Generally, a single dose of BCG showed higher protection against leprosy in 
young individuals. The BCG protection wanes over time but can last for 10–30 years 
[12, 13].

4.3 � The Recombinant BCG Vaccines to Improve Efficacy 
Against Leprosy

Strategies to increase BCG vaccine immunogenicity include mixed vaccine with the 
addition of killed M. leprae or killed M. vaccae (an environmental mycobacterium) 
and recombinant BCG (rBCG) that expresses foreign molecules.

In three large clinical trial studies in Venezuela [56], Malawi [57], and India [58] 
comparing the efficacy between BCG and BCG + killed M. leprae, no significant 
difference in protection was found in Venezuela (56% vs. 54%) after 5-year follow-
up and in Malawi (49% vs. 49%) after 6- to 9-year follow-up. However, an improve-
ment was found in the Indian study (34% vs. 64%), after 4- to 7-year follow-up.

There are contradictory conjectures and a lack of studies on the premise that pre-
sensitisation to environmental mycobacteria may improve, diminish, or mask BCG 
immunogenicity [59–65]. In a small population vaccination trial of children in close 
contact with leprosy in Vietnam [66], BCG + killed M. vaccae was found to have a 
modest improvement in protection at 66%, compared to BCG (58%) and M. vaccae 
alone (55%). Further studies are needed but killed M. leprae is a scare material. 
M. leprae cannot be cultured with an artificial growth medium and is therefore dif-
ficult to isolate in large quantities for experimental studies. Currently, M. leprae 
cultivation requires animals such as mice [67–69] or armadillos [70–72], which is 
costly, with months of maintenance and growth time required to isolate sufficient 
bacterial samples.

The rBCG was first introduced by Stover et  al. in 1991 [73] and enabled the 
expression of foreign antigens in BCG.  In essence, BCG is immunogenic and is 
used as a vector to elicit specific immune responses guided by the foreign antigen. 
Since then, a repertoire of antigenic rBCG candidates have shown promise, in 
improving immunogenicity not only against tuberculosis [74] but also against 
viruses (respiratory syncytial virus [75, 76], human metapneumovirus [77], measles 
[78], human immunodeficiency virus type 1 [79, 80]); bladder cancer [81, 82]; the 
protozoa parasites Leishmania [83], Plasmodium spp. [84, 85], and Toxoplasma 
gondii [86]; and the bacteria Streptococcus pneumoniae [87], Borrelia burgdorferi 
[88], and Bordetella pertussis [89–91].

Several rBCG candidates have been developed for leprosy. Ohara et al. [92, 93] 
first constructed the rBCG/85A vaccine with M. leprae antigen Ag85A and then the 
rBCG/BA51 vaccine with M. leprae antigen Ag85 and M. tuberculosis major pro-
tein MBP51. They found that a repeat immunisation in C57BL/6 mice with 
rBCG/85A vaccine drastically inhibited the multiplication of M. leprae in the mouse 
footpads compared to control and BCG. This was improved with the rBCG/BA51 
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vaccine with one-dose immunisation inhibiting multiplication of M. leprae in the 
mouse footpads, compared to control and BCG in C57BL/6 and BALB/c mice. 
Furthermore, M. leprae lysate stimulated a higher level of interferon-γ (IFN-γ) pro-
duction in spleen cells from rBCG/BA51 immunised C57BL/6 mice than BCG and 
rBCG/85A, an indication of improved host immune defence against M. leprae.

Makino et  al. [94–96] constructed the rBCG-SM vaccine secreting M. leprae 
major membrane protein II (MMP-II). MMP-II is an antigen that can stimulate den-
dritic cells (DC) to produce interleukin (IL)-12 p70 and activate T cells to produce 
IFN-γ during the pro-inflammatory response important for adaptive and innate 
immunity. In the initial in  vitro and ex  vivo studies, the rBCG-SM-infected DC 
stimulated BCG-vaccinated donor naïve and memory type CD4+ and CD8+ T cells, 
to produce significantly higher levels of IFN-γ than the rBCG-vector and killed 
rBCG-SM. A similar outcome was found for IFN-γ production by splenic T cells of 
C57BL/6 mice infected with rBCG-SM. This was also later confirmed by Maeda 
et  al. [97]. Furthermore, Makino et  al. [95] found that rBCG-SM-infected DC 
increased intracellular production of perforin in CD8+ T cells. Perforin is a pore-
forming cytolytic protein produced by cytotoxic T cells that allows passive diffu-
sion of pro-apoptotic proteases to enter target cells to control infection [98]. In a 
subsequent study, rBCG-SM-stimulated macrophages induced granulocyte-
macrophage colony-stimulating factor (GM-CSF) cytokine production and inhib-
ited the production of IL-10 [96]. The T cell activation was found to be dependent 
on GM-CSF production. IL-10 can block the reactivation of memory T cells. 
Therefore, the inhibition can potentially benefit anti-mycobacterial immune 
responses. This has been found in IL-10-deficient mice with a decreased bacterial 
burden [99].

Tabouret et  al. [100] designed the rBCG::PGL-1 vaccine to study the role of 
PGL-1 in the pathogenesis of leprosy. PGL-1 is a species-specific phenolic glyco-
lipid 1 from M. leprae with virulence, protective, and immunomodulatory proper-
ties. They found that rBCG::PGL-1 enhanced invasion via the complement receptor 
3 (CR3) of human monocyte-derived macrophages, increased uptake by DCs, and 
impaired inflammatory responses. Recently, Doz-Deblauwe et al. [101] found that 
rBCG::PGL-1 enhanced CR3-mediated non-opsonic phagocytosis in polymorpho-
nuclear neutrophils and DCs and activated Syk-calcineurin/nuclear factor of acti-
vated T cells signalling to rewire host cytokine responses to M. leprae. Although no 
M. leprae infection challenge was carried out, the insights on the PGL-1 could help 
rBCG vaccine development, by considering immune responses during leprosy 
pathogenesis and the mechanisms of nerve damage causation.

Horwitz et al. [102] designed the rBCG30 vaccine to overexpress M. tuberculo-
sis 30 kDa major secretory protein antigen 85B, which they found to offer better 
protection than BCG against M. tuberculosis and M. bovis challenge in animal mod-
els. Gillis et al. [103] further evaluated rBCG30 and found that it could stimulate 
CD4+ and CD8+ in cytokine responses from BCG-immunised BALB/c mice and 
needed boosting with purified M. tuberculosis 30 kDa antigen 85B to reduce M. lep-
rae burden in mouse footpads.
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Now, there is only one rBCG vaccine in clinical trials, the VPM1002 vaccine. The 
clinical trial evaluations are in phases II and III for tuberculosis (ClinicalTrials.gov 
Identifier: NCT03152903, NCT04351685), in phases I and II for recurrent non-
muscle invasive bladder cancer (ClinicalTrials.gov Identifier: NCT02371447), and in 
phase III for SARS-CoV-2 infection4 (ClinicalTrials.gov Identifier: NCT04439045, 
NCT04387409). The VPM1002 vaccine has not been evaluated as a vaccine candidate 
for leprosy. The VPM1002 is a genetically modified BCG that has the urease C encod-
ing gene replaced by the listeriolysin O encoding gene from Listeria monocytogenes 
[115–117]. Urease C neutralises phagosomes that contribute to mycobacteria sur-
vival, whereas listeriolysin O forms transmembrane β-barrel pores in the phagolyso-
some membrane. Therefore, VPM1002 can effectively release mycobacterial antigens 
into the cytosol to trigger immunogenic responses. The VPM1002 system can poten-
tially be used and further modified as a leprosy vaccine. Now that BCG is more widely 
recognised as a vaccine for leprosy, this offers promise for rBCGs such as VPM1002, 
rBCG/85A, rBCG-SM, rBCG::PGL-b, and rBCG::PGL-1 and the tuberculosis rBCGs 
as leprosy vaccine candidates in clinical studies.

4.4 � The Cross-Reactivity and Subunit Leprosy Vaccines

Other leprosy vaccine candidates besides the M. bovis BCG and rBCGs include (1) 
non-pathogenic or closely related M. leprae mycobacterium species to induce cross-
reactivity such as the ICRC (Indian Cancer Research Centre bacilli), M. vaccae, 
M. duvalii, M. welchii (M. w) or M. indicus pranii (MIP) [118],5 and M. habana and 
(2) recombinant protein subunits, such as the LEP-F1  +  GLA-SE (LepVax), to 
induce target-specific immune responses. M. vaccae, as previously discussed, is like 
BCG in leprosy protection. M. duvalii is an early vaccine candidate proposed in 
1974 [119] that showed some cross-reactivity. However, Shepard et  al. in 1976 

4 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 
‘coronavirus disease 2019’ (COVID-19) outbreak. Before an effective COVID-19 vaccine was 
made available for the public, existing approved vaccines were assessed for COVID-19 mitigation. 
The BCG vaccine has been found to train the immune system to fight off infections caused by 
viruses and therefore an attractive candidate as a COVID-19 vaccine [104–109]. However, there is 
no direct evidence that BCG provides protection against COVID-19 in humans [110–113]. In mice 
and hamster studies, BCG vaccination provided no protection against SARS-CoV-2 [114]. The 
phase III clinical trial is a small population group evaluation to determine if BCG can mitigate 
COVID-19, before moving to phase IV clinical trial with a large population group to assess safety 
and efficacy. Clinical trials to assess the efficacy of BCG vaccination against COVID-19 are being 
performed around the world (ClinicalTrials.gov).
5 Previously M. welchii (M. w). It was renamed to MIP in 2009 after its lineage and to avoid confu-
sion with M. tuberculosis-W Beijing.
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[120] later found that M. duvalii and M. duvalii + BCG offered less protection and 
no change in protection, respectively, when compared to BCG in mice footpad 
immunisation studies.

The M. habana vaccine was reported by Singh et al. [121, 122] to reduce M. lep-
rae counts better than BCG in mice footpad immunisation studies. Furthermore, 
Singh et  al. [123] found that M. habana induced a positive Mitsuda reaction in 
monkeys. Additionally, Chaturvedi et al. [124] identified M. habana proteins in the 
cell wall and cell membrane fractions that were recognised by leprosy antisera, and 
the 65  kDa protein [125] and 23  kDa proteins [126] were found to induce cell-
mediated immune responses. The latest study identified two additional M. habana 
proteins, an enoyl-coenzyme A hydratase and antigen 85B, both recognised by lep-
rosy antisera [127]. These proteins can be used in vaccine studies and as serodiag-
nosis tools. However, the M. habana efficacy as a leprosy vaccine remains uncertain. 
A small vaccination study of 31 lepromatous leprosy patients and 36 household 
contacts found positive lepromin reaction only after 15 weeks, but also had systemic 
side effects [128]. It is a short time frame to draw a conclusion considering that 
leprosy has a long incubation period. Therefore, further studies are required to 
understand the efficacy and the safety profile.

The ICRC vaccine is a gamma-radiation inactivated group of leprosy-derived 
cultivable slow-growing mycobacteria belonging to the M. avium complex isolated 
in 1958 from a leprosy patient [129–131]. Early immunological studies from 1974 
to 1978 all demonstrated reactivity [132–134]. Bhide et al. [135] reported in 1978 
that ICRC offered protection against M. leprae infection in the mouse footpad 
model. This led to small trials by Deo et al. [136] and Bhatki et al. in the early 1980s 
[137] that continued to show promising outcomes. ICRC resulted in negative to 
positive lepromin conversion in 58% of lepromatous leprosy patients and 91% of 
borderline lepromatous patients. Chaturvedi et al. [138] reported that ICRC has a 
dose-dependent lepromin conversion at eighth week (high dose and 1/30th dose 
resulted in 79% and 46% lepromin conversion, respectively) and resulted in >90% 
lepromin conversion in healthy subjects from household contacts of leprosy patients 
and non-contacts in a general population in Bombay at the end of 1 year; patients 
remained stable up to 3 years; and no nerve toxicity was reported, as hypersensitiv-
ity to M. leprae antigens can lead to nerve damage. In a large-scale comparative 
study in India, Gupte et al. [58] reported 66% protection by ICRC versus 34% pro-
tection by BCG after 4–7-year follow-up. Interestingly in the same comparative 
study, BCG combined with killed M. leprae offered 64% protection, similar to 
ICRC. A recent ICRC formula evaluation found that ICRC candidate strain C-44 is 
coated with human immunoglobulin G that may play a role in the immune 
responses [139].

The MIP vaccine was developed in the National Institute of Immunology, India, 
and showed promising early initial outcomes. Chaudhuri et  al. [140] and Talwar 
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et al. [141] reported that 20 of the 32 patients had negative to positive lepromin reac-
tion conversion after 4–6 weeks from a single administration and remained stable 
after 6–11 months. However, in the large-scale comparative study in India reported 
by Gupte et al. [58], MIP only offered 26% protection compared to 66% protection 
by ICRC, 34% protection by BCG, and 64% protection by BCG + killed M. leprae, 
after 4–7-year follow-up. In a double-blind immunoprophylactic trial conducted in 
an endemic area of Kanpur Dehat, Uttar Pradesh, Sharma et al. [142] showed that 
the low MIP protection was attributable to a decrease in protection over time and 
offered greater protection for contacts. They found that MIP had protective efficacy 
of 69%, 59%, and 39% at, 3-, 6-, and 9-year follow-up, respectively, for household 
contacts after the initial vaccination. Similarly, the protective efficacy was 68%, 
60%, and 28% at 3-, 6-, and 9-year follow-up, respectively, for both patients and 
contacts after the initial vaccination. The MIP vaccine was less effective for patients: 
the protective efficacy was 43%, 31%, and 3% at 3-, 6-, and 9-year follow-up, 
respectively. However, smaller studies have found that MDT and MIP as immuno-
therapy for multibacillary leprosy patients could shorten recovery time, reduce bac-
terial load, clear granuloma, and reduce neuritis [143–147]. The MIP vaccine has 
received approval by the Drugs Controller General of India and the US Food and 
Drug Administration [148]. In 2017, the Indian Council for Medical Research 
launched a vaccine programme to eradicate leprosy in leprosy endemic districts 
[149–151]. The patients, family members, and contacts will receive two doses of 
autoclaved MIP at 6 months intervals. Studies are ongoing to evaluate the efficacy 
of MDT and MIP immunotherapy.

LepVax is the latest vaccine candidate moving in the clinical trial pipeline [152] 
(Fig. 4.3). LepVax is a defined subunit vaccine containing a chimeric recombinant 
protein (LEP-F1) consisting of a tandem linkage of M. leprae antigens ML2531, 
ML2380, ML2055, and ML2028 and a synthetic Toll-like receptor 4 (TLR4) ago-
nist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE). In the M. leprae 
mouse challenge studies, LepVax raised an immune response not affected by prior 
BCG immunisation. Additionally, immunised mice infected with M. leprae had sig-
nificantly fewer bacteria recovered in the mouse footpad experiments, compared to 
unimmunised control mice. After 12  months, the bacterial burden in immunised 
mice was approximately 85% lower than mice immunised with GLA-SE adjuvant 
formulation alone. Importantly, LepVax immunisation delayed motor nerve func-
tion impairment in M. leprae-infected nine-band armadillos, demonstrated as post-
exposure immunoprophylaxis. LepVax dosage, safety, and immunogenicity 
parameters were evaluated in the phase 1a clinical trial on 24 healthy adult volun-
teers in the United States [153]. The study outcome published in 2020 concluded 
that LepVax was safe and immunogenic and LepVax will start phase 1b/2a clinical 
trial in 2022 to carry out the same evaluation in leprosy endemic regions 
(ClinicalTrials.gov Identifier: NCT03947437).
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Fig. 4.3  A vial of LepVax (LEP-F1). The vaccine development is a partnership between the 
American Leprosy Missions and the Infectious Disease Research Institute (now Access to 
Advanced Health Institute) in Seattle, Washington, that started in 2002. (Image source: American 
Leprosy Missions)

4.5 � Vaccine and Drug Combinatory Therapy

The combination of immunotherapy and chemotherapy can shorten leprosy treat-
ment time and potentially improve the treatment outcome. When the WHO recom-
mended MDT for leprosy in 1981, patients were required to be on the regimen for 
at least 2 years.6 An early evaluation of the MIP vaccine candidate by Talwar et al. 
[154] found there was more rapid bacterial clearance in vaccinated patients who 
were also receiving MDT. Zaheer et al. [155] investigated if chemotherapy in com-
bination with immunotherapy, i.e. MDT + MIP, could reduce the treatment time by 

6 The latest WHO 2018 ‘Guidelines for the Diagnosis, Treatment and Prevention of Leprosy’ rec-
ommends ‘a 3-drug regimen of rifampicin, dapsone and clofazimine for all leprosy patients, with 
a duration of treatment of 6 months for PB leprosy and 12 months for MB leprosy’.
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inducing cell-mediated immune responses. They reported that MIP helped overall 
in the treatment; 13 of 31 BL and LL patients or multibacillary leprosy patients who 
received MDT and MIP were bacteriologically negative within 2 years, compared to 
5 of 25 controls. The vaccinated patients had either upgraded in disease spectrum or 
were completely cleared of granuloma. Furthermore, 80% of vaccinated BL and LL 
patients had lepromin conversions, compared to 14% of the controls.

Sharma et al. [156] also reported a faster bacterial clearance for patients receiv-
ing both MDT and MIP within 2 or 3 years. They found that 90% of the vaccinated 
patients had negative to positive lepromin conversions compared to 38% of the pla-
cebo group, and the patients released from treatment had no incidence of relapses in 
a 5-year follow-up. They concluded that the addition of MIP to MDT could reduce 
treatment time from 4–5 years to 2–3 years. Kaur et al. [145] and Kamal et al. [144] 
have similarly reported that MDT + MIP improves treatment outcomes. Due to the 
long incubation period of leprosy, long-term follow-up is needed for the safety and 
efficacy of shortening the treatment time.

Katoch et  al. [157] reported a comparative study between MIP and BCG with 
MDT. They found that the patient groups receiving MDT and MIP, or BCG, had no 
detectable viable bacilli in the local and distal sites by mouse footpad analysis, whereas 
viable bacilli were detected in the patients on MDT alone within 2 years. Additionally, 
patients receiving MDT and MIP, or BCG, also had accelerated granuloma clearance. 
As with the previous studies, they also concluded that the addition of immunotherapy 
to achieve negative bacteriology could reduce treatment time by about 40% and found 
no relapses in the 10–12 years post-treatment follow-up. Interestingly, MIP did per-
form slightly better than BCG in bacterial and granuloma clearance. In contrast, 
Narang et al. [147] found that although MIP or BCG improved clinical outcomes, 
BCG performed better than MIP. However, immunisation by BCG on its own of close 
contacts of leprosy patients has been reported to precipitate PB leprosy on potentially 
asymptomatic infected or previously exposed individuals [158–160].

The addition of immunotherapy to patients under MDT generally shows positive 
clinical outcomes. What about close contacts of leprosy patients and transmission? 
It has been shown that a single dose of rifampicin (one of the drugs in the leprosy 
MDT) to close contacts of patients is 57% effective at preventing leprosy within 
2 years, but with no effect after 2 years [161, 162]. Richardus et al. [163, 164] inves-
tigated whether chemoprophylaxis with rifampicin and immunoprophylaxis with 
BCG on contacts of leprosy patients could reduce transmission. Although they 
found a 42% reduction in PB leprosy cases of close contacts of leprosy patients in 
the first year, they noted that it was not statistically significant, due to low patient 
cases. Thus, more studies are needed to understand the clinical benefits of the com-
bination of MIP or BCG with MDT on reducing transmission.

The Leprosy Post-Exposure Prophylaxis (LPEP) programme (Fig. 4.4), funded 
and coordinated by Novartis Foundation, launched in 2015, and ended in 2018, was 
established to explore contact tracing and to evaluate single-dose rifampicin post-
exposure prophylaxis (SDR-PEP) to reduce and curb transmission in Brazil, 
Cambodia, India, Indonesia, Myanmar, Nepal, Sri Lanka, and Tanzania [165–167]. 
The programme outcome varied in countries that showed an increase in the number 

4  Leprosy Vaccines: Developments for Prevention and Treatment



58

Fig. 4.4  Health education in Nepal about leprosy and SDR-PEP for the contacts of a leprosy 
patient (household contacts and neighbours) to get their consent before screening and SDR-PEP 
administration in the community. (Photograph: Tom Bradley/Netherlands Leprosy Relief)

of detected cases in the first year but followed by a reduction in cases, indicating a 
reduction in leprosy incidence. Furthermore, a 2040 projection model indicates that 
LPEP could have a huge impact in interrupting M. leprae transmission. Future pro-
grammes to include immunotherapy may demonstrate greater impact.

Overall, the studies indicate that a combination of chemotherapy and immuno-
therapy is a powerful therapeutic intervention to treat leprosy patients and poten-
tially as a control strategy to reduce transmission.

4.6 � Conclusion and Vaccine Outlook

The current BCG vaccine for leprosy offers only partial protection. Leprosy is not 
eliminated, despite early ‘elimination’ declaration by WHO defined as ‘the reduc-
tion of prevalence to a level below one case per 10,000 population’ [168]. This has 
drawn major criticism, because it changed public perception and shifted away the 
resources and financial support needed to carry out fundamental and long-term epi-
demiological studies [169–172]. M. leprae remains a bacterium that requires ani-
mals for cultivation. We still do not exactly know how M. leprae transmission 
occurs, how it induces immune responses, and what is the mechanism underlying 
the nerve damage.
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Table 4.1  A list of leprosy vaccine candidates and treatment and transmission reduction strategies

Candidates Purpose

BCG Vaccine with live attenuated bacteria
BCG + M. leprae Vaccines with live attenuated and killed bacteria to improve 

immunogenicityBCG + M. vaccae

BCG + M. duvalii

rBCG/85A Vaccines with live attenuated bacteria expressing recombinant 
proteins to improve immunogenicityrBCG-SM

rBCG::PGL-1
rBCG::PGL-b
rBCG30
VPM1002
ICRC Vaccines with environmental bacteria for cross-reactivity
M. vaccae

M. duvalii

M. welchii or M. indicus 
pranii (MIP)
M. habana

LepVax, LEP-F1 Vaccine with subunit proteins
MDT + MIP Treatment consists of vaccine and drugs to reduce treatment time
MDT + BCG
Rifampicin Prevention for close contacts

The recognition that BCG is a leprosy vaccine by the WHO is a critical admis-
sion that can help push current vaccine research forwards and support social 
changes. Historically, leprosy sufferers are stigmatised and discriminated against by 
their community [5, 173]. Unfortunately, stigma and discrimination are still hap-
pening today. According to the WHO, there are 127 discriminatory laws in 22 coun-
tries based on leprosy [5]. A widely recognised leprosy vaccine that is already in use 
can change the dialogues within communities and perceptions about the disease. 
Table 4.1 summarises the leprosy vaccines and strategies to reduce treatment time 
and transmission discussed in this chapter. The development of rBCGs, killed 
related mycobacteria, and subunit recombinant vaccine candidates is showing 
promise in clinical trials for the future, with an improved and effective leprosy vac-
cine as immunoprophylaxis, a supplement to chemotherapy, and post-exposure 
immunoprophylaxis.
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