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Chapter 14
Vaccine Development for Human 
Leishmaniasis

Marianna de Carvalho Clímaco, Lucas Kraemer, 
and Ricardo Toshio Fujiwara

Abstract  The development of vaccines for human leishmaniasis is one of the most 
important approaches for effectively controlling and/or eradicating the several forms 
of the disease. Based on the knowledge obtained from the practice of leishmaniza-
tion and its protective immune response, several strategies have been used to develop 
vaccines against Leishmania species, such as the use of whole killed and attenuated 
parasites, recombinant proteins, and DNA vaccines. An ideal vaccine should be safe, 
effective, and immunogenic. Although several candidates have achieved safety and 
some level of effectiveness, the current challenge in the development of prophylactic 
vaccines is to achieve long-lasting immune protection by generating a robust and 
irreversible Th1 adaptive immune response in the host, with rapid recruitment of 
memory and effectors T cells at key acute points of infection. However, despite all 
efforts over the years, due to the antigenic diversity of the parasite and the complex-
ity of the host’s immune response, human vaccine trials have been disappointing in 
mediating long-term immunity against sandfly-delivered infection. Therefore, more 
investments in this field should be carried out to translate preclinical findings from 
mice to humans through effective vaccine development strategies.

Keywords  Human leishmaniasis · Leishmania · Vaccine development · Long-
lasting immunity · Correlates of protection

14.1 � History of Human Leishmaniasis Vaccines

Leishmaniasis has afflicted mankind from ancient to modern times. Even though 
Leishmania were only described as a new genus at the beginning of the C20th [1, 2], 
their presence has been reported in Egyptian mummies dated as early as 
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2050–1650 BCE [3, 4]. In fact, ancient societies had already observed a key fact 
from cutaneous leishmaniasis (CL) that healed individuals achieved lifelong protec-
tion from new infections [5]. Especially in endemic areas of Asia and Africa, this 
knowledge would be later applied as the rationale for the first attempt of active 
immunization against Leishmania parasites [6].

This practice, known as leishmanization, was based on inoculating exudates 
from active lesions into a hidden part of the body of healthy individuals, which 
would produce a single self-healing lesion and consequently induce a protective 
response against future infections [6]. This type of immunization was used in sev-
eral countries for decades, especially in hyperendemic areas [7–9]. Large-scale vac-
cination trials were conducted in conflict areas during the 1970s and 1980s, 
including one in which almost two million soldiers and refugees in Iran were immu-
nized with live virulent L. major harvested from culture media [10]. Although leish-
manization is considered to this day the most effective control measure against CL, 
concerns regarding vaccine safety, the lack of standardization, and numerous 
adverse effects caused it to be discontinued in most countries that still adopted this 
method [11]. Taking into account these limitations, attention has shifted into new 
approaches aimed at developing a safe and effective Leishmania vaccine for humans 
(Table 14.1). This includes a refinement of the leishmanization method, which will 
be discussed later in this chapter.

First-generation vaccines against leishmaniasis focused on whole killed para-
sites. This method is very attractive, since they are quite simple to produce at low 
cost, which is a prerequisite for wide distribution in developing countries [29]. The 
first trials of a vaccine against leishmaniasis using dead parasites took place in 
Brazil in the 1940s, using a polyvalent vaccine of 18 strains of Leishmania, and 
these trials had conflicting results [29–31]. These studies were resumed in the 1970s 
by other Brazilian research groups, through the evaluation of a pentavalent prepara-
tion without adjuvant known as Leishvacin® [12–15]. Other efforts were made 
worldwide, associating different Leishmania preparations with adjuvants such as 
BCG and aluminum hydroxide [16–20]. However, despite showing promising 

Table 14.1  Vaccines against leishmaniasis evaluated in human trials

Vaccine Classification Candidate Adjuvant
Phase 
reached Reference

Leishvacin First 
generation

Pool of five 
Leishmania isolates

None III [12–15]

Autoclaved 
Leishmania

First 
generation

Killed Leishmania 
spp.

BCG III [16–20]

Leish-F1 Second 
generation

TSA, LmSTI1, and 
LeIF

MPL-SE I [21, 22]

Leish-F2 Second 
generation

TSA, LmSTI1 and 
LeIF

MPL-SE II [23, 24]

Leish-F3 Second 
generation

NH36 and SMT MPL-SE and 
GLA-SE

I [25, 26]

ChAd63-KH Third 
generation

KMP-11 and 
HASPB

None II [27, 28]

M. de Carvalho Clímaco et al.



309

results regarding their safety and immunogenicity, overall, these vaccines failed to 
provide satisfactory levels of protection [32].

Second-generation vaccines then began to exploit purified or recombinant pro-
teins as vaccine antigens. Associated with different adjuvants responsible for opti-
mizing their immunogenicity [33, 34], vaccines using this method have advantages 
such as purity and ease of large-scale production [35]. Some second-generation vac-
cines against leishmaniasis that have reached clinical trials include LEISH-F1, 
LEISH-F2, and LEISH-F3 [36]. LEISH-F1, one of the first second-generation vac-
cines tested in humans, is made up of the fusion of the TSA, LmSTI1, and LeIF 
proteins (Table 14.1), associated with the adjuvant MPL-SE. Several phase I trials 
have demonstrated the vaccine’s immunogenicity and safety, in addition to its thera-
peutic efficacy in patients with cutaneous and mucocutaneous leishmaniasis [21, 22]. 
Based on the positive results of phase I, the same group reformulated the vaccine, 
now called LEISH-F2. This time, the aim was to achieve a protein more like its wild-
type version, by excluding the histidine tail present in its recombinant predecessor. 
After having its safety and immunogenicity evaluated in phase I, the vaccine entered 
phase II to have its therapeutic effects evaluated on CL patients [23, 24]. LEISH-F3 
is composed of NH36 and SMT proteins (Table 14.1) fused in tandem, formulated 
with the adjuvant GLA-SE. Phase I trials have demonstrated its safety and immuno-
genicity in a healthy population in the United States and Bangladesh [25, 26].

In order to optimize the specificity of protein-based vaccines, third-generation 
vaccines began to explore the potential of coding DNA in their composition [37]. 
The advantages of this type of approach include ease of production and administra-
tion, stability, and immunogenic potential [38, 39]. While many Leishmania genes 
have been evaluated for their vaccine efficacy, only one candidate has reached the 
clinical trial stage [36]. This vaccine uses the ChAd63 adenovirus as a vector for 
expression of the KH gene, constituted by the KMP-11 and HASPB antigens of 
L. donovani (Table 14.1). The results of phase I trials demonstrated the safety and 
immunogenicity of the vaccine, which is currently being evaluated for its therapeu-
tic effect in patients with post-kala-azar dermal leishmaniasis (PKDL). Preliminary 
phase II results reported that the vaccine induced a potent cellular immune response 
and was responsible for the emergence of mild adverse effects [27, 28]. Despite 
promising results, the level of protection obtained by DNA vaccines is still limited, 
so more studies should be carried out to increase their effectiveness.

14.2 � Strategies to Vaccine Design: Where Are Good 
Candidates to Be Found and How Do We Explore 
Their Potential?

Since the vaccine development field started to focus on immunogenic fractions 
instead of whole parasites, screening methods to search for these candidates became 
crucial. Therefore, genome sequencing of Leishmania spp. was a key step to under-
standing the molecular biology of these organisms [40–43]. Although different 
Leishmania species exhibit variable numbers of chromosomes and some 
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species-specific genes, their genomes display a high degree of genetic conservation 
[44, 45]. This aspect becomes especially attractive when we consider the design of 
a pan-Leishmania vaccine.

Among other approaches to discover novel vaccine candidates, bioinformatics 
has been widely explored for its potential to process large amounts of data that are 
deposited on different databases. This interdisciplinary field combines computa-
tional techniques with biological data, supporting a large area of studies [46]. 
Regarding vaccine design, several tools and algorithms can be applied to predict a 
number of important antigen features, such as transmembrane domains, subcellular 
localization, secondary and tertiary structures, HLA recognition, and B- and T-cell 
epitopes [47–52]. Such characteristics not only help to understand the function of 
these molecules but also contribute to the search for dominant and therefore increas-
ingly promising epitopes, which should be recognized by the human immune sys-
tem and hopefully can stimulate a protective response. Furthermore, given the 
processing and analytical capabilities inherent to bioinformatics, this approach sub-
stantially reduces the time required for the simultaneous screening of thousands of 
targets [53]. On the other hand, a major limitation to this method is that the output 
data quality is highly affected by the accuracy of the annotations and predictions 
made upon them [54, 55].

A different approach to antigen discovery is based on bacteriophage libraries. In 
1985, it was demonstrated that an exogenous gene could be fused to the gene from 
a capsid protein of the phage M13, resulting in the expression of a hybrid protein on 
the viral surface [56]. This technique, known as phage display, made it possible to 
create phage libraries composed of billions of phages capable of expressing differ-
ent exogenous peptide sequences on their surface. These sequences can then be 
selected through their affinity for different types of ligands, such as enzymes, anti-
bodies, and cell surface receptors [57]. An important aspect of this technology is the 
link between genotype and phenotype, since it is possible to find the selected pep-
tide sequence through the nucleotide sequence fused to the viral genome [58].

Libraries constructed by random peptide sequences are the most common type of 
library used in phage display selection, often helping to identify epitopes [59], many 
of which have been evaluated as candidates for a Leishmania vaccine in experimen-
tal models [60–65] (Table  14.2). The application of this method in vaccinology 
explores both the role of the bacteriophage as an immunogenic carrier of antigens 
as well as the identification of mimotopes. These are peptides that, despite having a 
different sequence from that of the native epitope, are able to interact with the para-
tope in an analogous way, often mimicking conformational epitopes [66, 67]. 
Besides the ease of large-scale production, relatively low cost, and safety, one of the 
main advantages of phage display is the possibility of selecting mimotopes, since it 
is estimated that approximately 90% of B-cell epitopes are discontinuous in nature 
[35, 68]. Furthermore, the use of phages as antigen carriers is capable of inducing 
both the cellular and humoral arms of immunity, which is fundamental in orches-
trating an effective response against intra- and extracellular pathogens [59, 69].

Although having good candidates is important while developing a promising 
vaccine, it is only the first step in a very long process. A fundamental aspect for a 
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Table 14.2  Main phage display vaccine candidates against leishmaniasis

Vaccine 
presentation Adjuvant Protection

Experimental 
model Main findings Reference

Mimotopes 
anchored to M13 
bacteriophage 
coat proteins

Saponin L. infantum
L. 
amazonensis

BALB/c mice 1. �Specific Th1 
immune response

2. �Significant 
reduction of 
parasite burden in 
all organs 
evaluated

[60, 61]

Synthetic soluble 
peptides

Aluminum 
hydroxide

L. infantum BALB/c mice 1. �Significant 
protection (up to 
98%) induction of 
mixed Th1/Th2 
response

[62]

Synthetic soluble 
peptides

None L. major BALB/c mice 1. �Up to 81.94% 
protection rate 
with peptide P2

[63]

Mimotopes 
anchored to M13 
bacteriophage 
coat proteins

None L. infantum BALB/c mice 1. �Specific Th1 
immune response

2.  �Reduction of 
parasite burden 
(up to 65%) in all 
organs evaluated

[64]

Mimotopes 
anchored to M13 
bacteriophage 
coat proteins

None L. 
amazonensis

BALB/c mice 1.  �Induction of 
specific Th1 
immune response

2.  �Significant 
reduction of 
parasite burden in 
all organs 
evaluated

[65]

successful vaccine is, in fact, how these candidates are explored. Despite peptide-
based vaccines offer advantages like safety and ease for production, it is well-known 
that synthetic single peptides are poor immunogens and require some tweaks to be 
able to elicit a potent and hopefully long-lasting immune response [70]. Among 
commonly used approaches to overcome this issue and, in the right context, drive a 
protective immune response is the use of adjuvants, adenovirus vector, or chime-
ras [71].

Chimera vaccines are composed of multiple epitopes which can be repeated in 
tandem to enhance the immune response [72]. Several studies have demonstrated 
the potential of these vaccines against leishmaniasis in a murine model (Table 14.3), 
including polyproteins composed by conjugated antigens such as KSAC [82] and Q 
protein [73], T-cell epitopes for a specific protein [72, 74–81], and MHC I- and 
MHC II-specific epitopes from different proteins [83, 84]. Regardless of the specific 
target, multicomponent vaccines are especially interesting in the case of complex 
organisms such as Leishmania spp. that present an extensive antigen repertoire [76]. 
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In addition to optimizing the chances of triggering an immunogenic response by 
recognizing at least one of its epitopes, vaccines composed of polyproteins demon-
strate greater potential for mass application [85], especially when considering the 
genetic polymorphism of the mammalian immune system and the possible interac-
tions of these antigens with different types of MHC [86]. Furthermore, the high 
level of conservation among the genomes of Leishmania spp. makes possible the 
development of a pan-effective vaccine against several species [87]. Despite these 
advantages, chimeric vaccines still need to be associated with adjuvants that are safe 
for use in humans and that together can stimulate the robust and long-lasting 
response associated with protection. This vaccine is yet to be developed.

Although whole parasite vaccines have the advantage of exhibiting the complete 
repertoire of antigens to the immune system [88], one of the biggest caveats about 
using attenuated organisms is the risk of reversion to virulence [89]. Particularly, 
older approaches such as maintaining the parasites in culture for long periods of 
time and exposure to chemical and physical attenuation did not ensure its safety. 
Random mutations and the return to a virulent state were often observed [90–92]. 
Fortunately, the use of attenuated strains gained a new momentum thanks to the 
progress made in genetic manipulation techniques. The discovery of the CRISPR-
Cas9 system, for instance, proved to be of great importance for editing the genomes 
of several organisms, including different Leishmania species [93–95]. This system 
is based on two components: Cas9, an RNA-guided endonuclease, and a guide RNA 
sequence, which has the function of directing Cas9 to the complementary strand of 
the target DNA that will be cleaved [96]. Since genetic manipulation before 
CRISPR-Cas9 was largely based on homologous recombination with the use of 
antibiotics as selection markers [97–99], the development of this technology 
improved the ability to explore and edit the genome of a number of organisms. In 
addition to other possibilities, this method allows the precise deletion and insertion 
of genes in known locations, being able to introduce mutations, selection markers, 
and protein sequences of interest [94].

Several important genes for the survival of Leishmania spp. have been explored 
in vaccine development, such as those responsible for the expression of cysteine 
protease, biopterin transporter, p27, and centrin [100–109] (Table 14.4). Centrin is 
a constitutive protein of the eukaryotic cytoskeleton, responsible for the duplication 
and segregation of the centrosome. Deletion of the centrin encoding gene in L. don-
ovani reduced the growth of the amastigote forms, although it did not interfere with 
the viability of the promastigotes [107, 110]. While multiplying inside macro-
phages, mutant amastigotes were unable to properly perform cell division, becom-
ing multinucleated and entering a process of programmed cell death [107]. 
Immunization with this strain, called LdCEN−/−, was able to provide protection 
against infection by L. donovani [108, 111, 112], L. infantum [113, 114], L. mexi-
cana [115], and L. braziliensis [116] in mice, hamsters, and dogs. Immunity gener-
ated by vaccination was mediated by a CD4+ and CD8+ T-cell response, characterized 
by potent production of pro-inflammatory cytokines IL-12, IFN-ɣ, and IL-17 and 
reduction of IL-10 by macrophages [88, 116–118].
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Table 14.4  Main attenuated live parasites vaccine candidates against leishmaniasis

Candidate 
name

Mutation 
target Protection

Experimental 
model Main findings Reference

L. donovani 
BT1 null 
mutant

Biopterin L. donovani BALB/c mice 1. � Reduction of parasite 
burden (65%) when 
compared to 
wild-type infection

2. � Induction of 
protective immunity

[100]

L. mexicana 
cysteine 
proteinase-
deficient 
mutant

Cysteine 
proteinase

L. mexicana Hamster 1. � Reduction of parasite 
burden

2. � Reduction in the 
severity of lesions

[101]

L. donovani 
p27 gene 
knockout 
parasites 
(Ld27−/−)

p27 protein L. donovani
L. braziliensis
L. major

BALB/c mice 1. �Significantly lower 
parasite burden in the 
liver and spleen

2. �Induction of 
protective immunity

3. �No parasite survival 
beyond 20 weeks after 
infection

[102]

L. infantum 
KHARON1 
null mutant

KHARON1 
protein

L. infantum BALB/c mice 1. �Reduction of parasite 
burden

2. �Unable to sustain 
infection in 
macrophages

[103]

L. infantum 
HSP70-II null 
mutant

Heat shock 
protein 70

L. major,
L. infantum
L. braziliensis

BALB/c mice, 
C57BL/6 mice

1. �Reduction of parasite 
burden

2. �Induction of 
long-term protection 
3. Th1 cell-mediated 
immune response

[104–106]

L. donovani 
and L. major 
centrin 
deleted 
parasites 
(LdCEN−/−)

Centrin
Protein

L. donovani
L. infantum
L. mexicana
L. braziliensis

BALB/c mice, 
hamster, and 
dog

1. �Reduction of parasite 
burden

2. �Unable to sustain 
infection in 
macrophages

3. �Protective immune 
response

4. �Safe in 
immunocompromised 
mice

[107–118]

Despite all benefits, the use of this strain as a human vaccine raises concerns 
regarding its potential for visceralization, which can be fatal. Furthermore, the 
method used to obtain the centrin gene knockout required the insertion of an antibi-
otic resistance marker gene, an inadmissible feature from a human vaccine candi-
date. In light of these limitations, an attenuated L. major centrin gene deletion 
mutant (LmCen−/−) was generated using the CRISPR-Cas technique. This 
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technology eliminates the need for resistance markers, which facilitates the approval 
of this strain as a vaccine by regulatory agencies and makes its evaluation possible 
in human clinical trials. Another relevant aspect for the safety of this strain is that 
L. major is a dermotropic species and its infection, unlike L. donovani, remains in 
the skin and does not cause visceral disease. Evaluation of LmCen−/− in a murine 
model was able to prevent the appearance of lesions after challenge by L. major, in 
addition to having reduced the parasite load within internal organs and induced a 
protective immune response analogous to leishmanization. Moreover, inoculation 
of LmCen−/− was unable to generate pathology in susceptible and immunodeficient 
mice, proving the safety of this vaccine [109].

The pursuit for knowledge and the advancement of new technologies have facili-
tated the search for increasingly promising vaccine candidates against leishmania-
sis. The support of bioinformatics and genetic manipulation techniques has allowed 
the design and evaluation of different types of vaccines, whether composed of para-
site fractions or those that exploited genetically modified whole parasites. Even 
though many candidates have been evaluated in preclinical trials, few had a chance 
to reach human clinical trials. There is still no vaccine available against human 
leishmaniasis. However, scientific efforts made in recent decades have brought us 
closer to achieving a safe, immunogenic, and effective human vaccine.

14.3 � Immunological Insights into Vaccine Development

The host’s immunity during leishmaniasis is complex and varies according to para-
site or host species, parasite load and sandfly, or needle challenge. In general, a 
protective immune response during Leishmania spp. infection involves the cross 
talk between the innate immune response, including neutrophils, monocytes/macro-
phages and dendritic cells (DCs), and subsequent activation of a Th1 adaptive 
immune response. Both CD4+ Th1 and antigen-specific CD8+ T-cell activation result 
in the production of IFN-γ and TNF-α cytokines that upregulate inducible oxide 
nitric synthase (iNOS) and reactive oxygen species (ROS) expression by macro-
phages, important molecules that have been associated with disease control and 
parasite clearance [119–121].

The resolution of a primary Leishmania spp. infection in humans who recover 
from the cutaneous manifestation, but maintain chronic infection in the skin, leads 
to long-lasting immunity mediated by CD4+ T cells. Healed patients establish a 
strong Th1 memory response with low number of parasites due to immune regula-
tion mediated by IL-10, known as concomitant immunity, which confers resistance 
to a secondary infection, the same protection observed in the practice of leishman-
ization [122, 123]. Thus, from the knowledge of concomitant immunity comes the 
idea of developing vaccine-mediated immunity against different forms of leishman-
iasis using several approaches, such as the use of attenuated live parasites, whole 
killed parasites, parasite protein, recombinant vaccines, and DNA vaccines, among 
others. However, despite all efforts in this field, human vaccine trials have been 
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disappointing in mediating long-term immunity when compared to 
leishmanization.

Healed humans and mice from experimental models of CL showed that upon 
antigen presentation, different populations of memory and effector CD4+ T cells are 
generated. Central memory T (TCM) cells (Ly6C−CD62L+CCR7+Ki-67+) reside in 
lymph nodes and can survive for life, regardless of persistent antigen presentation. 
During concomitant immunity, they have the capacity to transition into effector T 
(TEFF) cells after the period of antigen presentation and activation by DCs. Moreover, 
they are important for the production of IFN-γ and TNF-α [119, 124]. Effector 
memory T (TEM) cells (Ly6C−CD62L−CCR7−Ki-67+) can also produce these Th1 
cytokines and are longer lived than TEFF cells in the absence of antigen, but shorter 
lived than TCM cells. They can be found in secondary lymphoid organs, blood, or 
periphery [119, 125]. Tissue resident memory (TRM) cells (Ly6C−CD62L−CCR7− 
Ki-67+) are a non-circulatory population of memory T cells found at the distal site 
to the primary infection that respond quickly upon restimulation, producing IFN-γ 
and recruiting TEFF cells [125, 126]. Along with TEFF cells, TRM cells are crucial in 
IFN-γ production at very acute time points of infection.

Regarding TEFF cells, studies in experimental mouse models have demonstrated 
that the constant presence of the parasite in chronic subclinical infection is the key 
factor in Th1 concomitant immunity. Therefore, Peters et al. have shown that persis-
tent antigen presentation is crucial for the maintenance of circulating TEFF cells, 
short-lived CD4+ T cells expressing Ly6C+CD44+CD62L− that are predominantly 
single producers of IFN-γ. These cells are rapidly recruited and responsible for 
IFN-γ production almost instantly after secondary challenge by sandfly bite, pre-
venting the formation of a phagosomal pathogen niche and the development of the 
disease in mice [125, 127].

Several experimental vaccine formulations have been able to generate 
Leishmania-specific TCM and TEM cells and have successfully protected mice against 
needle challenge. However, although these memory T cells enhance Th1 response 
by cytokine production upon re-exposure to parasite antigen weeks to months after 
vaccination, the same vaccine formulations were ineffective in providing protection 
against sandfly bite-mediated challenge [127–131]. These observations highlight 
that the failure of Leishmania vaccines is not due to a lack of generating an appro-
priate Th1 memory response but due to a lack of generating TEFF and TRM cells, in 
addition to inflammatory conditions at the sandfly bite site that compromise the 
effector function of the memory response and should be considered when designing 
and testing vaccines. The human counterparts of TEFF cells in mice are not character-
ized yet, and understanding how to best induce generation of TRM and TEFF cells in 
humans during vaccination against Leishmania infection is one of the major chal-
lenges that remains undefined [132].

Immune protection against sandfly bite, rather than just the needle challenge, is 
the other big issue that needs to be overcome in successful vaccine design. Vector 
transmission of Leishmania by female sandfly bite delivers into the skin a low num-
ber of promastigote parasites and active molecules present in the saliva, inducing a 
robust local inflammatory response associated with the recruitment of neutrophils 
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and monocytes. This specific inflammatory response in vector transmission has an 
important impact in the context of vaccination. Studies have shown that neutrophil 
recruitment is an important factor in impairing IFN-γ production by CD4+ T cells 
and vaccine efficacy, due to suppression of T-cell activation by macrophages and 
DCs that are engaged in both antigen presentation and efferocytosis (i.e., clearance 
of apoptotic cells) of infected neutrophils [119, 132–134]. In addition, another 
important aspect that must be taken into account is the shortage of antigen avail-
ability during vector transmission when compared to needle challenge in many 
experimental models. The low number of parasites delivered by sandfly bite can 
hamper the development of a protective immune response, including TCM activation 
in the draining lymph node. Despite the difficulty of maintaining sandfly colonies to 
reproduce the context of natural infection, efforts to replicate the low dose and 
inflammatory response conditions of vector transmission is an essential concern and 
should be used as the “gold standard” of preclinical research to interpret the effec-
tiveness of protective immunity and vaccination [119, 123, 132].

14.4 � Lessons from the COVID Era: What Have We Learned, 
and How Can We Translate It to Leishmania Vaccines?

Vaccine development is a lengthy process—a decade can easily pass by between the 
discovering phase and the start of clinical trials. In 2020, the SARS-CoV-2 (severe 
acute respiratory syndrome coronavirus 2) pandemic shook the entire world, both 
for the speed with which it infected and killed millions of people and for the agility 
with which vaccines capable of containing the spread of the virus were developed. 
Coronaviruses are a group of large enveloped RNA viruses that usually cause mild 
disease in humans, the main reason why vaccination efforts were nonexistent up 
until recently [135]. This scenario dramatically shifted after the SARS-CoV and 
MERS-CoV (Middle Eastern respiratory syndrome coronavirus) outbreaks revealed 
a highly transmissible and pathogenic profile for these viruses [136].

Studies soon found a promising antigenic candidate for coronaviruses vaccines, 
a large surface protein responsible for receptor binding and cell invasion mecha-
nisms known as “spike” protein [137]. Thankfully, due to the close relation between 
these pathogens, the discovery phase during vaccine design for SARS-CoV-2 could 
be significantly shortened and effective vaccines could be evaluated in clinical trials 
at an unprecedented speed. A pandemic like the one caused by SARS-CoV-2 justi-
fies all the great scientific efforts and the number of financial investments made all 
over the world. It is also noteworthy that the success of different strategies explored 
during vaccine design brought attention not only to their advantages as a SARS-
CoV-2 vaccine per se but more importantly to its capacity to be applied to vaccines 
against all types of etiologies, including leishmaniasis. Adenovirus (Ad) vector-
based mRNA vaccines such as the ones developed by Johnson and Johnson and 
Oxford/AstraZeneca showed large potential as a platform for numerous infectious 
diseases. Aside from their high transduction efficiency and thermostability, Ad 
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vectors are especially attractive when we consider their ability to induce moderate 
levels of innate immunity, a key feature needed to activate adaptive immunity that is 
usually obtained only by the use of adjuvants [138]. This is one of many design 
approaches used in SARS-CoV-2 vaccines that we can draw experience from and 
that can be certainly translated to Leishmania vaccines.

A different kind of reflection provoked by the COVID-19 pandemic is what an 
effective vaccine looks like and what we should expect from it. Sterile immunity is 
often thought as the main goal for vaccination, despite being rather difficult to 
achieve. Admittedly, several vaccines including those against influenza, rotavirus, 
and the ones recently developed for SARS-CoV-2 fall under that category. However, 
the fact that these vaccines are unable to entirely block the infection does not mean 
they cannot prevent diseases or even reduce associated burden. We have witnessed 
first-hand COVID-19 vaccines significantly reducing hospitalization, morbidity, 
and mortality rates worldwide—while aided by important safety guidelines like 
social distancing and implementation of face mask obligation. Taking that into 
account, one can argue if we absolutely need to induce sterile immunity in a 
Leishmania vaccine, particularly since it is well-known that parasite persistence is 
required for long-life immunity. Furthermore, no vaccine alone can eradicate a com-
plex multifactorial disease like leishmaniasis. Much like COVID-19, leishmaniasis 
control needs far more than an effective vaccine; it needs a One Health approach 
that encompasses vector control, reservoir vigilance, and environmental conserva-
tion programs.

14.5 � Conclusions

The main concept of Leishmania long-lasting vaccination is to generate a robust and 
irreversible CD4+ Th1 memory response and early IFN-γ-producing effector T-cell 
responsiveness at challenge site, which is crucial in preventing the establishment of 
a parasite niche, in addition to mediating parasite killing and infection control. 
Therefore, key points must be considered in vaccine evaluation: (a) cytokine pro-
duction and cell differentiation by parasite-specific memory T cells (TCM and TEM), 
(b) persistent antigen presentation to maintain circulating IFN-γ-producing TEFF 
cells required to mediate an optimal response, (c) induction of TRM populations at 
the inoculated inflamed skin, and (d) to replicate the low-dose/high-inflammation 
conditions of experimental sandfly challenge as the “gold standard” of preclinical 
research. In conclusion, understanding of aspects related to the protective immune 
response in leishmaniasis has made important advances over the years and is crucial 
for translating preclinical findings from mice to humans through effective vaccine 
development strategies. The current prophylactic vaccine approach against all forms 
of leishmaniasis aims to obtain immune protection through a rapid recruitment of 
IFN-γ-producing TEFF and TRM cells in key acute times of Leishmania infection. 
This outcome should be able to occur even after natural sandfly challenge, prevent-
ing the development of the disease.
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