Skip to main content

Abstract

Light is fundamental in many photochemical processes in biology and chemistry, and photo-induced processes such as charge generation/separation and charge transport/transfer can be exploited in areas such as analytical detection. In classical electrochemical sensors, the signal output is shown as a current, related to the concentration of the target (analyte). For photo-active electrodes, light radiation opens paths for signal amplification or even new reactions/detection. Among the advantages, light generation of charge carriers can: (i) interact directly with the analyte; (ii) interact with the analyte indirectly via a receptor, (iii) provide excited state intermediates that further generate a secondary analyte; or (iv) be used to amplify the sensor response. Light-activated biosensors have been reported in the literature for a wide range of analytes and as different complex architectures. In this sense, recent developments in photoelectrochemical biosensing methods based on Cd and Zn semiconductors materials will be summarised and discussed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xin YM, Zhang ZH. Photoelectrochemical stripping analysis. Anal Chem. 2018;90:1068–71. https://doi.org/10.1021/acs.analchem.7b04381.

    Article  Google Scholar 

  2. Bonifazi D, Enger O, Diederich F. Supramolecular [60] fullerene chemistry on surfaces. Chem Soc Rev. 2007;36:390–414. https://doi.org/10.1039/b604308a.

    Article  Google Scholar 

  3. Hu C, Zheng J, Su X, Wang J, Wu W, Hu S. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light. Anal Chem. 2013;85:10612–9. https://doi.org/10.1021/ac4028005.

    Article  Google Scholar 

  4. Lightcap IV, Kamat PV. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc Chem Res. 2013;46:2235–43. https://doi.org/10.1021/ar300248f.

    Article  Google Scholar 

  5. Sheeney-Haj-Ichia L, Willner I. Enhanced photoelectrochemistry in supramolecular CdS-nanoparticle-stoppered pseudorotaxane monolayers assembled on electrodes. J Phys Chem B. 2002;106:13094–7. https://doi.org/10.1021/jp022102c.

    Article  Google Scholar 

  6. Da P, Li W, Lin X, Wang Y, Tang J, Zheng G. Surface Plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO2 nanowires. Anal Chem. 2014;86:6633–9. https://doi.org/10.1021/ac501406x.

    Article  Google Scholar 

  7. Lee YL, Chi CF, Liau SY. CdS/CdSe Co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem Mater. 2010;22:922–7. https://doi.org/10.1021/cm901762h.

    Article  ADS  Google Scholar 

  8. del Barrio M, Luna-Lopez G, Pita M. Enhancement of biosensors by implementing Photoelectrochemical processes. Sensors. 2020;20:3281. https://doi.org/10.3390/s20113281.

    Article  ADS  Google Scholar 

  9. Wang Y, Shen L, Wang Y, Hou B, Gibson GN, Poudel N, Chen J. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures. Faraday Discuss. 2019;214:325–39. https://doi.org/10.1039/C8FD00141C.

    Article  ADS  Google Scholar 

  10. Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron. 2017;92:294–304. https://doi.org/10.1016/j.bios.2016.11.009.

    Article  Google Scholar 

  11. Zhao W-W, Xiong M, Li X-R, Xu J-J, Chen H-Y. Photoelectrochemical bioanalysis: a mini review. Electrochem Commun. 2014;38:40–3. https://doi.org/10.1016/j.elecom.2013.10.035.

    Article  ADS  Google Scholar 

  12. Voccia D, Palchetti I, J. Photoelectrochemical biosensors for nucleic acid detection. Nanosci Nanotechnol. 2015;15:3320–32. https://doi.org/10.1166/jnn.2015.10039.

    Article  Google Scholar 

  13. He LH, Zhang QS, Gong CL, Liu H, Hu FQ, Zhong F, Wang GJ, Su HH, Wen S, Xiang SC, Zhang BQ. The dual-function of hematite-based photoelectrochemical sensor for solar-to-electricity conversion and self-powered glucose detection. Sens Actuators B. 2020;310:127842. https://doi.org/10.1016/j.snb.2020.127842.

    Article  Google Scholar 

  14. Cakiroglu B, Ozacar M. A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosens Bioelectron. 2018;119:34–41. https://doi.org/10.1016/j.bios.2018.07.049.

    Article  Google Scholar 

  15. Zhao K, Yan XQ, Gu YS, Kang Z, Bai ZM, Cao SY, Liu YC, Zhang XH, Zhang Y. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small. 2016;12:245–51. https://doi.org/10.1002/smll.201502042.

    Article  Google Scholar 

  16. Zhao S, Völkner J, Riedel M, Witte G, Yue Z, Lisdat F, Parak WJ. Multiplexed readout of enzymatic reactions by means of laterally resolved illumination of quantum dot electrodes. ACS Appl Mater Interfaces. 2019;11:21830–9. https://doi.org/10.1021/acsami.9b03990.

    Article  Google Scholar 

  17. Freeman R, Girsh J, Willner B, Willner I. Sensing and biosensing with semiconductor quantum dots. Israel J Chem. 2012;52:1125–36. https://doi.org/10.1002/ijch.201200079.

    Article  Google Scholar 

  18. Freeman R, Girsh J, Willner I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl Mater Interfaces. 2013;5:2815–34. https://doi.org/10.1021/am303189h.

    Article  Google Scholar 

  19. Zhang K, Yu T, Liu F, Sun MT, Yu H, Liu BH, Zhang ZP, Jiang H, Wang SH. Selective fluorescence turn-on and ratiometric detection of organophosphate using dual-emitting Mn-doped ZnS nanocrystal probe. Anal Chem. 2014;86:11727–33. https://doi.org/10.1021/ac503134r.

    Article  Google Scholar 

  20. Golub E, Niazov A, Freeman R, Zatsepin M, Willner I. Photoelectrochemical biosensors without external irradiation: probing enzyme activities and DNA sensing using Hemin/G-Quadruplex-stimulated Chemiluminescence Resonance Energy Transfer (CRET) generation of photocurrents. J Phys Chem C. 2012;116:13827–34. https://doi.org/10.1021/jp303741x.

    Article  Google Scholar 

  21. Sudip S, Chan Y, Soleymani L. Enhancing the photoelectrochemical response of DNA biosensors using wrinkled interfaces. ACS Appl Mater Interfaces. 2018;10:31178–85. https://doi.org/10.1021/acsami.8b12286.

    Article  Google Scholar 

  22. Zhao Y, Tan L, Gao X, Jie G, Huang T. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron. 2018;110:239–45. https://doi.org/10.1016/j.bios.2018.03.069.

    Article  Google Scholar 

  23. Sun B, Dong J, Cui L, Feng T, Zhu J, Liu X, Ai S. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosens Bioelectron. 2019;124:1–7. https://doi.org/10.1016/j.bios.2018.09.100.

    Article  Google Scholar 

  24. Cai J, Sheng P, Zhou L, Shi L, Wang N, Cai Q. Label-free photoelectrochemical immunosensor based on CdTe/CdS co-sensitized TiO2 nanotube array structure for octachlorostyrene detection. Biosens Bioelectron. 2013;50:66–71. https://doi.org/10.1016/j.bios.2013.05.040.

    Article  Google Scholar 

  25. Yan K, Wang R, Zhang J. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens Bioelectron. 2013;53:301–4. https://doi.org/10.1016/j.bios.2013.09.073.

    Article  Google Scholar 

  26. Wang W, Bao L, Lei J, Tu W, Ju H. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots. Anal Chim Acta. 2012;744:33–8. https://doi.org/10.1016/j.aca.2012.07.025.

    Article  Google Scholar 

  27. Sun J, Zhu Y, Yang X, Li C. Photoelectrochemical glucose biosensor incorporating CdS nanoparticles. Particuology. 2009;7:347–52. https://doi.org/10.1016/j.partic.2009.04.009.

    Article  Google Scholar 

  28. Wang GL, Liu KL, Dong YM, Wu XM, Li ZJ, Zhang C. A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: using self-operating photocathode as a highly selective enzyme sensor. Biosens Bioelectron. 2014;62:66–72. https://doi.org/10.1016/j.bios.2014.06.033.

    Article  Google Scholar 

  29. Zheng M, Cui Y, Li X, Liu S, Tang Z. Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites. Electroanal Chem. 2011;656:167–73. https://doi.org/10.1016/j.jelechem.2010.11.036.

    Article  Google Scholar 

  30. Huanli W, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014;43:5234. https://doi.org/10.1039/C4CS00126E.

    Article  Google Scholar 

  31. Li PP, Cao Y, Mao CJ, Jin BK, Zhu JJ. TiO2/g-C3N4/CdS nanocomposite-based photoelectrochemical biosensor for ultrasensitive evaluation of T4 polynucleotide kinase activity. Anal Chem. 2018;91:1563–70. https://doi.org/10.1021/acs.analchem.8b04823.

    Article  Google Scholar 

  32. Han Z, Weng Q, Lin C, Yi J, Kang J. Development of CdSe–ZnO flower-rod Core-Shell structure based photoelectrochemical biosensor for detection of norovirous RNA. Sensors. 2018;18:2980–8. https://doi.org/10.3390/s18092980.

    Article  ADS  Google Scholar 

  33. Barroso J, Saa L, Grinyte R, Pavlov V. Photoelectrochemical detection of enzymatically generated CdS nanoparticles: application to development of immunoassay. Biosens Bioelectron. 2016;77:323–9. https://doi.org/10.1016/j.bios.2015.09.043.

    Article  Google Scholar 

  34. Xu R, Wei D, Du B, Cao W, Fan D, Zhang Y, Ju H. A photoelectrochemical sensor for highly sensitive detection of amyloid beta based on sensitization of Mn:CdSe to Bi2WO6/CdS. Biosens Bioelectron. 2018;122:37–42. https://doi.org/10.1016/j.bios.2018.09.030.

    Article  Google Scholar 

  35. Zhang X, Li S, Jin X, Zhang S. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem Commun. 2011;47:4929–31. https://doi.org/10.1039/C1CC10830A.

    Article  Google Scholar 

  36. Liu Y, Yan K, Zhang J. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. ACS Appl Mater Interfaces. 2016;8:28255–64. https://doi.org/10.1021/ac901551q.

    Article  Google Scholar 

  37. Golub E, Pelossof G, Freeman R, Zhang H, Willner I. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem. 2009;81:9291–8. https://doi.org/10.1021/ac901551q.

    Article  Google Scholar 

  38. Hao N, Zhang Y, Zhong H, Zhou Z, Hua R, Qian J, Liu Q, Li H, Wang K. Design of a dual channel self-reference photoelectrochemical biosensor. Anal Chem. 2017;89:10133–6. https://doi.org/10.1021/acs.analchem.7b03132.

    Article  Google Scholar 

  39. Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev. 2019;400:213042–82. https://doi.org/10.1016/j.ccr.2019.213042.

    Article  Google Scholar 

  40. Wang K, Zhang R, Sun N, Li X, Wang J, Cao Y, Pei R. Near-infrared light-driven photoelectrochemical aptasensor based on the upconversion nanoparticles and TiO2/CdTe heterostructure for detection of cancer cells. Appl Mater Interfaces. 2016;8:25834–9. https://doi.org/10.1021/acsami.6b09614.

    Article  Google Scholar 

  41. Halliday DP, Eggleston JM, Durose K. A study of the depth dependence of photoluminescence from thin film CdS/CdTe solar cells using bevel etched samples. Thin Solid Films. 1998;322:314–8. https://doi.org/10.1016/S0040-6090(97)00917-6.

    Article  ADS  Google Scholar 

  42. Azzazy HME, Mansour MMH, Kazmiercza SC. From diagnostics to therapy: prospects of quantum dots. Clin Biochem. 2007;40:917–27. https://doi.org/10.1016/j.clinbiochem.2007.05.018.

    Article  Google Scholar 

  43. Jin WJ, Costa-Fernandez JM, Pereiro R, Sanz-Medel A. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal Chim Acta. 2004;522:1–8. https://doi.org/10.1016/j.aca.2004.06.057.

    Article  Google Scholar 

  44. Huang CP, Liu SW, Chen TM, Li YK. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sensors Actuators B Chem. 2008;130:338–42. https://doi.org/10.1016/j.snb.2007.08.021.

    Article  Google Scholar 

  45. Miyawaki T, Ichimura M. Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells. Mater Lett. 2007;61:4683–6. https://doi.org/10.1016/j.matlet.2007.03.006.

    Article  Google Scholar 

  46. Du J, Yu X, Wu Y, Di J. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose. Mater Sci Eng C. 2013;33:2031–6. https://doi.org/10.1016/j.msec.2013.01.019.

    Article  Google Scholar 

  47. Fathy N, Ichimura M. Photoelectrical properties of ZnS thin films deposited from aqueous solution using pulsed electrochemical deposition. Solar Energy Mater. 2005;87:747–56. https://doi.org/10.1016/j.solmat.2004.07.048.

    Article  Google Scholar 

  48. Zhang F, Li C, Li X, Wang X, Wan Q, Xian Y, Jin L, Yamamoto K. ZnS quantum dots derived a reagentless uric acid biosensor. Talanta. 2006;68:1353–8. https://doi.org/10.1016/j.talanta.2005.07.051.

    Article  Google Scholar 

  49. Zhao Y, Wei X, Peng N, Wang J, Jiang Z. Study of ZnS nanostructures based electrochemical and photoelectrochemical biosensors for uric acid detection. Sensors. 2017;17:1235–45. https://doi.org/10.3390/s17061235.

    Article  ADS  Google Scholar 

  50. Tu W, Cao H, Zhang L, Bao J, Liu X, Dai Z. Dual signal amplification using gold nanoparticles-enhanced Zinc Selenide nanoflakes and P19 protein for ultrasensitive photoelectrochemical biosensing of MicroRNA in cell. Anal. Chem., 2016;88(21), 10459–10465. https://doi.org/10.1021/acs.analchem.6b02381.

  51. Mokwebo KV, Oluwafemi OS, Arotiba OA. An electrochemical cholesterol biosensor based on a CdTe/CdSe/ZnSe quantum dots—poly (propylene imine) dendrimer nanocomposite immobilisation layer. Sensors. 2018;18(10):3368. https://doi.org/10.3390/s18103368.

    Article  ADS  Google Scholar 

  52. Du J, Yu X, Di J. Comparison of the direct electrochemistry of glucose oxidase immobilized on the surface of Au, CdS and ZnS nanostructures. Biosens Bioelectron. 2012;37:88–93. https://doi.org/10.1016/j.bios.2012.04.044.

    Article  Google Scholar 

  53. Suganthi G, Arockiadoss T, Uma TS. ZnS nanoparticles decorated graphene nanoplatelets as immobilisation matrix for glucose biosensor. Nanosyst Phys Chem Math. 2016;7:637–42. https://doi.org/10.17586/2220-8054-2016-7-4-637-642.

    Article  Google Scholar 

  54. Suganthi G, Ramanathan G, Arockiadoss T, Sivagnanama UT. Facile synthesis of chitosan-capped ZnS nanoparticles as a soft biomimetic material in biosensing applications. Process Biochem. 2016;51:845–53. https://doi.org/10.1016/j.procbio.2016.04.001.

    Article  Google Scholar 

  55. Wang Z, Xu Q, Wang HQ, Yang Q, Yu JH, Zhao YD. Hydrogen peroxide biosensor based on direct electron transfer of horseradish peroxidase with vapor deposited quantum dots. Sensors Actuators B Chem. 2009;138:278–82. https://doi.org/10.1016/j.snb.2008.12.040.

    Article  Google Scholar 

  56. Suganthi G, Ramanathan G, Arockiadoss T, Sivagnanam UT. H2O2 biosensor based on horseradish peroxidase immobilized onto the zinc sulphide–graphene–chitosan modified carbon paper electrode. Bull Mater Sci. 2021;44:70–5. https://doi.org/10.1007/s12034-021-02358-w.

    Article  Google Scholar 

  57. Wang Y, Qu J, Li S, Qu J. Catechol biosensor based on ZnS:Ni/ZnS quantums dots and laccase modified glassy carbon electrode. J Nanosci Nanotechnol. 2016;16:8302–7. https://doi.org/10.1166/jnn.2016.11649.

    Article  Google Scholar 

  58. Chauhan N, Narang J, Pundir CS. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens Bioelectron. 2011;29:82–8. https://doi.org/10.1016/j.bios.2011.07.070.

    Article  Google Scholar 

  59. Li X, Zheng Z, Liu X, Zhao S, Liu S. Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens Bioelectron. 2015;64:1–5. https://doi.org/10.1016/j.bios.2014.08.006.

    Article  Google Scholar 

  60. Zhang L, Li P, Feng L, Chen X, Jiang J, Zhang S, Zhang C, Zhang A, Chen G, Wang H. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: a visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury (II). J Hazard Mater. 2020;387:121715–25. https://doi.org/10.1016/j.jhazmat.2019.121715.

    Article  Google Scholar 

  61. Negahdary M, Jafarzadeh M, Rahimzadeh R, Rahimi G, Dehghani H. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres. J Sens Sens Syst. 2017;6:259–67. https://doi.org/10.5194/jsss-6-259-2017.

    Article  Google Scholar 

  62. Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, Xie Q. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS–Ag2S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta. 2020;212:120797–804. https://doi.org/10.1016/j.talanta.2020.120797.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001(Proc. 88887.362974/2019-00), CNPq, FAPESP (#grant 2013/07296-2, # grant 2017/11986-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Helena Mascaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blaskievicz, S.F., Salvati, B.S., Correa, A.A., Mascaro, L.H. (2023). Photoelectrochemical Biosensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_22

Download citation

Publish with us

Policies and ethics