Skip to main content

Spinocerebellar Ataxia Type 7: From Mechanistic Pathways to Therapeutic Opportunities

  • Chapter
  • First Online:
Trials for Cerebellar Ataxias

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 423 Accesses

Abstract

Spinocerebellar ataxia type 7 (SCA7) is a cerebellar and retinal neurodegenerative disease caused by a CAG/polyglutamine (polyQ) expansion mutation in the ataxin-7 (ATXN7) gene. PolyQ-expanded ataxin-7 protein interferes with the histone modification activity of the STAGA co-activator complex and consequently alters the expression of STAGA-regulated genes. In the SCA7 pathogenic cascade, epigenetic dysregulation of the DNA repair interactome, combined with increased oxidative stress, leads to the accumulation of DNA damage and PARP1-mediated depletion of nicotinamide adenine dinucleotide (NAD+) levels. Subsequent breakdown of the SIRT1/NAD+—PPARγ/PGC-1α transcriptional regulatory axis, arising from NAD+ depletion, results in altered expression of calcium homeostasis genes, culminating in neuronal dysfunction and death. Here, we describe the current mechanistic understanding of SCA7, highlighting recent advances in this field. Based upon our understanding of the cellular and molecular basis of SCA7 disease pathogenesis, we delineate both known and prospective therapeutic targets and treatment strategies that could ameliorate polyQ-expanded ataxin-7 neurotoxicity, including recent progress toward an antisense oligonucleotide therapy directed against ATXN7 mRNA. In the near future, preclinical and clinical exploration of these therapeutic opportunities may yield a highly effective treatment for SCA7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Sleymane G, Chalmel F, Helmlinger D, Lardenois A, Thibault C, Weber C, Mérienne K, et al. Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program. Hum Mol Genet. 2006;15(5):691–703.

    Article  CAS  PubMed  Google Scholar 

  • Afonso-Reis R, Afonso IT, Nóbrega C. Current status of gene therapy research in polyglutamine spinocerebellar ataxias. Int J Mol Sci. 2021;22(8) https://doi.org/10.3390/ijms22084249.

  • Ajayi A, Xin Y, Lindberg S, Langel U, Ström A-L. Expanded Ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci. 2012;13(July):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alisky JM. Niacin improved rigidity and Bradykinesia in a Parkinson’s disease patient but also caused unacceptable nightmares and skin rash—a case report. Nutr Neurosci. 2005;8(5–6):327–9.

    Article  PubMed  Google Scholar 

  • Alviña K, Khodakhah K. The therapeutic mode of action of 4-Aminopyridine in cerebellar ataxia. J Neurosci Off J Soc Neurosci. 2010;30(21):7258–68.

    Article  Google Scholar 

  • Alvina K, Khodakhah K. KCa channels as therapeutic targets in episodic ataxia Type-2. J Neurosci. 2010; https://doi.org/10.1523/jneurosci.6341-09.2010.

  • An Y-Q, Zhang CT, Yong D, Ming Zhang SS, Tang MH, Long Y, Sun HB, Hong H. PPARδ agonist GW0742 ameliorates Aβ1-42-induced hippocampal neurotoxicity in mice. Metab Brain Dis. 2016;31(3):663–71.

    Article  CAS  PubMed  Google Scholar 

  • Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13(4):461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SP, Grant PA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene. 2007;26(37):5329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banfi F, Rubio A, Zaghi M, Massimino L, Fagnocchi G, Bellini E, Luoni M, et al. SETBP1 accumulation induces P53 inhibition and genotoxic stress in neural progenitors underlying neurodegeneration in Schinzel-Giedion syndrome. Nat Commun. 2021;12(1):4050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin JJ, Dürr A, Zaim A. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet. 1995;10(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  • Bhalla K, Jaber S, Reagan K, Hamburg A, Underwood KF, Jhajharia A, Singh M, et al. SIRT3, a metabolic target linked to Ataxia-Telangiectasia mutated (ATM) gene deficiency in diffuse large B-cell lymphoma. Sci Rep. 2020;10(1):21159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and Sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17(11):679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussios S, Karihtala P, Moschetta M, Abson C, Karathanasi A, Zakynthinakis-Kyriakou N, Ryan JE, Sheriff M, Rassy E, Pavlidis N. Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Investig New Drugs. 2020;38(1):181–93.

    Article  Google Scholar 

  • Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal. 2019;30(2):251–94.

    Article  CAS  PubMed  Google Scholar 

  • Burke TL, Miller JL, Grant PA. Direct inhibition of Gcn5 protein catalytic activity by polyglutamine-expanded Ataxin-7. J Biol Chem. 2013;288(47):34266–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushart DD, Murphy GG, Shakkottai VG. Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med. 2016;4(2):25.

    PubMed  PubMed Central  Google Scholar 

  • Bushart DD, Chopra R, Singh V, Murphy GG, Wulff H, Shakkottai VG. Targeting potassium channels to treat cerebellar ataxia. Ann Clin Trans Neurol. 2018;5(3):297–314.

    Article  CAS  Google Scholar 

  • Bushart DD, Huang H, Man LJ, Morrison LM, Shakkottai VG. A Chlorzoxazone-Baclofen Combination Improves Cerebellar Impairment in Spinocerebellar Ataxia Type 1. Mov Disord. 2021;36(3):622–631.

    Google Scholar 

  • Cao K, Dong Y-T, Xiang J, Xu Y, Li Y, Song H, Yu W-F, Qi X-L, Guan Z-Z. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging. 2020;12(2):1792–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale A, Paldino E, Giampà C, Bernardi G, Fusco FR. PARP-1 inhibition is neuroprotective in the R6/2 Mouse Model of Huntington’s disease. PLoS One. 2015;10(8):e0134482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Rosas S, Weber C, Fievet L, Messaddeq N, Karam A, Trottier Y. Loss of Zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular Coloboma and malformation of photoreceptors. Hum Mol Genet. 2019;28(6):912–27.

    Article  CAS  PubMed  Google Scholar 

  • Casaca-Carreira J, Toonen LJA, Evers MM, Jahanshahi A, Willeke MC, van-Roon-Mom, Temel Y. In vivo proof-of-concept of removal of the Huntingtin Caspase cleavage Motif-encoding Exon 12 approach in the YAC128 Mouse Model of Huntington’s disease. Biomed Pharmacother = Biomed Pharmacother. 2016;84(December):93–6.

    Article  CAS  PubMed  Google Scholar 

  • Chen S. Interference of Crx-dependent transcription by Ataxin-7 involves interaction between the glutamine regions and requires the Ataxin-7 Carboxy-terminal region for nuclear localization. Hum Mol Genet. 2003; https://doi.org/10.1093/hmg/ddh005.

  • Chen J, Zhou Y, Mueller-Steiner S, Chen L-F, Kwon H, Yi S, Mucke L, Gan L. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem. 2005;280(48):40364–74.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kovalchuk Y, Adelsberger H, Henning HA, Sausbier M, Wietzorrek G, Ruth P, Yarom Y, Konnerth A. Disruption of the Olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci U S A. 2010;107(27):12323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Xue L, Zheng J, Tian X, Zhang Y, Tong Q. PPARß/δ agonist alleviates NLRP3 inflammasome-mediated neuroinflammation in the MPTP Mouse Model of Parkinson’s disease. Behav Brain Res. 2019;356(January):483–9.

    Article  CAS  PubMed  Google Scholar 

  • Chong R, Wakade C, Seamon M, Giri B, Morgan J, Purohit S. Niacin enhancement for Parkinson’s disease: An effectiveness trial. Front Aging Neurosci. 2021;13(June):667032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciesiolka A, Stroynowska-Czerwinska A, Joachimiak P, Ciolak A, Kozlowska E, Michalak M, Dabrowska M, et al. Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts. Cell Mol Life Sci. 2021;78(4):1577–96.

    Article  CAS  PubMed  Google Scholar 

  • Cluse F, Bernard E, Strubi-Vuillaume I, Devos D, Mouzat K, Lumbroso S, Froment Tilikete C, Thobois S, Pegat A. Amyotrophic lateral sclerosis associated with a pathological expansion in the ATXN7 gene. Amyotroph Lateral Scler Frontotemporal Degener. 2021;23:1–3.

    Google Scholar 

  • Crooke ST, Baker BF, Crooke RM, Liang X-H. Antisense technology: An overview and prospectus. Nat Rev Drug Discov. 2021;20(6):427–53.

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduc. 2012;2012:646354.

    Article  Google Scholar 

  • Cunha-Santos J, Duarte-Neves J, Carmona V, Guarente L, de Almeida LP, Cavadas C. Caloric restriction blocks neuropathology and motor deficits in Machado–Joseph disease Mouse Models through SIRT1 pathway. Nat Commun. 2016;7(1):1–14.

    Article  Google Scholar 

  • Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial Mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res. 2017;45(13):7870–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS. A PPAR-β/δ agonist is neuroprotective and decreases cognitive impairment in a Rodent Model of Parkinson’s disease. Curr Neurovasc Res. 2014;11(2):114–24.

    Article  CAS  PubMed  Google Scholar 

  • Datson NA, González-Barriga A, Kourkouta E, Weij R, van de Giessen J, Mulders S, Kontkanen O, Heikkinen T, Lehtimäki K, van Deutekom JCT. The expanded CAG repeat in the Huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS One. 2017;12(2):e0171127.

    Article  PubMed  PubMed Central  Google Scholar 

  • David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  • Dell’Orco JM, Wasserman AH, Chopra R, Ingram MAC, Yuan-Shih H, Singh V, Wulff H, Opal P, Orr HT, Shakkottai VG. Neuronal atrophy early in degenerative ataxia is a compensatory mechanism to regulate membrane excitability. J Neurosci Off J Soc Neurosci. 2015;35(32):11292–307.

    Article  Google Scholar 

  • Dell’Orco JM, Pulst SM, Shakkottai VG. Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. Hum Mol Genet. 2017;26(20):3935–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derbis M, Kul E, Niewiadomska D, Sekrecki M, Piasecka A, Taylor K, Hukema RK, Stork O, Sobczak K. Short antisense oligonucleotides alleviate the pleiotropic toxicity of RNA harboring expanded CGG repeats. Nat Commun. 2021;12(1):1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickey AS, Pineda VV, Tsunemi T, Liu PP, Miranda HC, Gilmore-Hall SK, Lomas N, et al. PPAR-δ is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically. Nat Med. 2016;22(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  • Dickey AS, Sanchez DN, Arreola M, Sampat KR, Fan W, Arbez N, Akimov S, et al. PPARδ activation by Bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Sci Transl Med. 2017;9(419) https://doi.org/10.1126/scitranslmed.aal2332.

  • Donis KC, Mattos EP, Silva AA, Furtado GV, Saraiva-Pereira ML, Jardim LB, Saute JA. Infantile spinocerebellar ataxia type 7: case report and a review of the literature. J Neurol Sci. 2015;354(1–2):118–21.

    Article  PubMed  Google Scholar 

  • Du X, Carvalho-de-Souza JL, Wei C, Carrasquel-Ursulaez W, Lorenzo Y, Gonzalez N, Kubota T, et al. Loss-of-function BK channel mutation causes impaired Mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A. 2020;117(11):6023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest. 2017;127(4):1202–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgerton JR, Reinhart PH. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol. 2003;548(1):53–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egorova PA, Zakharova OA, Vlasova OL, Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic Mouse Model. J Neurophysiol. 2016;115(6):2840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell. 2014;157(1):255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evers MM, Tran H-D, Zalachoras I, Pepers BA, Meijer OC, den Dunnen JT, van Ommen G-JB, Aartsma-Rus A, van Roon-Mom WMC. Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol Dis. 2013;58(October):49–56.

    Article  CAS  PubMed  Google Scholar 

  • Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell. 2014;157(4):882–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat Polyglutamine diseases. Nucleic Acids Res. 2014;42(11):6787–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiszer A, Olejniczak M, Galka-Marciniak P, Mykowska A, Krzyzosiak WJ. Self-duplexing CUG repeats selectively inhibit mutant Huntingtin expression. Nucleic Acids Res. 2013;41(22):10426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiszer A, Ellison-Klimontowicz ME, Krzyzosiak WJ. Silencing of genes responsible for polyQ diseases using chemically modified single-stranded siRNAs. Acta Biochim Pol. 2016a;63(4):759–64.

    CAS  PubMed  Google Scholar 

  • Fiszer A, Wroblewska JP, Nowak BM, Krzyzosiak WJ. Mutant CAG repeats effectively targeted by RNA interference in SCA7 cells. Genes. 2016b;7(12) https://doi.org/10.3390/genes7120132.

  • Friedrich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Wagener C, Duvick L, Swayze EE, et al. Antisense Oligonucleotide–mediated Ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight. 2018; https://doi.org/10.1172/jci.insight.123193.

  • Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, et al. Allele-selective inhibition of mutant huntingtin expression with antisense Oligonucleotides targeting the expanded CAG repeat. Biochemistry. 2010;49(47):10166–78.

    Article  CAS  PubMed  Google Scholar 

  • Garden GA, La Spada AR. Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum. 2008;7(2):138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleichmann M, Mattson MP. Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal. 2011;14(7):1261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouw LG, Kaplan CD, Haines JH, Digre KB, Rutledge SL, Matilla A, Leppert M, Zoghbi HY, Ptácek LJ. Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nat Genet. 1995;10(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  • Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg J, Solomon GAE, Vorster AA, Heckmann J, Bryer A. Origin of the SCA7 gene mutation in South Africa: implications for molecular diagnostics. Clin Genet. 2006;70(5):415–7.

    Article  CAS  PubMed  Google Scholar 

  • Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016;44(14):6549–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, et al. Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet. 2004;13(12):1257–65.

    Article  CAS  PubMed  Google Scholar 

  • Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmüller A, Picaud S, et al. Glutamine-expanded Ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol. 2006a;4(3):e67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmlinger D, Tora L, Devys D. Transcriptional alterations and chromatin remodeling in Polyglutamine diseases. Trends Genet. 2006b;22(10):562–70.

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Liu J, Corey DR. Allele-selective inhibition of Huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem Biol. 2010;17(11):1183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashita A, Muramatsu Y, Yamazaki T, Muramoto M, Kita Y, Yamazaki S, Mihara K, Moriguchi A, Matsuoka N. Neuroprotective efficacy of the peroxisome proliferator-activated receptor δ-selective agonists in vitro and in vivo. J Pharmacol Exp Ther. 2007;320(3):1087–96.

    Article  CAS  PubMed  Google Scholar 

  • Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, CINCH investigators. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain J Neurol. 2007;130(Pt 10):2484–93.

    Article  CAS  Google Scholar 

  • Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR, Bordone L, Guarente L, Krainc D. Sirt1 mediates neuroprotection from mutant Huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2011;18(1):159–65.

    Article  PubMed  Google Scholar 

  • Jia H, Li X, Gao H, Feng Z, Li X, Lei Zhao X, Jia HZ, Liu J. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila Model of Parkinson’s disease. J Neurosci Res. 2008;86(9):2083–90.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Wang J, Jinrong F, Lin D, Jeong H, West T, Xiang L, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med. 2011;18(1):153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonasson J, Juvonen V, Sistonen P, Ignatius J, Johansson D, Björck EJ, Wahlström J, et al. Evidence for a common spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur J Human Genet. 2000;8(12):918–22.

    Article  CAS  Google Scholar 

  • Kalinin S, Richardson JC, Feinstein DL. A PPARdelta agonist reduces amyloid burden and brain inflammation in a Transgenic Mouse Model of Alzheimer’s disease. Curr Alzheimer Res. 2009;6(5):431–7.

    Article  CAS  PubMed  Google Scholar 

  • Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strøbæk D, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a Mouse Model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppinen TM, Suh S, Higashi Y, Berman AE, Escartin C, Won S, Wang C, Cho S-H, Gan L, Swanson RA. Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β. J Neuroinflammation. 2011; https://doi.org/10.1186/1742-2094-8-152.

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007;26(13):3169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingwell K. Double setback for ASO trials in Huntington disease. Nat Rev Drug Discov. 2021;20(6):412–3.

    Article  CAS  PubMed  Google Scholar 

  • Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of Huntingtin synthesis. Neuron. 2012;74(6):1031–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotowska-Zimmer A, Ostrovska Y, Olejniczak M. Universal RNAi triggers for the specific inhibition of mutant Huntingtin, Atrophin-1, Ataxin-3, and Ataxin-7 expression. Mol Ther Nucleic Acids. 2020;19(March):562–71.

    Article  CAS  PubMed  Google Scholar 

  • Kourkouta E, Weij R, González-Barriga A, Mulder M, Verheul R, Bosgra S, Groenendaal B, et al. Suppression of mutant protein expression in SCA3 and SCA1 mice using a CAG repeat-targeting antisense oligonucleotide. Mol Ther Nucleic Acids. 2019;17(September):601–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Spada AR, Fu YH, Sopher BL, Libby RT, Wang X, Li LY, Einum DD, et al. Polyglutamine-expanded Ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a Mouse Model of SCA7. Neuron. 2001;31(6):913–27.

    Article  PubMed  Google Scholar 

  • Lan X, Koutelou E, Schibler AC, Chen YC, Grant PA, Dent SYR. Poly(Q) expansions in ATXN7 affect solubility but not activity of the SAGA deubiquitinating module. Mol Cell Biol. 2015; https://doi.org/10.1128/mcb.01454-14.

  • Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490:187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KK, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Sgf73/Ataxin-7 serves to anchor the Deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin. 2009;2(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE, Orr HT, Zoghbi HY. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature. 2008;452(7188):713–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70.

    Article  PubMed  Google Scholar 

  • Lindblad K, Savontaus ML, Stevanin G, Holmberg M, Digre K, Zander C, Ehrsson H, et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res. 1996;6(10):965–71.

    Article  CAS  PubMed  Google Scholar 

  • Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant Murine Model. BMC Neurol. 2015;15(March):19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magaña JJ, Tapia-Guerrero YS, Velázquez-Pérez L, Cerecedo-Zapata CM, Maldonado-Rodríguez M, Jano-Ito JS, Leyva-García N, et al. Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet. 2014;85(2):159–65.

    Article  PubMed  Google Scholar 

  • Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE. Activation of the nuclear receptor PPARδ is neuroprotective in a transgenic Mouse Model of Alzheimer’s disease through inhibition of inflammation. J Neuroinflammation. 2015; https://doi.org/10.1186/s12974-014-0229-9.

  • Mao K, Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J. 2021; https://doi.org/10.1111/febs.15716.

  • Mao K, Chen J, Honglin Y, Li H, Ren Y, Xian W, Wen Y, Zou F, Li W. Poly (ADP-Ribose) polymerase 1 inhibition prevents neurodegeneration and promotes α-Synuclein degradation via transcription factor EB-dependent autophagy in mutant α-synucleinA53T model of Parkinson’s disease. Aging Cell. 2020;19(6):e13163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmolino D, Acquaviva F, Pinelli M, Monticelli A, Castaldo I, Filla A, Cocozza S. PPAR-γ agonist Azelaoyl PAF increases Frataxin protein and mRNA expression. New implications for the Friedreich’s ataxia therapy. Cerebellum. 2009; https://doi.org/10.1007/s12311-008-0087-z.

  • Marmolino D, Manto M, Acquaviva F, Vergara P, Ravella A, Monticelli A, Pandolfo M. PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS One. 2010;5(4):e10025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashimo M, Xiangning B, Aoyama K, Kato J, Ishiwata-Endo H, Stevens LA, Kasamatsu A, et al. PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. JCI Insight. 2019;4(4) https://doi.org/10.1172/jci.insight.124519.

  • McCullough SD, Xiaojiang X, Dent SYR, Bekiranov S, Roeder RG, Grant PA. Reelin is a target of Polyglutamine expanded Ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes. Proc Natl Acad Sci U S A. 2012;109(52):21319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGurk L, Mojsilovic-Petrovic J, Van Deerlin VM, Shorter J, Kalb RG, Lee VM, Trojanowski JQ, Lee EB, Bonini NM. Nuclear poly(ADP-Ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2018;6(1):84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M, Blumenstein KG, Zhao H, Kordasiewicz HB, Shakkottai VG, Paulson HL. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol. 2018;84(1):64–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR, Grant PA. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts Normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci U S A. 2005;102(24):8478–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalik A, Martin J-J, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Human Genet. 2004;12(1):2–15.

    Article  CAS  Google Scholar 

  • Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, et al. Long-term administration of Nicotinamide Mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Dan Cook P, Freier SM. Evaluation of 2 ‘-modified oligonucleotides containing 2 ‘-Deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993;268(19):14514–22.

    Article  CAS  PubMed  Google Scholar 

  • Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D, Hung G, Kordasiewicz HB, Paulson HL, McLoughlin HS. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 Mouse Models. Mol Ther Nucleic Acids. 2017;7(June):200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene deregulation and underlying mechanisms in spinocerebellar ataxias with Polyglutamine expansion. Front Neurosci. 2020;14(June):571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niewiadomska-Cimicka A, Doussau F, Perot J-B, Roux MJ, Keime C, Hache A, Piguet F, et al. SCA7 mouse cerebellar pathology reveals preferential downregulation of key Purkinje cell-identity genes and shared disease signature with SCA1 and SCA2. J Neurosci Off J Soc Neurosci. 2021;41(22):4910–36.

    Article  CAS  Google Scholar 

  • Niss F, Zaidi W, Hallberg E, Ström A-L. Polyglutamine expanded Ataxin-7 induces DNA damage and alters FUS localization and function. Mol Cell Neurosci. 2021;110(January):103584.

    Article  CAS  PubMed  Google Scholar 

  • Niu C, Prakash TP, Kim A, Quach JL, Huryn LA, Yang Y, Lopez E, et al. Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a Mouse Model of spinocerebellar ataxia type 7. Sci Transl Med. 2018;10(465) https://doi.org/10.1126/scitranslmed.aap8677.

  • Palhan VB, Chen S, Peng G-H, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR, Roeder RG. Polyglutamine-expanded Ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci. 2005; https://doi.org/10.1073/pnas.0503505102.

  • Paulson HL, Shakkottai VG, Brent Clark H, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci. 2017;18(10):613–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazzaglia S, Pioli C. Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases. Cell. 2019;9(1) https://doi.org/10.3390/cells9010041.

  • Perrin S. Preclinical research: make mouse studies work. Nature. 2014;507:423–5.

    Article  PubMed  Google Scholar 

  • Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  • Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert M-D. The powerful world of antisense oligonucleotides: from bench to bedside. Wiley Interdiscipl Rev RNA. 2020;11(5):e1594.

    Article  Google Scholar 

  • Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran PS, Bhattarai S, Singh P, Boudreau RL, Thompson S, Laspada AR, Drack AV, Davidson BL. RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLoS One. 2014a;9(4):e95362.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR, Davidson BL. Nonallele specific silencing of Ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther J Am Soc Gene Ther. 2014b;22(9):1635–42.

    Article  CAS  Google Scholar 

  • Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristori G, Romano S, Visconti A, Cannoni S, Spadaro M, Frontali M, Pontieri FE, Vanacore N, Salvetti M. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology. 2010;74(10):839–45.

    Article  CAS  PubMed  Google Scholar 

  • Robinson KJ, Watchon M, Laird AS. Aberrant cerebellar circuitry in the spinocerebellar ataxias. Front Neurosci. 2020;14(July):707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2008;582(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Pascau L, Britti E, Calap-Quintana P, Dong YN, Vergara C, Delaspre F, Medina-Carbonero M, et al. PPAR gamma agonist Leriglitazone improves Frataxin-loss impairments in cellular and animal models of Friedreich ataxia. Neurobiol Dis. 2021;148(January):105162.

    Article  PubMed  Google Scholar 

  • Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, Frontali M, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(10):985–91.

    Article  CAS  PubMed  Google Scholar 

  • Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8(September):564601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rüb U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, Van Broeckhoven C, et al. Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol. 2008;34(2):155–68.

    Article  PubMed  Google Scholar 

  • Rué L, Bañez-Coronel M, Creus-Muncunill J, Giralt A, Alcalá-Vida R, Mentxaka G, Kagerbauer B, et al. Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of Huntingtin levels. J Clin Investig. 2016; https://doi.org/10.1172/jci83185.

  • Sahaboglu A, Barth M, Secer E, Del Amo EM, Urtti A, Arsenijevic Y, Zrenner E, Paquet-Durand F. Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Sci Rep. 2016;6(December):39537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders SL, Jennings J, Canutescu A, Link AJ, Anthony Weil P. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol. 2002;22(13):4723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci U S A. 2004;101(25):9474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharner J, Aznarez I. Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics. Mol Ther J Am Soc Gene Ther. 2021;29(2):540–54.

    Article  CAS  Google Scholar 

  • Scholefield J, Jacquie Greenberg L, Weinberg MS, Arbuthnot PB, Abdelgany A, Wood MJA. Design of RNAi hairpins for mutation-specific silencing of Ataxin-7 and correction of a SCA7 phenotype. PLoS One. 2009;4(9):e7232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholefield J, Watson L, Smith D, Greenberg J, Wood MJA. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur J Human Genet. 2014;22(12):1369–75.

    Article  CAS  Google Scholar 

  • Schreiber AM, Misiorek JO, Napierala JS, Napierala M. Progress in understanding Friedreich’s ataxia using human induced pluripotent stem cells. Expert Opin Orphan Drugs. 2019;7(2):81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, Hung G, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544(7650):362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setten RL, Rossi JJ, Han S-P. The current state and future directions of RNAi-Based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–46.

    Article  CAS  PubMed  Google Scholar 

  • Shakkottai VG, do Carmo Costa M, Dell’Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the Polyglutamine disease spinocerebellar ataxia type 3. J Neurosci Off J Soc Neurosci. 2011;31(36):13002–14.

    Article  CAS  Google Scholar 

  • Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart J-C, Nobre RJ, de Almeida LP. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of Polyglutamine disorders. Brain J Neurol. 2020;143(2):407–29.

    Article  Google Scholar 

  • Smith DC, Atadzhanov M, Mwaba M, Greenberg LJ. Evidence for a common founder effect amongst South African and Zambian individuals with spinocerebellar ataxia type 7. J Neurol Sci. 2015;354(1–2):75–8.

    Article  PubMed  Google Scholar 

  • Southwell AL, Skotte NH, Kordasiewicz HB, Østergaard ME, Watt AT, Carroll JB, Doty CN, et al. In vivo evaluation of candidate allele-specific mutant Huntingtin gene silencing antisense oligonucleotides. Mol Ther J Am Soc Gene Ther. 2014;22(12):2093–106.

    Article  CAS  Google Scholar 

  • Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, Caron NS, et al. Huntingtin suppression restores cognitive function in a Mouse Model of Huntington’s disease. Sci Transl Med. 2018;10(461) https://doi.org/10.1126/scitranslmed.aar3959.

  • Stanek LM, Yang W, Angus S, Sardi PS, Hayden MR, Hung GH, Frank Bennett C, Cheng SH, Shihabuddin LS. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 Mouse Model of Huntington’s disease. J Huntington’s Dis. 2013; https://doi.org/10.3233/jhd-130057.

  • Stoyas CA, Bushart DD, Switonski PM, Ward JM, Alaghatta A, Tang M-B, Niu C, et al. Nicotinamide pathway-dependent Sirt1 activation restores calcium homeostasis to achieve neuroprotection in spinocerebellar ataxia type 7. Neuron. 2020;105(4):630–44.e9.

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408.

    Article  CAS  PubMed  Google Scholar 

  • Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. NeuroMolecular Med. 2021;23(1):86–98.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li PP, Kannan G, et al. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Hum Mol Genet. 2014;23(23):6302–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Switonski PM, Delaney JR, Bartelt LC, Niu C, Ramos-Zapatero M, Spann NJ, Alaghatta A, Chen T, Griffin EN, Bapat J, et al. Altered H3 histone acetylation impairs high-fidelity DNA repair to promote cerebellar degeneration in spinocerebellar ataxia type 7. Cell Rep. 2021;37:110062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabrizi SJ, Leavitt BR, Bernhard Landwehrmeyer G, Wild EJ, Saft C, Barker RA, Blair NF, et al. Targeting Huntingtin expression in patients with Huntington’s disease. N Engl J Med. 2019;380(24):2307–16.

    Article  CAS  PubMed  Google Scholar 

  • Tomé-Carneiro J, Larrosa M, González-Sarrías A, Tomás-Barberán FA, García-Conesa MT, Espín JC. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des. 2013;19(34):6064–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC. Antisense oligonucleotide-mediated removal of the Polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol Ther Nucleic Acids. 2017;8(September):232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Ramos Y, Montoya-Estrada A, Cisneros B, Tercero-Pérez K, León-Reyes G, Leyva-García N, Hernández-Hernández O, Magaña JJ. Oxidative stress in spinocerebellar ataxia type 7 is associated with disease severity. Cerebellum. 2018;17(5):601–9.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal V, Puente A, García-Cerro S, Unzueta MTG, Rueda N, Riancho J, Martínez-Cué C. Bexarotene impairs cognition and produces hypothyroidism in a Mouse Model of down syndrome and Alzheimer’s disease. Front Pharmacol. 2021; https://doi.org/10.3389/fphar.2021.613211.

  • Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hu X, Yang Y, Takata T, Sakurai T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 2016;1643(July):1–9.

    CAS  PubMed  Google Scholar 

  • Ward JM, Stoyas CA, Switonski PM, Ichou F, Fan W, Collins B, Wall CE, et al. Metabolic and organelle morphology defects in mice and human patients define spinocerebellar ataxia type 7 as a mitochondrial disease. Cell Rep. 2019;26(5):1189–1202.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watchon M, Luu L, Robinson KJ, Yuan KC, De Luca A, Suddull HJ, Tym MC, et al. Sodium valproate increases activity of the Sirtuin pathway resulting in beneficial effects for spinocerebellar Ataxia-3 in vivo. Mol Brain. 2021;14(1):128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler TM, Leger AJ, Pandey SK, Robert MacLeod A, Nakamori M, Cheng SH, Wentworth BM, Frank Bennett C, Thornton CA. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004;279(17):17181–9.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals. 2011; https://doi.org/10.1159/000328516.

  • Xie N, Lu Z, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020;5(1):227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 mediates metabolic homeostasis and neuroprotection. Front Endocrinol. 2018;9(November):702.

    Article  Google Scholar 

  • Yang H, Liu S, He W-T, Zhao J, Jiang L-L, Hu H-Y. Aggregation of Polyglutamine-expanded Ataxin 7 protein specifically sequesters Ubiquitin-specific protease 22 and deteriorates its deubiquitinating function in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. J Biol Chem. 2015;290(36):21996–4.

    Article  Google Scholar 

  • Yang Y, Mohammed FS, Zhang N, Sauve AA. Dihydronicotinamide riboside is a potent NAD+ concentration enhancer in vitro and in vivo. J Biol Chem. 2019;294(23):9295–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanicostas C, Barbieri E, Hibi M, Brice A, Stevanin G, Soussi-Yanicostas N. Requirement for Zebrafish Ataxin-7 in differentiation of photoreceptors and cerebellar neurons. PLoS One. 2012;7(11):e50705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647(April):133–40.

    Article  CAS  PubMed  Google Scholar 

  • Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific Oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978;75(1):280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha S, Li Z, Cao Q, Wang F, Liu F. PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD+ levels and increasing SIRT1 activity. Stem Cell Res Ther. 2018;9(1):224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert R. La Spada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Switonski, P.M., La Spada, A.R. (2023). Spinocerebellar Ataxia Type 7: From Mechanistic Pathways to Therapeutic Opportunities. In: Soong, Bw., Manto, M., Brice, A., Pulst, S.M. (eds) Trials for Cerebellar Ataxias. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-24345-5_17

Download citation

Publish with us

Policies and ethics