Skip to main content

NADPH Oxidases in Zebrafish

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

Zebrafish, a minnow family teleost fish, has emerged as a powerful in vivo vertebrate model system in biological research. Zebrafish have been used to investigate a number of biological functions mediated by NADPH oxidase (Nox), a transmembrane enzyme known for its role in the production of reactive oxygen species (ROS). Several Nox isoforms such as Nox1, Nox2, Nox4, Nox5, and Duox are expressed in zebrafish. Nox expression and activity change dynamically during zebrafish development and play a role in cell signaling, embryo development, physiology, and pathophysiology. A classical role of Nox is infection control mediated by macrophages and leukocytes, which produce ROS during the oxidative burst. Nox-derived hydrogen peroxide (H2O2) after injury acts as a critical signaling molecule and mediates migration of leukocytes during wound response. Nox also plays a role in several other aspects of zebrafish development and physiology including nervous system development, sensory axon regeneration, thyroid hormone synthesis, and circadian clock control. In addition, zebrafish are used as a model to study Nox function in human disease such as congenital hypothyroidism. Because of its many advantages, zebrafish will likely continue serving as an excellent model system for investigating Nox functions in various biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall RA, Osborn DP (2016) Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function. Cilia 5(1):1–9

    Article  Google Scholar 

  2. Sundin J, Morgan R, Finnøen MH et al (2019) On the observation of Wild Zebrafish (Danio rerio) in India. Zebrafish 16(6):546–553

    Article  PubMed  Google Scholar 

  3. Streisinger G, Walker C, Dower N et al (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291(5813):293–296. https://doi.org/10.1038/291293a0

    Article  CAS  PubMed  Google Scholar 

  4. Ge W (2018) Zebrafish. In: Skinner MK (ed) Encyclopedia of reproduction, 2nd edn. Academic, Oxford, pp 704–710. https://doi.org/10.1016/B978-0-12-809633-8.20618-3

    Chapter  Google Scholar 

  5. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7):2337–2343. https://doi.org/10.1172/jci60434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  8. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7(1):1–21

    Article  Google Scholar 

  9. Weaver CJ, Leung YF, Suter DM (2016) Expression dynamics of NADPH oxidases during early zebrafish development. J Comp Neurol 524(10):2130–2141. https://doi.org/10.1002/cne.23938

    Article  CAS  PubMed  Google Scholar 

  10. Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. In: Trends in innate immunity, vol 15. Karger Publishers, pp 164–187

    Chapter  Google Scholar 

  11. Terzi A, Roeder H, Weaver CJ et al (2021) Neuronal NADPH oxidase 2 regulates growth cone guidance downstream of slit2/robo2. Dev Neurobiol 81(1):3–21. https://doi.org/10.1002/dneu.22791

    Article  CAS  PubMed  Google Scholar 

  12. Weaver CJ, Terzi A, Roeder H et al (2018) nox2/cybb deficiency affects zebrafish retinotectal connectivity. J Neurosci 38(26):5854–5871. https://doi.org/10.1523/jneurosci.1483-16.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Razaghi B, Steele SL, Prykhozhij SV et al (2018) hace1 Influences zebrafish cardiac development via ROS-dependent mechanisms. Dev Dyn 247(2):289–303

    Article  CAS  PubMed  Google Scholar 

  14. Pagano C, Siauciunaite R, Idda ML et al (2018) Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates. Sci Rep 8(1):13180. https://doi.org/10.1038/s41598-018-31570-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chopra K, Ishibashi S, Amaya E (2019) Zebrafish duox mutations provide a model for human congenital hypothyroidism. Biology Open 8(2). https://doi.org/10.1242/bio.037655

  16. Sun F, Fang Y, Zhang M-M et al (2021) Genetic manipulation on zebrafish duox recapitulate the clinical manifestations of congenital hypothyroidism. Endocrinology 162(8):1–14. https://doi.org/10.1210/endocr/bqab10

    Article  Google Scholar 

  17. Walker C, Streisinger G (1983) Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics 103(1):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawson ND, Wolfe SA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 21(1):48–64

    Article  CAS  PubMed  Google Scholar 

  19. Kimmel CB (1989) Genetics and early development of zebrafish. Trends Genet 5(8):283–288. https://doi.org/10.1016/0168-9525(89)90103-0

    Article  CAS  PubMed  Google Scholar 

  20. Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103(2):403–412

    Article  CAS  PubMed  Google Scholar 

  21. Higashijima S, Okamoto H, Ueno N et al (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192(2):289–299. https://doi.org/10.1006/dbio.1997.8779

    Article  CAS  PubMed  Google Scholar 

  22. Long Q, Meng A, Wang H et al (1997) GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124(20):4105–4111

    Article  CAS  PubMed  Google Scholar 

  23. Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    Article  CAS  PubMed  Google Scholar 

  24. Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    Article  CAS  PubMed  Google Scholar 

  25. Stainier DY, Fouquet B, Chen JN et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292

    Article  CAS  PubMed  Google Scholar 

  26. Varga ZM (2011) Aquaculture and husbandry at the zebrafish international resource center. Methods Cell Biol 104:453–478. https://doi.org/10.1016/b978-0-12-374814-0.00024-0

    Article  PubMed  Google Scholar 

  27. Sprague J, Clements D, Conlin T et al (2003) The Zebrafish Information Network (ZFIN): the zebrafish model organism database. Nucleic Acids Res 31(1):241–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermann AC, Millard PJ, Blake SL et al (2004) Development of a respiratory burst assay using zebrafish kidneys and embryos. J Immunol Methods 292(1–2):119–129

    Article  CAS  PubMed  Google Scholar 

  29. Kaplan JE, Chrenek RD, Morash JG et al (2008) Rhythmic patterns in phagocytosis and the production of reactive oxygen species by zebrafish leukocytes. Comp Biochem Physiol A Mol Integr Physiol 151(4):726–730

    Article  PubMed  Google Scholar 

  30. Niethammer P, Grabher C, Look AT et al (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Panieri E, Millia C, Santoro MM (2017) Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues. Free Radic Biol Med 109:189–200

    Article  CAS  PubMed  Google Scholar 

  32. Rieger S, Sagasti A (2011) Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 9(5):e1000621. https://doi.org/10.1371/journal.pbio.1000621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang H, Ge H, Chen ZB et al (2015) Micrometam C protects against oxidative stress in inflammation models in zebrafish and RAW264.7 macrophages. Mar Drugs 13(9):5593–5605. https://doi.org/10.3390/md13095593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoo SK, Starnes TW, Deng Q et al (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin P, Feng Y (2009) Wound healing in zebrafish. Nature 459(7249):921–923

    Article  CAS  PubMed  Google Scholar 

  36. Flores MV, Crawford KC, Pullin LM et al (2010) Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem Biophys Res Commun 400(1):164–168. https://doi.org/10.1016/j.bbrc.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  37. Choe CP, Choi S-Y, Kee Y et al (2021) Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Animal Res 37(1):1–29

    Article  Google Scholar 

  38. Maghzal GJ, Krause K-H, Stocker R et al (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 53(10):1903–1918

    Article  CAS  PubMed  Google Scholar 

  39. Brothers KM, Gratacap RL, Barker SE et al (2013) NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog 9(10):e1003634

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brothers KM, Newman ZR, Wheeler RT (2011) Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Eukaryot Cell 10(7):932–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Osaki T, Uchida Y, Hirayama J et al (2011) Diphenyleneiodonium chloride, an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, suppresses light-dependent induction of clock and DNA repair genes in zebrafish. Biol Pharm Bull 34(8):1343–1347

    Article  CAS  PubMed  Google Scholar 

  42. Tell RM, Kimura K, Palić D (2012) Rac2 expression and its role in neutrophil functions of zebrafish (Danio rerio). Fish Shellfish Immunol 33(5):1086–1094

    Article  CAS  PubMed  Google Scholar 

  43. Goody MF, Peterman E, Sullivan C et al. (2013) Quantification of the respiratory burst response as an indicator of innate immune health in zebrafish. J Vis Exp JoVE 79

    Google Scholar 

  44. Nussbaum JM, Liu LJ, Hasan SA et al (2013) Homeostatic generation of reactive oxygen species protects the zebrafish liver from steatosis. Hepatology 58(4):1326–1338

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Shimizu H, Siu KL et al (2014) NADPH oxidase 4 induces cardiac arrhythmic phenotype in zebrafish. J Biol Chem 289(33):23200–23208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu XL, Liu JX, Wu Q et al (2014) Protective effects of puerarin against Aß40-induced vascular dysfunction in zebrafish and human endothelial cells. Eur J Pharmacol 732:76–85. https://doi.org/10.1016/j.ejphar.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Yu T, He X et al (2019) Dual roles of hydrogen peroxide in promoting zebrafish renal repair and regeneration. Biochem Biophys Res Commun 516(3):680–685. https://doi.org/10.1016/j.bbrc.2019.06.052

    Article  CAS  PubMed  Google Scholar 

  48. Feng Y, Santoriello C, Mione M et al (2010) Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 8(12):e1000562. https://doi.org/10.1371/journal.pbio.1000562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Oliveira S, Boudinot P, Calado  et al (2015) Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol 194(4):1523–1533. https://doi.org/10.4049/jimmunol.1402386

    Article  CAS  PubMed  Google Scholar 

  50. Ogrunc M, Di Micco R, Liontos M et al (2014) Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21(6):998–1012. https://doi.org/10.1038/cdd.2014.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bernut A, Dupont C, Ogryzko NV et al (2019) CFTR protects against mycobacterium abscessus infection by fine-tuning host oxidative defenses. Cell Rep 26(7):1828–1840. e1824. https://doi.org/10.1016/j.celrep.2019.01.071

    Article  CAS  PubMed  Google Scholar 

  52. Gauron C, Meda F, Dupont E et al (2016) Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev Biol 414(2):133–141

    Article  CAS  PubMed  Google Scholar 

  53. Pase L, Layton JE, Wittmann C et al (2012) Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol 22(19):1818–1824

    Article  CAS  PubMed  Google Scholar 

  54. Deng Q, Harvie EA, Huttenlocher A (2012) Distinct signalling mechanisms mediate neutrophil attraction to bacterial infection and tissue injury. Cell Microbiol 14(4):517–528. https://doi.org/10.1111/j.1462-5822.2011.01738.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Terzi A, Alam SMS, Suter DM (2021) ROS live cell imaging during neuronal development. J Visual Exp JoVE 168. https://doi.org/10.3791/62165

  56. Yan B, Han P, Pan L et al (2014) IL-1β and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model. J Immunol 192(12):5998–6008. https://doi.org/10.4049/jimmunol.1301645

    Article  CAS  PubMed  Google Scholar 

  57. Schoen TJ, Rosowski EE, Knox BP et al (2019) Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. J Cell Sci 133(5). https://doi.org/10.1242/jcs.236539

  58. Park JS, Choi TI, Kim OH et al (2019) Targeted knockout of duox causes defects in zebrafish growth, thyroid development, and social interaction. J Genet Genomics 46(2):101–104. https://doi.org/10.1016/j.jgg.2019.01.004

    Article  PubMed  Google Scholar 

  59. de Oliveira S, López-Muñoz A, Candel S et al (2014) ATP modulates acute inflammation in vivo through dual oxidase 1-derived H2O2 production and NF-κB activation. J Immunol 192(12):5710–5719. https://doi.org/10.4049/jimmunol.1302902

    Article  CAS  PubMed  Google Scholar 

  60. Tauzin S, Starnes TW, Becker FB et al (2014) Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. J Cell Biol 207(5):589–598. https://doi.org/10.1083/jcb.201408090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang CT, Cambier CJ, Davis JM et al (2012) Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 12(3):301–312. https://doi.org/10.1016/j.chom.2012.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Venkateswaran A, Sekhar KR, Levic DS et al (2014) The NADH oxidase ENOX1, a critical mediator of endothelial cell radiosensitization, is crucial for vascular development. Cancer Res 74(1):38–43. https://doi.org/10.1158/0008-5472.can-13-1981

    Article  CAS  PubMed  Google Scholar 

  63. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. https://doi.org/10.1038/nmeth866

    Article  CAS  PubMed  Google Scholar 

  64. Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279(21):22284–22293. https://doi.org/10.1074/jbc.M312847200

    Article  CAS  PubMed  Google Scholar 

  65. Gutscher M, Sobotta MC, Wabnitz GH et al (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284(46):31532–31540. https://doi.org/10.1074/jbc.M109.059246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rennekamp AJ, Peterson RT (2015) 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24:58–70

    Article  CAS  PubMed  Google Scholar 

  67. Mendieta-Serrano MA, Mendez-Cruz FJ, Antúnez-Mojica M et al (2019) NADPH-Oxidase-derived reactive oxygen species are required for cytoskeletal organization, proper localization of E-cadherin and cell motility during zebrafish epiboly. Free Radic Biol Med 130:82–98. https://doi.org/10.1016/j.freeradbiomed.2018.10.416

    Article  CAS  PubMed  Google Scholar 

  68. Giusti N, Gillotay P, Trubiroha A et al (2020) Inhibition of the thyroid hormonogenic H(2)O(2) production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol 500:110635. https://doi.org/10.1016/j.mce.2019.110635

    Article  CAS  PubMed  Google Scholar 

  69. Daugaard M, Nitsch R, Razaghi B et al (2013) Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nat Commun 4(1):1–13

    Article  Google Scholar 

  70. Candel S, de Oliveira S, López-Muñoz A et al (2014) Tnfa signaling through tnfr2 protects skin against oxidative stress-induced inflammation. PLoS Biol 12(5):e1001855. https://doi.org/10.1371/journal.pbio.1001855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ratanayotha A, Kawai T, Okamura Y (2019) Real-time functional analysis of Hv1 channel in neutrophils: a new approach from zebrafish model. Am J Phys Regul Integr Comp Phys 316(6):R819–R831

    CAS  Google Scholar 

  72. Robinson B, Gu Q, Ali SF et al (2019) Ketamine-induced attenuation of reactive oxygen species in zebrafish is prevented by acetyl l-carnitine in vivo. Neurosci Lett 706:36–42. https://doi.org/10.1016/j.neulet.2019.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dikova V, Vorhauser J, Geng A et al (2020) Metabolic interaction of hydrogen peroxide and hypoxia in zebrafish fibroblasts. Free Radic Biol Med 152:469–481. https://doi.org/10.1016/j.freeradbiomed.2019.11.015

    Article  CAS  PubMed  Google Scholar 

  74. Choi J, Im GJ, Chang J et al (2013) Protective effects of apocynin on cisplatin-induced ototoxicity in an auditory cell line and in zebrafish. J Appl Toxicol 33(2):125–133

    Article  PubMed  Google Scholar 

  75. Seo MJ, Seo YJ, Pan CH et al (2016) Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother Res 30(11):1802–1808. https://doi.org/10.1002/ptr.5683

    Article  CAS  PubMed  Google Scholar 

  76. Li ZX, Chen JW, Yuan F et al (2013) Xyloketal B exhibits its antioxidant activity through induction of HO-1 in vascular endothelial cells and zebrafish. Mar Drugs 11(2):504–522. https://doi.org/10.3390/md11020504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bradford YM, Toro S, Ramachandran S et al (2017) Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J 58(1):4–16. https://doi.org/10.1093/ilar/ilw040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Elks PM, Renshaw SA, Meijer AH et al (2015) Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. Dis Model Mech 8(11):1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Rooijen E, Voest EE, Logister I et al (2009) Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood 113(25):6449–6460

    Article  PubMed  Google Scholar 

  80. Kawahara T, Lambeth JD (2007) Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes. BMC Evol Biol 7:178. https://doi.org/10.1186/1471-2148-7-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. White RJ, Collins JE, Sealy IM et al (2017) A high-resolution mRNA expression time course of embryonic development in zebrafish. elife 6:e30860

    Article  PubMed  PubMed Central  Google Scholar 

  82. Papatheodorou I, Fonseca NA, Keays M et al (2017) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res 46(D1):D246–D251. https://doi.org/10.1093/nar/gkx1158

    Article  CAS  PubMed Central  Google Scholar 

  83. Wang J, Xiao J, Meng X et al (2021) NOX5 is expressed aberrantly but not a critical pathogenetic gene in Hirschsprung disease. BMC Pediatr 21(1):153. https://doi.org/10.1186/s12887-021-02611-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oehlers SH, Flores MV, Hall CJ et al (2011) The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. Dis Model Mech 4(6):832–841. https://doi.org/10.1242/dmm.006122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Opitz R, Maquet E, Zoenen M et al (2011) TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol 25(9):1579–1599. https://doi.org/10.1210/me.2011-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Olguín-Albuerne M, Morán J (2018) Redox signaling mechanisms in nervous system development. Antioxid Redox Signal 28(18):1603–1625

    Article  PubMed  Google Scholar 

  87. Wilson C, Muñoz-Palma E, González-Billault C (2018) From birth to death: a role for reactive oxygen species in neuronal development. In: Semin Cell Dev Biol. Elsevier, pp 43–49

    Google Scholar 

  88. Terzi A, Suter DM (2020) The role of NADPH oxidases in neuronal development. Free Radic Biol Med 154:33–47. https://doi.org/10.1016/j.freeradbiomed.2020.04.027

    Article  CAS  PubMed  Google Scholar 

  89. Wilson C, Núñez MT, González-Billault C (2015) Contribution of NADPH oxidase to the establishment of hippocampal neuronal polarity in culture. J Cell Sci 128(16):2989–2995. https://doi.org/10.1242/jcs.168567

    Article  CAS  PubMed  Google Scholar 

  90. Munnamalai V, Weaver CJ, Weisheit CE et al (2014) Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J Neurochem 130(4):526–540. https://doi.org/10.1111/jnc.12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Munnamalai V, Suter DM (2009) Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. J Neurochem 108(3):644–661. https://doi.org/10.1111/j.1471-4159.2008.05787.x

    Article  CAS  PubMed  Google Scholar 

  92. Rampon C, Volovitch M, Joliot A et al. (2018) Hydrogen peroxide and redox regulation of developments. Antioxidants (Basel, Switzerland) 7(11). https://doi.org/10.3390/antiox7110159

  93. Yoneyama M, Kawada K, Gotoh Y et al (2010) Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int 56(6):740–746. https://doi.org/10.1016/j.neuint.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  94. Le Belle JE, Orozco NM, Paucar AA et al (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8(1):59–71

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dickinson BC, Peltier J, Stone D et al (2011) Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol 7(2):106–112

    Article  CAS  PubMed  Google Scholar 

  96. Nayernia Z, Colaianna M, Robledinos-Antón N et al (2017) Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: from mouse brain to neural differentiation of patient derived iPSC. Redox Biol 13:82–93. https://doi.org/10.1016/j.redox.2017.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Albadri S, Naso F, Thauvin M et al (2019) Redox signaling via lipid peroxidation regulates retinal progenitor cell differentiation. Dev Cell 50(1):73–89e76. https://doi.org/10.1016/j.devcel.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  98. Song Y, Driessens N, Costa M et al (2007) Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metabol 92(10):3764–3773

    Article  CAS  Google Scholar 

  99. Santillo M, Colantuoni A, Mondola P et al (2015) NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis. Front Physiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  100. Iovine MK (2007) Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3(10):613–618. https://doi.org/10.1038/nchembio.2007.36

    Article  CAS  PubMed  Google Scholar 

  101. Sehring IM, Weidinger G (2020) Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdiscip Rev Dev Biol 9(1):e367. https://doi.org/10.1002/wdev.367

    Article  PubMed  Google Scholar 

  102. Azevedo AS, Grotek B, Jacinto A et al (2011) The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS One 6(7):e22820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jelcic M, Enyedi B, Xavier JB et al (2017) Image-based measurement of H2O2 reaction-diffusion in wounded zebrafish larvae. Biophys J 112(9):2011–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24. https://doi.org/10.1016/j.cbpa.2008.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yoo SK, Freisinger CM, LeBert DC et al (2012) Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J Cell Biol 199(2):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sehring IM, Jahn C, Weidinger G (2016) Zebrafish fin and heart: what’s special about regeneration? Curr Opin Genet Dev 40:48–56. https://doi.org/10.1016/j.gde.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  107. Gauron C, Rampon C, Bouzaffour M et al (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084. https://doi.org/10.1038/srep02084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chopra K, FolkmanaitÄ— M, Stockdale L et al. (2021) The roles of NADPH oxidases during adult zebrafish fin regeneration. bioRxiv. https://doi.org/10.1101/2021.07.13.452203

  109. Han P, Zhou XH, Chang N et al (2014) Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res 24(9):1091–1107. https://doi.org/10.1038/cr.2014.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang LQ, Chen M, Ren DL et al (2020) Dual oxidase mutant retards mauthner-cell axon regeneration at an early stage via modulating mitochondrial dynamics in zebrafish. Neurosci Bull 36(12):1500–1512. https://doi.org/10.1007/s12264-020-00600-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744. https://doi.org/10.1172/jci107236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hohn DC, Lehrer RI (1975) NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest 55(4):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in poly-morphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 20(1):21–23

    Article  CAS  PubMed  Google Scholar 

  114. Harvie EA, Huttenlocher A (2015) Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 98(4):523–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rosowski EE (2020) Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 13(1). https://doi.org/10.1242/dmm.041889

  116. Yoshida N, Frickel E-M, Mostowy S (2017) Macrophage–microbe interactions: lessons from the zebrafish model. Front Immunol 8:1703

    Article  PubMed  PubMed Central  Google Scholar 

  117. Torraca V, Masud S, Spaink HP et al (2014) Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 7(7):785–797

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hogan D, Wheeler RT (2014) The complex roles of NADPH oxidases in fungal infection. Cell Microbiol 16(8):1156–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bennett CM, Kanki JP, Rhodes J et al (2001) Myelopoiesis in the zebrafish, Danio rerio. Blood 98(3):643–651. https://doi.org/10.1182/blood.v98.3.643

    Article  CAS  PubMed  Google Scholar 

  120. Phan QT, Sipka T, Gonzalez C et al (2018) Neutrophils use superoxide to control bacterial infection at a distance. PLoS Pathog 14(7):e1007157. https://doi.org/10.1371/journal.ppat.1007157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  122. Fazio M, Ablain J, Chuan Y et al (2020) Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer 20(5):263–273. https://doi.org/10.1038/s41568-020-0252-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13(9):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roy K, Wu Y, Meitzler JL et al (2015) NADPH oxidases and cancer. Clin Sci 128(12):863–875

    Article  CAS  Google Scholar 

  125. Arnold RS, Shi J, Murad E et al (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA 98(10):5550–5555. https://doi.org/10.1073/pnas.101505898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kamata T (2009) Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci 100(8):1382–1388

    Article  CAS  PubMed  Google Scholar 

  127. Lam KH, Alex D, Lam IK et al (2011) Nobiletin, a polymethoxylated flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model. J Cell Biochem 112(11):3313–3321

    Article  CAS  PubMed  Google Scholar 

  128. Lam IK, Alex D, Wang YH et al (2012) In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent. Mol Nutr Food Res 56(6):945–956. https://doi.org/10.1002/mnfr.201100680

    Article  CAS  PubMed  Google Scholar 

  129. Lin C, Wu M, Dong J (2012) Quercetin-4′-O-β-D-glucopyranoside (QODG) inhibits angiogenesis by suppressing VEGFR2-mediated signaling in zebrafish and endothelial cells. PLoS One 7(2):e31708. https://doi.org/10.1371/journal.pone.0031708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao D, Qin C, Fan X et al (2014) Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. Eur J Pharmacol 723:360–367. https://doi.org/10.1016/j.ejphar.2013.10.069

    Article  CAS  PubMed  Google Scholar 

  131. Lee JY, Bae H, Yang C et al (2020) Eupatilin promotes cell death by calcium influx through ER-mitochondria axis with SERPINB11 inhibition in epithelial ovarian cancer. Cancers 12(6). https://doi.org/10.3390/cancers12061459

  132. Melchart D, Martin P, Hallek M et al (1992) Circadian variation of the phagocytic activity of polymorphonuclear leukocytes and of various other parameters in 13 healthy male adults. Chronobiol Int 9(1):35–45

    Article  CAS  PubMed  Google Scholar 

  133. Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13(3):190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lai AG, Doherty CJ, Mueller-Roeber B et al (2012) Circadian Clock-Associated 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA 109(42):17129–17134. https://doi.org/10.1073/pnas.1209148109

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fanjul-Moles ML (2013) ROS signaling pathways and biological rhythms: perspectives in crustaceans. Front Biosci 18:665–675. https://doi.org/10.2741/4129

    Article  CAS  Google Scholar 

  136. Yoshida Y, Iigusa H, Wang N et al (2011) Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS One 6(12):e28227. https://doi.org/10.1371/journal.pone.0028227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Delaunay F, Thisse C, Marchand O et al (2000) An inherited functional circadian clock in zebrafish embryos. Science 289(5477):297–300

    Article  CAS  PubMed  Google Scholar 

  138. Whitmore D, Foulkes NS, Strähle U et al (1998) Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1(8):701–707

    Article  CAS  PubMed  Google Scholar 

  139. Hirayama J, Cho S, Sassone-Corsi P (2007) Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci 104(40):15747–15752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the Suter Lab is supported by NIH grant R01NS117701 and a grant from the Indiana Spinal Cord and Brain Injury Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, S.M.S., Suter, D.M. (2023). NADPH Oxidases in Zebrafish. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_29

Download citation

Publish with us

Policies and ethics