Skip to main content

Distributed Visual Systems in Pteriomorphian Bivalves

  • Chapter
  • First Online:
Distributed Vision

Abstract

Pteriomorphia includes bivalves such as scallops, file clams, oysters, mussels, and ark clams. Like other bivalves, pteriomorphians do not have heads and lack complex anterior sensory organs. Instead, they have sensory organs, such as eyes and tentacles, distributed along their mantles at the edges of their valves. At least five separate lineages of pteriomorphians have evolved distributed visual systems that include dozens to hundreds of mantle eyes. Pteriomorphia is a valuable group in which to study distributed visual systems because species within the group show considerable variation in their eye morphology, ecology, locomotory abilities, and neuroanatomy. In the following chapter, we will introduce pteriomorphian bivalves, describe the structure and function of their mantle eyes, present what is known about their visual ecology, and detail their neuroanatomy. We will conclude by asking questions about how and why distributed visual systems have evolved in pteriomorphian bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ache BW, Young JM (2005) Olfaction: Diverse Species, Conserved Principles. Neuron 48(3):417–430

    Article  CAS  PubMed  Google Scholar 

  • Adal MN, Morton B (1973) The fine structure of the pallial eyes of Laternula truncata (Bivalvia: Anomalodesmata: Pandoracea). J Zool 170(4):533–556

    Article  Google Scholar 

  • Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11(1):1–9

    Article  Google Scholar 

  • Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nature Rev Genet 9(11):868–882

    Article  CAS  PubMed  Google Scholar 

  • Audino J, Marian JEAR (2018) Comparative and functional anatomy of the mantle margin in ark clams and their relatives (Bivalvia: Arcoidea) supports association between morphology and life habits. J Zool 305(3):149–162

    Article  Google Scholar 

  • Audino JA, Marian JEAR, Wanninger A, Lopes SGBC (2015a) Anatomy of the pallial tentacular organs of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia: Pectinidae). Zool Anz 258:39–46

    Article  Google Scholar 

  • Audino JA, Marian JEAR, Wanninger A, Lopes SGBC (2015b) Development of the pallial eye in Nodipecten nodosus (Mollusca: Bivalvia): insights into early visual performance in scallops. Zoomorphology 134(3):403–415

    Article  Google Scholar 

  • Audino JA, Serb JM, Marian JEAR (2019) Ark clams and relatives (Bivalvia: Arcida) show convergent morphological evolution associated with lifestyle transitions in the marine benthos. Biol J Linn Soc 126(4):866–884

    Article  Google Scholar 

  • Audino JA, Serb JM, Marian JEAR (2020) Hard to get, easy to lose: Evolution of mantle photoreceptor organs in bivalves (Bivalvia, Pteriomorphia). Evolution 74(9):2105–2120

    Article  CAS  PubMed  Google Scholar 

  • Audino JA, Adams DC, Serb JM (2022) Variation in eye abundance among scallops reveals ontogenetic and evolutionary convergence associated with life habits. Evolution 76(7):1607–1618

    Google Scholar 

  • Barber VC, Evans EM, Land MF (1967) The fine structure of the eye of the mollusc Pecten maximus. Z Zellforsch 76(3):295–312

    Article  Google Scholar 

  • Barber VC, Land MF (1967) Eye of the cockle, Cardium edule: Anatomical and physiological investigations. Experientia 23(8):677–678

    Article  CAS  PubMed  Google Scholar 

  • Barber VC, Wright DE (1969) The fine structure of the eye and optic tentacle of the mollusc Cardium edule. J Ultrastruct Res 26(5-6):515–528

    Article  CAS  PubMed  Google Scholar 

  • Bell A, Mpitosos GJ (1968) Morphology of the eye of the flame fringe clam, Lima scabra. Biol Bull 135(2):414–415

    Google Scholar 

  • Bieler R, Mikkelsen PM, Collins TM, Glover EA, González VL, Graf DL, Harper EM, Healy J, Kawauchi GY, Sharma PP (2014) Investigating the Bivalve Tree of Life–an exemplar-based approach combining molecular and novel morphological characters. Invertebr Syst 28(1):32–115

    Article  Google Scholar 

  • Bieler R, Mikkelsen PM, Giribet G (2013) Bivalvia—A Discussion of Known Unknowns. Am Malacol Bull 31(1):123–133

    Article  Google Scholar 

  • Von BW, Moller-Racke I (1953) Uber den lichtsinn von Pecten. Pubbl Staz Zool Napoli 24:217–245

    Google Scholar 

  • Butcher EO (1930) The formation, regeneration, and transplantation of eyes in Pecten (Gibbus borealis). Biol Bull 59(2):154–164

    Article  Google Scholar 

  • Carosa E, Kozmik Z, Rall JE, Piatigorsky J (2002) Structure and expression of the scallop Ω-crystallin gene: evidence for convergent evolution of promoter sequences. J Biol Chem 277(1):656–664

    Article  CAS  PubMed  Google Scholar 

  • Chappell DR, Horan TM, Speiser DI (2021) Panoramic spatial vision in the bay scallop Argopecten irradians. Proc R Soc Lond B Biol Sci 288(1962):20211730

    Google Scholar 

  • Cheng J, Davison I, DeMont M (1996) Dynamics and energetics of scallop locomotion. J Exp Biol 199(9):1931–1946

    Article  CAS  PubMed  Google Scholar 

  • Combosch DJ, Collins TM, Glover EA, Graf DL, Harper EM, Healy JM, Kawauchi GY, Lemer S, McIntyre E, Strong EE, Taylor JD (2017) A family-level tree of life for bivalves based on a Sanger-sequencing approach. Mol Phylogenetics Evol 107:191–208

    Article  Google Scholar 

  • Combosch DJ, Giribet G (2016) Clarifying phylogenetic relationships and the evolutionary history of the bivalve order Arcida (Mollusca: Bivalvia: Pteriomorphia). Mol Phylogenetics Evol 94:298–312

    Article  Google Scholar 

  • Cope JC (1997) The early phylogeny of the class Bivalvia. Palaeontology 40:713–746

    Google Scholar 

  • Cornwall MC, Gorman ALF (1979) Contribution of calcium and potassium permeability changes to the off response of scallop hyperpolarizing photoreceptors. J Physiol 291(1):207–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwall MC, Gorman ALF (1983) The cation selectivity and voltage dependence of the light-activated potassium conductance in scallop distal photoreceptor. J Physiol 340(1):287–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croll RP, Too CK, Pani AK, Nason J (1995) Distribution of serotonin in the sea scallop Placopecten magellanicus. Invertebr Reprod Dev 28(2):125–135

    Article  CAS  Google Scholar 

  • Cronly-Dillon JR (1966) Spectral sensitivity of the scallop Pecten maximus. Science 151(3708):345–346

    Article  CAS  PubMed  Google Scholar 

  • Dakin WJ (1910a) The eye of Pecten. Q J Microsc Sci 55:49–112

    Google Scholar 

  • Dakin WJ (1910b) The visceral ganglion of Pecten, with some notes on the physiology of the nervous system, and an inquiry into the innervation of the osphradium in the Lamellibranchiata. Mitt Zool Stn Neapel 20:1–40

    Google Scholar 

  • Dakin WJ (1928) The eyes of Pecten, Spondylus, Amussium and allied Lamellibranchs, with a short discussion on their evolution. Proc R Soc Lond B Biol Sci 103(725):355–365

    Article  Google Scholar 

  • Distel DL (2000) Phylogenetic relationships among Mytilidae (Bivalvia): 18S rRNA data suggest convergence in mytilid body plans. Mol Phylogenetics Evol 15:25–33

    Article  CAS  Google Scholar 

  • Donovan DA, Elias JP, Baldwin J (2004) Swimming behavior and morphometry of the file shell Limaria fragilis. Mar Freshwater Behav Physiol 37(1):7–16

    Article  Google Scholar 

  • Dougherty LF, Dubielzig RR, Schobert CS, Teixeira LB, Li J (2017) Do you see what I see? Optical morphology and visual capability of ‘disco’clams (Ctenoides ales). Biol Open 6(5):648–653

    PubMed  PubMed Central  Google Scholar 

  • Dougherty LF, Johnsen S, Caldwell RL, Marshall NJ (2014) A dynamic broadband reflector built from microscopic silica spheres in the ‘disco’ clam Ctenoides ales. J R Soc Interface 11(98):20140407

    Article  PubMed  PubMed Central  Google Scholar 

  • Dougherty LF, Niebergall AK, Broeckling CD, Schauer KL, Li J (2019) Brightly coloured tissues in limid bivalves chemically deter predators. R Soc Open Sci 6(10):191298

    Article  PubMed  PubMed Central  Google Scholar 

  • Drew GA (1906) The habits, anatomy, and embryology of the giant scallop (Pecten tenuicostatus, Mighels). Univ Maine Stud 6:1–71

    Google Scholar 

  • Duvernoy GL (1853) Mémoires sur le système nerveux des mollusques acéphales. Mémoires de l’Académie des sciences de l’Institut de France 24:1–210

    Google Scholar 

  • Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20(3):R114–R124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fankboner P (1981) Siphonal eyes of giant clams (Bivalvia: Tridacnidae) and their relationship to adjacent zooxanthellae. Veliger 23(3):245–249

    Google Scholar 

  • Galtsoff PS (1964) The American oyster Crassostrea virginica Gmelin. US Fish Wildl Serv Fish Bull 64:1–480

    Google Scholar 

  • Gilmour THJ (1967) The defensive adaptations of Lima hians (Mollusca, Bivalvia). J Mar Biol Assoc UK 47(1):209–221

    Article  Google Scholar 

  • Gomez MP, Nasi E (1994) The light-sensitive conductance of hyperpolarizing invertebrate photoreceptors: a patch-clamp study. J Gen Physiol 103(6):939–956

    Article  CAS  PubMed  Google Scholar 

  • Gomez MP, Nasi E (1995) Activation of light-dependent K+ channels in ciliary invertebrate photoreceptors involves cGMP but not the IP3/Ca2+ cascade. Neuron 15(3):607–618

    Article  Google Scholar 

  • Gomez MP, Nasi E (1996) Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations. J Gen Physiol 107(6):715–730

    Article  CAS  PubMed  Google Scholar 

  • Gomez MP, Nasi E (2000) Light transduction in invertebrate hyperpolarizing photoreceptors: possible involvement of a Go-regulated guanylate cyclase. J Neurosci 20(14):5254–5263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González VL, Andrade SC, Bieler R, Collins TM, Dunn CW, Mikkelsen PM, Taylor JD, Giribet G (2015) A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proc R Soc Lond B Biol Sci 282(1801):20142332

    Google Scholar 

  • Gorman ALF, McReynolds JS (1978) Ionic effects on the membrane potential of hyperpolarizing photoreceptor in scallop retina. J Physiol 275(1):345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutsell JS (1930) Natural history of the bay scallop (Pecten irradians). Bull US Bur Fish 46:569–632

    Google Scholar 

  • Hall-Spencer J, Moore P (2000) Limaria hians (Mollusca: Limacea): a neglected reef-forming keystone species. Aquat Conserv 10(4):267–277

    Article  Google Scholar 

  • Hamilton PV, Koch KM (1996) Orientation toward natural and artificial grassbeds by swimming bay scallops, Argopecten irradians (Lamarck, 1819). J Exp Mar Biol Ecol 199(1):79–88

    Article  Google Scholar 

  • Harris OK, Kingston AC, Wolfe CS, Ghoshroy S, Johnsen S, Speiser DI (2019) Core–shell nanospheres behind the blue eyes of the bay scallop Argopecten irradians. J R Soc Interface 16(159):20190383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartline HK (1938) The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J Cell Comp Physiol 11(3):465–478

    Article  Google Scholar 

  • Heath H (1941) The anatomy of the pelecypod family Arcidae. Am Phil Soc Trans 31(5):287–319

    Article  Google Scholar 

  • Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VI. Die Augen einiger Mollusken. Z wiss Zool 68:379–477

    Google Scholar 

  • Horwitz J, Ding L, Vasiliou V, Cantore M, Piatigorsky J (2006) Scallop lens Ω-crystallin (ALDH1A9): A novel tetrameric aldehyde dehydrogenase. Biochem Biophys Res Commun 348(4):1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Kanmizutaru T, Anraku K, Toyoda S (2005) Light perception capability of pallial eyes in Japanese moon scallop Amusium japonicum as determined by electroretinogram. Nippon Suisan Gakkaishi 71(6):928–934

    Article  Google Scholar 

  • Kennedy D (1960) Neural photoreception in a lamellibranch mollusc. J Gen Physiol 44(2):277–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingston ACN, Chappell DR, Miller HV, Lee SJ, Speiser DI (2017) Expression of G proteins in the eyes and parietovisceral ganglion of the bay scallop Argopecten irradians. Biol Bull 233(1):83–95

    Article  CAS  PubMed  Google Scholar 

  • Kingston ACN, Cronin TW (2016) Diverse distributions of extraocular opsins in crustaceans, cephalopods, and fish. Integr Comp Biol 56(5):820–833

    Article  CAS  PubMed  Google Scholar 

  • Kojima D, Terakita A, Ishikawa T, Tsukahara Y, Maeda A, Shichida Y (1997) A novel Go-mediated phototransduction cascade in scallop visual cells. J Biol Chem 272(37):22979–22982

    Article  CAS  PubMed  Google Scholar 

  • Krohn A (1840) Ãœber augenähnliche Organe bei Pecten und Spondylus. Arch Anat Physiol Wiss Med 7:371–386

    Google Scholar 

  • Land MF (1965) Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J Physiol 179(1):138–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land MF (1966a) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J Exp Biol 45(3):433–447

    Article  Google Scholar 

  • Land MF (1966b) Activity in the optic nerve of Pecten Maximus in response to changes in light intensity, and to pattern and movement in the optical environment. J Exp Biol 45(1):83–99

    Article  CAS  PubMed  Google Scholar 

  • Land MF (1968) Functional aspects of the optical and retinal organization of the mollusc eye. Symp Zool Soc Lond 23:75–96

    Google Scholar 

  • Land MF (2000) Eyes with mirror optics. J Opt A: Pure Appl Opt 2(6):R44–R50

    Article  Google Scholar 

  • Land MF (2003) The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima). Proc R Soc Lond B Biol Sci 270(1511):185–188

    Article  Google Scholar 

  • Lemer S, González VL, Bieler R, Giribet G (2016) Cementing mussels to oysters in the pteriomorphian tree: a phylogenomic approach. Proc R Soc Lond B Biol Sci 283(1833):20160857

    Google Scholar 

  • Malkowsky Y, Jochum A (2015) Three-dimensional reconstructions of pallial eyes in Pectinidae (Mollusca: Bivalvia). Acta Zool 96(2):167–173

    Article  Google Scholar 

  • McReynolds J (1976) Hyperpolarizing photoreceptors in invertebrates. In: Neural principles in vision, Springer, pp 394–409

    Google Scholar 

  • McReynolds JS, Gorman ALF (1970a) Membrane conductances and spectral sensitivities of Pecten photoreceptors. J Gen Physiol 56(3):392–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McReynolds JS, Gorman ALF (1970b) Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J Gen Physiol 56(3):376–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen PM, Bieler R (2003) Systematic revision of the western Atlantic file clams, Lima and Ctenoides (Bivalvia: Limoida: Limidae). Invertebr Syst 17(5):667–710

    Article  Google Scholar 

  • Miller HV, Kingston ACN, Gagnon YL, Speiser DI (2019) The mirror-based eyes of scallops demonstrate a light-evoked pupillary response. Curr Biol 29(9):R313–R314

    Article  CAS  PubMed  Google Scholar 

  • Miller WH (1958) Derivatives of Cilia in the Distal Sense Cells of the Retina of Pecten. J Cell Biol 4(2):227–228

    Article  CAS  Google Scholar 

  • Moran D, Softley R, Warrant EJ (2015) The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv 1(8):e1500363

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton B (1979) A comparison of lip structure and function correlated with other aspects of the functional morphology of Lima lima, Limaria (Platilimaria) fragilis, and Limaria (Platilimaria) hongkongensis sp. nov. (Bivalvia: Limacea). Can J Zool 57(4):728–742

    Article  Google Scholar 

  • Morton B (1987) The pallial photophores of Barbatia virescens (Bivalvia: Arcacea). J Molluscan Stud 53(2):241–243

    Article  Google Scholar 

  • Morton B (2000) The pallial eyes of Ctenoides floridanus (Bivalvia: Limoidea). J Molluscan Stud 66(4):449–455

    Article  Google Scholar 

  • Morton B (2001) The evolution of eyes in the Bivalvia. Oceanogr Mar Biol 39:165–205

    Google Scholar 

  • Morton B (2008) The evolution of eyes in the Bivalvia: New insights. Am Malacol Bull 26:35–45

    Article  Google Scholar 

  • Morton B, Peharda M (2008) The biology and functional morphology of Arca noae (Bivalvia: Arcidae) from the Adriatic Sea, Croatia, with a discussion on the evolution of the bivalve mantle margin. Acta Zool 89(1):19–28

    Article  Google Scholar 

  • Morton B, Puljas S (2016) The ectopic compound ommatidium-like pallial eyes of three species of Mediterranean (Adriatic Sea) Glycymeris (Bivalvia: Arcoida). Decreasing visual acuity with increasing depth? Acta Zool 97(4):464–474

    Article  Google Scholar 

  • Mpitosos G (1973) Physiology of vision in the mollusk Lima scabra. J Neurophysiol 36(2):371–383

    Article  CAS  PubMed  Google Scholar 

  • Nasi E (1991) Electrophysiological properties of isolated photoreceptors from the eye of Lima scabra. J Gen Physiol 97(1):17–34

    Article  CAS  PubMed  Google Scholar 

  • Nilsson D-E (1994) Eyes as optical alarm systems in fan worms and ark clams. Philos Trans R Soc Biol Lond 346(1316):195–212

    Article  Google Scholar 

  • Nilsson D-E (2013) Eye evolution and its functional basis. Vis Neurosci 30(1-2):5–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson D-E, Arendt D (2008) Eye evolution: the blurry beginning. Curr Biol 18(23):R1096–R1098

    Article  CAS  PubMed  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(11):1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Pairett AN, Serb JM (2013) De novo assembly and characterization of two transcriptomes reveal multiple light-mediated functions in the scallop eye (Bivalvia: Pectinidae). PLOS One 8(7):e69852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer BA, Taylor GJ, Brumfeld V, Gur D, Shemesh M, Elad N, Osherov A, Oron D, Weiner S, Addadi L (2017) The image-forming mirror in the eye of the scallop. Science 358(6367):1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Patten W (1886) Eyes of molluscs and arthropods. Mitt Zool Stn Neapel 6:542–756

    Google Scholar 

  • Pelseneer P (1911) Les lamellibranchs de l’expedition du Siboga, partie anatomique. Siboga Expedition Monograph 53:1–126

    Google Scholar 

  • Petie R, Hall MR, Hyldahl M, Garm A (2016) Visual orientation by the crown-of-thorns starfish (Acanthaster planci). Coral Reefs 35(4):1139–1150

    Article  Google Scholar 

  • Piatigorsky J (2008) Evolution of mollusc lens crystallins: Glutathione S-transferase/S-crystallins and aldehyde dehydrogenase/Ω-crystallins. Am Malacol Bull 26:73–81

    Article  Google Scholar 

  • Piatigorsky J, Kozmik Z, Horwitz J, Ding L, Carosa E, Robison WG Jr, Steinbach PJ, Tamm ER (2000) Ω-Crystallin of the scallop lens: a dimeric aldehyde dehydrogenase class 1/2 enzyme-crystallin. J Biol Chem 275(52):41064–41073

    Article  CAS  PubMed  Google Scholar 

  • Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLOS One 2(10):e1054

    Article  PubMed  PubMed Central  Google Scholar 

  • Porath-Krause AJ, Pairett AN, Faggionato D, Birla BS, Sankar K, Serb JM (2016) Structural differences and differential expression among rhabdomeric opsins reveal functional change after gene duplication in the bay scallop, Argopecten irradians (Pectinidae). BMC Evol Biol 16(1):1–15

    Article  Google Scholar 

  • Ramirez MD, Speiser DI, Pankey MS, Oakley TH (2011) Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Vis Neurosci 28(4):265–279

    Article  PubMed  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7(1):1–49

    Article  Google Scholar 

  • Salvini-Plawen LV (2008) Photoreception and the polyphyletic evolution of photoreceptors (with special reference to Mollusca). Am Malacol Bull 26:83–100

    Article  Google Scholar 

  • Serb JM, Porath-Krause AJ, Pairett AN (2013) Uncovering a gene duplication of the photoreceptive protein, opsin, in scallops (Bivalvia: Pectinidae). Integr Comp Biol 53(1):68–77

    Article  CAS  PubMed  Google Scholar 

  • Smedley GD, Audino JA, Grula C, Porath-Krause A, Pairett AN, Alejandrino A, Lacey L, Masters F, Duncan PF, Strong EE, Serb JM (2019) Molecular phylogeny of the Pectinoidea (Bivalvia) indicates Propeamussiidae to be a non-monophyletic family with one clade sister to the scallops (Pectinidae). Mol Phylogenetics Evol 137:293–299

    Article  Google Scholar 

  • Spagnolia T, Wilkens LA (1983) Neurobiology of the scallop. II. Structure of the parietovisceral ganglion lateral lobes in relation to afferent projections from the mantle eyes. Mar Behav Physiol 10(1):23–55

    Article  Google Scholar 

  • Speiser DI, Gagnon YL, Chhetri RK, Oldenburg AL, Johnsen S (2016) Examining the effects of chromatic aberration, object distance, and eye shape on image-formation in the mirror-based eyes of the bay scallop Argopecten irradians. Integr Comp Biol 56(5):796–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Speiser DI, Johnsen S (2008a) Comparative morphology of the concave mirror eyes of scallops (Pectinoidea). Am Malacol Bull 26:27–33

    Article  Google Scholar 

  • Speiser DI, Johnsen S (2008b) Scallops visually respond to the size and speed of virtual particles. J Exp Biol 211(13):2066–2070

    Article  PubMed  Google Scholar 

  • Speiser DI, Loew ER, Johnsen S (2011) Spectral sensitivity of the concave mirror eyes of scallops: potential influences of habitat, self-screening and longitudinal chromatic aberration. J Exp Biol 214(3):422–431

    Article  PubMed  Google Scholar 

  • Speiser DI, Wilkens LA (2016) Neurobiology and behaviour of the scallop. In: Elsevier S (ed) Scallops: Biology, Ecology, Aquaculture, and Fisheries, SE Shumway and GJ Parsons. Diego, CA, pp 219–251

    Chapter  Google Scholar 

  • Stanley SM (1972) Functional morphology and evolution of byssally attached bivalve mollusks. J Paleontol 46:165–212

    Google Scholar 

  • Stanley SM (1975) Adaptive Themes in the Evolution of the Bivalvia (Mollusca). Annu Rev Earth Planet Sci 3(1):361–385

    Article  Google Scholar 

  • Sumner-Rooney L, Sigwart JD, McAfee J, Smith L, Williams ST (2016) Repeated eye reduction events reveal multiple pathways to degeneration in a family of marine snails. Evolution 70(10):2268–2295

    Article  PubMed  Google Scholar 

  • Tëmkin I (2006) Morphological perspective on the classification and evolution of Recent Pterioidea (Mollusca: Bivalvia). Zool J Linn Soc 148(3):253–312

    Article  Google Scholar 

  • Tremblay I, Samson-Dô M, Guderley HE (2015) When behavior and mechanics meet: scallop swimming capacities and their hinge ligament. J Shellfish Res 34(2):203–212

    Article  Google Scholar 

  • Tsubaki R, Kameda Y, Kato M (2011) Pattern and process of diversification in an ecologically diverse epifaunal bivalve group Pterioidea (Pteriomorphia, Bivalvia). Mol Phylogenetics Evol 58:97–104

    Article  Google Scholar 

  • Wagner H-J, Douglas RH, Frank TM, Roberts NW, Partridge JC (2009) A novel vertebrate eye using both refractive and reflective optics. Curr Biol 19(2):108–114

    Article  CAS  PubMed  Google Scholar 

  • Waller TR (1980) Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithson Contrib Zool 313:1–58

    Article  Google Scholar 

  • Whoriskey K, Whoriskey S, Whoriskey FG (2014) Systematic differences in eye numbers between the left and right valves of the sea scallop Placopecten magellanicus: an evolutionary response for visualizing the water column? J Shellfish Res 33(2):337–341

    Article  Google Scholar 

  • Wiederhold ML, MacNichol EF, Bell AL (1973) Photoreceptor spike responses in the hardshell clam, Mercenaria mercenaria. J Gen Physiol 61(1):24–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkens LA (1981) Neurobiology of the scallop. I. Starfish-mediated escape behaviours. Proc R Soc Lond B Biol Sci 211(1184):341–372

    Article  Google Scholar 

  • Wilkens LA, Ache BW (1977) Visual responses in the central nervous system of the scallop Pecten ziczac. Experientia 33(10):1338–1340

    Article  Google Scholar 

  • Wilkens LA (1984) Ultraviolet sensitivity in hyperpolarizing photoreceptors of the giant clam Tridacna. Nature 309(5967):446–448

    Article  Google Scholar 

  • Wilkens LA (1986) The visual system of the giant clam Tridacna: behavioral adaptations. Biol Bull 170(3):393–408

    Article  Google Scholar 

  • Wilkens LA (2008) Primary inhibition by light: a unique property of bivalve photoreceptors. Am Malacol Bull 26:101–109

    Article  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57(1):479–504

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Speiser, D.I., Chappell, D.R., Audino, J.A., Kingston, A.C.N., Serb, J.M. (2023). Distributed Visual Systems in Pteriomorphian Bivalves. In: Buschbeck, E., Bok, M. (eds) Distributed Vision. Springer Series in Vision Research. Springer, Cham. https://doi.org/10.1007/978-3-031-23216-9_5

Download citation

Publish with us

Policies and ethics