Skip to main content

Bioinformatics Study on Renin Angiotensin in Lung, and Liver Cancer Using Plant-Based Extracts

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 25))

  • 273 Accesses

Abstract

Cancer has been one of the leading causes of increasing mortality rate globally. It is the most prominent cause of death worldwide and in most cases incurable if there is delay in its diagnosis. The etiology of cancer is mostly dependent on its exposure to carcinogens consistently. The Renin-Angiotensin system (RAS) plays a significant role in the field of cancer biology that affects the growth of the tumor, and its dissemination either directly or indirectly. Targeting the RAS and by activating the immunostimulatory pathways, the RAS inhibitors (RASi) can enhance cancer immunotherapy by improving cancer treatment. Currently, researchers are more interested in using bioactive compounds from medicinal plants in anticancer therapy since it has no side effects. Plant-derived bioactive compounds having anticancer properties are generally non-toxic or are less toxic. Several phytochemicals have potential anticancer properties with effects on signaling pathways and cellular processes. This review focuses on the RAS in lung and liver cancer. It also highlights the extraction of bioactive compounds having anticancer effects from medicinal plants by using bioinformatic databases to treat liver and lung cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul-Hafez A, Mohamed T, Omar H et al (2018) The renin angiotensin system in liver and lung: impact and therapeutic potential in organ fibrosis. J Lung Pulm Respir Res 5(1):00160

    PubMed  PubMed Central  Google Scholar 

  2. Filippatos G, Tilak M, Pinillos H et al (2001) Regulation of apoptosis by angiotensin II in the heart and lungs (review). Int J Mol Med 7(3):273–280. https://doi.org/10.3892/ijmm.7.3.273

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Molina-Molina M, Abdul-Hafez A et al (2008) Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol 295(1):L178–L185. https://doi.org/10.1152/ajplung.00009.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Osterreicher CH, Taura K, De Minicis S et al (2009) Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology 50(3):929–938. https://doi.org/10.1002/hep.23104

    Article  CAS  PubMed  Google Scholar 

  5. Dhar D, Baglieri J, Kisseleva T, Brenner DA (2020) Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med (Maywood) 245(2):96–108. https://doi.org/10.1177/1535370219898141

  6. Ballester B, Milara J, Cortijo J (2019) Idiopathic pulmonary fibrosis and lung cancer: mechanisms and molecular targets. Int J Mol Sci 20(3):593. https://doi.org/10.3390/ijms20030593

  7. Park J, Kim DS, Shim TS et al (2001) Lung cancer in patients with idiopathic pulmonary fibrosis. Eur Respir J 17(6):1216–1219. https://doi.org/10.1183/09031936.01.99055301

    Article  CAS  PubMed  Google Scholar 

  8. Warner FJ, Lubel JS, McCaughan GW et al (2007) Liver fibrosis: a balance of ACEs? Clin Sci (Lond) 113(3):109–118. https://doi.org/10.1042/cs20070026

    Article  CAS  PubMed  Google Scholar 

  9. Abbas G, Silveira MG, Lindor KD (2011) Hepatic fibrosis and the reninangiotensin system. Am J Ther 18(6):e202–e208. https://doi.org/10.1097/mjt.0b013e3181df8df5

    Article  PubMed  Google Scholar 

  10. Mak KY, Chin R, Cunningham SC et al (2015) ACE2 therapy using adeno-associated viral vector inhibits liver fibrosis in mice. Mol Ther 23(9):1434–1443. https://doi.org/10.1038/mt.2015.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagenaar GT, El Laghmani H, Fidder M et al (2013) Agonists of MAS oncogene and angiotensin II type 2 receptors attenuate cardiopulmonary disease in rats with neonatal hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 305(5):L341–L351. https://doi.org/10.1152/ajplung.00360.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oarhe CI, Dang V, Dang M et al (2015) Hyperoxia downregulates angiotensin-converting enzyme-2 in human fetal lung fibroblasts. Pediatr Res 77(5):656–662. https://doi.org/10.1038/pr.2015.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohamed TL, Nguyen HT, Abdul-Hafez A et al (2016) Prior hypoxia prevents downregulation of ACE-2 by hyperoxia in fetal human lung fibroblasts. Exp Lung Res 42(3):121–130. https://doi.org/10.3109/01902148.2016.1157712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhal BD, Li X, Xue A et al (2011) Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/Mas axis. Am J Physiol 301(3):L269–L274. https://doi.org/10.1152/ajplung.00222.2010

  15. Abdel-Hamid NM, Abass SA, Mohamed AA, Hamid DM (2018) Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 107:1246–1258. https://doi.org/10.1016/j.biopha.2018.08.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen F, Zhong Z, Tan HY et al (2020) Uncovering the anticancer mechanisms of Chinese herbal medicine formulas: therapeutic alternatives for liver cancer. Front Pharmacol 11:293. https://doi.org/10.3389/fphar.2020.00293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Feiyue Z, Gaofeng L (2021) Traditional Chinese medicine and lung cancer—from theory to practice. Biomed Pharmacother 137:111381. https://doi.org/10.1016/j.biopha.2021.111381

    Article  PubMed  Google Scholar 

  18. Chota A, George BP, Abrahamse H (2020) Potential treatment of breast and lung cancer using Dicoma anomala, an African medicinal plant. Molecules 25(19):4435. https://doi.org/10.3390/molecules25194435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan M, Zhang G, Bai W et al (2022) The role of bioactive compounds in natural products extracted from plants in cancer treatment and their mechanisms related to anticancer effects. Oxid Med Cell Longev 2022:1429869. https://doi.org/10.1155/2022/1429869

  20. Chavda VP, Patel AB, Mistry KJ et al (2022) Nano-drug delivery systems entrapping natural bioactive compounds for cancer: recent progress and future challenges. Front Oncol 12:867655. https://doi.org/10.3389/fonc.2022.867655

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Zhang W, Jiang L, Chen Y (2022) Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res 10:3. https://doi.org/10.1186/s40364-021-00350-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  23. Song J, Zhou H, Gu D, Xu Y (2022) Hepatocellular carcinoma differentiation: research progress in mechanism and treatment. Front Oncol 11:790358. https://doi.org/10.3389/fonc.2021.790358

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sim HW, Knox J (2018) Hepatocellular carcinoma in the era of immunotherapy. Curr Probl Cancer 42(1):40–48. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  25. Lee MS, Ryoo BY, Hsu CH et al (2020) Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol 21(6):808–820. https://doi.org/10.1016/s1470-2045(20)30156-x

    Article  CAS  PubMed  Google Scholar 

  26. Mithoowani H, Febbraro M (2022) Non-small-cell lung cancer in 2022: a review for general practitioners in oncology. Curr Oncol 29(3):1828–1839. https://doi.org/10.3390/curroncol29030150

  27. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  28. Slebe M, Pouw JEE, Hashemi SMS et al (2022) Current state and upcoming opportunities for immunoPET biomarkers in lung cancer. Lung Cancer 169:84–93. https://doi.org/10.1016/j.lungcan.2022.05.017

    Article  CAS  PubMed  Google Scholar 

  29. Nasution SA (2006) The use of ACE inhibitor in cardiovascular disease. Acta Med Indones 38(1):60–64

    PubMed  Google Scholar 

  30. Herman LL, Padala SA, Ahmed I, Bashir K (2022) StatPearls [Internet]. Angiotensin converting enzyme inhibitors (ACEI), Treasure Island (FL), StatPearls Publishing LLC

    Google Scholar 

  31. Vidt DG, Bravo EL, Fouad FM (1982) Medical intelligence drug therapy: captopril. N Engl J Med 306(4):214–219

    Article  CAS  PubMed  Google Scholar 

  32. Todd PA, Heel RC (1986) Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs 31(3):198–248. https://doi.org/10.2165/00003495-198631030-00002

  33. Messerli FH, Bangalore S, Bavishi C, Rimoldi SF (2018) Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J Am Coll Cardiol 71(13):1474–1482. https://doi.org/10.1016/j.jacc.2018.01.058

    Article  CAS  PubMed  Google Scholar 

  34. James PA, Oparil S, Carter BL, et al (2014) 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA e311(5):507–520. https://doi.org/10.1001/jama.2013.284427

  35. Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol 71(19):e127–e248. https://doi.org/10.1161/hyp.0000000000000066

    Article  PubMed  Google Scholar 

  36. Williams B, Mancia G, Spiering W et al (2018) ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104. https://doi.org/10.1093/eurheartj/ehy339

  37. Swedberg K, Held P, Kjekshus J et al (1992) Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 327(10):678–684. https://doi.org/10.1056/NEJM199209033271002

  38. Ambrosioni E, Borghi C, Magnani B (1995) The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. The survival of myocardial infarction long-term evaluation (SMILE) study investigators. N Engl J Med 332(2):80–85. https://doi.org/10.1056/nejm199501123320203

  39. Pfeffer MA (1995) Left ventricular remodeling after acute myocardial infarction. Annu Rev Med 46:455–466. https://doi.org/10.1146/annurev.med.46.1.455

    Article  CAS  PubMed  Google Scholar 

  40. O’Gara PT, Kushner FG, Ascheim DD et al (2013) American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 127(4):e362–e425. https://doi.org/10.1161/CIR.0b013e3182742c84

  41. Gavras H, Faxon DP, Berkoben J, Brunner HR, Ryan TJ (1978) Angiotensin converting enzyme inhibition in patients with congestive heart failure. Circulation 58(5):770–776. https://doi.org/10.1161/01.cir.58.5.770

    Article  CAS  PubMed  Google Scholar 

  42. Dzau VJ, Colucci WS, Williams GH, Curfman G, Meggs L, Hollenberg NK (1980) Sustained effectiveness of converting-enzyme inhibition in patients with severe congestive heart failure. N Engl J Med 302(25):1373–1379. https://doi.org/10.1056/nejm198006193022501

    Article  CAS  PubMed  Google Scholar 

  43. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325(5):293–302. https://doi.org/10.1056/nejm199108013250501

    Article  PubMed  Google Scholar 

  44. Pfeffer MA, Braunwald E, Moyé LA et al (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327(10):669–677. https://doi.org/10.1056/nejm199209033271001

  45. Ponikowski P, Voors AA, Anker SD et al (2016) ESC Scientific Document Group. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

  46. Chikawa I, Brenner BM (1984) Glomerular actions of angiotensin II. Am J Med 76(5B):43–49. https://doi.org/10.1016/0002-9343(84)90882-9

    Article  Google Scholar 

  47. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329(20):1456–1462. https://doi.org/10.1056/nejm199311113292004

  48. Zhang Y, Ding X, Hua B, Liu Q, Chen H, Zhao XQ, Li W, Li H (2020) Real-world use of ACEI/ARB in diabetic hypertensive patients before the initial diagnosis of obstructive coronary artery disease: patient characteristics and long-term follow-up outcome. J Transl Med 18(1):150. https://doi.org/10.1186/s12967-020-02314-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silvariño R, Rios P, Baldovinos G, Chichet MA, Perg N, Sola L, Saona G, De Souza N, Lamadrid V, Gadola L (2019) Is chronic kidney disease progression influenced by the type of renin-angiotensin-system blocker used? Nephron 143(2):100–107. https://doi.org/10.1159/000500925

    Article  CAS  PubMed  Google Scholar 

  50. Anderson S, Rennke HG, Brenner BM (1986) Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 77(6):1993–2000. https://doi.org/10.1172/jci112528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ravid M, Lang R, Rachmani R, Lishner M (1996) Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med 156(3):286–289

    Google Scholar 

  52. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346. https://doi.org/10.1172/jci114844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pazik J, Ostrowska J, Lewandowski Z, Mróz A, Perkowska-Ptasińska A, Baczkowska T, Durlik M (2008) Renin-angiotensin-aldosterone system inhibitors and statins prolong graft survival in post-transplant glomerulonephritis. Ann Transplant 13(4):41–45

    PubMed  Google Scholar 

  54. Samad A, Jafar T, Rafi JH (2020) Identification of angiotensin-converting enzyme 2 (ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related lung cancer using computational analyses. Genomics 112(6):4912–4923. https://doi.org/10.1016/j.ygeno.2020.09.002

    Article  CAS  PubMed  Google Scholar 

  55. Tang Z, Kang B, Li C et al (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47(W1):W556–W560. https://doi.org/10.1093/nar/gkz430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chandrashekar DS, Bashel B, Balasubramanya SAH et al (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (United States). https://doi.org/10.1016/j.neo.2017.05.002

    Article  Google Scholar 

  57. Saha SK, Kader MA, Samad KA et al (2020) Prognostic and clinico-pathological significance of BIN1 in breast cancer. Inf Med Unlocked 19:100327. https://doi.org/10.1016/j.imu.2020.100327

    Article  Google Scholar 

  58. Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia (New York, NY) 9:166. https://doi.org/10.1593/neo.07112

  59. Barman UD, Saha SK, Kader MA et al (2020) Clinicopathological and prognostic significance of GPC3 in human breast cancer and its 3D structure prediction. Netw Model Anal Heal Inf Bioinf 9:1–18

    Google Scholar 

  60. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

  61. Koster J, Volckmann R, Zwijnenburg D et al (2019) R2: genomics analysis and visualization platform. https://doi.org/10.1158/1538-7445.sabcs18-2490

  62. Mattingly CJ, Colby GT, Forrest JN, Boyer JL (2003) The comparative toxicogenomics database (CTD). Environ Health Perspect 111:793–795. https://doi.org/10.1289/ehp.6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq537

  64. Karim M, Samad A, Adhikari UK et al (2020) A multi-omics analysis of bone morphogenetic protein 5 (BMP5) mRNA expression and clinical prognostic outcomes in different cancers using bioinformatics approaches. Biomedicines 8(2):19. https://www.mdpi.com/2227-9059/8/2/19

  65. Coperchini F, Chiovato L, Croce L et al (2020) The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2020.05.003

  66. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Desquilles L, Cano L, Ghukasyan G et al (2022) Well-differentiated liver cancers reveal the potential link between ACE2 dysfunction and metabolic breakdown. Sci Rep 12:1859. https://doi.org/10.1038/s41598-021-03710-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Desert R, Rohart F, Canal F et al (2017) Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 66:1502–1518. https://doi.org/10.1002/hep.29254

    Article  CAS  PubMed  Google Scholar 

  69. Khan T, Ali M, Khan A et al (2020) Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 10:47. https://doi.org/10.3390/biom10010047

    Article  CAS  Google Scholar 

  70. Putra WK, Agustin F, Rochmatika L, Salma WO (2019) Potential of Indonesian medicinal plants as anti-cancer: in silico study. MJBMB 1:152–154. https://doi.org/10.1016/j.jep.2005.01.041

    Article  Google Scholar 

  71. Akhtar T, Sheikh N (2016) Chemopreventive prospective of dietary spices against hepatocellular carcinoma. Curr Sci 110:579–583. https://doi.org/10.18520/cs/v110/i4/579-583

  72. Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13:218–228. https://doi.org/10.2174/138920112798868791

    Article  CAS  PubMed  Google Scholar 

  73. Mann CD, Neal CP, Garcea G et al (2009) Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis. Eur J Cancer Prev 18(1):13–25. https://doi.org/10.1097/cej.0b013e3282f0c090

    Article  CAS  PubMed  Google Scholar 

  74. Gopalakrishnan A, Varuna PP, Gopinath D et al (2014) Ethnomedicine in cancer therapy: a review. W J Pharma Res 3:305–319

    CAS  Google Scholar 

  75. Platel K, Srinivasan K (1996) Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats. Int J Food Sci Nutr 47:55–59. https://doi.org/10.3109/09637489609028561

    Article  CAS  PubMed  Google Scholar 

  76. Fatehi M, Farifteh F, Fatehi-Hassanabad Z (2004) Antispasmodic and hypotensive effects of Ferula asafoetida gum extract. J Ethnopharmacol 91(2–3):321–324. https://doi.org/10.1016/j.jep.2004.01.002

    Article  PubMed  Google Scholar 

  77. Li Y, Martin RC (2011) Herbal medicine and hepatocellular carcinoma: applications and challenges. Evid Based Complement Alternat Med 2011:1–14. https://doi.org/10.1093/ecam/neq044

  78. Perng DS, Tsai YH, Cherng J et al (2016) Discovery of a novel anticancer agent with both anti-topoisomerase i and ii activities in hepatocellular carcinoma sK-hep-1 cells in vitro and in vivo: Cinnamomum verum component 2-methoxycinnamaldehyde. Drug Des Devel Ther 10:141. https://doi.org/10.2147/dddt.s93599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tavakkol AJ, Brook A, Mousavi SH (2008) Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol 46(11):3443–3447. https://doi.org/10.1016/j.fct.2008.08.018

    Article  CAS  Google Scholar 

  80. Srivastava R, Ahmed H, Dixit R (2010) Crocus sativus L.: a comprehensive review. Pharmacogn Rev 4(8):200–208. https://doi.org/10.4103/0973-7847.70919

  81. Aggarwal BB (2010) Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 30:173–199. https://doi.org/10.1146/annurev.nutr.012809.104755

  82. Boyd J, Babish J, Stoewsand G (1982) Modification by beet and cabbage diets of aflatoxin B1-induced rat plasma α-foetoprotein elevation, hepatic tumorigenesis, and mutagenicity of urine. Food Chem Toxicol 20(1):47–52. https://doi.org/10.1016/S0278-6915(82)80008-2

    Article  CAS  PubMed  Google Scholar 

  83. Godlewski C, Boyd J, Sherman W et al (1985) Hepatic glutathione S-transferase activity and aflatoxin B1-induced enzyme altered foci in rats fed fractions of brussels sprouts. Cancer Lett 28(2):151–157. https://doi.org/10.1016/0304-3835(85)90070-9

    Article  CAS  PubMed  Google Scholar 

  84. Sadek I, Abdel-Salam F, Al-Qattan K (1995) Chemopreventive effects of cabbage on 7, 12-dimethylbenz (a)-anthracene-induced hepato-carcinogenesis in toads (Bufo viridis). J Nutr Sci Vitaminol 41(1):163–168. https://doi.org/10.3177/jnsv.41.163

    Article  CAS  PubMed  Google Scholar 

  85. Kassie F, Uhl M, Rabot S et al (2003) Chemoprevention of 2-amino-3-methylimidazo [4, 5-f] quinoline (IQ)-induced colonic and hepatic preneoplastic lesions in the F344 rat by cruciferous vegetables administered simultaneously with the carcinogen. Carcinogenesis 24(2):255–261. https://doi.org/10.1093/carcin/24.2.255

    Article  CAS  PubMed  Google Scholar 

  86. Tanaka T, Iwata H, Niwa K et al (1988) Inhibitory effect of ellagic acid on N-2-fluorenylacetamide-induced liver carcinogenesis in male ACI/N rats. Cancer Sci 79(12):1297–1303. https://doi.org/10.1111/j.1349-7006.1988.tb01559.x

    Article  CAS  Google Scholar 

  87. Lagopoulos L, Sunahara GI, Würzner H et al (1991) The correlation of body growth with diethylnitrosamine-induced hepatocarcinogenesis in relation to serum insulin and somatomedin-C. Carcinogenesis 12(2):211–215. https://doi.org/10.1093/carcin/12.2.211

    Article  CAS  PubMed  Google Scholar 

  88. Kim SH, Lee CS (1992) The effect of caffeine on diethylnitrosamine initiated hepatic altered foci in a mid-term induction system. In Vivo 6(2):223–226

    CAS  PubMed  Google Scholar 

  89. Hosaka S, Kawa S, Aoki Y et al (2001) Hepatocarcinogenesis inhibition by caffeine in ACI rats treated with 2-acetylaminofluorene. Food Chem Toxicol 39(6):557–561. https://doi.org/10.1016/s0278-6915(00)00175-7

    Article  CAS  PubMed  Google Scholar 

  90. Li J, Chen X, Dong X et al (2006) Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J Gastroenterol Hepatol 21(12):1814–1820. https://doi.org/10.1111/j.1440-1746.2006.04366.x

    Article  CAS  PubMed  Google Scholar 

  91. Lea MA, Xiao Q, Sadhukhan AK et al (1993) Inhibitory effects of tea extracts and (−)-epigallocatechin gallate on DNA synthesis and proliferation of hepatoma and erythroleukemia cells. Cancer Lett 68(2–3):231–236. https://doi.org/10.1016/0304-3835(93)90151-x

    Article  CAS  PubMed  Google Scholar 

  92. Nishida N, Fukuda Y, Komeda T et al (1994) Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res 54(12):3107–3110

    CAS  PubMed  Google Scholar 

  93. Chen C, Yu R, Owuor ED, Kong ANT (2000) Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharmacal Res 23(6):605. https://doi.org/10.1007/bf02975249

    Article  CAS  Google Scholar 

  94. Takeda H, Tsuji M, Matsumiya T, Kubo M (2002) Identification of rosmarinic acid as a novel antidepressive substance in the leaves of Perilla frutescens Britton var. acuta Kudo (Perillae Herba). Nihon Shinkei Seishin Yakurigaku Zasshi 22(1):15–22

    Google Scholar 

  95. Wei H, Saladi R, Lu Y et al (2003) Isoflavone genistein: Photoprotection and clinical implications in dermatology. J Nutr 133:3811S-3819S. https://doi.org/10.1093/jn/133.11.3811s

    Article  CAS  PubMed  Google Scholar 

  96. Ovadje P, Ammar S, Guerrero JA et al (2016) Dandelion root extract affects colorectal cancer proliferation and survival through the activation of multiple death signalling pathways. Oncotarget 7(45):73080–73100. https://doi.org/10.18632/oncotarget.11485

  97. Jones NP, Schulze A (2012) Targeting cancer metabolism-aiming at a tumour’s sweet-spot. Drug Discov Today 17(5–6):232–241. https://doi.org/10.1016/j.drudis.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  98. Duarte J, Pérez-Palencia R, Vargas F et al (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133(1):117–124. https://doi.org/10.1038/sj.bjp.0704064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Galisteo M, García-Saura MF, Jiménez R et al (2004) Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259(1–2):91–99. https://doi.org/10.1023/b:mcbi.0000021360.89867.64

    Article  CAS  PubMed  Google Scholar 

  100. Kim KA, Yim JE (2015) Antioxidative activity of onion peel extract in obese women: a randomized, double-blind, placebo controlled study. J Cancer Prev 20(3):202–207. https://doi.org/10.15430/JCP.2015.20.3.202

  101. Jahfar M, Vijayan K, Azadi P (2003) Studies on a polysaccharide from the fruit rind of Punica granatum. Res J Chem Environ 7:43–50

    CAS  Google Scholar 

  102. Li Y, Guo C, Yang J et al (2006) Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. J Food Chem 96(2):254–260. https://doi.org/10.1016/j.foodchem.2005.02.033

  103. Mirdehghan SH, Rahemi M (2007) Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L.) fruit. Scientia Horticulturae 111(2):120–127. https://doi.org/10.1016/j.scienta.2006.10.001

  104. Nuncio-Jáuregui N, Calín-Sánchez Á, Vázquez-Araújo L et al (2015) Processing pomegranates for juice and impact on bioactive components. Beverages Food Sci Technol, 629–636. https://doi.org/10.1016/B978-0-12-404699-3.00076-7

  105. Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5. https://doi.org/10.1186/1475-2891-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wu CH, Ho YS, Tsai CY et al (2009) In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer 124(9):2210–2219. https://doi.org/10.1002/ijc.24189

    Article  CAS  PubMed  Google Scholar 

  107. Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19(2):151–162. https://doi.org/10.1089/ars.2012.4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen RJ, Kuo HC, Cheng LH et al (2018) Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int J Mol Sci 19(1):287. https://doi.org/10.3390/ijms19010287

  109. Qian YY, Liu ZS, Yan HJ et al (2018) Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed Pharmacother 101:852–859. https://doi.org/10.1016/j.biopha.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  110. Siemann E, Creasy L (1992) Concentration of the phytoalexin resveratrol in wine. Am J Enol Viticult 43:49–52

    Article  CAS  Google Scholar 

  111. Brown L, Kroon PA, Das DK et al (2009) The biological responses to resveratrol and other polyphenols from alcoholic beverages. Alcohol Clin Exp Res 33(9):1513–1523. https://doi.org/10.1111/j.1530-0277.2009.00989.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Singh CK, George J, Ahmad N (2013) Resveratrol-based combinatorial strategies for cancer management. Ann N Y Acad Sci 1290(1):113–121. https://doi.org/10.1111/nyas.12160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu CP, Ohnuma S, Ambudkar SV (2011) Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 12(4):609–620. https://doi.org/10.2174/138920111795163887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sak K (2012) Chemotherapy and dietary phytochemical agents. Chemotherapy Res Pract 2012:1–11. https://doi.org/10.1155/2012/282570

  115. Hassan B (2019) Plants and Cancer treatment prevention. https://doi.org/10.5772/intechopen.90568

  116. Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T et al (2021) Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma. Cancers (Basel) 13(22):5753. https://doi.org/10.3390/cancers13225753

  117. Mondal A, Guria T, Maity TK Bishayee A (2016) A novel tetraenoic fatty acid isolated from Amaranthus spinosus inhibits proliferation and induces apoptosis of human liver cancer cells. Int J Mol Sci 17(10):1604. https://doi.org/10.3390/ijms17101604

  118. Kim DK, Baek JH, Kang CM et al (2000) Apoptotic activity of ursolic acid may correlate with the inhibition of initiation of DNA replication. Int J Cancer 87(5):629–636

    Article  CAS  PubMed  Google Scholar 

  119. Shyu MH, Kao TC, Yen GC (2010) Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem 58(10):6110–6118. https://doi.org/10.1021/jf100574j

    Article  CAS  PubMed  Google Scholar 

  120. Kim GH, Kan SY, Kang H et al (2019) Ursolic acid suppresses cholesterol biosynthesis and exerts anti-cancer effects in hepatocellular carcinoma cells. Int J Mol Sci 20(19):4767. https://doi.org/10.3390/ijms20194767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ko H, Huh G, Jung SH et al (2020) Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma. Food Chem Toxicol 142:111475

    Article  CAS  PubMed  Google Scholar 

  122. Durmaz I, Guven EB, Ersahin T et al (2016) Liver cancer cells are sensitive to Lanatoside C induced cell death independent of their PTEN status. Phytomedicine 23(1):42–51. https://doi.org/10.1016/j.phymed.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  123. Dasgupta A, Dey D, Ghosh D et al (2019) Astrakurkurone, a sesquiterpenoid from wild edible mushroom, targets liver cancer cells by modulating Bcl-2 family proteins. IUBMB Life 71(7):992–1002. https://doi.org/10.1002/iub.2047

    Article  CAS  PubMed  Google Scholar 

  124. Weifeng T, Feng S, Xiangji L et al (2011) Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 18(2–3):158–162. https://doi.org/10.1016/j.phymed.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  125. Jung KH, Rumman M, Yan H et al (2018) An ethyl acetate fraction of Artemisia capillaris (ACE-63) induced apoptosis and anti-angiogenesis via inhibition of PI3K/AKT signaling in hepatocellular carcinoma. Phytother Res 32(10):2034–2046. https://doi.org/10.1002/ptr.6135

    Article  CAS  PubMed  Google Scholar 

  126. Dai Q, Yin Q, Wei L et al (2016) Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells. Mol Carcinog 55(8):1275–1289. https://doi.org/10.1002/mc.22369

    Article  CAS  PubMed  Google Scholar 

  127. Wei L, Dai Y, Zhou Y et al (2017) Oroxylin A activates PKM1/HNF4 alpha to induce hepatoma differentiation and block cancer progression. Cell Death Dis 8(7):e2944. https://doi.org/10.1038/cddis.2017.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peng W, Hu C, Shu Z et al (2015) Antitumor activity of tatariside F isolated from roots of Fagopyrum tataricum (L.) Gaertn against H22 hepatocellular carcinoma via up-regulation of p53. Phytomedicine 22(7–8):730–736. https://doi.org/10.1016/j.phymed.2015.05.003

  129. Mohamed GA, Al-Abd AM, El-Halawany AM et al (2017) New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol 198:302–312. https://doi.org/10.1016/j.jep.2017.01.030

    Article  CAS  PubMed  Google Scholar 

  130. Yoon JS, Kim HM, Yadunandam AK et al (2013) Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 20(11):1013–1022. https://doi.org/10.1016/j.phymed.2013.03.024

    Article  CAS  PubMed  Google Scholar 

  131. Li M, Zhang M, Zhang ZL et al (2017) Induction of apoptosis by berberine in hepatocellular carcinoma HepG2 Cells via downregulation of NF-κB. Oncol Res 25(2):233–239. https://doi.org/10.3727/096504016x14742891049073

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kato R, Matsui-Yuasa I, Azuma H, Kojima-Yuasa A (2014) The synergistic effect of 10-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells. Chem Biol Interact 212:1–10

    Article  CAS  PubMed  Google Scholar 

  133. Jiang F, Mu J, Wang X et al (2014) The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells. PLoS ONE 9(5):e96698. https://doi.org/10.1371/journal.pone.0096698

  134. Hsieh MJ, Lin CW, Yang SF et al (2014) Glabridin inhibits migration and invasion by transcriptional inhibition of matrix metalloproteinase 9 through modulation of NF-κB and AP-1 activity in human liver cancer cells. Br J Pharmacol 171(12):3037–3050. https://doi.org/10.1111/bph.12626

  135. Rawat D, Shrivastava S, Naik RA et al (2018) An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer Agents Med Chem 18(13):1838–1859. https://doi.org/10.2174/1871520618666180604085612

    Article  CAS  PubMed  Google Scholar 

  136. Park JY, Ko JA, Kim DW et al (2016) Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 31(1):23–30. https://doi.org/10.3109/14756366.2014.1003215

    Article  CAS  PubMed  Google Scholar 

  137. Poofery J, Khaw-on P, Subhawa S et al (2020) Potential of Thai herbal extracts on lung cancer treatment by inducing apoptosis and synergizing chemotherapy. Molecules 25(1):231. https://doi.org/10.3390/molecules25010231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim DW, Seo KH, Curtis-Long MJ et al (2014) Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 29(1):59–63. https://doi.org/10.3109/14756366.2012.753591

    Article  CAS  PubMed  Google Scholar 

  139. Yeh CF, Wang KC, Chiang LC et al (2013) Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 148(2):466–473. https://doi.org/10.1016/j.jep.2013.04.040

  140. Tahir AH, Javed MM, Hussain Z (2020) Nutraceuticals and herbal extracts: a ray of hope for COVID-19 and related infections. Int. J. Funct. Nutr. 1(2):6. https://doi.org/10.3892/ijfn.2020.6

    Article  Google Scholar 

  141. Park JY, Jeong HJ, Kim JH et al (2012) Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Bioorg Med Chem 5(11):2036–2042. https://doi.org/10.1248/bpb.b12-00623

    Article  Google Scholar 

  142. Boukhatem MN, Setzer WN (2020) Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plants 9(6):800. https://doi.org/10.3390/plants9060800

  143. Ho TY, Wu SL, Chen JC et al (2007) Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir Res 74(2):92–101. https://doi.org/10.1016/j.antiviral.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  144. Miki K, Nagai T, Suzuki K et al (2007) Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 17(3):772–775. https://doi.org/10.1016/j.bmcl.2006.10.075

    Article  CAS  PubMed  Google Scholar 

  145. Boozari M, Hosseinzadeh H (2020) Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res 35(2):864–876. https://doi.org/10.1002/ptr.6873

    Article  CAS  PubMed  Google Scholar 

  146. Cho JK, Curtis-Long MJ, Lee KH et al (2013) Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 21(11):3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Park JY, Kim JH, Kim YM et al (2012) Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 20(19):5928–5935. https://doi.org/10.1016/j.bmc.2012.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chaotham C, Pongrakhananon V, Sritularak B, Chanvorachote P (2014) A Bibenzyl from Dendrobium ellipsophyllum inhibits epithelial-to-mesenchymal transition and sensitizes lung cancer cells to anoikis. Anticancer Res 34(4):1931–1938

    CAS  PubMed  Google Scholar 

  149. Pinkhien T, Petpiroon N, Sritularak B, Chanvorachote P (2017) Batatasin III inhibits migration of human lung cancer cells by suppressing epithelial to mesenchymal transition and FAK-AKT signals. Anticancer Res 37(11):6281–6289. https://doi.org/10.21873/anticanres.12079

  150. Hlosrichok A, Sumkhemthong S, Sritularak B et al (2018) A bibenzyl from Dendrobium ellipsophyllum induces apoptosis in human lung cancer cells. J Nat Med 72(3):615–625. https://doi.org/10.1007/s11418-018-1186-x

    Article  CAS  PubMed  Google Scholar 

  151. Zhu GF, Guo HJ, Huang Y et al (2015) Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp Ther Med 10(6):2259–2266. https://doi.org/10.3892/etm.2015.2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Park JY, Kim JH, Kwon JM et al (2013) Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem 21(13):3730. https://doi.org/10.1016/j.bmc.2013.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kuo MY, Liao MF, Chen FL et al (2011) Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFκB pathways in mice with endotoxin-induced acute lung injury. Food Chem Toxicol 49(10):2660–2666. https://doi.org/10.1016/j.fct.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  154. Aguilar JL, Rojas P, Marcelo A et al (2002) Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J Ethnopharmacol 81(2):271–276. https://doi.org/10.1016/s0378-8741(02)00093-4

    Article  PubMed  Google Scholar 

  155. Song YH, Kim DW, Curtis-Long MJ et al (2014) Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol Pharm Bull 37(6):1021–1028. https://doi.org/10.1248/bpb.b14-00026

    Article  CAS  PubMed  Google Scholar 

  156. Runfeng L, Yunlong H, Jicheng H et al (2020) Lianhuaqingwen exerts anti-viral and anti-inflflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res 156:104761. https://doi.org/10.1016/j.phrs.2020.104761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jo S, Kim S, Shin DH, Kim MS (2020) Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 35(1):145–151. https://doi.org/10.1080/14756366.2019.1690480

  158. Mortaz E, Adcock IM, Folkerts G et al (2013) Garssen, probiotics in the management of lung diseases. Mediat Inflamm 2013:751068. https://doi.org/10.1155/2013/751068

  159. Gengaihi S, Baker DHA (2017) Grape seeds extract as brain food: a review. Int J Pharm Clin Res 9(1):77–85. https://doi.org/10.25258/ijpcr.v9i1.8270

  160. Yu MS, Lee J, Lee JM et al (2012) Identifification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 22(12):4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ryu YB, Park SJ, Kim YM et al (2010) SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 20(6):1873–1876. https://doi.org/10.1016/j.bmcl.2010.01.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Weng JR, Lin CS, Lai HC et al (2019) Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res 273:197767. https://doi.org/10.1016/j.virusres.2019.197767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Benarba B, Pandiella A (2020) Medicinal plants as sources of active molecules against COVID-19. Front Pharmacol 11:1189. https://doi.org/10.3389/fphar.2020.01189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rahman MM, Bibi S, Rahaman MS et al (2022) Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 150:113041. https://doi.org/10.1016/j.biopha.2022.113041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Vellore Institute of Technology, Vellore for providing facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, H., Chandrasekaran, N., Mukherjee, A., Thomas, J. (2023). Bioinformatics Study on Renin Angiotensin in Lung, and Liver Cancer Using Plant-Based Extracts. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_9

Download citation

Publish with us

Policies and ethics