
Chapter 7 
Foundation Models for Speech, Images, 
Videos, and Control 

Abstract Foundation Models are able to model not only tokens of natural language 
but also token elements of arbitrary sequences. For images, square image patches 
can be represented as tokens; for videos, we can define tubelets that span an image 
patch across multiple frames. Subsequently, the proven self-attention algorithms 
can be applied to these tokens. Most importantly, several modalities like text and 
images can be processed in the same sequence allowing, for instance, the generation 
of images from text and text descriptions from video. In addition, the models 
are scalable to very large networks and huge datasets. The following multimedia 
types are covered in the subsequent sections. Speech recognition and text-to-
speech models describe the translation of spoken language into text and vice versa. 
Image processing has the task to interpret images, describe them by captions, and 
generate new images according to textual descriptions. Video interpretation aims 
at recognizing action in videos and describing them through text. Furthermore, 
new videos can be created according to a textual description. Dynamical system 
trajectories characterize sequential decision problems, which can be simulated and 
controlled. DNA and protein sequences can be analyzed with Foundation Models to 
predict the structure and properties of the corresponding molecules. 

Keywords Speech recognition · Text-to-speech · Image captioning · 
Text-to-image · Video interpretation · Robot control · DNA 

Astonishing results of Foundation Models in natural language tasks have led the 
multimedia processing community to study their application to speech recogni-
tion and computer vision problems. Among the most important advantages of 
Foundation Models is that they can model long dependencies between elements 
of the input sequence and support parallel processing of the sequence in contrast 
to recurrent networks. Unlike convolutional networks, Foundation Models require 
minimal restrictions in the modeling of dependencies and are able to define maps 
between high-dimensional quantities. In addition, the simple design of Foundation 
Models allows simultaneous processing of multiple modalities (e.g., images, videos, 
text and speech) using similar processing blocks. Moreover, the models are scalable 
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to very large networks and huge datasets. These strengths of Foundation Models 
have led to comprehensive advances on a number of multimedia tasks. 

We will describe multimedia applications in five areas and we will review the 
currently best approaches, taking into account necessary resources, e.g. computation 
and memory effort. 

• Speech recognition and text-to-speech models (Sect. 7.1). 
• Image description by text and generating images from text (Sect. 7.2). 
• Video interpretation and video generation (Sect. 7.3). 
• Dynamical system trajectories describe sequential decision problems, which can 

be simulated and controlled (Sect. 7.4). 
• DNA and protein sequences can be analyzed with Foundation Models to predict 

the structure and properties of the corresponding molecules (Sect. 7.5). 

In addition, there are a number of applications, where several media types are 
processed simultaneously. There is a large list of more specialized media types, 
where multimodal PLMs have been used: tables [25], text layout [61], depth 
images [119], scene graphs [60], SQL [18], sign language [199], point cloud [197], 
symbolic knowledge graph [4], multimodal knowledge graph [201], abstract syntax 
tree [202], optical flow [50], etc. Processing these media types with Foundation 
Models is similar to the approaches described in the following sections. 

Due to the enormous number of different Foundation Models in the literature, we 
focus on representative models that have high performance at the time of writing. 
We outline the inner logic and main features of the methods, taking into account 
the resources required, e.g., computational and memory requirements. For standard 
PLMs, a link to descriptions in earlier chapters is provided. Xu et al. [183] compiled 
a survey on multimodal learning with transformers. Under the heading “Available 
Implementations” we list links to available code and pre-trained models for that task. 
Good sources for code are the websites https://paperswithcode.com/, the NLP index 
https://index.quantumstat.com/, and GitHub https://github.com/github. Processing 
these media types with PLMs is similar to the approaches described in the following 
sections. 

7.1 Speech Recognition and Generation 

Spoken language is the most efficient and natural type of communication between 
humans. Therefore, it is also a preferred type of interaction with computer systems. 
In the next sections we describe advanced models for automatic speech recognition 
and text-to-speech systems.
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7.1.1 Basics of Automatic Speech Recognition 

Automatic speech recognition (ASR) receives a speech input as an audio file and 
converts it into natural language text. Speech is strongly influenced by gender, social 
style, dialect, speaking style, and speed. Human speech and accents vary widely, and 
these differences in speech patterns are one of the major obstacles in developing an 
automatic speech recognition system. Another impediment to the development of 
an ASR is finding sufficient training collections to train the ASR model. Currently, 
training data is available for only a few of the approximately 7000 world languages. 

Since the advent of the computer in the 1950s, researchers started to develop 
speech recognition systems. In 1984, IBM introduced the first speech recognition 
system that could recognize about 5000 individual English words, and in 1993, 
a consumer ASR was offered. The predominant techniques were n-gram models, 
hidden Markov models, and neural networks [102]. After 2010, speech recognition 
based on RNNs was widely used for virtual assistants like Apple’s Siri, Amazon 
Alexa, and Google Assistant. Meanwhile, ASR is in use on most smartphones to 
enter text by voice even without an Internet connection. 

The most important evaluation measure of ASR systems is the word error rate 
.WER = S+D+I

N
measuring the deviation from a ground truth text. Here S is the 

number of word substitutions, D is the number of deletions, and I is the number of 
insertions in the output as compared to the ground truth with N words. 

Conventional ASR systems usually consist of independent parts, such as an 
acoustic model, a pronunciation model, and a language model. These parts are 
trained separately and then combined for inference. Usually, a pre-processing 
module is employed to reduce the signal-to-noise ratio in the audio recording. 
There are different filters and methods that can be applied to a sound signal to 
reduce the associated noise. In addition, the speaker may be recorded with several 
microphones, which can localize the speaker and drastically reduce background 
noise (beamforming) [24]. 

Subsequently, a feature extraction module has the task to generate features 
relevant for speech recognition, remove irrelevant information from the signal and 
reduce the input size. This often involves variants of Fourier transforms extracting 
the frequency of waveforms. Most commonly used feature extraction methods are 
Mel Frequency Cepstral Coefficients (MFCCs), discrete wavelet transform (DWT), 
and linear predictive coding (LPC) [101]. An example is shown in Fig. 7.1. 

The final module is a classifier receiving a vector of fixed length characterizing 
the signal in the given time slot. It estimates the probability of output words 
or phonemes for the next time slot. Early classifiers could only handle a single 
speaker. New models were developed to recognize the speech utterances of multiple 
speakers. An example is an ASR system yielding a 5.1% word error rate (WER) 
on the switchboard test set [181]. It consists of CNN models like ResNet and 
LACE and bidirectional LSTMs for modeling acoustics. A survey of prior systems 
is provided by Malik et al. [101]. A survey of more recent ASR systems is given by 
Papastratis [117], who discuss RNN, CNN and Transformer models.
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Fig. 7.1 Audio signal (top) with the frequency extracted by Fourier transform (middle) and the 
corresponding MFCCs (bottom). Image credits in Table A.3 

7.1.2 Transformer-Based Speech Recognition 

PLMs based on self-attention are a good choice for sequence modeling because they 
are able to capture interactions over long distances and require less computational 
effort. An overview is given in Table 7.1. However, PLMs are less capable of 
extracting fine-grained local feature patterns. Therefore, combinations of PLMs 
and CNNs are often used for ASR. The currently best LSTM-based ASR system 
ContextNet + NST [121] achieved an WER of 1.7% on LibriSpeech (clean). 

The Conformer [59] is a convolution-augmented Transformer. The Conformer 
integrates a convolutional module (Sect. 1.7) and a self-attention module (Sect. 2.3) 
as layers inside an encoder block. The convolution module contains a .1×1 pointwise 
convolution with an expansion factor of 2 projecting the number of channels with 
a Gated Linear Unit (GLU) activation layer, which allows the selection of features 
that are important for prediction. This is followed by a 1-D depthwise convolution, 
which applies a single convolutional filter for each input channel. Subsequently, 
there is a batch normalization and then a Swish [131] activation layer. 

The resulting model with 17 conformer blocks has up to 118M parameters and 
is trained on the LibriSpeech [116] dataset, which contains audiobooks spoken by
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Table 7.1 Main speech recognition techniques 

Model Mechanism Performance 

ContextNet + 
NST 

Currently best LSTM-based ASR system Librispeech WER 1.7% 

Conformer CNN + self-attention in transformer block, 
LSTM as language model 

Librispeech WER 1.9% 

wav2vec 2.0 Encode speech by CNN, discretize input to 
transformer, predict masked input. 
Fine-tune for speech recognition 

Librispeech WER 1.5% 

Combined SSL Conformer model + unsupervised wav2vec 
2.0, SpecAugment to generate noisy 
training data 

Librispeech WER 1.4% 

SpeechStew Similar to Combined SSL, trained on 7 
datasets, fine-tuned for speech recognition 

Librispeech WER 1.7% 
without Language model 

different speakers. It gets a vector of 80 filterbank features (Fig. 7.1) for each time 
slot of 10ms. The authors use SpecAugment [120] masking varying parts of the 
input signal to regularize the model. In addition, they train a 3-layer LSTM language 
model on the LibriSpeech corpus predicting the next word. The output of the 
language model is combined with the transformer output to emphasize words which 
are syntactically and semantically correct. Together with the LM the Conformer 
achieves a WER of 1.9% on LibriSpeech (clean). Without LM the WER was 2.1%. 

The S4 [58] model is able to process long input sequences of up to 16k elements 
(Sect. 3.2.2). It was applied to speech classification and was able to improve SOTA 
to 98.3% while processing raw speech signals. This is an enormous error reduction 
compared to the prior SOTA accuracy of 95.3%. It can be expected that this model 
will also lead to a considerable reduction of errors in other speech recognition tasks. 

7.1.3 Self-supervised Learning for Speech Recognition 

Self-supervised learning of speech has the potential to enhance speech recognition 
results with additional unlabeled data. It can be shown that self-training on a large 
set of unlabeled data leads to a strong improvement of models which achieve 
superior performance with relatively little fine-tuning data [184]. 

wav2vec 2.0 [10] performs unsupervised learning on speech data without 
transcripts. Similar to the BERT model for text, it learns to predict masked sound 
“tokens”. wav2vec encodes raw speech audio by a multi-layer CNN yielding a latent 
representation of speech for every time slot. The continuous latent representation 
is discretized to tokens . q t with a quantization module. This discretization is a 
discontinuous operation and hinders gradient backpropagation. 

One solution is to use an interpolation between the discrete result of sampling 
and the probability distribution. This can be achieved with the Gumbel-Softmax 
distribution [75]. To sample a discrete distribution with probabilities .p1, . . . , pk
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we can draw a random uniform variable .U ∼ uniform(0, 1) and compute . Z =
onehot(maxi p1 + · · · pi−1 ≤ U), where .i = 1, . . . , k is the discrete index, and 
.onehot(j) generates a vector of zeros with a one at position j . This sampling is not 
differentiable because of the max function. An alternative formula is 

.Z = onehot(argmaxi (Gi + log(pi))), (7.1) 

where .Gi ∼ Gumbel(0, 1) are i.i.d. samples drawn from the standard Gumbel 
distribution. This refactors the sampling of Z into a deterministic function of the 
parameters and some independent noise with a fixed distribution. Now a softmax 
function can be used as a differential approximation of .argmax: 

.yi = exp((Gi + logpi)/τ)
∑

j exp((Gj + logpj )/τ)
. (7.2) 

. τ is the temperature parameter that controls how closely the new samples approx-
imate the discrete vectors. This approximation is used during training and the 
discretized onehot vectors are computed during evaluation. wav2vec computes 
discrete vectors . q t by this approach. 

The . q t representations of 10 randomly sampled consecutive time steps are 
masked and have to be reconstructed by a Transformer similar to BERT. The self-
attention captures dependencies over the entire sequence of latent representations. 
This model was pre-trained on more than 1000h of labeled and unlabeled speech 
data. The pre-trained model is fine-tuned for speech recognition by adding a 
randomly initialized linear projection on top of the context network into C classes, 
which were the characters as well as a word boundary marker. To accommodate 
characters spanning several time slots the connectionist temporal classification 
(CTC) loss [57] was employed. The fine-tuning used 5h of audio data annotated 
with phonemes. On LibriSpeech the authors achieve a WER of 2.1%. A similar 
model with 300M parameters using 53k hours of unlabeled data for wave2vec and 
10m of labeled data for fine-tuning achieves a WER of 3.0% on LibriSpeech [184]. 
Training on all data decreases WER to 1.5%. 

Combined SSL [196] combines wave2vec unsupervised pre-training with the 
Conformer. The ASR network is a sequence ‘translator’ consisting of a Conformer 
encoder with up to 1B parameters and a multilayer LSTM decoder. In addition, 
the authors use Noisy Student Training (NST), where a teacher model is employed 
to generate transcripts for the unlabeled data via inference on audio. The teacher-
labeled data, after filtering and balancing, are then used to train the next generation 
ASR model. On LibriSpeech the model achieves SOTA with 1.4% WER. 

w2v-BERT [31] on the one hand performs contrastive learning discretizing 
continuous speech signals into a finite set of discriminative speech tokens. On the 
other hand, the model learns contextualized speech representations by solving a 
masked prediction task with the discretized tokens as input. During pre-training both 
tasks are simultaneously optimized in an end-to-end fashion. During fine-tuning the 
output of the pre-trained w2v-BERT model with 1B parameters is aggregated by a
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LSTM decoder. On the Librispeech benchmark it has a similar WER of 1.4% as the 
leading system and on the Librispeech benchmark test-other the model achieves a 
SOTA of 2.5% WER. In addition, the model with 600M parameters was fine-tuned 
on a voice search task that allows users to use Google Search by speaking on a 
mobile phone or computer. It consists of voice snippets with an average duration of 
5.5sec. The model was able to decrease errors by about 30% to 6.2. SpeechStew 
[21] uses the Conformer 1B with wav2vec pre-training. It is pre-trained on 7 
available speech recognition datasets without any domain-dependent re-balancing or 
re-weighting. Without a language model it achieves a WER of 1.7% on LibriSpeech. 

TERA [98] is a self-supervised speech model using a multi-target auxiliary 
task to pre-train a transformer encoder on a large training set of unlabeled 
speech. The input can be any acoustic features, such as MFCC. The model learns 
by reconstructing acoustic frames from modified samples which were randomly 
changed with respect to three properties: Time alteration requires the reconstruction 
from corrupted blocks of time steps. Channel alteration has to restore the signal 
from missing blocks of frequency channels. Magnitude alteration involves the 
regeneration of altered feature magnitudes. By reconstructing these data changes, 
the model learns a better contextualized representation. The time alteration width is 
set to 85ms of speech, which is about the average phoneme duration. The largest 
model similar to BERT has 170M parameters. The model has strong results for 
phone classification, speaker recognition, and speech recognition, e.g. on the TIMIT 
benchmark with 14.5% phone error rate (PER). 

In a comprehensive analysis, Zhang et al. [195] evaluate the benefit of self-
supervised pre-training for ASR. They employ Conformer models with 600M to 
8B parameters pre-trained and self-trained on extremely large and diverse unlabeled 
datasets containing thousands to a million hours of audio (BigSSL). Using only 3% 
of the labeled data they obtain comparable results to the SOTA of the Voice Search 
benchmark. On eight ASR benchmarks they are able to match or improve SOTA 
after pre-training. On five non-ASR task such as language identification and emotion 
detection, they can improve SOTA. For large datasets, the gains from pre-training are 
smaller but still significant. 

Many applications benefit from understanding not only words but also other 
information, such as a person’s emotion during an utterance, whether the speaker 
is wearing a mask, or whether the speech is synthetic. Shor [156] presents a large-
scale, conformer-based architecture with more than 600M parameters that can be 
fine-tuned to detect these additional features and delivers SOTA performance. 

Available Implementations 

• Conformer: https://github.com/PaddlePaddle/PaddleSpeech 
• wav2vec: https://github.com/facebookresearch/fairseq sequence modeling 

toolkit for translation, summarization, language modeling and other text 
generation tasks. 

• Tera: https://github.com/s3prl/s3prl
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• Hugging Face speech recognition: https://huggingface.co/models?pipeline_tag= 
automatic-speech-recognition 

• TensorFlow SST: https://tfhub.dev/s?module-type=audio-stt 

7.1.4 Text-to-Speech 

Speech synthesis is about generating speech from another modality like text, lip 
movements, etc. A Text-to-Speech (TTS) system aims to convert natural language 
text into speech. Mean Opinion Score (MOS) is the most frequently used method to 
evaluate the quality of the generated speech. MOS is defined as the arithmetic mean 
over single ratings performed by human raters for a given stimulus in a subjective 
quality evaluation test. MOS has a range from 0 to 5, where real human speech is 
between 4.5 and 4.8. A comprehensive and up-to-date survey of TTS systems is 
provided by Tan et al. [163]. 

While earlier TTS systems simply concatenated prerecorded speech segments, 
modern systems perform a complete synthesis of speech. WaveNet [114] was  the  
first model that successfully modeled the raw waveform of the audio signal instead 
of the acoustic features. It is able to generate new speech-like waveforms at 16,000 
samples per second. WaveNet in its core is an autoregressive model consisting of 
dilated convolutions where each sample depends on the previous ones. In each layer 
the number of included time steps is doubled. WaveNet was able to increase the 
MOS-value from 3.86 to 4.21. Fast WaveNet was able to reduce the quadratic time 
complexity to linear complexity by caching previous calculations. 

Tacotron 2 is a neural network architecture for speech synthesis directly from 
text. It consists of a recurrent LSTM sequence-to-sequence feature prediction 
network with attention, which predicts a sequence of mel spectrogram frames from 
an input character sequence and a modified version of WaveNet, which generates 
time-domain waveform samples conditioned on the predicted mel spectrogram 
frames. Tacotron 2 achieved an impressive MOS of 4.53. 

As TTS performs sequence processing similar to NLP, it is only natural that 
PLMs are also used in this area. Transformer-based models aim to mitigate two 
problems of previous TTS methods such as Tacotron 2: their high computational 
cost for training and inference, and the difficulty of modeling long dependencies 
with LSTMs. 

Transformer TTS [94] adapts the original transformer encoder-decoder [168] 
to speech synthesis. The encoder receives phonemes as input, which are adapted 
by an encoder pre-net consisting of a CNN and a fully connected layer. The 
standard transformer encoder outputs contextual phoneme embeddings (Fig. 7.2). 
The decoder receives mel frames as input, which are converted by a decoder pre-net 
with two fully connected layers to generate appropriate embeddings. The standard 
decoder generates mel frames output embeddings. These are further processed by 
two different linear projections to predict the mel spectrogram and the stop token 
respectively. A 5-layer CNN produces a residual to refine the reconstruction of mel
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Fig. 7.2 Speech synthesis with the transformer TTS. The encoder as well as the decoder have 
6 layers with 8 attention heads and residual connections. The resulting mel spectrogram is 
transformed into the final audio output by a WaveNet vocoder [94]. Image credits in Table A.3 

spectrogram. A WaveNet vocoder generates the final audio output. Both the encoder 
and decoder of the Transformer consists of 6 layers with 8 heads. The model is 
about 4.25 times faster than Tacotron 2 and achieves a MOS of 4.39 close to human 
quality. 

FastSpeech 2 [138] tackles the problem that an input text can correspond to 
multiple possible speech sequences due to variations in speech, such as pitch, dura-
tion, sound volume and prosody. It encodes the input phonemes by a transformer 
encoder to generate embeddings. Then a variance adaptor adds different variance 
information such as duration, pitch and energy into the hidden sequence. Finally,
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the mel-spectrogram decoder converts the adapted hidden sequence into mel-
spectrogram sequence in parallel. Both the encoder as well as the mel-spectrogram 
decoder have layers containing transformer blocks and 1D-convolutions. The 
variance adaptor predicts not only the duration, but also pitch and energy, using 
layers with 1D convolutions, feedforward layers, and layer normalization with 
dropout for regularization. 

The variant Fastspeech 2s directly generates waveform from text without 
cascaded mel-spectrogram generation (acoustic model) and waveform generation 
(for example a vocoder, like wav2vec). The final waveform decoder consist of 
gated activations as well as different types of 1d-convolutions and dilated 1d-
convolutions to cover a wider time range. The authors employ adversarial training 
in the waveform decoder to force it to implicitly recover the phase information by 
itself. 

In their experiments the authors determine the following MOS-values: 
Tacotron 2: 3.70, Transformer TTS: 3.72, FastSpeech 2: 3.83, FastSpeech 2s: 
3.71, and human speech: 4.30. Note that the difference to human speech is mainly 
caused by the vocoder. In addition, FastSpeech 2 and FastSpeech 2s are about 50 
times faster than Transformer TTS at inference time. 

AdaSpeech 2 [186] adapts a TTS system to a target speaker. Only sound 
recordings of the target speaker without text transcription are required. The authors 
apply a mel-spectrogram encoder to a well-trained TTS model to conduct speech 
reconstruction, and at the same time constrain the output sequence of the mel-
spectrogram encoder to be close to that of the original phoneme encoder. The mel 
encoder also consists of 4 feed-forward Transformer blocks. Note that the original 
system does not need to be retrained, only the mel encoder. During the fine-tuning 
to the target speaker, the mel decoder parameters are adapted. The model achieves 
on-par MOS voice quality with the transcribed TTS adaptation. 

Recently Amazon has announced that Alexa will be able to mimic the voices of 
other persons [17]. To “make memories last” Alexa could, for instance, tell stories 
and play music using the voice of the deceased grandmother. Amazon notes, that it 
would take only about a minute of audio recording to imitate a voice. 

Available Implementations 

• Tacotron 2: https://github.com/NVIDIA/tacotron2 
• TransformerTTS: https://github.com/as-ideas/TransformerTTS 
• FastSpeech 2: https://github.com/ming024/FastSpeech2 
• AdaSpeech 2: https://github.com/rishikksh20/AdaSpeech2 
• Hugging Face TTS: https://huggingface.co/models?pipeline_tag=text-to-speech 
• Mozilla TTS Text-to-Speech for all: https://github.com/mozilla/TTS 
• TensorFlow TTS: https://tfhub.dev/s?module-type=audio-speech-synthesis
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7.1.5 Speech-to-Speech Language Model 

GSLM [89] is a language model which receives raw speech audio as input and 
directly generate outputs. It can, for instance, be used to create a dialog system 
without intermediate text representation. Internally the model converts incoming 
raw speech to discrete pseudo-text units. As discretizers CPC [113], wave2vec 2.0 
[10], and HuBERT [68] were used to create embeddings of varying length (50, 100, 
200). The selection of units is difficult, as there is no vocabulary of sound units, and 
sound units have variable length with no obvious segmentation. Similar to BERT, 
HuBERT is trained with a masked prediction task using masked continuous audio 
signals as inputs. In experiments HuBERT performed best in most cases, followed 
by CPC. 

The autoregressive “unit-based” language model has 12 layers and is trained on 
samples with up to 3k units generated from the 6k hours LibriLight speech data 
[139]. To generate speech from units a modified version of the Tacotron-2 model 
[154] was employed, which takes pseudo-text units as input and outputs a log Mel 
spectrogram. To generate waveforms the pre-trained vocoder WaveGlow [125] was  
used, which converts the log Mel spectrogram to speech. 

In a first test the speech input was encoded into units, which were translated to 
speech. Here the intelligibility of the resulting speech is assessed by a human MOS 
opinion score. When trained on the LJ Speech data [74] the unsupervised model 
achieved a MOS (Mean Opinion Score) score of 4.00, while the combination of an 
ASR and TTS system achieved a slightly better score of 4.04 [89]. When testing the 
full language model generation, the model achieved a MOS score of 4.01, while the 
combination of ASR and a language model yielded a score of 3.91. According to the 
authors, the generated speech sounds like English, has recognizable phonemes and 
words. Examples show that improvements are needed at the language and syntax 
level. For sound transcription 200 units were good, while for language modeling a 
smaller number of units seems to be better. It can be expected that the quality can 
be improved with additional training data. 

7.1.6 Music Generation 

Foundation Models can also be applied to other sequence data, e.g. music. On the 
one hand a music language model can be trained, which is able to generate new 
music corresponding to the training data. On the other hand, a model can generate 
music conditioned on external information, e.g. lyrics or video. Bilici [14] provide 
a survey on recent music generation models. 

A prominent approach to music generation is MuseNet [123] which employs 
the Sparse Transformer, a variant of GPT-2. It calculates attention patterns over a 
context of 4096 MIDI characters. To generate new compositions, one can select 
a composer and use the starting notes of a known piece. Then up to ten different
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instruments can be selected, and the system will generate a piece of music with 
the required characteristics. The ratings of experts are quite favorable. Similarly, 
the Music Transformer [71] generates piano pieces. Theme Transformer [155] 
receives a theme as input and is trained to include this theme multiple times in its 
generation result. 

Jukebox [36] adopts a multiscale vector quantizer variational autoencoder model 
(VQ-VAE) [113] to compress raw audio to discrete codes. This is based on an 
autoregressive Transformer and works also for human voices. Three separate VQ-
VAE models with different temporal resolutions are employed. The trained model 
can be conditioned on an artist and a genre to steer the musical and vocal style, and 
on unaligned lyrics to make the singing more controllable. The model is capable 
of generating pieces that are many minutes long, and with recognizable singing in 
natural-sounding voices. A number of samples are available [35]. 

CMT [38] generates background music for a specific video. It aims to match the 
rhythm, timing, and movement speed of the video. CMT extracts these features from 
the video and allows global control of the music genre and instruments. The model 
does not require paired video and music training data. Experiments demonstrate 
that the generated background music has achieved satisfactory compatibility with 
the input videos, and at the same time, impressive music quality. 

Available Implementations 

• CMT Controllable Music Transformer https://github.com/wzk1015/video-bgm-
generation 

• Jukebox: A Generative Model for Music https://github.com/openai/jukebox 

7.1.7 Summary 

Speech recognition has shown an enormous progress in recent years and Foundation 
Models are now an established approach to this task. They are combined with CNN 
blocks and are able to capture interactions over long distances and reduce processing 
times. Similar to NLP, self-supervised learning has led to great performance gains. 
Instead of tokens, as in NLP, discrete sound representations are generated. A number 
of different models follow this scheme, and they are able to increase SOTA on 
different benchmarks. 

The generation of speech from text has improved dramatically in recent years. 
WaveNet was the first model to generate speech-like waveforms at 16,000 samples 
per second. Transformers can be used to convert input phonemes to mel spectro-
grams, from which a vocoder can generate speech audio. There are variants like 
FastSpeech 2s, which directly transform text to an audio signal. The output quality 
of the models is close to human speech. Some models are able to adapt their output 
to the voice of individual speakers. This is impressive, but also a major security

https://github.com/wzk1015/video-bgm-generation
https://github.com/wzk1015/video-bgm-generation
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https://github.com/wzk1015/video-bgm-generation
https://github.com/wzk1015/video-bgm-generation
https://github.com/wzk1015/video-bgm-generation
https://github.com/openai/jukebox
https://github.com/openai/jukebox
https://github.com/openai/jukebox
https://github.com/openai/jukebox
https://github.com/openai/jukebox
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problem if in this way false utterances are produced imitating a person’s voice. The 
recent S4 state-space model for long input sequences was able to reduce errors by 
60% for classifying speech signals. It can be expected that this model will also lead 
to a considerable reduction of errors in other speech recognition tasks. 

Speech recognition and text-to-speech can be integrated with other applications. 
SpeechBert [30] is an end-to-end Speech Question Answering (SQA) model by 
encoding audio and text with a single Transformer encoder, which is pre-trained 
with MLM on speech and text corpora and fine-tuned on Question Answering. Live 
speech translations are generated on-the-fly in a smartphone and allow a seamless 
communication in a foreign language [78, 81]. And GSLM is a generative language 
model, which directly processes discretized sound tokens. 

Music generation is a related topic. Autoregressive PLMs, e.g. MuseNet or Music 
Transformer, can be used to generate music based on a pre-training with a large 
corpus. Here the composer style and the instrument may be selected. In addition, 
music can be conditioned on some input, e.g. lyric text for the Jukebox model or a 
video to compose background music. 

7.2 Image Processing and Generation 

The breakthrough of Foundation Models in NLP has generated tremendous interest 
in the computer vision community to adapt these models for vision and multi-modal 
learning tasks. Two factors are important for their success: self-attention and self-
supervision. Self-attention layers generate representations that take into account the 
relationships between the tokens (text token and/or visual tokens). Self-supervision 
predicts masked or modified parts of data elements during training in large-scale 
datasets. It allows gaining enormous knowledge about the data without manually 
annotating it and assumes minimal inductive biases compared to other models like 
CNN and RNN. Comprehensive surveys on Foundation Models for vision and 
language applications are provided by Khan et al. [84] and Du et al. [43]. Hafiz et al. 
[62] give an overview over attention mechanisms and Deep Learning for machine 
vision. There is a recent tutorial on vision and language research [6]. The main 
features of the models discussed in this section are compiled in Table 7.2. 

7.2.1 Basics of Image Processing 

Image processing can solve a variety of tasks, as shown in Fig. 7.3. The main content 
of an image can be described by classifying the most important object in the image. 
More demanding is the identification and classification of relevant objects in an 
image. This also requires the description of the object positions by bounding boxes. 
Creating a caption for an image involves identifying the most important objects 
in the image, how they relate to each other, and describing them using a natural
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Table 7.2 Main techniques to combine text and images.Benchmarks: VQA: COCO Visual Ques-
tion Answering dataset (Sect. 7.2.5) [56]; img-gen: MS-COCO image generation benchmark with 
fine-tuning; img-gen-0: MS-COCO image generation benchmark zero-shot; ImageNet: ImageNet 
classification top1 accuracy; captions: MS-COCO image captioning benchmark; FID: Fréchet 
Inception Distance should be small (Sect. 7.2.6) [64]. Numbers in parentheses are parameter counts 

Model Approach Benchmark 

Vision Transformer 
(ViT) Sect. 7.2.2 

Concatenate text tokens and image 
token generated from image patches. 
Process with a BERT autoencoder and 
perform classification (632M) 

ImageNet SOTA acc. 
90.5% 

CLIP Sect. 7.2.4 Encode image with vision transformer 
and text with a GPT autoencoder. 
Maximize similarity of image and text 
embeddings, predict if they belong 
together 

VilBERT Sect. 7.2.5 Extract bounding boxes with Faster 
R-CNN. Image regions and text are 
encoded by two BERT autoencoders 
and perform cross-attention. Fine-tuned 
to VQA 

VQA SOTA 70.9% 

OSCAR Sect. 7.2.5 Extract bounding boxes with Faster 
R-CNN. A BERT autoencoder 
associates region descriptions with text. 
Fine-tuned for 7 tasks, e.g. image 
captioning 

captions SOTA 41.7 
BLEU-4 

VinVL Sect. 7.2.5 Uses ResNeXT model as region 
extractor and OSCAR. Fine-tuned for 
image captioning 

captions 40.4 BLEU-4 

DALL-E Sect. 7.2.6 Text is encoded as tokens, image is 
transformed to image tokens by 
variational autoencoders (VAE). Uses 
GPT-3 (12B) to generate new image 
tokens 

img-gen-0 17.9 FID 

GLIDE Sect. 7.2.7 Reverses diffusion which destroys an 
image. Generates image by small 
changes with U-Net model (3.8B) 

img-gen-0 SOTA 12.2 
FID 

XMC-GAN Sect. 7.2.7 GAN-based image generator, generator 
creates images, discriminator 
discriminates fake and real images 

img-gen SOTA 9.3 FID 

CogView Sect. 7.2.7 Vector quantized VAE. GPT-model 
(4B) is trained with text tokens and 
quantized image tokens 

img-gen SOTA on blurred 
images 

LAFITE Sect. 7.2.7 Uses CLIP to transform text to image 
embeddings. Train to modulate layers 
of StyleGAN2 [82] to generate images 

img-gen SOTA 8.1 FID 
img-gen-0 16.9 FID

(continued)



7.2 Image Processing and Generation 327

Table 7.2 (continued)

Model Approach Benchmark

OFA Sect. 7.2.8 Uses text, image tokens and objects 
with bounding boxes. Seq2seq model 
(472M) pre-trained to associate tokens 
and objects. Text instructions control 9 
different tasks 

img-gen SOTA 10.5 FID 
captions SOTA 43.5 
BLEU-4 

DALL-E 2 Sect. 7.2.7 Generate in image embedding from 
text by CLIP, transform to . 1024 × 1024
image by diffusion decoder 

img-gen-0 SOTA 10.4 
FID 

Imagen Sect. 7.2.7 Generate text embeddings by T5-XXL, 
generate image patches by diffusion 
model, upsampling to .1024 × 1024 by 
two superresolution diffusion models 

img-gen-0 SOTA 7.3 FID 

Stable Diffusion 
Sect. 7.2.7 

Generate images using U-Net and 
diffusion 

ImageNet conditional 3.6 
FID 

Visual Ques�on Answering: 
What color is the child’s pants? Dark blue 

Object iden�fica�on: 
child, crow, pants, shirt, bread 

Mul�modal Verifica�on: 
The child is pe�ng a dog. False 

Cap�on-based Image Retrieval: 
A child with blue pants feeds the birds.     Image 

Automa�c image cap�oning: 
A child with some bread in its hand feeds the crows. 

crow 

crow 

child 

pants 

shirt 

bread 

Classifica�on of most important object: 
child 

Fig. 7.3 Image analysis can be used to solve a number of different tasks. Depending on the task, 
the system receives a text (green) and an image as input and generates a text (blue) and an image 
as output. Image credits in Table A.3 

language sentence. Related to this is the retrieval of an image that corresponds to a 
caption. Visual question answering requires interpreting a question and analyzing 
the image to generate an answer in natural language. A variant is multimodal 
verification, where the truth of a statement about the image has to be assessed. 

Many tasks involve the creation of a new image. A prominent example is the 
generation of a completely new image according to a caption. Alternatively a 
missing image area can be filled in. A variant is to change the style of an image 
according to a caption, e.g. from a photo to a painting in the style of van Gogh. This 
can be also performed for a specific image region.
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An important aspect is the representation of images for transformers. Language 
models partition text into a sequence of tokens, which form the input of a 
transformer. The same approach is chosen for images, which are partitioned into 
small image patches. The contents of each patch can be represented by a vector, 
which forms the input of the transformer. The location of the patch is encoded by a 
position embedding, which is added to the input embedding. 

The embedding of an image patch can be simply a learnable linear transformation 
of its pixel values. Other transformations may be used, e.g. small CNN models 
or variational autoencoders (Sect. 1.7). To get more robust representations, the 
generated vectors are often discretized to get rid of local noise. In addition, text from 
a caption or region annotation can be used as input. As usual, this text is converted 
to tokens from a vocabulary. 

To model the interaction between image elements and text, different transformer 
architectures can be used (Table 7.2). A single stream architecture concatenates 
all inputs and processes them with a single transformer. This allows to determine 
interactions between different input elements, but requires the handling of long 
sequences. Dual-stream or multi-stream architectures process different modalities 
or image resolutions by separate PLMs. In this case the input sequences are shorter. 
Various forms of interaction between the streams have been proposed (e.g. cross-
attention). Later the outputs may be compared by similarity measures or combined 
by other PLMs. 

The pre-training task for vision follows the pattern of the text transformer. 
Masked language modeling (MLM) masks a fraction of the input tokens and 
requires the model to predict the tokens from the context. If there are text and 
image tokens, the information in both modalities can be utilized for this task and 
the model learns the association between text and image elements. Similarly, image 
regions can be masked and reconstructed from the text and image context. In a 
classification task, the model can determine whether a caption correctly describes an 
image or is some random text. In this way, the correlation between text and images 
can be trained. Another goal is to learn a joint image and word representation in the 
same semantic space by pushing together the embeddings of matched image-text 
pairs, while pushing apart the non-matched pairs. For this image-to-text contrastive 
loss, the proximity of embeddings is measured by a scalar product between the 
embeddings. 

7.2.2 Vision Transformer 

The ViT (Vision Transformer) [42] applies a pure Transformer encoder (Sect. 2.3.1) 
to image patches. The input image .x ∈ RH×W×c has .H × W pixels and c color 
channels. It is partitioned into patches of .s × s pixel, e.g. .s = 16. Each of the 
.N = HW/s2 patches consist of .s2 ∗ c numbers, which are linearly mapped to a 
vector of length d used as the inputs of the transformer. Usually, a one-dimensional 
position embedding is added, because two-dimensional positions gave no significant
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Fig. 7.4 The Vision Transformer ViT partitions an image into square patches of fixed size. For 
each patch an embedding is calculated by a linear projection. A standard encoder computes 
contextual embeddings. The embeddings of the [CLS] token is used to compute a class by a logistic 
classifier [42]. Image adapted from [42] with permission of the authors, credits in Table A.3 

performance improvement. Different models ViT. Base, ViT.Large, and ViT.Huge with 
12, 24, and 32 layers and 86M, 307M and 632M parameters respectively are 
employed. 

The transformer encoder has an input sequence length of N consisting of vectors 
of size d. Each layer generates N embeddings of length d. The output embedding 
of the [CLS] token in the last encoder block is the input to a logistic classifier to 
compute probabilities of the image classes. The architecture is shown in Fig. 7.4. 

It is remarkable that the images may be trained with varying input image resolu-
tions. But patch size is always the same yielding different input size lengths. To take 
the new resolution into account, a 2D interpolation of the position embeddings is 
performed. The model is typically pre-trained on a large dataset JFT-300M [161] to  
predict masked inputs. It is fine-tuned with a smaller task using a different classifier 
layer. It is often beneficial to fine-tune at higher resolution than pre-training [189]. 
The models were pre-trained on datasets with up to 300M images. 

The largest model ViT.Huge has input patches of size .14 × 14. It was able to 
outperform an improved and pre-trained ResNet152 [63] with 152 CNN layers and 
EfficientNet [92] on ImageNet, and achieved a SOTA of 90.5% Top-1 accuracy for 
the classification of images into 1000 object categories [118]. Pre-training increases 
absolute accuracy by 13% on the test set of ImageNet. With 2.5k TPUv3 days, 
it required only 25% of the computing effort (including pre-training) required for 
ResNet. It improved SOTA for another 5 popular image classification benchmarks. 
The smaller ViT.Large with input patches of size .16 × 16 also outperformed 
ResNet152 requiring only 6.8% of ResNet152’s compute effort. 

When ViT is trained on a moderate dataset like ImageNet, the model achieves a 
performance below that of ResNet (Sect. 1.7) with a comparable parameter count. 
It seems that CNNs have more appropriate inductive biases, such as translation 
equivariance and locality, which the transformer must learn through pre-training. 
Therefore, only pre-trained transformers can outperform CNNs, but this requires a 
lower computational effort. Cao et al. [20] present a method how ViTs can be trained
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with limited data and achieve good results. Chefer et al. [22] present a new method 
based on Taylor decomposition methods to visualize the parts of the image that led 
to a certain image classification. 

It is instructive to analyze the inner structure of a trained model. It turns out that 
the trained position embeddings reflect the row and column structure of the input 
image, and patches in the same row/column have similar embeddings. Based on 
the attention weights, it can be determined which image parts are considered by 
a specific attention head. Some attention heads take into account the whole image 
while others have consistently small attention distances in the lower layers. This 
could have a similar function as early convolutional layers in CNNs [130]. An 
experimental investigation has shown that transformers are highly robust to severe 
occlusions [108]. In contrast to CNNs, which often detect an object based on texture 
and less on shape, ViTs are comparable to humans on shape recognition. Figure 7.5 
shows attention regions for the whole ViT model corresponding to semantically 
relevant areas. 

A number of researchers have investigated the robustness of ViT. In a series of 
experiments, Mao et al. [103] found that the ViT tends to employ local features 
containing textures and noise, and to some extend ignores global context such 
as shape and structure. In response, they propose to discretize the continuous 
input features to image tokens using a vector quantizer based on a variational 
autoencoder (VQ-VAE) [113]. They report accuracy improvements of up to 12% on 

Fig. 7.5 The input image is shown in the upper row. The lower row depicts the area of main 
attention computed by the Vision Transformer model to the input space for classification. Image 
reprinted with kind permission of the authors [42, p. 8]
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several ImageNet classification benchmarks. A similar adaptive token generation 
methods for the ViT was proposed by Ryoo et al. [146]. BEiT [11] outperforms, 
the supervised pre-trained ViT using a self-supervised method inspired by BERT 
(masked image modeling) and based on a VQ-VAE. 

7.2.3 Image Generation 

There are a number of Foundation Models for various image enhancement tasks. 
Image super-resolution converts a low-resolution image to a higher resolution. 
SwinIR [96] is based on a hierarchical representation starting from small-sized 
image patches and gradually merging neighboring image patches in deeper layers. 
For training, the model gets a small-scale image as input, which is preprocessed 
with a CNN layer. The transformer block contains transformer and CNN layers 
and is trained to reconstruct the high-resolution image. SwinIR achieves SOTA on 
benchmarks for super-resolution, image denoising, and JPEG compression artifact 
resolution, while having only 12M parameters. 

ColTran [88] transforms a grayscale image to a fully colored image by using 
transformers with column and row attention. It first predicts colors by a conditional 
transformer for a spatially reduced image with only 512 coarse colors. Two 
subsequent fully parallel transformers upsample the coarse colored low resolution 
image into a fully colored high resolution image. The model achieves the best FID-
score (Sect. 7.2.6) of 19.7 on ImageNet data compared to different alternatives. 
Examples of colorizations are shown in Fig. 7.6. 

Fig. 7.6 Different colorizations of grayscale images (left) by ColTRan [88]. Note that semantic 
constraints, e.g. the color of the skin and the tree leaves, are usually respected. Image reprinted 
with kind permission of the authors [88, p. 1]
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Fig. 7.7 VQ-GAN [45] enables transformers to synthesize high-resolution images with . 1280×460
pixels. Image reprinted with kind permission of the authors [45, p. 12873] 

The Swin Transformer [99] constructs a hierarchical representation of an 
image by starting from small-sized image patches and gradually merging neigh-
boring patches in deeper Transformer layers. A linear computational complexity is 
achieved by computing self-attention locally within non-overlapping windows of 
size 7 that partition an image. Between consecutive layers the attention windows 
are shifted such that there is an overlay with the neighboring windows of the prior 
self-attention layer. The largest model version has 197M parameters and processes 
images of resolution .384 × 384. On ImageNet classification the model achieves a 
top-1 accuracy of 87.3%. Also on object detection in images, the Swin Transformer 
is able to improve the prior best results. 

VQ-GAN [45] uses a CNN to efficiently learn a codebook of context-rich 
visual patches, and subsequently learns a model of their global structure. The 
long-range interactions within these patches require an expressive GPT-2 to model 
distributions of the visual patches. The dictionary of image patches captures 
perceptually important local structure according to perceptual loss [41, 194]. This 
loss is optimized with an adversarial training procedure with a patch-based image 
discriminator that aims to differentiate between real and reconstructed images. 

A GPT-2 model with 307M parameters is pre-trained to generate the code 
sequence of encoded images in an image corpus. Each image is partitioned to . 16×16
patches with a sequence length of 1024. An example image is shown in Fig. 7.7. If  
the training corpus contains class information c, images of specific classes can be 
generated. Class information can also be restricted to specific image regions. While 
VQ-VAE yields an FID of about 10 for the reconstruction of ImageNet photos, VQ-
GAN achieves a much better value of 1.7. 

StyleSwin [191] is a further development of VQ-GAN. It uses the Swin 
transformer [99] discussed above. StyleSwin employs a wavelet discriminator in 
the spectral domain to suppress blocking artifacts. The model with 41M parameters 
achieves SOTA quality on multiple established benchmarks. Example images are 
shown in Fig. 7.8 having a coherent global geometry and high-fidelity details. On 
the CelebA-HQ 1024 benchmark StyleSwin yields an FID of 4.4, which is better
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Fig. 7.8 Images in the .1024×1024 resolution generated by StyleSwin [191] on FFHQ . 1024×1024
data (left) and CelebA-HQ .1024 × 1024 data (right). Best seen with zoom. Image reprinted with 
kind permission of the authors [191, p. 8]  

than all prior models including StyleGAN2 [82]. For the task of generating churches 
based on the LSUN dataset StyleSwin has an FID-score of 3.1, which is nearly as 
good as the best scoring adversarial CIPS model [7] with an FID-score of 2.9. 

Data2vec [9] proposes a new training criterion for self-supervised learning, 
which can be applied to image, text and speech data. It has two kinds of models: 
a teacher model, which processes the whole input, and a student model, which 
processes the input while masking some data. 

The model employs a standard transformer architecture with media-specific 
input encoding. Images are encoded by linearly transformed image patches similar 
to ViT. Speech data is encoded by multi-layer 1-D convolutions. Text data is 
encoded as subword tokens. Training targets for the student model are constructed 
from the averaged top K encoder blocks of the teacher network, which processes 
the complete input. This target has to be predicted by the student model, which 
only receives the masked inputs. Representations of data2vec are continuous and 
contextualized through the use of self-attention, which makes them richer than a 
discrete set of tokens used for other approaches. 

Separate models are trained according to this scheme for speech, images and 
text. For images a Data2vec model achieves a new SOTA of 86.2% top-1 accuracy 
on ImageNet-1k with restricted training set. For speech data, the model reaches a 
WER of 5.5% on the Librispeech test-other benchmark. For language processing, 
Data2vec has an average score of 82.9 on GLUE, which is better than RoBERTa. 
This demonstrates that the model can be effective for multiple modalities. It can be 
expected that this model will be extended to learn across modalities. 

7.2.4 Joint Processing of Text and Images 

Once transformers were applied to text and images, joint processing of both 
modalities became an obvious alternative. Three steps are required for this: 

• encoding images and texts into embeddings preserving their semantics;
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The player at bat hits the baseball 
while the umpire looks on. 

A school bus on a parking lot with 
snow next to a building. 

Two horses pull a hay wagon with 
two men on the load. 

Fig. 7.9 MS-COCO dataset [26]: images similar to sample images from the dataset. The 
corresponding captions indicate the level of detail. Image credits in Table A.3 

• designing powerful architectures to model the interaction between both modali-
ties; 

• developing effective pre-training tasks. 

After learning universal vision and language features, these PLMs can be fine-
tuned on various downstream vision-language tasks. 

For pre-training large scale datasets of text-image pairs .(v,u) are required. Each 
pair consists of a sequence .v1, . . . , vT of text tokens and a sequence . u1, . . . ,uR

of image features or visual tokens, e.g. image patches. In this way, we can unify 
input representation as sequence of embeddings for both modalities. An example 
dataset is COCO captions [26], which contains 328k images of 91 object types 
of common objects in their natural context together with the corresponding image 
captions (Fig. 7.9). Other datasets like Conceptual Captions (CC) [153], RedCaps 
[34], and Laion [151] contain 3.1M, 12M and 400M images respectively together 
with captions or descriptive text. 

Pre-training tasks have to be designed in such a way that the model has to 
reconstruct parts of the text or image based on the remaining contextual text and 
image features. For Cross-modal MLM (Masked Language Modeling) the model 
has to predict masked tokens or image patches based on the other unmasked text 
tokens and visual tokens. Here different masking strategies can be used such as 
whole word masking, masking text spans, or permuting tokens (Sect. 3.1). Masked 
region prediction aims to predict the content of an image region. Objects and their 
regions are annotated manually or by an auxiliary model. Then the model is required 
to predict the object (or a distribution over objects) for that region. In this way, the 
model learns to locate objects in an image. 

CLIP [126, 127] is trained to predict a score indicating which image caption 
corresponds to which image. Given a batch .(v1,u1), . . . , (vn,un) of tokenized text-
image pairs, CLIP has to predict which of the .n×n possible .(vi ,uj ) pairings across 
the batch actually occurred. By contrastive learning, CLIP creates a multi-modal 
embedding space by jointly training an image encoder and text encoder to maximize 
the cosine similarity of the image and text embeddings of the n real pairs in the batch 
while minimizing the cosine similarity of the embeddings of the .n2 − n incorrect
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pairings. This contrastive training with positive and negative examples has been 
shown to outperform alternatives. As image encoder a Vision Transformer (ViT) 
with images patches of size .14×14 (Sect. 7.2.2) was employed, which works better 
than a ResNet [63] encoder based on CNNs. Text was enclosed by [SOS] and [EOS] 
tokens and a 12 layer autoregressive GPT model was used to compute embeddings. 
The embedding of [EOS] in the highest layer was employed as the representation of 
the whole text.  

CLIP was trained on 400M image-text pairs of the WIT data [127] to associate an 
image with the best-matching caption. In addition, the prediction of the next token 
was used as an auxiliary loss term for the GPT model. The model can be used to 
retrieve a text best fitting to an image, or an image optimally corresponding to a text. 

The resulting model has acquired a comprehensive knowledge about text and 
images. With a top-1 classification accuracy of 76.2%, it even surpasses the top-1 
classification accuracy of 75.0% of the original ResNet50 on ImageNet zero-shot 
classification without the need to use any of the 1.28M training examples that 
ResNet50 was trained on. Hence, CLIP can be considered a ‘zero-shot classifier’. 
This also holds for 16 out of 27 other image classification benchmarks. When a 
linear classifier is fitted on top of CLIP’s features, it improves CLIP’s accuracy on 
the ImageNet test set by almost 10% [126]. If the image distribution is changed, 
e.g. to sketches, CLIP-based classifiers are much more robust. Zero-shot CLIP 
classifiers improve effective robustness by a large amount, especially with respect 
to distribution shift. This demonstrates that the inclusion of caption text into vision 
models enhances performance and robustness. 

BriVL [46] is a similar model for Chinese language, which uses a larger set of 
negative examples stored in a queue. It uses a huge training dataset of 650M weakly 
correlated text-image pairs, where, for instance, an image of a birthday cake has the 
caption “Happy birthday! Make a wish”. It achieves SOTA results for cross-modal 
retrieval and visual question answering. 

ALIGN [77] also uses separate encoders for text and images with a cosine-
similarity combination function at the top. As image encoder an EfficientNet CNN 
is employed. BERT is trained to produce a text embedding for the [CLS] token. 
Again the similarity is minimized for genuine image-text pairs and maximized for 
random pairs. ALIGN has 675M parameters and uses a huge training set of 1.8B 
noisy image pairs. In spite of the noisy data the model achieves a slightly better 
accuracy (85.5%) on ImageNet top-1 classification than CLIP. 

7.2.5 Describing Images by Text 

The automatic generation of a natural language description of an image is also 
called image annotation or image captioning. The task is challenging, as it requires 
visual perception, recognition, and real-world knowledge, as well as the grounding 
of language expressions in the image space. Symbol grounding describes, howwords 
acquire their meaning, e.g. by associating a word with an object in an image. Aside
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from determining and extracting the important objects and details of an image, the 
model has to infer the semantic relationship of the objects and the scene (Fig. 7.9). 

Current top models for describing images work in two stages: 

• an object detection model is pre-trained to encode an image and the visual objects 
in the image to feature vectors, 

• a crossmodal PLM is pre-trained to associate text and visual features and generate 
a caption for an image. 

Similar to language translation, various metrics are used to evaluate the generated 
texts, e.g. BLEU or ROUGE (Sect. 2.3.3). Surveys of image captioning techniques are 
provided by Hossain et al. [67], Oluwasammi et al. [112], and Stefanini et al. [159]. 

VilBERT [100] aims to learn representations that can jointly model images 
and natural language. It extracts bounding boxes and their visual features using a 
pre-trained object detection network (Faster R-CNN [137]). These image region 
features as well as the text are input to two separate transformer encoders (two-
stream architecture). Subsequently, transformer layers with cross-attention in both 
directions are applied to learn cross-modal relationships. VilBERT was pre-trained 
on Conceptual Captions data. 

The model was fine-tuned and evaluated on different tasks. Visual question 
answering (VQA) answers natural language questions about images. VQA is treated 
as a multi-label classification task with 3129 possible answers. Final embeddings 
of the text and image parts are fed into a classifier to estimate class probabilities. 
On the COCO test set VilBERT achieved a new SOTA with an accuracy of 70.9%. 
Caption-based image retrieval is the task of identifying an image from a pool given 
a caption describing its content. The model was fine-tuned on a Flickr dataset and 
had a recall@1 of 58.2%, thus establishing a new SOTA. 

OSCAR [95] has the strategy to connect the relevant objects in the image with 
the corresponding phrases in the caption text. The authors use self-attention to learn 
these alignments, which can be significantly improved by additional object tags 
detected in images as reference points. Oscar represents each input image-text pair 
as a Word-Tag-Image triple .(w; q; v), where w is the sequence of words of the 
caption text, q contains the words of the textual object tags detected in the image, 
and v is the set of the corresponding region images. A CNN model (Faster R-CNN 
[137]) is used to discover the objects in q as well as to the corresponding regions 
v. For pre-training the transformer encoder, part of the tokens in .(w; q; v) are 
masked, and the model learns to predict the masked tokens. In addition, sometimes 
the q-terms are changed randomly. The model has the additional task to identify 
these modifications. A small and a large model version are trained with a sequence 
length of 768 and 1024 using a public corpus of 6.5 million text-image pairs. The 
model is fine-tuned to generate the caption according to the sequence-to-sequence 
objective. The model achieves a new SOTA on COCO-captions with respect to 
BLEU-4 (41.7%), METEOR and ROUGE-L as well as for several other captioning 
benchmarks. 

VinVL [193] is pre-trained on three text-image corpora with 2.5M images, and 
can generate visual features with a richer collection of visual objects and concepts.
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Fig. 7.10 Standard bounding-box object descriptions (left) and detailed annotations, which can 
be generated by VinVL (right) and contain visual concepts and attribute information [193]. Image 
credits in Table A.3 

VinVL pre-trains a large-scale object-attribute detection model based on the CNN-
based ResNeXt-152 C4 architecture [179]. The model does not describe objects by 
a single noun, but by a large number of attributes and details, which enhances the 
performance in joint image-language tasks (Fig. 7.10). The approach is combined 
with OSCAR and yields an improved SOTA on image captioning. VIVO [70] is a  
similar transformer model trained to label image regions with 6.4k different object 
tags. VIVO is fine-tuned with COCO image-caption pairs and learns to generate 
caption sentences, also using object tags not appearing in the caption data. This is 
possible as VIVO can exploit large amounts of paired image-tag data to learn rich 
descriptions for images. On the test set VIVO generates better captions than humans 
according to the CIDEr metric [69], which counts the common words weighted by 
tf-idf in the generated and the reference text [169]. 

SimVLM [171] is a transformer encoder-decoder, which uses the first three 
blocks of ResNet to extract contextualized patches from images, and associates the 
image tokens with text tokens. The decoder then predicts the continuation of the 
textual sequence as shown in Fig. 7.11. It is trained on 1.8B noisy image text pairs 
and 800GB text documents. SimVLM achieves a new SOTA for visual question 
answering on the VQA v2 benchmark [56] with 80.3% accuracy. In addition, it 
reaches SOTA for visual entailment, visual reasoning, and image captioning on 
COCO captions with respect to Meteor (33.7). 

Frozen is a Foundation Model trained to associate text with images. It can be 
instructed by few-shot learning to answer question on an image [166]. The language 
model is a pre-trained autoregressive model with 7B parameters trained on the C4 
dataset with 807GB text [129]. The vision encoder is based on NF-ResNet-50 [16] 
and provides an embedding vector characterizing the image. During training the 
image embedding is used as a prefix before the token embeddings of the generated 
text. Using the conceptual captions dataset the vision encoder is trained while 
freezing the language model. The training target is to generate a caption for the 
image.
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Fig. 7.11 The SimVLM encoder-decoder model receives an image (top) and a text (middle) as 
input and produces an output text (bottom) [171]. The image patches are encoded by the first 
layers of ResNet. Image reprinted with kind permission of the authors [171, p. 3]  

During inference, several examples consisting of an image embedding and token 
embeddings are fed into the language model, which generates an answer. An 
example is to caption a microscope with “This was invented by Zacharias Janssen.”, 
and a light bulb with “This was invented by Thomas Edison.”. After five seeds and 
the input of an airplane together with “This was invented by” the model generates 
the output “the Wright brothers”. In this way, different categorizations of images 
can be defined on the fly. These samples demonstrate the ability to generate open-
ended outputs that adapt to both images and text, and to make use of facts that it 
has learned during language-only pre-training. The model is a proof-of-concept and 
shows a way to generate few-shot models for image-text tasks. 

7.2.6 Generating Images from Text 

By training on text-image pairs, transformers can acquire the knowledge to generate 
images corresponding to text descriptions. By successively producing the next token 
with a language model, it is possible to predict visual tokens, which then can be 
synthesized to images. However, there are other image generation techniques. 

• Variational Auto-Encoders (VAE) compress an input image to a small latent 
representation and reconstruct the image as good as possible. An additional loss 
term ensures that the distribution of latent representations follows a Gaussian 
[79]. 

• Generative Adversarial Networks (GAN) use a generator to transform a noise 
vector . s to an image .x̃ = G(s). Then a discriminator .D(x) has the task to classify 
its input as synthetic image . ̃x or real image . x [53]. Both networks are trained 
alternately with an adversarial loss. 

Lee et al. [91] give a survey of techniques for text driven image generation and 
manipulation.
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There are a number of approaches to measure the quality of generated images. 
The Inception Score (IS) [150] applies a CNN-based Inception model [162] trained 
on ImageNet to every generated image to get a conditional class label distribution, 
which should concentrate on few classes, i.e. have low entropy. In addition, many 
different classes should be generated for the test data, which is captured by the 
defined IS measure. The Fréchet Inception Distance (FID) [64] is an improved  
measure using the Fréchet distance between ImageNet classifier distributions, which 
measures the similarity of the distributions taking into account the location and 
ordering of the points along the graph. CLIP Similarity Score (CLIPSIM) [72] is  
based on the CLIP model (Sect. 7.2.4). It generates image and text embeddings with 
CLIP and calculates their cosine similarity. 

DALL-E [133] uses a  GPT-3 autoregressive language model with 12B param-
eters to generate a new image from a textual description. The caption text of the 
image is BPE-encoded into 256 tokens. Then each .256 × 256 image is compressed 
to a .32 × 32 grid of image tokens using a discrete variational autoencoder. Each 
image token represents its .8× 8 pixels by 8192 possible values. The caption tokens 
are concatenated with the .32×32 = 1024 image tokens forming the input sequence 
of GPT-3. 

In the first stage the image tokens are trained yielding continuous image values. 
Then the discrete image tokens are obtained by training with a Gumbel-softmax 
relaxation [75] (Sect. 7.1.3). In the second stage a Sparse Transformer [27] with 64 
self-attention layers and 12B parameters is trained to sequentially generate the joint 
input sequence. For the image tokens, special attention masks are used: row, column, 
or convolutional attention masks. The model was trained on 250M text-image pairs 
from the Internet. 

For image generation, the authors rerank the samples drawn from the transformer 
using a pre-trained contrastive model, which assigns a score based on how well the 
image matches the caption. Figure 7.12 shows different images sampled from the 
algorithm. In a comparison to the prior model DF-GAN [165], the images generated 
by DALL-E were chosen as most realistic and more matching the caption in more 
than 90% of the time. Similarly, the images generated by X-LXMERT [28] look 
inferior. 

GauGAN2 [122, 149] combines segmentation mapping, inpainting and text-to-
image generation in a single model. It is one of the first semantic image synthesis 
models that can produce photorealistic outputs for diverse scenes including indoor, 
outdoor, landscape, and street scenes. The recent version also can generate images 
according to text input. The model behind GauGAN2 was trained on 10 million 
high-quality landscape images. Details of the model are not known. 

XMC-GAN [192] is a GAN-based text-to-image generation model containing a 
generator for synthesizing images, and a discriminator that is trained to discriminate 
real and generated images. It maximizes the mutual information between the 
corresponding pairs: (1) images (real or generated) with a sentence describing the 
scene; (2) a generated image and a real image with the same description; and (3) 
regions of an image (real or generated) and words or phrases associated with them.
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Fig. 7.12 According to a natural language caption (top) a number of images are generated by 
DALL-E [133]. The middle row shows images generated by DALL-E corresponding to the caption. 
The lower row shows the best image from a sample of 512 automatically selected by a quality score. 
Image reprinted with kind permission of the authors [133, p. 6]  

The goal is for the matching pairs (both text-to-image and real image-to-generated 
image) to have high similarity scores and for non-matching pairs to have low scores. 

For the input text the model computes a global sentence embedding . embs

and the word embeddings .embw from a pre-trained BERT module. .embs and 
random noise z from a standard Gaussian distribution are concatenated to form the 
global condition, which is passed through several up-sampling blocks to generate 
a .16 × 16 feature map. The global condition is also used as the condition to 
calculate scale parameter and shift parameter in conditional batch normalization 
layers. The word embeddings .embw are input for an “attentional self-modulation 
layer” to generate fine-grained image regions. OnMS-COCO, XMC-GAN improves 
the SOTA FID-score (Sect. 7.2.6) from 24.7 to 9.3, and is significantly preferred 
by human evaluators. Similarly, human raters prefer the image quality of XMC-
GAN generated images 77% of the time, and 74% prefer its image-text alignment 
compared to three other SOTA approaches (CP-GAN, SD-GAN, and OP-GAN). 

Cogview [40] employs  a  Vector Quantized Variational AutoEncoder (VQ-VAE). 
In the first stage, a discrete autoencoder is used to transform the image into a 
discrete sequence of tokens. In the second stage a GPT model learns to generate 
image tokens based on a prompt of SentencePiece text tokens. To generate image 
tokens, an encoder maps an image .x ∈ RH×W×3 to .h × w image patches, which 
are quantized to a nearby embedding in a learnable set .{u1, . . . ,uk} of embedding 
vectors .ui ∈ Rd [113]. The decoder maps the embeddings back to the image, and 
the embeddings are selected to minimize the difference between output and input 
image.



7.2 Image Processing and Generation 341

Fig. 7.13 Images generated by CogView [40] controlled by the text input (top). The image style 
can be influenced by the input text. The best of a sample of 60 images is selected. Image reprinted 
with kind permission of the authors [40, p. 1]  

The GPT-model of CogView has 48 layers with a hidden size of 2560, 40 
attention heads and 4B parameters. The input to the model is of the form “[ROI1] 
. <text tokens. > [BASE] [BOI1] . <image tokens. > [EOI1]” and contains special 
tokens. The pre-training task is to predict tokens from left to right for 30M text-
image pairs in English and Chinese. A sparse attention pattern similar to BigBird 
(Sect. 3.2.1) is used. 

As shown in Fig. 7.13, CogView has a similar performance in image gener-
ation as DALL-E. It achieves the SOTA FID on the blurred MS COCO dataset, 
outperforming previous GAN-based models and DALL-E, although DALL-E has 
three times more parameters. When evaluated by humans, CogView was able 
to beat GAN-based models by a large margin. However, generation of images 
with CogView is rather slow, because each image is generated token-by-token. In 
addition, the quantization leads to some blurriness in the images. 

LAFITE [200] is a model for generating images from text. Image generation 
is based on StyleGAN2 [82], which creates various image attributes by modulating 
the weights of the convolution kernels [177]. LAFITE generates these modulating 
signals based on language input. It relies on the multimodal semantic space of the 
pre-trained CLIP model (Sect. 7.2.4) to produce an image embedding .emb(x) from a 
text . x, and therefore does not need extra text data. This image embedding is inserted 
into the image generation model similar to StyleGAN2 by a GAN architecture. On 
the MS-COCO benchmark, LAFITE achieves a zero-shot FID value of 26.9, which 
is better than the values of DALL-E (27.5) and CogView (27.1). When fine-tuned on 
MS-COCO, LAFITE has a FID-score of 8.1, which is better than that of XMC-GAN 
(9.3) and other GAN models. Note that LAFITE only has 75M trainable parameters. 

7.2.7 Diffusion Models Restore an Image Destructed by Noise 

GLIDE [109] is an image generation technique based on a diffusion model. A  
diffusion model describes the process of systematically and slowly destroying 
structure in a data distribution through an iterative forward diffusion process, e.g. the  
addition of noise [157]. To the data . x[0], e.g. a matrix of pixel values, we can apply
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Gaussian diffusion distribution .q(x[t]|x[t−1]), where a Gaussian with expectation 
. 0 and covariance . βI is added. This yields a series .x[0], . . . , x[T ] where the final 
distribution .x[T ] approximately is a Gaussian distribution with identity covariance 
(similar results hold for the binomial distribution). 

Now the reversal of the diffusion process can be defined, i.e. the generative 
distribution with .x[t−1] ∼ p(x[t−1]|x[t]). It has been shown by Feller [47] that 
for small step size . β the conditional distribution .p(x[t−1]|x[t]) will approximately 
be a Gaussian distribution. Hence, the chain .x[T ], . . . , x[0] can be generated by a 
Gaussian distribution 

.x[t−1] ∼ N(μw(x[t]);Sw(x[t])) and x[T ] ∼ N(0; I )). (7.3) 

This Gaussian distribution is completely defined by the mean and covariance of . x[t]. 
For the training, noisy samples .x[t] are generated by .q(x[t]|x[t−1]) starting with 

the observed . x[0]. From this the inverse .p(x[t−1]|x[t]) may be reconstructed by 
optimizing the variational lower bound on negative log likelihood [65]. With the 
trained model one can start with a sample .x[T ] ∼ N(0, I ) and gradually reduce 
noise in a sequence of steps .x[T −1], . . . , x[0], where 

.x[t−1] ∼ p(x[t−1]|x[t]) ≈ N(μw(x[t]);Sw(x[t])). (7.4) 

The distributions .p(x[t−1]|x[t]) may be estimated conditional to image classes [37]. 
Instead of a finite number of image classes one may even use a caption text as 
condition. The text is first encoded into a sequence of k tokens and fed into a 
Transformer model. The Transformer outputs a class embedding as well as k token 
embeddings, which are used as additional model inputs. Here a normal noise term 
.εw(x[t]|∅) for reconstruction is estimated and in addition conditional to the caption 
c a noise term .εw(x[t]|c). During the classifier-free reconstruction both terms are 
mixed. 

The diffusion model is approximated by a U-Net model [144] with 2.3B parame-
ters, performing a downsampling of the 64 pixel image to a smaller resolution with 
many features and a subsequent upsampling. An additional 1.5B parameter model 
is used for upsampling to a .256 × 256 resolution. The caption text is processed by 
a transformer model with 1.2B parameters and the final token embedding is used in 
place of a class embedding. 

In tests, GLIDE produced high-quality images with realistic reflections, textures, 
and shadows. The model can also combine multiple concepts (for example, dragon, 
psychedelic, and hamster) and attach attributes like colors to these concepts. On the 
MS-COCO benchmark with .256×256 images DALL-E achieves a FID-value of 28, 
while LAFITE gets 26.9 and GLIDE 12.2. Also in human evaluations, the results of 
GLIDE are clearly preferred. This is remarkable as GLIDE has far less parameters 
than DALL-E. Figure 7.14 shows some images generated by GLIDE. GLIDE can 
also be used for restoring a masked image patch according to a textual prompt, e.g. 
“tie with black and yellow stripes”. In most cases, GLIDE produces better results 
than competitor models and the corresponding image patch is restored with realistic
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Fig. 7.14 Images generated by GLIDE [109] according to the captions in the lower row. The best 
of a sample of 60 is shown. Image reprinted with kind permission of the authors [109, p. 7]  

Fig. 7.15 A high-level overview of DALL-E 2 [132]. Above the dotted line the CLIP training 
process is shown minimizing the difference between the embeddings for an image and the 
corresponding text. Below the dotted line, the text-to-image generation process is illustrated: a 
CLIP text embedding is first fed to an autoregressive transformer (higher box) or diffusion prior 
(lower box) to produce an image embedding. This embedding is used as input to the diffusion 
decoder which produces a final image. Image reprinted with kind permission of the authors [132, 
p. 3] 

lighting, shadows and textures. Finally, GLIDE can add shadows and reflections to 
images and transform simple line sketches into photorealistic images. 

DALL-E 2 [132] is an improved version of DALL-E that can create more 
realistic art and images from a descriptive sentence in natural language. It works 
in two steps (Fig. 7.15): first a CLIP (Sect. 7.2.4) image embedding . zi based on 
a text description y is generated according to a prior .p(zi |y). Then a diffusion-
based decoder generates an image x conditioned on an image embedding . zi . The  
decoder .p(x|zi, y) inverts the CLIP image encoder, is non-deterministic, and can 
produce multiple images corresponding to a given image embedding. The CLIP 
model is frozen during training of the prior and decoder. The dimensionality of the 
image embeddings . zi is reduced to 319 from 1024 by principal component analysis 
while preserving nearly all information. Each of the 319 dimensions is quantized
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Fig. 7.16 Random samples from DALL-E 2 [132] for the prompt “Vibrant portrait painting of 
Salvador Dali with a robotic half face” (upper row), and “A teddybear on a skateboard in Times 
Square”. Image reprinted with kind permission of the authors [132, p. 25,27] 

into 1024 discrete buckets. For the encoder, experiments are performed with both 
autoregressive and diffusion models for the prior. It turns out that diffusion models 
are computationally more efficient and produce higher-quality samples. Examples 
are shown in Fig. 7.16. 

The decoder is conditioned on image representations and can produce variations 
of an image that preserve both its semantics and style, while varying the nonessential 
details that are missing from the image embeddings. CLIP’s shared embedding 
space allows for language-guided image manipulations and modifications in a zero-
shot manner. For example two images . x1 and . x2 can be blended, interpolating all of 
the concepts in CLIP’s embedding space that occur between them. With respect to 
MSCOCO it turns out that DALL-E 2 has a better zero-shot FID of 10.4 than GLIDE 
(12.2). Human comparisons show that DALL-E 2 and GLIDE are similar in terms of 
photorealism and caption similarity, while DALL-E 2 produces images with greater 
diversity. DALL-E 2 struggles more than GLIDE with a prompt that requires it to 
connect two separate objects (cubes) to two separate attributes (colors). A public 
access to DALL-E is now available for users to create images [115]. 

Imagen [148] is a text-to-image model presented by Google. It encodes the input 
text into text embeddings by a pre-trained T5-XXL encoder-decoder Transformer 
with 4.6B frozen parameters. A conditional text-to-image diffusion model (7.3) 
maps the text embeddings into a .64 × 64 image. Subsequently these small images 
are upsampled in two steps to .256×256 and to .1024×1024 by two super-resolution 
diffusion models with 600M and 400M parameters (Fig. 7.17). The models are 
trained on 860M image-text pairs. 

Nichol et al. [110] proposed some modifications for denoising diffusion prob-
abilistic models, which can sample much faster and achieve better log-likelihoods
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Fig. 7.17 Imagen encodes the input text by the pre-trained T5-XXL text encoder. The resulting 
text embeddings are transformed to .64 × 64 images by a diffusion model [148]. This image is 
upscaled to .1024 × 1024 resolution by two super-resolution diffusion models. Image reprinted 
with kind permission of the authors [148, p. 19] 

with little impact on sample quality. They deliver the same sample quality as GANs, 
but achieve a much better mode coverage as measured by recall. This model is also 
employed by Imagen for text-to-image conversion, using the pooled embedding 
vector as input. This network is used for upsampling and is extended to improve 
memory efficiency, inference time, and convergence speed. Figure 7.18 shows 
randomly selected images generated by Imagen for a caption input. 

Imagen achieves a SOTA zero-shot FID (Fréchet Inception Distance) on COCO 
with a value of 7.3, which is better than the FID of DALL-E 2 and is even better 
than other models trained on COCO (Table 7.2). Human raters evaluated Imagen 
with respect to photorealism and alignment to the text caption. For photorealism, 
people preferred Imagen images in 39.5% of cases to the original images, indicating 
a relatively high realism. On caption similarity, Imagen’s score is on-par with the 
original reference images. On the DrawBench [147] the images generated by Ima-
gen are always preferred to images created by DALL-E 2, GLIDE, VQGAN+CLIP 
or Latent Diffusion in more than 60% of the cases. The authors emphasize that in the 
future they will increase the size of the language model, as this promises a greater 
gain than increasing the size of the diffusion models. They do not publish Imagen’s 
code or provide a demo API because it could potentially be abused, for example to 
create fake images. Gafni et al. [48] demonstrate how a system can be extended to 
support artists during the creation of images. 

Stable Diffusion is another model with currently 5.7B parameters for generating 
images of up to .1024 × 1024 pixels using diffusion. An example is shown 
in Fig. 7.18. It works similar to DALLE-2 employing a denoising U-Net for 
image compression and expansion [142]. For training, Stable Diffusion used an 
image dataset from the freely available LAION-5B database [12], which contains 
about 5.85 billion CLIP-filtered image-text pairs, fourteen times larger than its 
predecessor LAION-400M. A model conditioned on ImageNet classes achieved
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A photo of a confused grizzly bear in calculus class. The Rhine river below a castle and with a forest and a vineyard 

Fig. 7.18 Images generated by Imagen [148, p.6] (left) and Stable Diffusion [142] (right) given 
two different text captions. Images reprinted with kind permission of the authors [148, p. 6] and  
[158], credits in Table A.3 

an FID of 3.6 for image generation. A variant of the model employs an image 
search returning images with similar visual features from the neighborhood of 
each training instance by the CLIP model [15]. The model includes the retrieved 
images during image generation. It can be applied to unconditional image synthesis, 
inpainting, and stochastic super-resolution, and achieves competitive performance 
while significantly lowering computational cost. Model inference code and model 
weights to run the retrieval-augmented diffusion models are now available [141] 
and can be downloaded. The model was heavily employed by users creating 1.7M 
images per day. 

7.2.8 Multipurpose Models 

OFA (One For All) [170] provides a unified model for a range of multimodal tasks. 
It can process text and images in the form of text and visual tokens. OFA has an 
encoder-decoder transformer architecture (Sect. 2.3.1) and is pre-trained on various 
text and image datasets. Similar to the T5 model (Sect. 3.1.3), it receives a textual 
instruction along with an image and generates the appropriate output. 

Different modalities are represented in the same space, and text, images, and 
objects are discretized into a unified output vocabulary. An image with . 256 × 256
pixels is represented as .16 × 16 image patches. Each image patch of . 16 × 16
pixels is “tokenized” into discrete visual tokens, such that each visual token strongly 
correlates to the corresponding patch [11]. In addition, objects have a specific 
representation consisting of a label and its bounding box. The continuous corner 
coordinates of the bounding box are uniformly discretized to integers as location 
tokens .(x1; y1; x2; y2). Finally, a unified vocabulary is used for all linguistic and 
visual tokens, including subwords, image codes, and location tokens. 

Similar to T5 (Sect. 3.1.3) the transformer encoder-decoder is controlled by 
instructions. It receives a text instruction and an input image and generates a 
corresponding output, a text response and an image. A number of tasks are described 
by the examples shown in Fig. 7.19. Usually, the OFA model is fine-tuned on 
specific datasets to solve various tasks.
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Visual Grounding: Which region 
does the text “Man in white 
shirt” describe? 

Grounded Cap�oning: What 
does the region describe? 
region <loc299> <loc126> 
<loc282> <loc159> 

Image-Text Matching : Does the 
image describe “Three boys 
playing soccer on the grass” ? 

Image Cap�oning: What does 
the image describe? 

Visual Ques�on Answering: 
How many people are there in 
the picture? 

Object Detec�on: What are the 
objects in the image? 

Image Infilling: What is the 
image in the le� part? 

Image Genera�on:  What is the 
complete image? cap�on: Three 
boys playing soccer on the grass 

OFA 
encoder 
decoder 

<loc299> <loc126> <loc282> 
<loc159> 

Man in white shirt 

Yes 

Three boys playing soccer 
on the grass 

Three 

<loc187><loc47><loc381><loc 
74> goal <loc299> <loc126> 
<loc282> <loc159> person … 

<img123><img756> … 
<img311><img521> 

Text Infilling: 
What is the complete text of “A 
<mask> woman” ? 

A beau�ful woman 

<img437><img688>… 
<img219><img468> 

Fig. 7.19 OFA [170, p. 3] receives an instruction and an input image. As output it generates a 
text and (optionally) an image. For each of the eight instructions (left) an example output (right) is 
shown. Image credits in Table A.3 

The OFA model has an OFA.Base variant with 6 encoder and decoder layers, 
hidden size 768, and 12 attention heads. The OFA.Large variant has 12 encoder and 
decoder layers, hidden size 1024, 16 attention heads and 472M parameters. 

During pre-training, the model has to solve three tasks requested by the 
corresponding instructions (Fig. 7.19). The first task is image infilling, where the 
model has to reconstruct the central parts of the image. This requires the model to 
learn the relation of image parts and the generation of images. The second task is 
object detection. This task establishes the correspondence between image parts and 
language descriptions. The last pre-training task is text infilling to learn the structure 
of language. The model is pre-trained on publicly available datasets for the different 
tasks on data with more than 50M images and more than 160GB text. Images are 
resized to .384 × 384 pixels with a fixed patch size of .16 × 16 pixel. For each patch 
a feature vector is computed by the first three blocks of a ResNet CNN. 

Fine-tuning is performed on task-specific datasets for the tasks shown in 
Fig. 7.19, e.g. MS COCO for image captioning. In addition, OFA is fine-tuned on 
several NLP tasks such as the GLUE benchmark for natural language understanding, 
the Gigaword benchmark for abstractive summarization, and the ImageNet-1K 
dataset for image classification. For inference the authors apply beam search and 
develop a search strategy based on a prefix tree. This trie-based search strategy 
ensures that the output generated by OFA is constrained to the appropriate candidate 
set. 

For image captioning the model is fine-tuned on MS COCO [26].  With a BLEU-
4 score of 43.5 it establishes a new SOTA for the MS COCO benchmark [32]. For 
Visual Question Answering the model is fine-tuned on VQAv2 [56] and similar
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datasets. A search strategy based on a prefix tree ensures that the output generated 
by OFA is constrained to the candidate set. It achieves a new SOTA accuracy of 
80.0%. 

For the visual entailment task the model has to determine, if the image entails, 
contradicts or is neutral to the text. OFA is fine-tuned on SNLI-VE [178] and 
achieves a SOTA accuracy of 90.2% on the test set, which is 3.1% better than the 
prior best model. To understand referring expressions, the model has to locate an 
image region described by a language query. Here the model was fine-tuned on the 
RefCOCO benchmark [187] and related benchmarks. It achieved a new SOTA with 
a text accuracy of 92.9%, outperforming competitors by a large margin. 

For image generation the model is fine-tuned on MS COCO [26]. It achieves an 
Fréchet Inception Distance (FID) of 10.5. This is better than the scores for DALL-E 
[133] (27.5) or GLIDE [109] (12.2), which have far more parameters (12B resp. 
3.5B) than OFA with 472M. On the leaderboard, only LAFITE (Sect. 7.2.6) has a 
better FID-value of 8.1. Note that competing models selected their results from 60 
to 512 trial outputs, while OFA only selected the best of 24 images according to FID 
scores. 

For image classification in ImageNet, OFA uses no extra labeled training data 
and has a similar performance (84.9% top-1 accuracy) as EfficientNet-B7 (84.3%), 
whereas the current SOTA is 88.3%. Surprisingly, OFA also achieves good results 
on language-only benchmarks, such as the GLUE natural language understanding 
benchmark (Sect. 4.1.1) and the Gigaword summarization (Sect. 6.4.1). Code, 
demos, and trained models are available for download. 

An alternative multipurpose model isNÜWA, which is described in Sect. 7.3.4. It  
provides realistic text-to-image generation, image editing, and image region editing 
controlled by text. In addition, NÜWA performs text-to-video creation and the 
prediction of the next video frames. 

WuDao-2.0 [140, 143, 198] is a giant mixture-of-experts model with 1075B 
parameters and has been introduced in Sect. 3.5.2. It is based on the GLM 2.0 
architecture (Sect. 3.1.3) combining the different learning paradigms of BERT, GPT 
and the encoder-decoder transformer. For image modeling, it uses the CogView 
approach (Sect. 7.2.6). However, implementation details are not available. The 
training data consist of 2.5TB image data and 2.5TB Chinese and English text data 
(e.g. from the Pile corpus [49]). WuDao-2.0 can be applied to a wide range of text 
analysis and generation tasks, and has matched or surpassed SOTA levels on five 
image benchmarks, e.g. on classifying land use in image data, image generation, 
and graphic retrieval. 

Available Implementations 

• Vision transformer code, trained models and notebooks github.com/google-resear 
ch/vision_transformer 

• OSCAR code and pre-trained models github.com/microsoft/Oscar, 
• VinVL code and pre-trained Oscar-VinVL models github.com/pzzhang/VinVL.
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• DALL-E code and notebook github.com/openai/DALL-E 
• OFAmodel code, pre-trainedmodels and online demos github.com/OFA-Sys/OFA 
• GLIDE code, trained models and notebook github.com/openai/glide-text2im 
• Stable Diffusion https://github.com/CompVis/latent-diffusion 

7.2.9 Summary 

Recently, the Vision Transformer (ViT) emerged as a competitive alternative to 
Convolutional Neural Networks (CNNs) for image recognition tasks. ViT models 
outperform CNNs in terms of accuracy on various benchmarks and require much 
less computational effort. 

Foundation Models for image processing receive image patches as input. The 
embeddings of these image patches are generated by different methods, e.g. linear 
transformations of image pixels, by the first few layers of CNN models, by 
variational autoencoders (VAE), or by Generative Adversarial Networks (GANs). 
A completely different approach is taken by diffusion models, which reverse the 
process of image degradation by adding noise (GLIDE). It has been shown to be 
beneficial to discretize representations of image patches to reduce noise and low-
level texture dependence. 

There are two alternatives for including text. Sometimes text and image tokens 
are processed by separate transformers. Subsequently the distances between the 
two types of embeddings are minimized (CLIP) or the resulting embeddings are 
correlated by cross-attention (VilBERT). Otherwise, text and image tokens are 
concatenated to form the input of Foundation Models (autoencoders, autoregressive, 
or encoder-decoder). It seems that recent models (DALL-E, CogView, OFA) prefer 
the single-stream architecture. A number of different tasks are employed for pre-
training. These include the masked language model (MLM), where masked image 
and language tokens have to be reconstructed, masked region classification (MRC), 
and masked region reconstruction. Sentence-image alignment (SIA) classifies 
whether image-text pairs belong together. 

The generation of captions constructs a sentence with the characterization of the 
image (VilBERT, OSCAR, VinVL, SimVLM) in fluent and correct language, which 
is usually an accurate description according to human evaluations. The generation 
of longer captions is not yet investigated and is probably more relevant for video 
captioning. There are studies to investigate the attention patterns in vision-language 
models [19]. 

The creation of images that match captions has made a huge leap in quality 
over the past year. Various architectures are used: Generative Adversarial Networks 
(GAN), diffusion models, VAEs. These models are in general combined with PLMs. 
It seems that pure transformer models have advantages (OFA), but diffusion models 
like DALL-E 2.0 gain momentum. Usually, a sample of images is created, and the 
best image is automatically selected by a quality score. Images generated by the
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model often have the resolution of .256×256 and already cover many details. Expect 
to see models with higher resolutions next year, e.g. .1024 × 1024. 

Cao et al. [19] investigate the inner mechanics of vision and language models. 
They conclude that deeper layers lead to more intertwined multimodal fusion. 
Usually, the textual modality is more dominant for taking decisions than image 
features, as models tend to attend to text rather than images during inference. It 
turns out that a subset of attention heads is specialized for cross-modal interaction. 
There are attention patterns that align image regions and textual words. Finally, there 
is no reduction in linguistic capabilities, as pre-trained vision and language models 
encode rich linguistic knowledge. 

Recently, multipurpose models have been presented that are trained to solve a 
large number of different language, vision, and language-vision tasks. One example 
is OFA, which has 472M parameters, significantly fewer than DALL-E (12B). OFA 
is a transformer encoder-decoder with image and text tokens as input, controlled 
by text instructions similar to T5. It achieves SOTA in image captioning, image 
generation, visual question answering, visual entailment, and even on pure language 
tasks. Contrast this with the huge WuDao 2.0 model with 1750B parameters, which 
is based on the encoder-decoder GLM model with a mixture-of-experts architecture. 
The model claims SOTA performance on a number of image and text tasks, but no 
technical details are known. 

In the future, it is expected that these text-image models will be extended to 
other modalities such as video, speech, and 3D. In addition, more data will be 
used, Moreover, they will be enhanced by retrieval techniques to include additional 
external and up-to-date knowledge. Text-image models are a big step towards 
symbol grounding, which allows to attach symbols (words) to their real-world 
meaning. 

7.3 Video Interpretation and Generation 

As the Web is becoming a constantly growing communication vehicle, expressing 
content by text and images is often not sufficient. Video brings together three 
things that catch our attention like nothing else: image, movement, and audio. 
Therefore, videos are more and more important as a means of communication. 
There are 2 billion users active on YouTube each month and over 1 billion on 
TikTok with an average usage of 52min per day. Hence, the automatic analysis, 
interpretation, and generation of videos is extremely valuable. For visual data, the 
most comprehensive self-supervision is available in videos. Their various modalities 
such as images, speech, ASR text, and captions are temporally aligned and do not 
require human annotation. The extreme number of multimodal videos potentially 
allows Foundation Models to acquire a model of the visual world.
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7.3.1 Basics of Video Processing 

Video analysis and understanding is more challenging than image processing, 
because video has an additional time dimension and usually has to handle images, 
speech, and text from speech or subtitles simultaneously. Recently Foundation 
Models have been used for video understanding. Compared to CNNs and RNNs, 
the major advantage of transformers is the ability to simultaneously capture global 
information and compute this in parallel. Furthermore, the concise and stackable 
architecture of transformers enables training on larger datasets. Table 7.3 list the 
main variants of Foundation Models for video. 

Early models for image processing, e.g. CNNs and GANs, performed the analysis 
of images pixel-by-pixel. However, this is no longer possible for videos due to the 
high computational and memory effort, and there has to be an aggregation of image 
information. Therefore, special spatio-temporal aggregation modules are developed 
to adapt this to the limited sequence length of transformers. 

• A simple solution is the aggregation of 30 video frames (VideoBERT). 
• Videos can be processed by considering 3D video patches, which cover a small 

pixel region in a small number of frames. It is possible to aggregate video and 
text over different temporal levels and compute associations between the levels 
(COOT, MTV). Regional and temporal aggregation may be separated (CoVeR). 

• Additionally the video patches may be processed to extract salient information. 
An example is video quantization by variational autoencoders (VQ-VAE), 
which already was used for image processing, e.g. by DALL-E or CogView 
(Sect. 7.2.6). Image patches can be extended in time to obtain 3D voxels (VATT, 
Omnivore). 

• A video can be partitioned into short time clips. Prior clips can enter the 
self-attention computations but no update of prior embeddings is necessary 
(MeMViT). 

To further reduce computational effort, a sparse self-attention can be used, where 
attention is mostly computed to nearby video pixels. 

Unsupervised training may be performed similar to BERT. For instance, masked 
video tokens can be predicted based on neighboring video and text tokens [145]. 
In the same way, masked text tokens can be predicted from neighboring text and 
video tokens. Contrastive learning can be used to discriminate between genuine 
text-video pairs and random pairs. Other tasks include classifying whether a video 
and some text belong together, predicting the next frame, or reconstructing the order 
of shuffled video or text tokens. Recent surveys on video understanding are provided 
by Islam et al. [73], Khurana et al. [85], and Ruan et al. [145] 

There are a number of training data sources for video. Kinetics [83] is a collection 
of 306k large-scale, high-quality datasets of 10s video clips focusing on human 
actions. The variants Kinetics 400, 600, and 700 are annotated with 400, 600, 
and 700 classes, respectively. Example frames of annotated videos are shown in 
Fig. 7.21. Moments in Time [107] is a collection of 800k labeled 3s videos, involving
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Table 7.3 Main techniques using PLMs for video. The numbers in parenthesis indicate parameter 
count 

Model Approach Benchmark 

Video to text  
VideoBERT Partition video into 30 clips and generate 

embeddings by CNN. Cluster embedding by 
k-means. ASR speech generates text tokens. 
Concatenate inputs to BERT 

YouCook II video 
captioning 4.3 BLEU-4 

COOT Image, video and text are processed in 3 
different hierarchy levels. Separate 
transformers for each level. Special attention 
for cooperation in each level (10.6M) 

YouCook II video 
captioning 11.3 BLEU-4 

DeCEMBERT Video 2D and 3D features, region captions, 
ASR text. Inputs linearly transformed and fed 
into a single BERT 

YouCook II video 
captioning 11.9 BLEU-4 

VATT Generate image-time patches, separate BERT 
models for video, audio, and text. Contrastive 
estimation to reduce embedding distances 

Kinetics-400 action 
recognition 81.1% 

Omnivore Image, video and 3D views are converted and 
fed into Swin transformer with shifted 
windows 

Kinetics-400 action 
recognition 84.1% (no 
extra data) 

MeMViT Attention computation with memory of past 
video frames. Memory not trained. Uses 
memory compression module with pooling 

Action recognition on 
EPIC-KITCHENS-100 
accuracy 48.4% 

CoVeR Separate image and temporal aggregation. 
Parallel fine-tuning for image and video 
recognition 

Kinetics-400 action 
recognition 87.2% 

MTV Temporal aggregation by multiple views. Use 
different Vision Transformers for each view 
(1B) 

Kinetics-400 action 
recognition 89.1% 

Merlot Joint processing of video and ASR text. 
MLM for text and video. Reorder scrambled 
frames 

Visual question 
answering 43.1% 

Flamingo Process images, video by vision transformer 
(80B). Include image information into 
language model (Chinchilla) by adapters and 
cross-attention layers. Allows few-shot 
prompts 

SOTA on all of 8 image 
benchmarks and all of 8 
video benchmarks 

Text to video 
Video transformer Partition video to 3D blocks with varying 

dimensions in different layers (373M) 
AR video generation 
FVD score 94 on BAIR 
Robot data 

NÜWA Image, video and text data are represented as 
3D tokens. Discretized by VQ-GAN. Use 
localized attention computations. Trained for 
text-to image, video prediction and 
text-to-video. More applications 

AR video generation 
FVD score 86.9 on BAIR 
Robot data (SOTA) 
text-to-video FID-img 
28.5 on Kinetics 

Imagen video Base video generation model + several spatial 
and temporal video super-resolution diffusion 
models 

FVD score of about 9.0 
for the model with 5.6B 
parameters
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people, animals, objects or natural phenomena that capture the gist of a dynamic 
scene. Epic-Kitchens-100 [33] consists of 90k egocentric videos, totaling 100 h, 
recorded in kitchens. Each video is labeled with a “noun” and a “verb”. Three 
accuracy scores (“noun”, “verb”, and “action”) are usually reported. The action 
score assesses correct noun-verb pairs and is most important. Something-Something 
V2 [55] consists of more than 220k short video clips that show humans interacting 
with everyday objects. Similar objects and backgrounds appear in videos across 
different classes. This data challenges a model’s capability to distinguish classes 
from motion cues, in contrast to other datasets. 

7.3.2 Video Captioning 

Video captioning aims at automatically generating natural language descriptions 
of videos. Video captioning is substantially more difficult than image captioning 
because the spatial-temporal information in videos as well as the corresponding 
ASR text from the video introduces an additional complexity. On the other hand, 
huge video collections like YouTube are available on the Internet and can be used 
as training material. A recent survey is given by Perez-Martin et al. [124]. 

VideoBERT [160] applies a BERT model to video-text pairs. The video is 
partitioned into clips of 30 frames (1.5sec) and processed by the S3D CNN with a 
temporal convolution [180], which generates a clip embedding vector of size 1024. 
The clip embeddings are partitioned by k-means clustering into 20,736 clusters 
and quantized to video tokens. Speech is processed by ASR and partitioned into 
sentences. The text is tokenized by WordPiece with a vocabulary of 30k tokens. The 
video tokens corresponding to the sentence time period are collected in a video token 
sequence. As shown in Fig. 7.20 the video tokens are appended to the corresponding 
text tokens separated by special tokens. Note that text-only and video-only training 
is possible as well. 

VideoBERT 

[MASK] [SEP] 

york 

L 

the [MASK] in the pan [>][CLS] place 

steak 

L 

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyoooooorkrkrkorkrkkkrkkrkrrkrkkkorrorkrkrkoorkkkrrkrkooooorrkkkooooorrkkooo kooorrorkkoooorrkooooorrkkkooooorrrrrroooooorrrrroooorrrkooooorkkkk 

Fig. 7.20 A text generated by ASR and the corresponding video tokens are the input of 
VideoBERT [160]. Both modalities are bounded by special tokens. The masked tokens have to 
be predicted. Image credits in Table A.3
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The BERT.LARGE model is pre-trained on a video set of 312k cooking videos with 
a total duration of 966 days. The text is obtained by ASR. Training tasks are masked 
token and frame prediction, and detecting text matching a video. VideoBERT yields 
SOTA on video captioning on the YouCook II data with BLEU-4 score of 4.3. 

COOT [51] jointly processes image, video and text information with an universal 
representation by embedding vectors. In the representation of videos, time is 
added as a third dimension to the two-dimensional description of images. The 
COOT model considers the data on 3 different levels of hierarchy: frame/word, 
clip/sentence and video/paragraph. For each level there exists a pair of transformers 
processing the input. To model intra-level cooperation, COOT uses a feature 
aggregation layer to focus on temporal interactions between low-level entities. To 
aggregate information to the sentence level, the model uses a special attention for-
mula, where all corresponding embeddings enter the scalar product. An additional 
loss term aims to reduce the difference between sentence and clip encodings. At the 
top level, a contextual transformer links the text and video embeddings. 

The model is trained with videos that have subtitles for individual scenes and 
longer segments. Subsequently, the model can create subtitles for new videos. For 
the YouCook2 video subtitling benchmark dataset, the model can greatly improve 
the SOTA to 11.3 BLEU-4. In addition, the model can also be used for other tasks, 
such as searching when a textual description or a video scene is entered. Since 
the model includes only 10.6M parameters, it is expected that performance can be 
greatly improved by increasing the size of the model. 

DeCEMBERT [164] aims to enhance a video by region captions in addition 
to the ASR-text extracted by speech recognition. The input text is represented by 
BPE-tokens. Each second of video is characterized by 2D-features extracted by a 
pre-trained Resnet-152 CNN [63] as well as by motion features extracted by a 3D 
ResNeXT CNN [179], which together are mapped to embedding vectors. The video 
embeddings and speech recognition text representations are concatenated forming a 
single sequence as inputs to a 12-layer autoencoder for pre-training and downstream 
task fine-tuning. To align video with ASR captions, a constrained attention loss 
is used that encourages the model to select the best matched ASR caption from 
a pool of candidates. During pre-training on 1.2M YouTube instructional videos, 
the association between text and video is learned by masking tokens and by a 
classification, if a text corresponds to a video. On the YouCook2 captioning task 
the model improves SOTA to a BLEU-4 score of 11.9. In addition, DeCEMBERT 
yields good results for video retrieval and video question answering. 

7.3.3 Action Recognition in Videos 

VATT [2] uses raw RGB frames of Internet videos, audio waveforms, and ASR 
text of the speech audio as input data. The video of size .T × W × H with T 
frames is partitioned to a sequence of .�T/t	 ∗ �H/h	 ∗ �W/w	 patches, where 
each patch is a voxel in .Rt×h×w×3 with an additional color dimension. This is an
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extension of the image patches of ViT. The position encoding is a sum . ei,j,k =
etemp;i +ehoriz;j +evert;k where each of the summands is a learnable vector of length 
d. The raw audio waveform is partitioned into . t ′ segments and each segment gets a 
learnable position embedding. For the text a vocabulary is created and each word is 
mapped to a learnable embedding. The DropToken procedure removes a random 
sample of the video or audio tokens to reduce computational cost and improve 
regularization. 

VATT linearly projects each modality into a feature vector of length d and feeds 
it into a separate BERT encoder. The model uses Noise Contrastive Estimation 
to reduce the distance between projections of the audio and video embeddings. 
Positive pairs are taken from the same location in the video, and negative pairs 
from different locations. A similar criterion is employed to reduce the distance of 
video and text embeddings. The training data covers clips of 32 frames at 10 fps 
taken from the HowTo100M data [105]. The largest model has 415M parameters. 
For action recognition on Kinetics-400 it achieves SOTA with a top-1 accuracy of 
82.1% and a top-5 accuracy of 95.6%. 

Omnivore [52] is a model for classifying images, videos, and single-view 3D 
data using exactly the same model parameters. A single-view 3D is a color image 
with an additional depth channel. Image, video, and single-view 3D modalities 
are converted into embeddings that are fed into a Transformer model. The images 
are partitioned into image patches, videos are divided into spatio-temporal tubes 
covering separate image regions, and the single-view 3D images are converted into 
RGB patches and depth patches. The patches are projected into embeddings using 
linear layers. The same linear layer is used for image and video RGB patches. A 
separate layer is applied to depth patches. Separate positional embeddings for the 
spatial and the temporal dimension are used. 

Omnivore employs the Swin transformer (Sect. 7.2.3) as base model, a hier-
archical vision transformer using shifted windows. Self-attention involves patch 
embeddings from spatially and temporally nearby patches. The models are jointly 
trained on the ImageNet-1K dataset for image classification (1.2M images), the 
Kinetics-400 dataset for action recognition (240k videos), and the SUN RGB-D 
dataset (5k) for single-view 3D scene classification, with dataset-specific linear 
classification layers transforming the final embeddings. On Kinetics-400 without 
extra data, Omnivore achieved an action recognition accuracy of 84.1%, which was 
the second best. The fine-tuned Omnivore scored SOTA on two video classification 
benchmarks. When using RGB and the 3D channel, Omnivore again had a SOTA 
performance on the NYU-v2 benchmark. 

MeMViT [173] aims to process videos longer than 5s, in contrast to most current 
models. MeMViT handles videos in an online fashion and caches key and value 
vectors of a transformer as memory at each iteration. Through the memory, the 
model has access to prior context for long-term modeling, with little additional cost, 
as memory embeddings are not trained. The queries of the current video clip attend 
to an extended set of key and value vectors, which come from both the current time 
and the past. Similar to the dilated convolutions of WaveNet [114], higher layers 
attend further down into the past, resulting in a significantly longer receptive field.
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Fig. 7.21 Two videos annotated with descriptions (left) similar to videos of the Kinetics dataset 
[83]. Representative frames of the videos are shown. Obviously, a single frame is sometimes not 
enough to reach a decision, e.g. to distinguish “dribbling basketball” and “dunking basketball”. 
Image credits in Table A.3 

In addition, a memory compression module with learnable pooling is effective for 
reducing the memory footprint. 

A video is split into a sequence of short .T × H × W clips and processed 
sequentially. Similar to MTV, multiple resolutions are used, starting from a fine-
grained modeling of smaller patches to high-level modeling of larger patches in later 
stages, where the dimensionality of embeddings increases. The aggregation between 
stages is done by strided pooling. The memory representations are frozen and not 
changed by optimization. The model is pre-trained on Kinetics-400 data Fig. 7.21. 
On the AVA v2.2 dataset [54] MeMViT achieves a mean average precision (mAP) 
of 35.4%. On the action anticipation dateset (EPIC-KITCHENS-100) it has a SOTA 
of 17.7% recall@5. On the action recognition on EPIC-KITCHENS-100 MeMViT 
yields an accuracy of 48.4%. 

CoVeR [190] evaluates the effect of different pre-training strategies on classi-
fication accuracy. The authors use a special transformer architecture, which has 
spatial attention layers across related regions in the same video frame and temporal 
attention layers across the neighboring frames of a video clip. CoVeR first pre-trains 
the model on the JFT-3B benchmark [189] of 3B images annotated with a class-
hierarchy of around 30k labels. During pre-training all temporal attention layers are 
removed. During fine-tuning, it simultaneously trains a single model with 24 layers 
on multiple action recognition and image datasets (Kinetics versions, ImageNet, 
Moments in Time, SomethingSomethingv2) to build robust spatial and temporal 
representations of video data (Fig. 7.22). For the Kinetics-400 action recognition 
task CoVeR achieves an accuracy of 87.2% and for the Moments in Time action 
classification it has a SOTA accuracy of 46.1%. 

MTV [185] performs temporal aggregation by multiple input representations 
(views) of the input video. MTV extracts tokens from the input video over multiple 
time spans. Video tokens derived from long time intervals capture the overall scene 
description, while video tokens taken from short segments capture fine-grained
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Fig. 7.22 During fine-tuning CoVeR [190, p. 5] simultaneously is trained on multiple image and 
video datasets. Each dataset has its own classifier as there are different class definitions. Images are 
single frame videos. Therefore, image classification is not affected by temporal attention. Image 
credits in Table A.3 

details, such as a person’s gesture. Different transformer encoders are used to 
process these different views, with short segment models having higher capacity. 

The different encoders are interfaced by lateral connections to fuse cross-view 
information. A cross-view attention is computed between adjacent views similar 
to the multi-head cross-attention in the transformer (Sect. 2.3.1). Note that these 
fusion operations are performed only for specific layers. The tokens from all views 
are aggregated with a global encoder, which performs the final classification. 

The models are initialized with Vision Transformer weights (Sect. 7.2.2) and 
trained with videos of 32 frames and a resolution of .224×224. It turned out that the 
cross-view attention was better than alternatives to fuse information from different 
views. In addition, three views gave better results than fewer views. The largest 
model with over a billion parameters achieved SOTA accuracy of 89.1% for action 
recognition on kinetics-400. 

AV-ASR [152] applies a PLM to audio-visual speech recognition. As usual, audio 
is converted to 80 log Mel filterbank features in steps of 10 ms. The videos are 
cropped to a near mouth region and converted to video embeddings with length 512. 
Both embeddings are concatenated and fed into a Conformer encoder (Sect. 7.1.2) 
with 17 layers. The model outperforms previous SOTA for lipreading on the LRS3-
TED benchmark [1] with a WER of 19.3%. If both modalities are used, the WER 
drops to 1.6%. If babbling noise is added the WER of audio-only ASR on LRS3-
TED is increased to 6.1%, while speech recognition with both modalities has a WER 
of only 2.9%. There is another approach to associate video and audio by generating 
video background music that matches the speed of movement, mood, and rhythm of 
the video [38]. 

Aloe [39] wants to do more than simply describing an image or video, but 
aims at explaining or reasoning about the scene. The model uses an unsupervised 
object segmentation module that partitions each image into object representations. 
A transformer receives the questions and the image descriptions including object 
representations. On several visual reasoning benchmarks, the model has to answer 
complex question such as explanatory questions like “why did something happen?”, 
predictive questions such as “what will happen next?”, and counterfactual questions 
like “what would happen in an unseen circumstance, e.g. if an object is removed?”. 
The model is able to improve SOTA on nearly all benchmark dataset.
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Merlot [188] is a vision and language model that learns multimodal world 
representations from videos with thousands of frames and their ASR text. It encodes 
each frame using an image encoder, embeds tokens using learned embeddings, and 
a Transformer similar to RoBERTa jointly processes both representations. A first 
pre-training task uses contrastive loss to match the language transcript embedding 
and the corresponding video embedding. The MLM task requires replacing masked 
language tokens. The temporal reordering task involves reordering scrambled video 
frames. Hence, Merlot not only learns to match images to temporally corresponding 
words, but also to contextualize what is happening globally over time, achieving 
temporal common sense knowledge. The model is trained on 6M unlabeled 
YouTube videos. Merlot outperforms SOTA methods in 12 downstream benchmarks 
that include short and long videos. An example is Visual Question Answering on 
MSRVTT-QA [182] with a new  SOTA of 43.1%. A related model for complex event 
extraction [93] uses a similar contrastive learning approach. 

Flamingo [3] is a visual language model, which can handle sequences of 
arbitrarily interleaved image, video and text data. Flamingo employs the 70B 
parameter pre-trained language model Chinchilla trained on a large and diverse text 
corpus (Sect. 3.1.2). The encoder blocks of the language model are used with frozen 
parameters. With this submodel, Flamingo has strong generative language abilities 
and access to a large amount of knowledge stored in the Chinchilla weights. Similar 
to Frozen (Sect. 7.2.5), it can be instructed by few-shot learning to answer questions 
on an image [166]. 

For processing images and videos, a contrastive text-image approach is pre-
trained (Fig. 7.23). The authors use a variant of ResNet [16]. The vision encoder 
is pre-trained using a contrastive objective on our datasets of image and text pairs, 
using the two-term contrastive loss from [127]. Much like CLIP (Sect. 7.2.4), 
similarities are computed as a dot-product of the mean pooled output of the image 
encoder and the mean pooled output of a BERT model. This model extracts semantic 
spatially oriented features from the image including color, shape, nature, positions 
of objects, etc. The model is pre-trained separately, and the parameters are frozen 
during the main training of Flamingo. 

Two modules are trained to interface these frozen models. The first is a perceiver 
resampler, which receives spatio-temporal features from the vision encoder and 
outputs a fixed-size set of visual tokens (usually 64). This output is generated for 
single images as well as videos independently of the input image resolution or the 
number of input video frames. The extracted visual tokens are then included into 
the language model by interspersed cross-attention layers. In this way the language 
model can incorporate the visual information at each layer. The frozen language 
and vision models have 70B and 435M parameters, while the trainable layers have 
10B parameters and the resampler has 194M parameters yielding a total of 80.6B 
parameters. 

For training, Flamingo uses a number of datasets with 182GB of text. This 
collection is amended with further mixed text, image and video sequences with a 
total of about 2.3B images and 27M videos.



7.3 Video Interpretation and Generation 359

This is a very cute dog This is 

Input: text 
and visual 
data inter-
leaved 

<image> This is a very cute dog. <image> This is 

vision 
encoder 

vision 
encoder 

perceiver 
resampler 

perceiver 
resampler 

Visual data processing 

1st gated cross-a�en�on dense 

1st Language model block 

n-th gated cross-a�en�on dense 

n-th Language model block 

a very serious cat 

… 

Output: text 

Fig. 7.23 Flamingo [3] receives an input consisting of a sequence containing image, text, and 
video in arbitrary order (bottom). The images and videos are processed by a frozen vision encoder 
similar to CLIP. The trainable perceiver resampler reduces them to a finite number of image tokens, 
which are included by a trainable cross-attention layer into the language model. The output created 
by the language model is the natural continuation of the input sequence. Image adapted from [3] 
with kind permission of authors, credits in Table A.3 
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Fig. 7.24 Flamingo can interpret images and describe them by text. Gray boxes are user input and 
the pink boxes are Flamingo output. In the upper row Flamingo answers questions about images. 
In the lower row there is a dialog about a photo. Image adapted from [3, p. 31] and [3, p. 32],  
reprinted with kind permission of the authors 

As shown in Fig. 7.24 Flamingo can answer question on single images by simply 
predicting the next text token in the mixed image-text sequence. In their simplest 
form, the question can ask for the description of objects in the scene, as is shown 
in the upper right example. More difficult is the interpretation of the scene as the 
language model needs world knowledge to decide which aspects of an image are
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Ques�on: What happens to the man a�er hi�ng the ball? Answer: he falls down. 

Ques�on: What is happening here? Answer: The Dachshund puppy is being weighted on a scale. 

Fig. 7.25 Flamingo answers question on videos. Some video frames are shown. Gray boxes are 
user input and the pink boxes are Flamingo output. Image adapted from [3, p. 33], reprinted with 
kind permission of the authors 

noteworthy. In many of these examples, Flamingo can do at least one step of implicit 
inference. Some of the objects are not named in the prompt (e.g. the elephant), but 
their properties are queried directly. In order to answer these questions, the model 
needs to infer the referred object and then recall the relevant knowledge to form 
the answer. This can lead to a single answer (as for the elephant on the truck) or 
to an extended dialog, where the model can answer a series of queries about an 
image (e.g. the dog damaging the sofa). Even after several interactions, Flamingo 
can still successfully attend to the image and reply to questions that require to 
interpret the image. The authors observed that multiple images can be separately 
attended to, simple comparisons and inferences are handled properly. Flamingo’s 
dialog capabilities could enable non-expert end users to get answers without the 
need of fine-tuning. 

In the same way Flamingo can answer question about videos, as shown in 
Fig. 7.25. However, the performance in this task is not as stable as would be 
desirable. 

Flamingo is able to perform few-shot prompting on mixed text-video-image 
sequences. Examples are shown in Fig. 7.26. Here a number of images are provided 
and the added text specifies by example the desired way to extract an answer. In 
the first row this amounts to extracting text from the image and in the second row 
the counting of objects of equal type is required. In this way the model can be 
instructed on the fly to perform a large number of tasks, e.g. captioning, visual 
dialogue, classification or visual question answering. 

The performance of the model was tested on 9 image-text benchmarks on scene 
description, visual dialogue, and visual QA, among them MS-COCO captioning. 
On the eight mixed-media benchmarks Flamingo established a few-shot SOTA by 
a wide margin using 16 or 32 shots. For three benchmarks the score is even better 
than the prior fine-tuned SOTA. On ImageNet top-1 classification Flamingo achieves 
76.0% compared to a fine-tuned SOTA of 91.0%. The test array on video contains
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Fig. 7.26 Few-shot querying of Flamingo [3] with a mixture of images and text. Note that in the 
second example Flamingo did not count the trees but stayed with the animals. The usual number of 
few-shot queries is 32. Image adapted from [3, p. 2], reprinted with kind permission of the authors 

9 benchmarks, eight of whom require free form text answers and one benchmark 
(Kinetics 700) needs classification. On all eight free-form benchmarks Flamingo 
can increase few-shot SOTA, often by a huge margin. On four of these benchmarks 
Flamingo even exceeds the fine-tuned results. This is even more remarkable as 
Flamingo uses only 32 task-specific examples which is around 1000 times less task-
specific training data than current state-of-the-art. 

Flamingo can be fine-tuned on specific benchmarks to increase performance. 
During fine-tuning, the frozen model parts are not changed. When fine-tuning on 9 
example tasks Flamingo could increase fine-tuned SOTA on five of these tasks. This 
shows that by fine-tuning the 10B free parameters of the model, the performance 
can in many cases be increase to new levels. 

7.3.4 Generating Videos from Text 

The creation of videos following a textual description is an important issue, e.g. 
for education or illustration of dynamic content. While there are a number of 
models for describing images and videos through text, there are not many proposals 
for the other direction. The concepts for encoding text and videos are similar 
to the captioning of videos. The quality of generated videos can be judged by 
several measures comparing the similarity of actual and generated videos. The FVD 
(Fréchet Video Distance) is the spatiotemporal extension of the Fréchet Inception 
Distance (FID) (Sect. 7.2.6), and is sensitive to visual quality, temporal coherence 
and diversity of samples.



362 7 Foundation Models for Speech, Images, Videos, and Control

The Video Transformer [172] generalizes the one-dimensional transformer 
encoder-decoder to videos. A video is represented as .x ∈ Rh×w×s×d , where h and 
w denote the number of tokens in the spatial height and width, s denotes the number 
of tokens in the temporal axis, and d is the number of channels (e.g. colors). The 
video is partitioned into small 3D blocks in time and space. Self-attention is applied 
separately with each block. To allow direct information exchange between blocks, 
the block sizes between each layer are varied. The blocks contain 4 frames with 
a spatial resolution .32 × 32. Self-attention varies between 1 and 32 in different 
layers and dimensions. The largest model has a hidden size of 2048, 8 layers and 
373M parameters. On the BAIR Robot Pushing data [44] the model achieved an 
FVD (Fréchet Video Distance) score [167] of 94. which was SOTA at the time of 
publication. 

NÜWA [175] is a recent transformer encoder-decoder model that provides a 
solution for generating video from text. It uses a so called 3D Nearby Attention 
mechanism to capture the locality characteristic for both spatial and temporal axes. 
Image, video and text data is represented as tokens .x ∈ Rh×w×s×d , where h and w 
denote the number of tokens in the spatial height and width, s denotes the number 
of tokens in the temporal axis, and d is the dimension of each token. The raw input 
regions are transformed into discrete tokens for image patches by a trainable VQ-
GAN (Sect. 7.2.3). This GAN-based quantization module provides a much better 
image quality than VQ-VAE used by CogView (Sect. 7.2.6). 

The model modifies attention computations and considers a local neighborhood 
with respect to width, height and temporal extent called 3D Nearby Self-Attention. 
Three different positional encoder embeddings are used for width, height and time. 
Each .336× 336 pixel video frame is partitioned into .21× 21 patches and 10 frames 
of a video are sampled with 2.5 frames per second. The size of the neighborhood in 
width, height and time is 3. The model is pre-trained on three tasks: Text-to-image 
for 2.9M text-image pairs from Conceptual Captions, video prediction with 727k 
videos from Moments in Time, and text-to-video generation for 241k text-video 
pairs. 

For text-to-image generation, NÜWA is fine-tuned on the MS COCO dataset. 
Sixty images are generated for each text and the best image is selected by CLIP 
(Sect. 7.2.4). NÜWA outperforms CogView with an FID-0 of 12.9, which is good, 
as shown in Fig. 7.27, but worse than LAFITE (FID 8.1) and OFA (FID 10.5). For 
text-to-video, NÜWA is fine-tuned on the Kinetics dataset. Some frames of two 
generated examples are shown in Fig. 7.28. NÜWA achieves the best performance 
on the FID-img and FID-vid metrics with values of 28.5 and 7.0. Video prediction 
has to generate the sequence of the next frames of a video from a starting frame. On 
the BAIR Robot Pushing dataset, NÜWA achieves a new SOTA of 86.9 FVD score 
for this task.
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Fig. 7.27 .256 × 256 images generated from the text above the images by NÜWA [175] for  the  
MS COCO benchmark. Image reprinted with kind permission of the authors [175, p. 5]  

Fig. 7.28 Frames of two videos generated by NÜWA [175] from text (left) for the text-to-video 
task on the Kinetics dataset. Note that an input text like “running on the sea” has never been seen 
by the model. Image reprinted with kind permission of the authors [175, p. 5]  

NÜWA supports a number of other tasks. For image editing, it can reconstruct 
parts of an image. Alternatively, it can edit a marked image region according to 
a text, e.g. “a horse is running on the grassland”. Image sketches annotated with 
text are transformed to photos. This pattern can also be applied to videos, such that 
a video is generated from a series of images with annotated regions. Finally, it can 
change the contents in a video, e.g. modify the movements of a diver as shown in the 
lower row of Fig. 7.29. Moreover, a series of image sketches annotated with text can 
be transformed to a video. Further examples are shown here [174]. GODIVA [176] 
is a similar prior approach from the same authors based on VQ-VAE variational 
autoencoders. 

Imagen Video is a recent high definition text-to-video model based on Imagen 
(Fig. 7.17). By a frozen T5 text encoder-decoder and a base video diffusion model a 
low-resolution video is generated. This is augmented by a cascade of video diffusion 
models that alternately increase spatial and temporal resolution [66] to construct 
128 realistic video frames at 24 frames per second with a resolution of .1280× 768. 
Figure 7.30 shows videos generated for text prompts by Imagen Video.
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Fig. 7.29 NÜWA [175] can edit videos. In the upper row the raw video is shown. In the lower row 
NÜWA gets the input “The diver is swimming to the bottom” and modifies the video accordingly. 
Image reprinted with kind permission of the authors [175, p. 28] 

A bri�sh shorthair jumping over a couch. 

Coffee pouring into a cup. 

Fig. 7.30 Videos generated from the text prompts (below) by Imagen video [66]. The model 
produces diverse and temporally coherent videos that are well matched to the given request. Image 
reprinted with kind permission of the authors [66, p. 2]  

Available Implementations 

• VideoBERT code https://github.com/ammesatyajit/VideoBERT 
• COOT code https://github.com/gingsi/coot-videotext 
• DeCEMBERT code https://github.com/zinengtang/decembert 
• VATT code https://github.com/google-research/google-research/tree/master/vatt 
• Omnivore code https://github.com/facebookresearch/omnivore
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• Video Transformer code https://github.com/rakhimovv/lvt 
• MTV code and models https://github.com/google-research/scenic 
• NÜWA code https://github.com/lucidrains/nuwa-pytorch 

7.3.5 Summary 

The processing of videos requires to integrate different modalities like image, text 
in the form of video captions, and speech possibly translated to text by ASR. 
Video processing introduces an additional time dimension to image processing. 
Furthermore, depth information and camera movements can be important. Since 
2019 large scale transformers using self-supervised pre-training are the prevailing 
models for video processing. The models can solve different tasks, such as video 
captioning, action recognition, video question answering, video generation from 
text, prediction of next frames, video retrieval, audio-visual ASR, etc. 

Existing cross-modal Foundation Models mainly focus on (1) improving model 
architecture, (2) utilizing more data, and (3) designing better pre-training tasks. 
Due to the limited input length, the video has to be partitioned into appropriate 
tokens. This ranges from aggregates over 30 clips (VideoBERT) over fixed video 
patches (VATT) to video patches with varying dimensions (COOT, MTV, Video 
Transformer). Some models (VideoBERT, DeCEMBERT) use CNN convolutions 
to generate low-level features. More common is the aggregation with VQ-VAE 
autoencoders or the GAN-bases VQ-GAN. Sometimes video and text are processed 
with separate PLMs and merged later (VATT). Alternatively, video and text tokens 
are concatenated and processed by single a PLM (Omnivore, Merlot). Transformers 
use attention over spatial and temporal dimensions, which is often localized to 
reduce computational effort. 

The integration of different modalities is crucial. Text and language are associ-
ated by pre-training tasks, where masked video or text tokens have to be predicted 
using tokens from the other modality. CoVeR shows that performance can be 
enhanced when the model is simultaneously fine-tuned for video and image tasks. 
It is even possible to combine audio, text and video tokens. 

The performance of video analysis models has taken a dramatic development. 
The action classification error on the Kinetics-400 benchmark has fallen within 
1 year to 10.9% using Foundation Models, which is a drop of 33%. Despite 
the significant progress, SOTA methods fail to extract/capture all the complex 
spatiotemporal information present in videos. There is still much work to do 
for understanding the diversity of visual content in videos and the structure of 
associated textual descriptions. 

Generating videos from captions is in its early stages, and only very short high-
resolution videos can be generated. However, the current models are relatively 
small compared to the Foundation Models like GPT-3 or Gopher. Therefore, it can 
be expected that models with more parameters will see considerable performance 
improvements, as has been demonstrated by Imagen Video.
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There is a trend to general-purpose models, like Nüwa that can handle multiple 
modalities of data and solve a number of tasks. Training with different media 
mutually supports the performance in different tasks. Flamingo with 80B parameters 
is based on a large pre-trained language model and a separately pre-trained vision 
encoder. In can process mixed sequences of images, text and videos. By building 
adapter modules and a cross-attention layer, the language model can include the 
results of the visual modalities and perform a variety of analysis tasks like visual 
question answering, image caption, etc. In addition, it can be instructed by few-shot 
prompts to solve many task without a specific fine-tuning. 

Although Flamingo cannot generate images or videos corresponding to a caption, 
it is a step in the direction of multimodal Foundation Models, which promise to be 
a general-purpose tool of multimedia processing. By few-shot prompts they could 
solve thousands or millions of tasks. Substantial progress can be expected in this 
area, as ideas can be combined that were developed independently for different 
media. Further development directions are larger training data, which, however, are 
already quite large. In addition, the development of multilingual video models is a 
logical consequence of the current state of research in this area. 

7.4 Controlling Dynamic Systems 

Foundation Models can process many types of sequences. These include sequential 
decision problems where the agent must choose an action based on a state. 
Subsequently, the environment generates a new state and a reward for the agent. 
This is repeated a number of times until the final sum of rewards is known. Then the 
task is to select the actions based on the states in such a way that the sum of rewards 
is maximal. This goal can be formulated as a sequence problem, and a PLM can be 
used to predict the next optimal action. 

7.4.1 The Decision Transformer 

PLMs are able to predict sequences, e.g. the tokens of a text or video frames. 
Following this pattern, PLMs are also able to model the evolution of arbitrary states. 
Reinforcement learning considers a system with states . st , actions . at , and rewards 
.rt = R(st , at ) at a given time step t . Based on the current state, the agent selects 
an action, while the next state and reward are determined by the environment. 
The target of reinforcement learning is to learn a policy .a = π(st ), which 
generates actions maximizing the expected sum of rewards .E(

∑T
t=1 rt ). During  

online reinforcement learning the environment can be accessed, and for a given 
.(st , rt , at ) it returns the next state .(st+1, rt+1). In offline reinforcement learning 
there is only a limited set of observed trajectories from the environment. The latter 
setting is more difficult as the agent can no longer explore the environment.
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The Decision Transformer [23] operates in an offline reinforcement setting. 
Instead of using the returns . rt directly, the Decision Transformer considers the 
forward sum of rewards .R̂t = ∑T

t ′=t rt ′ . Hence, a trajectory is represented as follows 

.τ =
(
R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT

)
(7.5) 

The input token embeddings for .(st , rt , at ) are computed with a linear layer, which 
is different for each modality (Fig. 7.31). If the state is an image, it is transformed 
by a convolutional encoder instead of a linear layer. Subsequently the embeddings 
are normalized by a layer normalization. For each time step with three inputs a 
position embedding is learned and added to the embeddings of that time step. The 
embeddings are then processed by an autoregressive GPT model, which predicts 
future actions by autoregressive modeling. 

The training was based on a dataset of observed trajectories. From these 
trajectories minibatches of length K were sampled. Then the GPT model for each 
.t = 1, . . . , K predicted . at given a trajectory up to . st . As a loss function the cross-
entropy loss was used for discrete actions with the target to increase the probability 
of the actual action at time t . For continuous actions, e.g. a speed, the mean squared 
error was used as loss to minimize the square difference to the observed control 
value. It was not necessary to predict states or the forward sum of rewards. 

For the application to a starting state . s1, a target forward sum of rewards . R̂1 based 
on the desired performance (or even maximum possible return) is specified. After 
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output embeddings 
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Fig. 7.31 The Decision Transformer applies an autoregressive language model to the forward 
sums of rewards . R̂t , states . st and actions . at . In the example the state is given in the form of video 
frames, e.g. for the Pong game. The model predicts the next action in the trajectory conditional to 
a given forward sums of rewards [23]
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the generated action . a1 is executed, the target return is reduced by the achieved 
reward and the next state . s2 is determined. This process of generating actions and 
applying them to get the next forward sum of rewards and the next state is repeated 
until the trajectory ends. Note that the actual forward sum of rewards should be close 
to the desired performance specified before. Although the model is only trained 
on randomly selected subsequences, it can learn to ‘merge’ subsequences from 
different training trajectories in order to produce optimal trajectories at test time. 
Obviously a large set of subsequences has to evaluated during training to arrive at 
good solutions. 

The Atari benchmark [13] has discrete actions, uses four video frames as state 
descriptions, and processes these frames by a convolutional encoder. Only 1% of the 
available data is used. On four Atari tasks (Breakout, Qbert, Pong, and Seaquest) 
usually a context length of .K = 30 is taken into account. With the exception 
of Qbert, Decision Transformer is competitive with state of the art methods, and 
for two games it reaches the best results (Breakout, Seaquest). The most effective 
alternative is the CQL [87] Q-learner. 

The D4RL benchmark simulates simple robots (HalfCheetah, Hopper, and 
Walker) which are controlled by continuous-valued actions. On this benchmark 
Decision transformer in most cases achieves better results than the alternative 
approaches and has the highest average performance. Again CQL is the best 
alternative. 

The authors evaluate the performance of approaches for an environment, where 
it is necessary to propagate rewards over a long time period. The Key-to-Door 
benchmark [104] has three phases: 

• in the first phase, the agent is placed in a room with a key; 
• then, the agent is placed in an empty room; 
• and finally, the agent is placed in a room with a door. 

The agent receives a binary reward when reaching the door in the third phase, 
but only if he picked up the key in the first phase. On this benchmark Decision 
Transformer and related methods clearly outperform Q-learning approaches, which 
cannot effectively propagate rewards over a long horizon. 

Reid et al. [136] modify the details of the decision transformer yielding improved 
performance. Kumar et al. [86] show by theoretical analysis that offline reinforce-
ment learning—as done by the decision transformer—enjoys better guarantees on 
long-horizon tasks than simply cloning the behavior of experts. This especially 
holds in the case of sufficiently noisy data. 

7.4.2 The GATO Model for Text, Images and Control 

GATO [134] is a Foundation Model, which has been trained on about 600 different 
tasks, including text generation, image captioning, stacking physical blocks with 
a robot arm and playing Atari console games. Depending on the context, it



7.4 Controlling Dynamic Systems 369

Fig. 7.32 Data from different tasks and modalities are converted to sequences, e.g. frames and 
actions from Atari games, text token sequences, images patch tokens, continuous sensory inputs 
and outputs. In Gato [134, 135], a large decoder-only transformer processes the sequence. During 
training, specific variables, e.g. actions, are used to compute a loss. Image adapted from [135, 
fig.2], credits in Table A.3 

independently decides which tokens to generate: Text, torques for joints, keystrokes, 
or another variant of the output within its comparatively extensive possibilities. 

Depending on the modality the input is tokenized 

• Text is encoded via SentencePiece with 32,000 tokens. 
• Images are transformed into sequences of non-overlapping .16 × 16 images 

patches similar to the vision transformer (Sect. 7.2.2). 
• Discrete values, e.g. Atari button presses, are flattened into sequences of integers 

in row-major order. The tokenized result is a sequence of integers within the 
range of .[0, 1024]. 

• Continuous values, e.g. proprioceptive inputs (sense of self-movement, force, 
and body position) or joint torques, are preprocessed and discretized in 1024 
bins. The discrete integers are then shifted to the range of .[32,000, 33,024]. 
Tokens belonging to text, discrete- or continuous-valued observations, or actions 

for any time step are embedded into a learned vector embedding space using a 
lookup table. Learned position encodings are added for all tokens based on their 
local token position within their corresponding time step. Tokens belonging to 
image patches for any time step are embedded using a single ResNet [63] block 
to obtain a vector per image patch. In addition, a learnable within-image position 
encoding vector is added (Fig. 7.32). 

Gato consists of a 1.2B parameter decoder-only transformer with 24 layers, and 
an embedding size of 2048. As in every language model, all tokens are predicted 
and therefore can be set as targets for training. Currently, only text tokens, discrete
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and continuous values, and actions are currently used as targets. As usual, the 
probabilities of the observed target tokens have to be maximized during training. 

To focus GATO on a specific task, a prompt is used coming from a trajectory 
generated by the same source agent on the same task. GATO was trained on 596 
different control tasks, among them the Atari benchmark [13]. The authors included 
only “good” trajectories that yield at least 80% of the expert reward for the task. 
Moreover, GATO was trained on 8 vision and language tasks, e.g. image captioning 
with MS-COCO Captions [26] and Conceptual Captions [153], as well as visual 
question-answering datasets. In addition, GATO is trained on the large MassiveText 
[128] data with 300 billion text tokens. 

The performance of GATO has been evaluated for different applications. On 
the Atari benchmark, the model reached average human score or better for 23 of 
51 Atari games. In a robot stacking benchmark, GATO achieved a comparable 
performance as the BC-IMP baseline [90]. The model has only rudimentary dialog 
and caption functions, which is not surprising due to the small model size. 

The Gato model is a first attempt to simultaneously solve text, image, and control 
tasks with the same Foundation Model. For control tasks it yielded respectable 
results while for the text and image tasks it had only mediocre performance. Perhaps 
it could benefit from the forward sum of rewards representation of the Decision 
Transformer. Actual Foundation Models have hundreds of billions of parameters 
and require a corresponding computing effort. If the GATO model is extended to 
this order of magnitude, its performance can be expected to improve accordingly. 

Available Implementations 

• Decision Transformer code https://sites.google.com/berkeley.edu/decision-
transformer 

7.4.3 Summary 

Pre-trained language models can be applied to sequences with mixtures of element 
types. The Decision Transformer considers sequences of rewards, states and actions 
at specific time steps, which occur during a sequential decision problem, e.g. video 
game playing, robot control, or automatic driving. It models observed trajectories of 
these quantities. Instead of using the reward as input, the sum of the rewards up to 
the end of the trajectory is considered, which is the quantity to be maximized. For 
each type of input some preprocessing is performed to generate embeddings. The 
Decision Transformer is trained to predict the actions in short subsequences of 30 
time steps.

https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
https://sites.google.com/berkeley.edu/decision-transformer
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During application, the desired forward sum of rewards can be set as a condition. 
Then, the model is able to stitch together the information from different subse-
quences in the training data to obtain near-optimal actions reaching a maximal sum 
of rewards. This was shown by extensive experiments with various benchmarks. 

The GATO model demonstrates that PLMs at the same time can be used to solve 
reinforcement learning tasks simultaneously with text and image tasks. The model 
is trained with nearly 600 control benchmarks, 8 image tasks and on 300B text 
tokens. The model has only rudimentary text and image description capabilities, 
but performs relatively well on the Atari benchmark. It is only a proof of concept 
and could be improved by increasing the model size and, for instance, by using the 
forward sum of rewards. 

7.5 Interpretation of DNA and Protein Sequences 

Deciphering the language of DNA is one of the most important goals of biological 
research. The genetic code is universal and explains how DNA is translated into 
proteins. In contrast, the regulatory code, which determines when and how genes are 
expressed, varies between different cell types and organisms. This is similar to the 
polysemy and distant semantic relationships in natural language texts. DNABERT 
[76] tokenizes the DNA sequence into overlapping 3-grams and trains a standard 
BERT model to predict masked tokens (Fig. 7.33). After pre-training on a large set 
of DNA sequences, it can improve the SOTA by fine-tuning for many specific DNA 
prediction tasks. Among them are analysis of sequence motifs (DNA segments with 
biological relevance) and prediction of promoter regions (nucleotide sequence that 
enables regulated expression of a gene). MoDNA [5] and GeneBERT [106] have  
similar functionality. 

Proteins are linear chains of amino acids linked by covalent bonds. Amino acids 
can be represented by an alphabet with 25 characters. The strings are ideally suited 
for many NLP methods [111]. AminoBERT [29] is a language model that predicts 

AGCACTGCTATCATGCTTGCAG 

GCA AGC AG[CLS] CAC CT CTG …  GCATGCTTGCTT 

GCA AGC AG[CLS] CAC CT CTG … [SEP][MASK]CTT [MASK] [MASK] 

original DNA 
sequence 

tokenized 
sequence 

masked 
sequence 

BERT encoder blocks 

…token + posi�on 
embedding 
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Fig. 7.33 DNABERT tokenizes the DNA sequence into overlapping 3-grams and trains a standard 
BERT model to predict masked tokens [76]. The resulting model can be fine-tuned to many DNA 
interpretation tasks
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the 3D protein structure given a protein sequence as input. It also uses a natural 
method to describe polypeptide geometry that is rotation and translation invariant 
at the level of the polypeptide as a whole. On average, the model outperforms 
AlphaFold2 [80] and RoseTTAFold [8] on orphan proteins and classes of engineered 
proteins, achieving up to a 106-fold reduction in computational time. 

There are a number of other models with similar results [97], e.g., the protein 
language model ESMFold. It generates embeddings that can be used in downstream 
tasks, for example to capture the structural properties of proteins. A model with 15B 
parameters can predict the three-dimensional structure of a protein at the resolution 
of individual atoms. 

Available Implementations 

• DNABERT code and models https://github.com/jerryji1993/DNABERT 
• GeneBERT code and models https://github.com/ZovcIfzm/GeneBERT/tree/ 

main/GeneBERT 
• ProteinBERT code and models https://github.com/nadavbra/protein_bert 
• AlphaFold 2 code and models https://github.com/deepmind/alphafold 
• RoseTTAFold code and models https://github.com/RosettaCommons/RoseTTA 

Fold 
• ESMFold code and models https://github.com/facebookresearch/esm 

7.5.1 Summary 

Foundation Models can also be applied to DNA and protein sequences to derive 
contextual embeddings of the sequence elements. By this approach, the models 
are able to accumulate much knowledge about these sequences and achieve SOTA 
performance across various downstream tasks, largely surpassing existing tools. The 
models can help to predict the 3-D structure of the protein. This is crucial for its 
function and may be instrumental in developing active substances to influence it. 
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