Skip to main content

ASOs Against ATXN2 in Preclinical and Phase 1 Trials

  • Chapter
  • First Online:
Trials for Cerebellar Ataxias

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease caused by DNA CAG repeat expansion. The mutation is in the coding 1st exon of the ATXN2 gene and results in an expanded polyglutamine (polyQ) domain. SCA2 is characterized by progressive ataxia and involves primarily Purkinje cells (PCs) but also other neurological systems. Some individuals with ATXN2 mutations can present as pure Parkinson or Lou Gehrig disease. Long normal ATXN2 alleles are risk alleles for amyotrophic lateral sclerosis. Comparison of mouse models expressing mutant ATXN2 (Pcp-tg-hATXN2-Q127; BAC-hATXN2-Q72) and Atxn2−/− mice clearly favors a predominant gain-of-function mechanism of repeat-expanded ATXN2 based on morphologic, transcriptomic, and slice physiology analyses. The lack of a neurodegenerative phenotype in Atxn2−/− mice led us to adopt a strategy of targeting wild-type and mutant ATXN2 with antisense oligonucleotides (ASOs). In two transgenic models, we were able to provide proof-of-principle data that targeting ATXN2 with intracerebroventricular injection of ASOs can slow progression of motor dysfunction. ASO treatment also improved expression levels of PC-specific proteins and PC firing frequencies in the acute cerebellar slice. An ASO targeting ATXN2 is currently in phase 1 human trials (BIIB105).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguiar J, Fernandez J, Aguilar A, Mendoza Y, Vazquez M, Suarez J, et al. Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice. Neurosci Lett. 2006;392:202–6.

    Article  CAS  PubMed  Google Scholar 

  • Al-Ramahi I, Pérez AM, Lim J, Zhang M, Sorensen R, de Haro M, Branco J, Pulst SM, Zoghbi HY, Botas J. dAtaxin-2 mediates expanded ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet. 2007;3:e234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves-Cruzeiro JM, Mendonca L, Pereira de Almeida L, Nobrega C. Motor dysfunctions and neuropathology in mouse models of spinocerebellar ataxia type 2: a comprehensive review. Front Neurosci. 2016;10:572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arsović A, Halbach MV, Canet-Pons J, Esen-Sehir D, Döring C, Freudenberg F, et al. Mouse ataxin-2 expansion downregulates CamKII and other calcium signaling factors, impairing granule-purkinje neuron synaptic strength. Int J Mol Sci. 2020;12(21):6673.

    Article  Google Scholar 

  • Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis. 2013;8:177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, Messing J, Kim HJ, Soriano A, Auburger G, Pulst SM, Taylor JP, Rigo F, Gitler AD. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50:259–93.

    Article  CAS  PubMed  Google Scholar 

  • Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, et al. Consensus paper: strengths and weaknesses of animal models of spinocerebellar ataxias and their clinical implications. Cerebellum. 2022;21(3):452–81.

    Article  PubMed  Google Scholar 

  • Cook AA, Fields E, Watt AJ. Losing the beat: contribution of Purkinje cell firing dysfunction to disease, and its reversal. Neuroscience. 2021;462:247–61.

    Article  CAS  PubMed  Google Scholar 

  • Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20(6):427–53.

    Article  CAS  PubMed  Google Scholar 

  • Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT, et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet. 2015;11:e1005182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Egorova PA, Gavrilova AV, Bezprozvanny IB. In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2. Cell Calcium. 2021;93:102319.

    Article  CAS  PubMed  Google Scholar 

  • Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed NS, Nam YW, Egorova PA, Nguyen HM, Orfali R, Rahman MA, Yang G, Wulff H, Bezprozvanny I, Parang K, Zhang M. Structure-activity relationship study of subtype-selective positive modulators of KCa2 channels. J Med Chem. 2022;65(1):303–22.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez M, McClain ME, Martinez RA, Snow K, Lipe H, Ravits J, et al. Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology. 2000;55:569–72.

    Article  CAS  PubMed  Google Scholar 

  • Figueroa KP, Coon H, Santos N, Velazquez L, Mederos LA, Pulst SM. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurol Genet. 2017;3(3):e155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60:842–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet. 1993;4:295–9.

    Article  CAS  PubMed  Google Scholar 

  • Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology. 2000;55:800–5.

    Article  CAS  PubMed  Google Scholar 

  • Hansen ST, Meera P, Otis TS, Pulst SM. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet. 2013;22:271–83.

    Article  CAS  PubMed  Google Scholar 

  • Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50.

    Article  CAS  PubMed  Google Scholar 

  • Huynh DP, Maalouf M, Silva AJ, Schweizer FE, Pulst SM. Dissociated fear and spatial learning in mice with deficiency of ataxin-2. PLoS One. 2009;4:e6235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.

    Article  CAS  PubMed  Google Scholar 

  • Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiehl TR, Shibata H, Pulst SM. The ortholog of human ataxin-2 is essential for early embryonic patterning in C. elegans. J Mol Neurosci. 2000;15(3):231–41.

    Article  CAS  PubMed  Google Scholar 

  • Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, Huynh DP, Pulst SM. Generation and characterization of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res Commun. 2006;339:17–24.

    Article  CAS  PubMed  Google Scholar 

  • Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastres-Becker I, Brodesser S, Lutjohann D, Azizov M, Buchmann J, Hintermann E, et al. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum Mol Genet. 2008;17:1465–81.

    Article  CAS  PubMed  Google Scholar 

  • Lessing D, Bonini NM. Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila. PLoS Biol. 2008;6(2):e29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Wang J, Lo RY, Figueroa KP, Pulst SM, Kuo PH, et al. The initial symptom and motor progression in spinocerebellar ataxias. Cerebellum. 2017;16(3):615–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meera P, Pulst SM, Otis TS. Cellular and circuit mechanisms underlying spinocerebellar ataxias. J Physiol. 2016;594(16):4653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meera P, Pulst S, Otis T. A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2. elife. 2017;6:e26377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nechiporuk T, Nechiporuk A, Sahba S, Figueroa K, Shibata H, Chen XN, et al. A high-resolution PAC and BAC map of the SCA2 region. Genomics. 1997;44:321–9.

    Article  CAS  PubMed  Google Scholar 

  • Nechiporuk T, Huynh DP, Figueroa K, Sahba S, Nechiporuk A, Pulst SM. The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression. Hum Mol Genet. 1998;7(8):1301–9.

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol. 2014;71(12):1529–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orozco Diaz O, Nodarse Fleites A, Cordovés Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia, clinical analysis of 263 patients from a homogeneous population in Holguín, Cuba. Neurology. 1990;40(9):1369.

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Dansithong W, Figueroa KP, Scoles DR, Pulst SM. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9(1):3648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul S, Dansithong W, Figueroa KP, Gandelman M, Scoles DR, Pulst SM. Staufen1 in human neurodegeneration. Ann Neurol. 2021;89:1114–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payami H, Nutt J, Gancher S, Bird T, McNeal MG, Seltzer WK, et al. SCA2 may present as levodopa-responsive parkinsonism. Mov Disord. 2003;18(4):425–9.

    Article  PubMed  Google Scholar 

  • Pflieger LT, Dansithong W, Paul S, Scoles DR, Figueroa KP, Meera P, et al. Gene co-expression network analysis for identifying modules and functionally enriched pathways in SCA2. Hum Mol Genet. 2017;26(16):3069–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulst SM. The complex structure of ATXN2 genetic variation. Neurol Genet. 2018;4(6):e299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulst SM, Nechiporuk A, Starkman S. Anticipation in spinocerebellar ataxia type 2. Nat Genet. 1993;5:8–10.

    Article  CAS  PubMed  Google Scholar 

  • Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  CAS  PubMed  Google Scholar 

  • Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Adv Exp Med Biol. 2014;825:303–52.

    Article  CAS  PubMed  Google Scholar 

  • Sahba S, Nechiporuk A, Figueroa KP, Nechiporuk T, Pulst SM. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics. 1998;47:359–64.

    Article  CAS  PubMed  Google Scholar 

  • Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996;14:277–84.

    Article  CAS  PubMed  Google Scholar 

  • Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet. 2006;15:2523–32.

    Article  CAS  PubMed  Google Scholar 

  • Scoles DR, Pulst SM. Spinocerebellar ataxia type 2. Adv Exp Med Biol. 2018;1049:175–95.

    Article  CAS  PubMed  Google Scholar 

  • Scoles DR, Pflieger LT, Thai KK, Hansen ST, Dansithong W, Pulst SM. ETS1 regulates the expression of ATXN2. Hum Mol Genet. 2012;21:5048–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544(7650):362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides: a primer. Neurol Genet. 2019;5(2):e323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoles DR, Dansithong W, Pflieger LT, Paul S, Gandelman M, Figueroa KP, Rigo F, Bennett CF, Pulst SM. ALS-associated genes in SCA2 mouse spinal cord transcriptomes. Hum Mol Genet. 2020;29(10):1658–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoles DR, Gandelman M, Paul S, Dexheimer T, Dansithong W, Figueroa KP et al. A quantitative high-throughput screen identifies compounds that lower expression of the SCA2-and ALS-associated gene ATXN2. J Biol Chem. 2022;298(8):102228.

    Google Scholar 

  • Tazen S, Figueroa K, Kwan J, Goldman J, Hunt A, Sampson J, et al. Amyotrophic lateral sclerosis and spinocerebellar ataxia type 2 in a family with full CAG repeat expansions of ATXN2. JAMA Neurol. 2013;70(10):1302–4.

    PubMed  PubMed Central  Google Scholar 

  • Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain. 1971;94:359–74.

    Article  CAS  PubMed  Google Scholar 

  • Wadia N, Pang J, Desai J, Mankodi A, Desai M, Chamberlain S. A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees. The significance of slow saccades in diagnosis. Brain. 1998;121(Pt 12):2341–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I want to thank SCA2 patients, their spouses and partners, who often serve as caregivers, on several continents for their help with understanding SCA2. Special gratitude and recognition go to members of my laboratory over the last three decades for their intellectual and technical contributions.

Funding

This work was supported by grants R01NS33123, R56NS33123, RC4NS073009, UO1 NS103883, and R37NS033123 from the National Institutes of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan M. Pulst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pulst, S.M. (2023). ASOs Against ATXN2 in Preclinical and Phase 1 Trials. In: Soong, Bw., Manto, M., Brice, A., Pulst, S.M. (eds) Trials for Cerebellar Ataxias. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-24345-5_15

Download citation

Publish with us

Policies and ethics