
Chapter 5
Foundation Models for Information
Extraction

Abstract In the chapter we consider Information Extraction approaches that
automatically identify structured information in text documents and comprise a
set of tasks. The Text Classification task assigns a document to one or more
pre-defined content categories or classes. This includes many subtasks such as
language identification, sentiment analysis, etc. The Word Sense Disambiguation
task attaches a predefined meaning to each word in a document. The Named
Entity Recognition task identifies named entities in a document. An entity is any
object or concept mentioned in the text and a named entity is an entity that is
referred to by a proper name. The Relation Extraction task aims to identify the
relationship between entities extracted from a text. This covers many subtasks such
as coreference resolution, entity linking, and event extraction. Most demanding is
the joint extraction of entities and relations from a text. Traditionally, relatively
small Pre-trained Language Models have been fine-tuned to these task and yield
high performance, while larger Foundation Models achieve high scores with few-
shot prompts, but usually have not been benchmarked.

Keywords Text classification · Named entity recognition · Relation extraction ·
Sentiment analysis · Language understanding

There are a large number of NLP applications of Pre-trained Language Models
(PLMs), which can be roughly divided into three areas

• Information Extraction (IE) automatically identifies structured information in
textual documents and analyzes language features (Chap. 5).

• Natural Language Generation (NLG) automatically generates new natural lan-
guage text, often in response to some prompt (Chap. 6).

• Multimodal Content Analysis and generation integrates the understanding and
production of content across two or more modalities like text, speech, image,
video, etc (Chap. 7).

These applications are described in the three following chapters.

© The Author(s) 2023
G. Paaß, S. Giesselbach, Foundation Models for Natural Language Processing,
Artificial Intelligence: Foundations, Theory, and Algorithms,
https://doi.org/10.1007/978-3-031-23190-2_5

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23190-2protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5
https://doi.org/10.1007/978-3-031-23190-2_5

188 5 Foundation Models for Information Extraction

Table 5.1 Language analysis tasks based on text classification illustrated by examples

Task Description Example

Language identification Determine the language of a
text, Sect. 1.2.

Shakespeare lived 400 years ago
. → English

Document classification Assign a content category
(class), e.g. economy, to a
document or text, Sect. 5.1

The Dow-Jones is up 50 points
. → economy

Sentiment analysis Classification of a text
according to the sentiment
expressed in it (e.g. positive,
negative, neutral), Sect. 5.1

Today I feel really lousy. . →
negative

Hate speech detection Recognize if a text contains hate
speech, Sect. 5.1.1

Immigrants infest our country
. → hate speech

Fake news detection Detect a text that contains fake
news, Sect. 6.5.5

Measles vaccination causes
meningitis. . → fake news

Logical relation Determine whether the second
text contains a logical
consequence, a contradiction, or
a neutral statement relative to
the first text, Sect. 2.1.5

John has a flat. . ↔contradiction
John is a homeless person.

Text entailment Does the first text imply the
truth of the second text?
Sect. 2.1.5

Exercising improves health.
.→entails Physical activity has
good consequences.

Paraphrase detection Determine if two texts are
semantically equivalent,
Sect. 2.1.5

Fred is tired. /Fred wants to
sleep. . → equivalent

Dialog act classification Determine the type of an
utterance in a dialog (question,
statement, request for action,
etc.)

Where is the dog? . → question

In the present chapter we focus on information extraction with PLMs. Informa-
tion extraction includes the following tasks:

• Text classification assigns a document to one or more pre-defined content
categories or classes (Sect. 5.1). Note that many subtasks can be formulated
as classification problems, e.g. language identification, sentiment analysis, etc.
(Table 5.1).

• Word Sense Disambiguation (WSD) connects a predefined meaning to each word
in a document. This is especially important for the interpretation of homonyms,
i.e. words that have several meanings depending on the context (Sect. 5.2).

• Named Entity Recognition (NER) identifies named entities in a document. An
entity is an any object or concept mentioned in the text. A named entity is an
entity that is referred to by a proper name. NER also associates a type with each
entity, e.g. person, location, organization, etc. (Sect. 5.3).

5.1 Text Classification 189

• Relation Extraction aims to identify the relationship between entities extracted
from a text (Sect. 5.4). This covers many subtasks such as coreference resolution,
entity linking, and event extraction (Table 5.3).

Due to the large number of different approaches, we focus on representative models
which exhibit a high performance at the time of writing. Traditionally relatively
small PLMs have been fine-tuned to these task and yield high performance, while
larger Foundation Models achieve high scores with few-shot prompts, but usually
have not been benchmarked.

We outline the inner logic and main features of the methods, taking into account
necessary resources, e.g. computational and memory requirements. For standard
models a link to the description in earlier chapters is provided. Under the heading
“Available Implementations” you will find links to available code and pre-trained
models for a task. Good general sources for code are the websites [30, 35, 74, 79].

5.1 Text Classification

Automatic text classification is a common task in natural language processing where
a class, (also called category or label) is assigned to a short text or a document. The
set of classes is predefined and may contain just two classes (binary classification),
or more classes (multiclass classification). Each text must be assigned a single class,
which means that the classes are exclusive. Typical tasks include spam detection in
emails, sentiment analysis , categorization of news articles , hate speech detection,
dialog act classification, and many more. Some examples are listed in Table 5.1.
Kowsari et al. [44], Li et al. [49] and Minaee et al. [64] provide surveys on text
classification.

Often a document covers several topics simultaneously, e.g. a news article on
the construction cost of a soccer stadium. In this case it is necessary to assign
multiple classes to a document, in our example “soccer” and “finance”. This type of
classification is called multilabel classification. Extreme multilabel classification is
a variant containing a very large label set with thousands of labels.

There are a number of popular benchmarks to assess the performance of
document classification approaches covering two or more classes. Typically, the
benchmarks contain many thousand training and test examples. Table 5.2 describes
the properties of some popular text classification benchmarks. Often documents are
categorized according to the subjective opinions of users. An example are reviews
of movies or restaurants, which can be classified as positive, negative, or neutral.
Then the classification corresponds to a sentiment analysis task.

Early methods for document classification in the 1990s used classical machine
learning approaches [44]. In the first preprocessing step, manually created features
were extracted from the documents. In the second step, a classifier was trained with
these features to reconstruct the manually assigned class labels (Sect. 1.3). Finally,
this classifier was applied to new documents. Usually, bag-of-words representations
were used to represent the input documents. Popular classification methods included

190 5 Foundation Models for Information Extraction

Table 5.2 Popular text classification benchmarks

Task Description Classes

IMDB [56] Reviews from the movie rating
page IMDB. 25k training, 25k
test and 50k unlabeled reviews

Two classes: positive and
negative

Yelp [131] Yelp reviews of stores and
restaurants. 560k training and
38k text reviews.

Binary: positive/negative
multiclass: five star classes

DBpedia [7] 14 non-overlapping classes from
the DBpedia ontology. Each
class is represented by 40k
training samples and 5k test
samples,

14 different classes: company,
artist, athlete, animal, album,
film, etc.

ArXiv [32] 33k scientific articles from
arXiv with documents of
average length 6300 and length
. > 5000

11 classes: artificial intelligence,
computer vision, group theory,
etc.

SemEval-20 Task 12
[128]

14k Twitter tweets available for
five languages: English, Arabic,
Danish, Greek, Turkish

Two classes: offensive or not
offensive.

EURLex-4K [53] Benchmark of law documents
containing .45,000 training
examples with an average length
of 727 words and an average of
five correct classes per example

4271 non-exclusive classes

Amazon670k dataset [60] Descriptions of amazon
products. 490k training and
153k test samples. About . 5.5
classes per document.

679k non-exclusive categories:
products in the Amazon catalog,
about 4 samples per category

naive Bayes, logistic classifier, the support vector machine, and tree-based methods
like random forests. However, all these methods were hampered by the shortcom-
ings of the bag-of-words representation (Sect. 1.3), which ignores the sequence of
words in a document.

In the next sections, we consider current classification models for mutually
exclusive as well as “overlapping” classes. It turns out that most of the current best
approaches are based on PLMs.

5.1.1 Multiclass Classification with Exclusive Classes

A prominent application of BERT is fine-tuning for a classification task
(Sect. 2.1.2). Here, a pre-trained BERT is adapted to this task by supervised fine-
tuning, using the contextual embedding of the “[CLS]” token in the highest layer
as input for a logistic classifier. This classifier is extremely successful for natural
language understanding tasks (Sect. 2.1.5).

5.1 Text Classification 191

XLNet [120] is trained by reconstructing a permuted token sequence
(Sect. 3.1.1), and is therefore able to capture a lot of knowledge about the
language. It achieves 96.2% accuracy on the binary IMDB classification task.
This performance is surpassed by ERNIE-Doc [26] with 97.1%. ERNIE-Doc is a
transformer with an enhanced recurrence mechanism capable of considering many
previous segments of a text in the same layer. The model aims to mitigate problems
of other transformer-based models for long contexts such as the Longformer, which
do not provide the contextual information of whole documents to each segment. The
SOTA is currently held by a simpler model [101], which modifies the well known
paragraph vector [47] and Naive Bayes weighted bag of n-grams. It achieves an
accuracy of 97.4%.

The current best model on the IMDB dataset with 10 classes is ALBERT-SEN
[23]. The authors propose an approach which evaluates the overall importance of
sentences to the whole document, with the motivation that different sentences can
contain different polarities but that the overall polarity depends on a few important
sentences. Their model uses ALBERT (Sect. 3.1.1) to encode sentences via the
[SEP] and [CLS] token representations. They concatenate these representations
with class-weighted representations. Then they have a document encoder that calcu-
lates importance weights for every sentence and creates a weighted representation of
the sentences as document representation. Finally, they calculate a sentiment score
by utilizing the document representation and the class representations, which were
also used in the sentence encoder. The model achieves an accuracy of . 54.8%. It
should be noted that subtle nuances in language expressions must be taken into
account in this classification task with 10 classes.

For the Yelp benchmark, XLNet performs best for the binary version with
an accuracy of 98.4% and achieves the second-best accuracy of .73.0% for the
fine-granular version with 5 classes. The leading model for this task is HAHNN
[1] with an accuracy of .73.3%. HAHNN combines convolutional layers, gated
recurrent units and attention mechanisms. It builds on non-contextual FastText [16]
embeddings as word representations and uses a stack of convolutional layers to
obtain contextual information. This is followed by a word encoder which applies
recurrent GRU cells to obtain word representations, and an attention mechanism
to create weights for the input words. Sentence representations are then formed as
an attention-weighted average of the words. Another GRU layer is employed to
create sentence representations, which are then combined via attention to generate a
document level representation. This establishes the input to a fully connected layer
with softmax activation for classification.

BigBird [127] is especially valuable for classification tasks with long documents,
as it can process input sequences of length 4096 (Sect. 3.2.1). Following BERT, the
output embedding of the first [CLS] is input for the classifier. For the IMDB data
with shorter documents there is no performance gain compared to simpler models.
On the ArXiv benchmark [32] with documents of average length 6300 and 11 classes
BigBird improves SOTA by about 5% points.

With the advent of Web 2.0 and the ability for users to create and share their
own content with the world, the proliferation of harmful content such as hate

192 5 Foundation Models for Information Extraction

speech, has increased. This is now fueled by bots and machine learning models
that automatically create such content at a scale that humans can barely manage.
Hate speech is often defined as a hostile or disparaging communication by a person
or group referring to characteristics such as race, color, national origin, gender,
disability, religion, or sexual orientation [36]. According to European law, hate
speech is a punishable criminal offense.

Hate speech detection can be solved as a text classification task. Recognizing
such a text is difficult because the line between hate speech, irony, free speech, and
art is blurred. Jahan et al. [36] and Yin et al. [123] give a systematic review on
automatic hate speech detection. Because of the importance of the task, let’s take a
closer look at current approaches.

Roy et al. [88] follow a multilingual approach. They preprocess the text from
Twitter by using a special tokenization of tweets. The cleaned text, emojis and
segmented hashtags are encoded by different transformers and concatenated. A final
multilayer perceptron generates the classification. The results for the HASOC 2019
tweet dataset [58] show that the additional signal from the emojis and the hashtags
yield a performance boost for hate speech detection as well as for classifying the
type of hate speech. They achieve F1-values of 90.3%, 81.9% and 75.5% on the
English, German, and Hindi test sets.

Mathew et al. [59] argue that the decisions of hate speech classifiers should
be explained. They present the HateXplain dataset with about 20k posts. The
annotation contains class labels (hateful, offensive, or normal), the target group
being vilified, and span annotations of words causing the classification. Overall
a BERT model yields the best results in explaining the hate speech classification
decisions.

A recent competition was the SemEval-20 Task 12 [128], where 14,100 Twit-
ter tweets were manually labeled as either offensive or not offensive. Using a
RoBERTa classifier (Sect. 3.1.1) Wiedemann et al. [110] achieved 92.0% F1-value
and won the competition. In a later experiment an ensemble of ALBERT models
(Sect. 3.1.1) increased this score to 92.6%. In summary, the automatic classification
of hate speech can be solved by PLMs with high quality.

5.1.2 Multilabel Classification

Multilabel classification is required whenever a text can belong to multiple classes
simultaneously. When a very large number of classes is available, this is sometimes
called extreme multilabel classification. An example problem is the assignment of
tags to Wikipedia articles, where Wikipedia has almost 500k tags. In multilabel
classification usually a score or probability for each class is returned. This can be
used to rank the classes. Traditional metrics such as accuracy, which assume that
only one class is correct, cannot be applied. An alternative is to measure the quality
of ranking induced by the score (c.f. Sect. 6.1.2). A popular measure for a predicted
score vector .ŷi ∈ [0, 1] and a ground truth label vector .yi ∈ {0, 1} is the precision at

5.1 Text Classification 193

k, which counts, how many correct classes are among the k classes with the highest
score:

.prec@k = 1

k

∑

l∈rankk(ŷ)

yl DCG@k = 1

k

∑

l∈rankk(ŷ)

yl

log(l + 1)
, (5.1)

where .rank(ŷ) = (i1, . . . , ik) is the vector of the indices of the k largest values of
. ŷi sorted in descending order .ŷi1 ≥ · · · ≥ ŷik . The second measure .DCG@k is the
discounted cumulative gain, where the correct assignments . yl are weighted by their
rank l transformed with .1/ log(l+1) [14]. This reflects that correct assignments with
a lower rank should get a lower weight. In addition, there is a normalized version
.nDCG@k, where .DCG@k is divided by its maximal possible value.

Separate classifiers for each class often yield a very good accuracy, but suffer
from very bad training and prediction time. In the worst case these classifiers have to
be trained per label with all positive instances of a label and all instances of the other
labels as negative samples. To mitigate this effect Parabel [83] is based on a tree
ensemble. First Parabel creates label representations by averaging all the instances
that belong to a label and normalizing this averaged vector to 1. Then balanced 2-
means clustering is applied on the label space recursively until all leaf nodes in the
clustered label tree contain fewer than M labels, e.g. .M = 100. For each internal
node of the tree and for the leaf nodes, classifiers are trained to decide which path of
the tree an instance follows. Thus, a balanced label hierarchy is generated efficiently
based on a label representation such that labels with similar inputs end up together
at the leaves. Up to 3 such trees are used as an ensemble.

Finally, for each label, 1-vs-All classifiers are trained as a MAP estimate of the
joint probability distribution over labels. The negative examples used for training
these classifiers are drawn from the other labels in the same leaf, so the most
similar or confusing counterexamples are employed. For prediction a beam search
is performed in the tree and only for the k most probable labels a classification is
actually performed. Parabel has been applied to problems with 7M labels and can
make predictions in logarithmic time. Parabel is significantly faster at training and
prediction than state-of-the-art extreme classifiers while having almost the same
precision. On the EURLex-4K it achieves a prec@1 value of 81.5 and on the
Amazon-670k a prec@1 value of 43.9, which is worse than the 45.4 of the best
approach, but its time for prediction is only 1/1000.

AttentionXML [124] is a tree-based classifier, which uses contextual embed-
dings as input features. With an attention between the many labels and the tokens,
AttentionXML represents a given text differently for each label. The architecture of
AttentionXML consists of a word representation layer, a bidirectional LSTM layer,
an attention layer with attention from all labels to the BiLSTM (Sect. 1.6) encoded
input and lastly a fully connected layer and an output layer.

AttentionXML first builds a deep tree similar to Parabel. Then the tree is
compressed to a shallow and wide tree, which allows to handle millions of
categories, especially for “tail labels”, i.e. classes with only a few examples in the

194 5 Foundation Models for Information Extraction

training set [37]. The model uses the binary cross-entropy loss function. For each
level of the tree this model is trained, being initialized with the model of the prior
tree level. AttentionXML trains label ranking with negative labels sampled by fine-
tuned label recalling models. For prediction the tree is used for a beam search, so
only tree branches where the parent nodes have highest scores are considered.

On the EURLex-4K benchmark AttentionXML achieves .prec@1 = 87.1% and
.prec@5 = 61.9%. This means that the highest scoring prediction of the model
is correct for .87.1% of the test predictions and .61.9% of the five highest scoring
predictions are correct. Note that the choice of k should be made according to the
average number of labels per document in the training set. On the Amazon670k
dataset [60] with 679k categories AttentionXML achieves .prec@1 = 47.6% and
.prec@5 = 38.9%. This means that about 40% of the alternative products are
correctly identified.

LightXML [39] employs a transformer encoder to generate contextual word
features and generates negative examples for each category in a dynamic way. First,
a set of label clusters is created based on the input features so that each label belongs
to one cluster. Then a pre-trained model like RoBERTa (Sect. 3.1.1) is employed to
encode the input text of an instance into contextual embeddings. To represent the
input text of a training example, the embeddings of the [CLS] token in the last five
layers are concatenated.

A specific label recalling model aims to predict the label clusters using the
[CLS] embeddings as input. In addition, the label ranking model receives the
[CLS] embeddings of a training instance as well as the corresponding label .
Negative examples with other labels are dynamically generated with the label
recalling model. The loss terms of both the generator and the discriminator are
combined in a joint loss function allowing end-to-end training. On the EURLex-4K
benchmark LightXML achieves a .prec@1 = 87.6% and .prec@5 = 63.4%. On the
Amazon670k benchmark it reaches a .prec@1 = 49.1% and .prec@5 = 39.6%.
Both values are slightly better than those of AttentionXML. The approach also
demonstrates SOTA performance compared to 7 alternative model on three other
multilabel datasets.

Overlap [51] groups labels into overlapping clusters. In product categorization,
for example, the tag “belt” can be related to a vehicle belt (in the “vehicle
accessories” category), or a man’s belt (under “clothing” category). Each label
can now occur at most .λ-times, where . λ is a hyperparameter of the approach. The
authors initialize their partitioning with a balanced k-means clustering and then
proceed with an optimization method to reassign labels in a way that maximizes
the precision rate. On the Amazon670k benchmark the model reaches SOTA values
of .prec@1 = 50.7% and .prec@5 = 41.6%. There are also alternative models with
a tree-based search, which are able to increase recall rates and reduce effort [22].

There is a great similarity of extreme multilabel classification with text retrieval,
which is covered in Sect. 6.1. This group of text applications has seen a large
progress in recent years. For dense retrieval the query and the document repre-
sentations are encoded by a BERT model, and the documents with largest cosine
similarity are returned. Probably many approaches from this field may be used for
text classification.

5.1 Text Classification 195

5.1.3 Few- and Zero-Shot Classification

Large autoregressive language models like GPT-2, GPT-3, Gopher and PaLM
have acquired an enormous amount of information about facts and language
by pre-training. They can be instructed to classify a text by a few examples
[76], as described in Sect. 3.6.3. Figure 5.1 provides an example prompt for the
classification of a text by sentiment [91]. This means that no additional fine-tuning
dataset is required, but only a prompt with a few examples. In the same way
the pre-trained Gopher model [85] was applied to a comprehensive set of about
150 benchmark tasks, which require the generation of answers using few-shot
instructions. Similar to other autoregressive models it may predict class labels for
documents (Sect. 2.2.5). As the results show [85, p. 56], Gopher is often able to
outperform conventional PLMs fine-tuned on the domain. Therefore, classification
by instruction seems to be a viable alternative, if a large autoregressive PLM such
as GPT-3, Gopher or GPT-Neo is available.

Recently, the RAFT [3] benchmark was released. RAFT is specifically designed
for evaluating few-shot performance in text classification tasks. It covers 11 real-
world datasets, 8 of which are binary classification, two contain three classes, and
one contains 77 classes. Each task comes with natural language instructions and 50
labeled training examples. An example benchmark is “Label the sentence based on
whether it is related to an adverse drug effect. Sentence: No regional side effects
were noted. Label: not related. . . . ”. A prompt contained less than 50 examples.
The performance is measured by an average F1 over all 11 tasks. On these RAFT
benchmarks BART yields an F1 average of 38.2%, GPT-Neo (2.7B) achieves 48.1%,

Fig. 5.1 A query for few-shot learning for sentiment analysis with GPT-Neo, a free version of
GPT with 2.7B parameters. The query can be evaluated on the API [91]

196 5 Foundation Models for Information Extraction

AdaBoost decision trees 51.4%, and GPT-3 (175B) scores 62.7%. Humans achieve
an average F1 of 73.5%.

PET [90] asks users to specify one or more patterns that convert an input example
x into a cloze prompt (Sect. 2.1.2) so that it can be processed by a masked language
model like BERT. In addition, users must describe the meaning of all output classes.
This is done with a “verbalizer” that assigns a natural language expression to each
output y. Multiple verbalizers may be specified for the same data. An example is
“I really enjoyed this movie. It was [MASK].” and “I really enjoyed this movie.
Question: Is this a positive movie review? Answer: [MASK].” for the text “I really
enjoyed this movie”. The PLM is then trained to maximize .p(y|x) for observed
pairs. PET achieves a new state of the art on RAFT with an average F1 of 82.2%
and performs close to nonexpert humans for 7 out of 11 tasks.

Foundation Models can also be used to generate new data for a text classification
task. If, for example, input for a restaurant classification task is required, the model
can be prompted to generate a new restaurant review for a specific label Sect. 3.6.6.
In this way training data for fine-tuning a model can be created.

Available Implementations

• The code and trained parameters of many classical models like BigBird, XLNET,
T5 are available at Hugging Face https://huggingface.co/transformers/.

• The LightXML model code is here https://github.com/kongds/LightXML.
• The code of PET can be found here https://github.com/timoschick/pet.

5.1.4 Summary

For document classification, a PLM that has been pre-trained with a large set of
documents is usually fine-tuned to solve a specific classification task. Typically, the
embedding of a particular token such as [CLS] is used as input to a logistic classifier.
This setup has outperformed all previous bag-of-word classifiers such as the SVM.
Specialized PLM variants like XLNET or ALBERT show a higher performance
because of their more effective pre-training. For longer documents, suitable models
like BigBird yield good results. Identifying hate speech can be considered as a
classification task, where good results are achieved with standard models such as
BERT and RoBERTa.

The situation is different for multi-label classification, where several categories
can be correct for one document. Here, tree-like classifiers in combination with
contextual embeddings show good results. By the tree a small number of candidate
classes can be selected reducing the training and execution times. Extreme multi-
label classifications, such as matching product descriptions to related product
descriptions, are close to a document retrieval tasks and can benefit from techniques
developed in this area, e.g. dense retrieval by DPR.

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/kongds/LightXML
https://github.com/kongds/LightXML
https://github.com/kongds/LightXML
https://github.com/kongds/LightXML
https://github.com/kongds/LightXML
https://github.com/timoschick/pet
https://github.com/timoschick/pet
https://github.com/timoschick/pet
https://github.com/timoschick/pet
https://github.com/timoschick/pet

5.2 Word Sense Disambiguation 197

Large pre-trained autoregressive language models like GPT-3, Gopher and
PaLM may be instructed by few-shot learning to solve classification tasks. Recent
approaches achieve a performance close to humans. Not long ago an API has been
released which allows to pre-train GPT-3 and adapt it to specific data and specific
classification tasks (Sect. 3.6.2). A simpler alternative is InstructGPT, which can be
easily directed to perform a classification, e.g. a sentiment analysis (Sect. 3.6.5).
However, a formal evaluation of the performance of this approach is not yet
available, as the model would have to process the training data.

While PLMs have achieved promising results on demanding benchmarks, most
of these models are not interpretable. For example, why does a model arrive
at a particular classification? Why does a model outperform another model on
one dataset, but performs worse on other datasets? Although the mechanisms of
attention and self-attention provide some insight into the associations that lead to a
particular outcome, detailed investigation of the underlying behavior and dynamics
of these models is still lacking (Sect. 2.4.5). A thorough understanding of the
theoretical aspects of these models would lead to a better acceptance of the results.

5.2 Word Sense Disambiguation

In nearly all languages the same word may express different concepts. An example
is the word “set”, which may be a verb, an adjective, or a noun and can be interpreted
as ‘a group of things’, a ‘scenery’, a mathematical concept, a sports term, etc. The
WordNet [62] lexical database lists 45 different senses for this word. Word sense
disambiguation (WSD) aims to distinguish these different meanings and annotate
each word with its sense. It can be treated as a classification task, where each
word is assigned to a sense of a sense inventory such as WordNet. The contextual
embeddings generated by PLMs offer a way to identify these meanings. Bevilacqua
et al. [13] provide a recent survey of WSD approaches.

WSD can be used for a number of purposes. A traditional application is search,
where the different senses of the same word are distinguished in the query. Lexical
substitution [13] aims to replace a word or phrase in a text with another with nearly
identical meaning.

5.2.1 Sense Inventories

WSD obviously depends on the definition of senses, which have to be assigned to the
words. The main sense inventory for WSD in English is WordNet [62]. It consist of
expert-made synsets, which are sets of synonymous words that represent a unique
concept. A word can belong to multiple synsets denoting its different meanings.
Version 3.0 of WordNet covers 147,306 words (or phrases) and 117,659 synsets.
WordNet is also available for languages other than English through the Open

198 5 Foundation Models for Information Extraction

Multilingual WordNet project [17]. Wikipedia is another sense inventory often used
for Entity Linking (Sect. 5.3.3), where a person, a concept or an entity represented by
a Wikipedia page has to be linked to a given mention of the entity in a text. BabelNet
[71] is a mixture of WordNet, Wikipedia and several other lexical resources, such
as Wiktionary [111] and OmegaWiki [75]. It is highly multilingual covering more
than 500 languages.

WordNet’s sense inventory is often too fine-grained. For example, the noun
“star” has eight meanings in WordNet. The two meanings referring to a “celestial
body” distinguish only whether the star is visible from earth or not. Both meanings
are translated in Spanish as “estrella”, so this sense distinction is useless for this
translation. It has been shown that for many tasks more coarse-grained sense
inventories are better [81].

The best WSD algorithms use PLMs pre-trained on large document corpora.
Through fine-tuning, they are trained to assign senses from the available sense
inventory. In some cases, nearest neighbor operations are employed to measure the
distance between embeddings and determine the most appropriate sense.

5.2.2 Models

GlossBERT [33] employs a pre-trained BERT encoder. Its fine-tuning input is both
the context sentence (where the word is used in the specific sense) and the gloss
(a sentence defining the meaning of the word). GlossBERT is trained to predict
whether the gloss correctly describes the use of the target word. The SemCor3.0 [61]
benchmark is annotated with WordNet senses. GlossBERT achieves a new SOTA of
77.0% F1 on this data.

EWISER [12] expresses WSD as a simple Word annotation task (Sect. 2.1.3),
where a sense label is assigned to each word. It starts with an average of BERT
embeddings for each word . vt from different contexts and transforms them with a
linear layer and the Swish [86] activation function .f (x) = x ·sigmoid(βx). For each
combination of a word and a part-of-speech a set .S(vt) of possible word senses and
hypernyms is determined similar to [78]. Then the approach computes probabilities
that a word belongs to a synset in .S(vt). By this approach the prediction takes into
account which WordNet senses are possible for a word. It achieves a new SOTA

of 80.1% on a combination of WSD benchmarks. This value is also an estimated
upper bound on human inter-annotator agreement [69], showing that WSD is on
par with humans. The paper lists the results for a number of alternative approaches.
The BEM model [15] is a similar system yielding comparable accuracy. A detailed
analysis of how PLMs (especially BERT) capture lexical ambiguity can be found in
[52]. The authors show that the embedding space of BERT covers enough detail to
distinguish word senses.

5.2 Word Sense Disambiguation 199

MuLaN [9] is based on a multilingual list . D of synsets in different languages.
For example, . Dmay contain the synset corresponding to the “fountain” meaning of
“spring”, which is expressed in different languages as “QuelleDE ”, “springEN ”,
“fountainEN ”, “manantialES ”, “brolladorCAT ”, “sourceFR ”, “fonteIT ”, and
“sorgenteIT ”. The semantic repositories WordNet [62] and BabelNet [71] are
employed to create . D. MuLaN has the task to annotate an unlabeled corpus U in the
target language with senses using a corpus .Llab in the source language (e.g. English)
as input, which is annotated with senses from . D . This is done in the following
steps:

• Creating embeddings: The multilingual mBERT (Sect. 3.3.1) trained on 104
languages is used to compute the embedding .emb(σ,w) of every word w in
context . σ in . Llab. If w is split into multiple tokens, their average is used. If w is a
compound, first the tokens of each word within the compound are averaged and
then the average over words is taken as representation for w.

• Candidate production: Then for each word w with embedding .emb(σ,w) in
context . σ from .Llab the nearest 1000 neighbors from the unlabeled corpus U are
determined by FAISS [40]. As an example we select the text span .v =“correre”
from the context .τ =“Mi hanno consigliato di andare a correre.” in .Llab as the
closest candidate .emb(τ, v) for the instance .w =“running” from the sentence
.σ =“I’ve seen her go running in the park.”.

• Synset compatibility: Subsequently, it is checked if the closest candidate word v
is contained in a synset of w in . D. Otherwise it is discarded.

• Backward compatibility: Finally, the nearest neighbors of .emb(τ, v) in context . τ
in .Llab are determined. .(τ, v) is only retained, if its nearest neighbor list contains
w.

• Dataset generation: After a number of additional filtering steps the final annota-
tion of words in the target corpus U is performed.

As a labeled corpus .Llab a union of SemCor [63] and the WordNet Glos Corpus
(WNG) [46] is used, which are annotated with senses. As unlabeled corpus U
the Wikipedia is used for Italian, French, Spanish and German. When tested on
SemEval-13 [70] and SemEval-15 [66], MuLaN is the best system to annotate
words with senses in the four languages with F1-values above 80%. An important
advantage of MuLaN is that it is able to transfer sense annotations from high-
resource to low-resource languages.

Escher [8] reformulates WSD as a span prediction problem. The input to the
model is a sentence with a target word and all its possible sense definitions. The
output is a text span identifying the gloss expressing the target words most suitable
meaning. As an example consider Fig. 5.2 with the input sentence “<s> The bully
had to <t> back down </t>. </s>” where the target word is enclosed in “<t>” and
“</t>”. Subsequently, two glosses are appended.

The span is predicted similar to Sect. 2.1.3 by separately computing the prob-
ability for the first and last token of the span covering the correct gloss. In the
example the sentence “Move backwards from a certain position.” is selected as span,
which describes the correct sense. By lowering the prior probability of the most

200 5 Foundation Models for Information Extraction

Fig. 5.2 Escher [8] takes as input a sentence, where the target word “back down” is enclosed by
“<t>” and “</t>”. The most probable sense of the target word is indicated by the sentence selected
by span prediction. A high probability of a span start is indicated by “[” and a high probability of
the span end is indicated by “]”

frequent sense for a word the approach is able to reduce the most frequent sense
bias. Escher uses BART.LARGE (Sect. 3.1.3) as PLM architecture, as it is effective
for reading comprehension. The output of its last decoder layer is used to represent
the input tokens and to compute the start and end token distributions. On a number
of SemEval datasets [66] Escher has higher F1-scores compared to its competitors
and this difference is statistically highly significant. Best results are achieved for
nouns and adjectives with F1-values .> 83%, while for verbs the F1-value is only
69.3%.

ConSec [10] determines the sense of a token by considering not only the context
words, but also the senses assigned to the neighboring words. It is based on an
extension of DeBERTa, a BERT variant with superior performance (Sect. 3.1.1).
ConSec uses WordNet example sentences with annotated meanings (glosses) as
additional training data. The approach yields a SOTA of 83.2% F1 when applied
to the SemCor3.0 benchmark [61].

Available Implementations

• The codes of GlossBERT and EWISER and trained models are available for
a number of different languages https://github.com/HSLCY/GlossBERT https://
github.com/SapienzaNLP/ewiser.

• Escher along with the necessary training data is available at https://github.com/
SapienzaNLP/esc.

5.2.3 Summary

WSD can be handled as a classification task, where each word is assigned to a
number of possible meaning classes. Often WordNet is used as the sense inventory.

https://github.com/HSLCY/GlossBERT
https://github.com/HSLCY/GlossBERT
https://github.com/HSLCY/GlossBERT
https://github.com/HSLCY/GlossBERT
https://github.com/HSLCY/GlossBERT
https://github.com/SapienzaNLP/ewiser
https://github.com/SapienzaNLP/ewiser
https://github.com/SapienzaNLP/ewiser
https://github.com/SapienzaNLP/ewiser
https://github.com/SapienzaNLP/ewiser
https://github.com/SapienzaNLP/esc
https://github.com/SapienzaNLP/esc
https://github.com/SapienzaNLP/esc
https://github.com/SapienzaNLP/esc
https://github.com/SapienzaNLP/esc

5.3 Named Entity Recognition 201

GlossBERT compares the contextual embedding of a word with the embedding
of a word in an example sentence (gloss) of WordNet. EWISER and MULAN
directly work on the synsets of WordNet and capture the sets of possible senses
and hypernyms. They are able to annotate senses in four languages with an F1-value
above 80%. Escher reformulates WSD as a span prediction problem increasing F1 to
83%. ConSec takes into account the senses of nearby tokens and achieves a similar
performance.

As WSD models get better, there is a need for more demanding benchmark
datasets, which possibly may be generated by adversarial techniques. Moreover,
there is a trend to WSD models which are more robust to domain shift and can
cope with text from social media documents. To advance WSD it is necessary to
extend sense-annotated data, especially for rare senses. In addition, multilingual
WSD systems may be constructed which require large-scale multilingual WSD
benchmarks. There are tendencies in WSD to do away with the fixed sense inventory
and to distinguish the senses in other ways, e.g., in a lexical substitution task or by
generating the definition of a word in a particular context.

An opportunity is the integration of WSD with entity linking (Sect. 5.3.3), where
the model is required to associate mentions with entries in a knowledge base such as
Wikipedia. As WSD systems work fairly well now, it would be possible to combine
them with other applications like question answering or dialog systems. It has to be
tested, whether an explicit inclusion of WSD is able to generate better results. For
retrieval tasks, WSD has been superseded by embedding-based methods (Sect. 6.1),
which provide a better hit rate.

5.3 Named Entity Recognition

Named entity recognition (NER) refers to the task of tagging mentions of named
entities, such as persons, organizations and locations in texts. Labeled datasets for
NER exist across many domains, e.g. news, science and medicine [72]. Typically
these datasets are annotated in the IOB2 format, which, for instance annotates
the first token of a person with B-per and all other tokens of that entity with I-
per. The O-tag is used for all tokens outside of entity mentions. An example is
“U.N.B-org officialO PeterB-per EkeusI-per headsO forO BagdadB-loc .” NER
involves the prediction of these tags for each token, i.e. the suffixes in the prior
example. Therefore, it can be considered as a classification task, where a tag is
assigned to each token. A standard dataset for NER is the CoNLL-2003 dataset [89],
which contains English resp. German news texts with annotations for persons,
organizations, locations, and miscellaneous names. Surveys on NER are provided
by Li et al. [48], Nasar et al. [68] and Bose et al. [18].

NER is particularly useful in areas with a highly specialized vocabulary. Exam-
ples include the fields of healthcare or electromobility, where many thousands of
publications are released each year. Since few experts understand the terminology,

202 5 Foundation Models for Information Extraction

NER systems are particularly valuable for identifying publications on specialized
topics. Of course, the NER types must be adapted to each area.

In the following section, we present approaches to ordinary NER where each
word can have a single entity type. Named entities can also be nested, e.g.
“[[UK]gpe Embassy in [France]gpe] facility”. This case is discussed in the second
section. Even more challenging is the mapping of a named-entity phrase to the
underlying unique entity in a knowledge base or ontology, e.g., a person. This is
called entity linking and is discussed in the third section.

5.3.1 Flat Named Entity Recognition

In flat named entity recognition each token corresponds to at most one named entity.
BERT can be fine-tuned to NER by predicting tags for each token using a logistic
classifier (Fig. 2.5) as a final layer. For this setup BERT.LARGE yielded 92.8% F1-
value on the CoNLL-2003 test data. While the F1-values for persons and locations
were higher (.≈ 95%), the F1-value for miscellaneous names (78%) was much lower,
as these entities form a vaguely defined class.

LUKE [117] treats words and entities in a given text as independent objects,
and outputs contextual embeddings of tokens and entities. The model is based on
RoBERTa and trained to predict randomly masked words and entities in a large
entity-annotated corpus derived from Wikipedia. In this way, it obtains a lot of
information on the relation between entities in the text. It contains an entity-aware
self-attention mechanism that is an extension of BERT’s self-attention mechanism
and takes into account embeddings, which indicate if a token represents text or an
entity. It yields an F1-value of 94.3-F1 for CoNLL-2003, which is near-SOTA.

ACE [106] builds on the assumption that weighted sums .
∑

i∈I Ai ∗ emb(vi)

of different embeddings .emb(vi) of tokens . vi yield better results than single
embeddings. A controller samples a subset I from a set of eight embeddings
(e.g. BERT.BASE, GloVe, fastText, etc.) and a NER model is trained and returns
an accuracy score. The accuracy is treated as a reward signal in a reinforcement
setting using the policy gradient algorithm ([112]) to select an optimal subset I .
As NER model a BiLSTM model (Sect. 1.6) with a final CRF-layer was chosen. A
CRF (Conditional Random Field) [100] is able to model the probabilistic relation
between the tags in detail. The fine-tuned model reaches a SOTA F1-score of . 94.6%
for CoNLL-2003.

KeBioLM [126] is a biomedical pre-trained language model aiming to improve
NER by including additional knowledge. The authors extract 660M entities from
the PubMed corpus [73] with abstracts of biomedical literature and link them to the
UMLS knowledge base that contains more than 4M entities and their synonyms as
well as relations. They train a variant of BERT on the PubMed data and explicitly
generate embeddings for entities. Relation information is included by the TransE-
mechanism (Sect. 3.4.1). The joint loss function is a mixture of loss functions
for masked language modeling, entity detection, and entity linking. The JNLPBA

5.3 Named Entity Recognition 203

benchmark contains 2000 PubMed abstracts with molecular biology-related entities.
KeBioLM reaches a SOTA of 82.0% F1 on JNLPBA. This shows that pre-training on
domain texts and the inclusion of additional knowledge can improve NER results.

Retrieval is a way to enhance the context a PLM may use for NER. Wang
et al. [107] query a search engine with the input text that should be tagged. They
rank (Sect. 3.4.5) the returned results by the similarity of RoBERTa embeddings
and concatenate the top ranked results and the input text. This is fed into a variant of
RoBERTa to generate token embeddings. As the model can exploit the attention to
the retrieved texts, the generated embeddings are potentially more expressive. The
results on CoNLL 2003 indicate that retrieval can increase the F1-value about 0.5%
and could be combined with current SOTA-models.

5.3.2 Nested Named Entity Recognition

Often named entities have an internal structure. An example for such nested entities
is the sentence “Last night, the [[Chinese]gpe embassy in [France]gpe] facility was
closed.” In this case a single token may have several entity tags and the NER task
has to be formulated differently.

MRC [50] treats nested NER as a question-answering task. For example, the
extraction of entities with a “location” label is formalized as the question: “Which
locations are mentioned in the text?” The questions are formulated using templates
that reflect the annotation guidelines. When these questions are answered for each
entity type, overlapping named entities can be detected. MRC uses BERT’s span
prediction approach (Sect. 2.1.3) to mark the beginning and end of spans in the
token sequence for an entity type. In addition, MRC predicts the start and the end
of each entity to allow that there are overlapping entities of the same type.

Nested entities are common in the medical domain. The Genia Corpus [43]
contains entity annotations for proteins, viruses, DNA, RNA and many more, with
.17% of the entities being nested. MRC achieves a SOTA of 83.8% F1 on the Genia
benchmark. The ACE-2005 benchmark [104] contain diverse nested entities like
persons, facilities, or vehicles with an overlap of 22%. MRC reached an F1-value
of 86.9% for ACE-2005. A similar approach [125] also predicts spans of different
entities and yields 85.4% for ACE-2005. A two-stage algorithm called Locate and
Label is proposed by Shen et al. [93], who first extract candidate entities and then
categorize them in a second step. They yield 86.7% for the nested NER on ACE-
2005 using BERT or one of its variants.

Instead of using a BERT model pre-trained on general documents, PubMed-
BERT [102] pre-trains its BERT model with 100M parameters exclusively on
21 GB medical texts from PubMed. PubMedBERT achieves 86.3% F1 for NER on
the BLURB benchmark [31]. The model also yields SOTA scores for other task like
classification and relation extraction summarized in an average score of 82.9%. This
result strongly supports pre-training on domain-specific data. BioELECTRA [42]
is a biomedical domain-specific language encoder model that adapts ELECTRA

204 5 Foundation Models for Information Extraction

(Sect. 3.1.1) for the Biomedical domain. ELECTRA employs a sample-efficient
‘replaced token detection’ technique for pre-training, which causes the model to
include an enormous amount of information from the training data. BioELECTRA
is pre-trained on PubMed and PubMed Central full-text medical articles. For NER,
it arrives at the best score with 86.7% F1-value on the BLURB benchmark [31]. The
model also yields a similar score of 82.6% as PubMedBERT for the other BLURB
tasks.

Available Implementations

• BERTLARGE for token classification https://huggingface.co/transformers/model_
doc/model_doc/bert.html,

• Luke https://huggingface.co/transformers/model_doc/model_doc/luke.html
• ACE https://github.com/Alibaba-NLP/ACE,
• MRC https://github.com/ShannonAI/mrc-for-flat-nested-ner
• Locate and Label [93] https://github.com/tricktreat/locate-and-label
• Bioelectra for nested NER https://github.com/kamalkraj/BioELECTRA

5.3.3 Entity Linking

After identifying a named entity in a text (entity mention), one often wants to
disambiguate it, i.e. assign the mention to a unique entity in a KB or ontology. This
involves unifying different writings of an entity name. To attach the corresponding
facts and relation to the same entity, it is important to link the different writings of a
name, e.g. “Joe Biden was elected as 46th president of the United States of America”
and “President Biden was born in Scranton Pennsylvania”. Note that there exist
about 35 writings for the name “Muammar Muhammad Abu Minyar al-Gaddafi”,
e.g. “Qadhafi”, “Gaddafi” and “Gadhafi” in addition to versions with the different
first names. Entity Linking approaches aim to solve this problem.

Entity linking is useful for tasks such as knowledge base population, chatbots,
recommender systems, and question answering to identify the correct object or
entity referred to. It is also required as a preprocessing step for models that
need the entity identity, such as KnowBERT [80] or ERNIE [99] (Sect. 3.4.1).
Early approaches rely on semantic embeddings to match entity mentions belonging
together [82]. Modern procedures use contextual embeddings to characterize the
entity mentions. Sevgili et al. [92] provide a comprehensive survey of Deep Learn-
ing based entity linking approaches. They sketch the general solution architecture
of entity linking approaches as shown in Fig. 5.3 and compare different methods.

BLINK [113] follows the scheme of Fig. 5.3. First entity mentions together
with their types are extracted from a text by NER. Then it uses a BERT model
to compute embeddings for mention contexts and the entity descriptions in the KB.
This also involves the normalization of entity names. Using an efficient approximate

https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/bert.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://huggingface.co/transformers/model_doc/model_doc/luke.html
https://github.com/Alibaba-NLP/ACE
https://github.com/Alibaba-NLP/ACE
https://github.com/Alibaba-NLP/ACE
https://github.com/Alibaba-NLP/ACE
https://github.com/Alibaba-NLP/ACE
https://github.com/Alibaba-NLP/ACE
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/ShannonAI/mrc-for-flat-nested-ner
https://github.com/tricktreat/locate-and-label
https://github.com/tricktreat/locate-and-label
https://github.com/tricktreat/locate-and-label
https://github.com/tricktreat/locate-and-label
https://github.com/tricktreat/locate-and-label
https://github.com/tricktreat/locate-and-label
https://github.com/tricktreat/locate-and-label
https://github.com/kamalkraj/BioELECTRA
https://github.com/kamalkraj/BioELECTRA
https://github.com/kamalkraj/BioELECTRA
https://github.com/kamalkraj/BioELECTRA
https://github.com/kamalkraj/BioELECTRA

5.3 Named Entity Recognition 205

Fig. 5.3 Entity Linking includes the three steps entity recognition, which identifies entity
mentions in a text, candidate generation generating possible entities for the mention using the KB,
and entity ranking, computing a similarity score between the candidates and the mention. Image
adapted from [92], reprinted with kind permission of authors

k-nearest-neighbor indexing scheme FAISS [40] for embeddings (Sect. 6.1.4).
FAISS is able to retrieve the best matching entity candidates from the KB with
little computational effort. This approach is identical to dense retrieval by DPR
(Sect. 3.4.5). Each retrieved candidate is then examined more carefully with a
cross-encoder that concatenates the input context, the mention and entity text and
assigns a score to each candidate entity. Finally, the candidate with the highest score
is selected. Although no explicit entity embeddings are computed, the approach
achieves SOTA on the TACKBP-2010 benchmark [29] with an accuracy of 94.5%.
A very similar approach is chosen by EntQA [130], which also exploits a retriever-
reader architecture and yields competitive results on several benchmarks.

GENRE [25] departs from the common solution architecture to most entity
linking approaches and uses the encoder-decoder model BART (Sect. 3.1.3) to
disambiguate entities. This model has to recover text corrupted by a number of
different approaches during pre-training and therefore gathers a lot of knowledge
about language. The model is fine-tuned to generate disambiguated named enti-
ties. For example, the sentence “In 1503, Leonardo began painting the Mona
Lisa.” is translated to “In 1503, [Leonardo](Leonardo da Vinci) began paint-
ing the Mona Lisa.”, where “[Leonardo](Leonardo da Vinci)” and
“Mona Lisa” are the unique headings of the corresponding articles
in Wikipedia. GENRE uses a constrained BEAM search for decoding, which
either copies the input text or generates a unique Wikipedia entity name. In
addition, GENRE can perform mention detection and end-to-end entity linking
by associating a mention with the corresponding KB entity (e.g. the Wikipedia
article). On six different benchmarks, GENRE achieves an average F1-value of
88.8% and outperforming BLINK, which scores 77.0%. In addition, GENRE has
a smaller memory footprint (2.1 GB) than BLINK (30.1 GB). Finally, the model has
a tendency to copy the mention exactly, which is helpful for new, unseen named
entities.

206 5 Foundation Models for Information Extraction

Fig. 5.4 BERT.LARGE can be fine-tuned to predict masked ‘entity tokens’ taking into account
the corresponding text. During application successively the entities with highest probability are
assigned. In this way, the joint probability of entities can be exploited [118]

EntMask [118] is similar to LUKE (Sect. 3.4.4) and learns to predict masked
entities. To disambiguate new mentions, the authors use local contextual information
based on words, and global contextual information based on already disambiguated
entities. Their model is trained to jointly produce embeddings of words and entities
and is also based on BERT.LARGE. For fine-tuning 30% entities corresponding to
Wikipedia hyperlinks are masked randomly and have to be predicted as shown in
Fig. 5.4. During application the model predicts an entity for each mention, and from
the unresolved mentions actually assigns the mention with the highest probability
as ‘observed’. In this way, this assignment can influence the prediction for the
remaining mentions, introducing a global perspective. On a number of benchmarks
the approach yields roughly similar results to GENRE, with a small advantage on a
few benchmarks.

Available Implementations

• GENRE: model source code and datasets from Facebook https://github.com/
facebookresearch/GENRE

• BLINK available at https://github.com/facebookresearch/BLINK
• EntMask code: https://github.com/studio-ousia/luke.

https://github.com/facebookresearch/GENRE
https://github.com/facebookresearch/GENRE
https://github.com/facebookresearch/GENRE
https://github.com/facebookresearch/GENRE
https://github.com/facebookresearch/GENRE
https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK
https://github.com/studio-ousia/luke
https://github.com/studio-ousia/luke
https://github.com/studio-ousia/luke
https://github.com/studio-ousia/luke
https://github.com/studio-ousia/luke
https://github.com/studio-ousia/luke

5.4 Relation Extraction 207

5.3.4 Summary

It is well known that named entities play a crucial role in understanding the meaning
of a text. Thousands of new named entities appear every day, requiring special
effort to interpret their sense. Due to the availability of contextual embeddings in
PLMs Named Entity Recognition (NER) could increase F1-value on the CoNLL
2003 benchmark from 85% to 94.6%, dramatically reducing errors. The standard
approach is token annotation by BERT, which marks each token with its correspond-
ing entity type. Higher performance can be achieved by treating named entities as
special tokens (LUKE), combining different kinds of embeddings (ACE), or using
retrieval approaches based on embeddings. Empirical evaluations demonstrate that
it is extremely important to train the underlying PLM on domain texts, e.g. from the
medical domain. Single tokens or compounds can belong to multiple entity types at
the same time. For this, nested NER question-answering approaches can be used to
mark token spans as belonging to an entity type. Again training on domain texts is
essential.

In Sect. 5.4.4 approaches for joint entity and relation extraction are presented.
The approaches described there can also be used for NER alone and promise high
performance. An example is REBEL, which uses the BART encoder-decoder to
translate the input sentence to a unique representation of the covered entities and
relations.

Entity linking aims to map an entity mention to the underlying unique entity
in a KB. One approach exploits the retriever-reader architecture to find entity
candidates from a knowledge base (BLINK, EntQA). Subsequently, a reader module
scrutinizes candidates and the mention to arrive at a final assignment. An alternative
is GENRE’s encoder-decoder architecture, which translates entity mentions to
unique entity names. Finally, a BERT model can determine self-attentions between
token embeddings and entity embeddings and exploit this to predict unique entities
contained in a text.

The majority of entity linking models still rely on external knowledge like
Wikipedia for the candidate generation step. However, this is not sufficient when
identifying a person who is not a celebrity. In this case we have to perform a search
in the web or social media to find information. As retrieval-reader approaches gain
popularity, this may be possible in the future. It turns out that NER and entity linking
should be performed jointly, i.e. assignments should take into account each other to
increase accuracy.

5.4 Relation Extraction

After identifying relevant entities in a sentence, a crucial part of information extrac-
tion is often the extraction and classification of relations between these entities.
This is useful, for example, when we automatically want to populate databases

208 5 Foundation Models for Information Extraction

Table 5.3 Language analysis tasks based on relation extraction [4, p. 10]. Underlining indicates
phrases annotated by the model

Task Description Example

Coreference resolution Group phrases which refer to
the same object.

Betty. (1) loves her. (1)

cute dog. (2).

Aspect-based sentiment
analysis

Extract phrases (aspects) from a
text and determine sentiments
for them (positive, negative,
neutral).

The steak.aspect was
horrible.negative .

Entity relation extraction Extract relations among entities
or concepts in a text.

Peter works as a lawyer. . →
profession(Peter, lawyer)

Event extraction Extract events, i.e. n-ary
relations among entities or
nouns in a text.

At noon.time terrorists. attacker
detonated a bomb.instrument in
Paris.place . . → conflict-attack

Semantic role labeling For each verb determine the role
of phrases w.r. to the verb.

Mary.agent sold. verb
the book.theme to
John.recipient .

or knowledge graphs with linked information. Table 5.3 contains examples of
language analysis tasks based on relation extraction that are discussed in this section.
Instances include coreference resolution, i.e. finding different mentions of an entity
in the same text, aspect-based sentiment analysis, which links phrases in a text to
opinions about them, or semantic role labeling, which identifies the function of a
phrase for a predicate in a sentence. Because entity linking associates mentions of
entities with the underlying unique object or person in an ontology, it differs from
relation extraction. A survey on prior work in relation extraction is given by Nasar
et al. [68].

5.4.1 Coreference Resolution

A first type of relation extraction is coreference resolution, whose goal is to establish
a relation between all entity mentions in a text that refer to the same real-world
entities. As an example, consider the sentence “I voted for Biden because he was
most aligned with my values”, she said. where “I”, “my”, and “she” refer to the
speaker, and “Biden” and “he” pertain to Joe Biden. Due to the combinatorial
number of subsets of related phrases, coreference analysis is one of the most
challenging tasks of NLP. A survey of coreference resolution is provided by
Stylianou et al. [98].

SpanBERT [41] is a version of BERT, which predicts contiguous subsequences
of masked tokens during pre-training, and therefore accumulates knowledge about
spans of words (Sect. 3.1.1). The authors consider all possible spans of text and
identify relevant mentions spans. In parallel, for each span x, the preceding spans y

5.4 Relation Extraction 209

are examined, and a scoring function estimates whether the spans refer to the same
entity.

This scoring function is defined as .s(x, y) = sm(x) + sm(y) + sc(x, y).
Here .sm(x) and .sm(y) measure how likely x and y are entity mentions. . sc(x, y)

determines how likely x and y refer to the same entity. As input from a span,
the scoring function gets the output embeddings of the two span endpoints and a
summary of the tokens embeddings of the span. The probability that y is coreferent
to x is computed as .p(y) = exp(s(x, y))/

∑
y′∈Y exp(s(x, y′)). In this way,

subsets of spans mentioning the same entity are formed. During the iterations
of the approach, the span definitions may be refined, and an antecedent pruning
mechanism is applied to reduce the number of spans to be considered. OntoNotes
[109] is a corpus of 1.5M words comprising various genres of text with structural
information, e.g. coreference. After fine-tuning on OntoNotes, Span-BERT achieves
a SOTA result of 79.6% F1-value on the test set. Dobrovolskii [27] propose a variant
which performs its analysis on the word level thus reducing the complexity of the
task. It raises the SOTA on OntoNotes to 81.0%.

CorefQA [114] solves coreference resolution as a question-answering problem.
A first stage considers all spans up to a maximum length as potential mentions. The
authors use a SpanBERT model to compute embeddings for all tokens. To reduce the
number of mentions, a proposal module combining the start and end embeddings of
spans is pre-trained to predict relevant mentions. Subsequently, each mention is in
turn surrounded by special tokens and the network is trained to mark all coreferent
spans similar to the question-answering fine-tuning of BERT (Sect. 2.1.3). To reduce
the number of computations only a limited number of candidates in one direction
is considered. The mention proposal and mention clustering can be trained end-
to-end. On the coreference benchmark CoNLL 2012 [84] the approach improves
SOTA significantly to 83.1% F1-value. Toshniwal et al. [103] extend this approach
by tracking only a small bounded number of entities at a time. This approach can
reach a high accuracy in coreference resolution even for long documents.

Available Implementations

• SpanBERT for relation extraction and coreference resolution at GitHub https://
github.com/facebookresearch/SpanBERT

• CorefQA at GitHub https://github.com/ShannonAI/CorefQA

5.4.2 Sentence-Level Relation Extraction

There are various types of relations which can be extracted, e.g. in the sentence
“Goethe succumbed to his suffering in Weimar” the “died-in” relation relates a
person (“Goethe”) to a location (“Weimar”). In this section we assume that entities

https://github.com/facebookresearch/SpanBERT
https://github.com/facebookresearch/SpanBERT
https://github.com/facebookresearch/SpanBERT
https://github.com/facebookresearch/SpanBERT
https://github.com/facebookresearch/SpanBERT
https://github.com/ShannonAI/CorefQA
https://github.com/ShannonAI/CorefQA
https://github.com/ShannonAI/CorefQA
https://github.com/ShannonAI/CorefQA
https://github.com/ShannonAI/CorefQA

210 5 Foundation Models for Information Extraction

have already been extracted from a sentence by NER (Sect. 5.3). Therefore, NER
errors will increase the errors for relation extraction.

SpanBERT [41] is particularly suitable for relation extraction, since entity
mentions often span over multiple tokens, and are masked by SpanBERT during
pre-training (Sect. 3.1.1). For fine-tuning the model gets one sentence and two spans
with possible relation arguments as input, which are replaced by their NER tags. An
example is “[CLS] [SUBJ-PER] was born in [OBJ-LOC] , Michigan, . . .”. The
final [CLS] embedding is input to a logistic classifier, which predicts one of the
42 predefined relation types, including “no relation”. Re-TACRED [97] is a large-
scale relation extraction dataset with 120k examples covering 41 relation types (e.g.,
per:schools-attended and org:members) and carefully checked relation annotations.
SpanBERT showed good performance on Re-TACRED with 85.3% F1-value [95].

RoBERTa (Sect. 3.1.1) can be used to generate token embeddings for relation
extraction. Zhou et al. [135] evaluate various entity representation techniques. They
use RoBERTa.LARGE to encode the input text by embeddings of the last layer. The
embeddings of the first token in each span of relation argument mentions are used
to represent these arguments. These are concatenated and adopted as input for a
softmax classifier. It turns out that enclosing an entity and adding its type with
special tokens yields the best results on the Re-TACRED dataset with 91.1% F1-
value.

Relation-QA [24] rephrase the relation classification problem into a question
answering problem. Consider the sentence .s = “Sam Brown was born in 1991.”
with the extracted entities “Sam Brown” and “1991”. Then the authors create two
queries, such as “When was Sam Brown born?” and “Who was born in 1991?”.
They fine-tune ALBERT (Sect. 3.1.1) to answer these queries by marking the spans
containing the desired entity. If no span is returned the relation does not hold.
The approach achieves an F1-value of 74.8% for TACRED, an older version of
ReTACRED with many annotation problems. RECENT [55] extends SpanBERT
and trains more than one relation classification model, i.e. one classifier for each
different pair of entity types. This restricts the possible output relation types and
helps to increase performance. On TACRED the approach yields a SOTA F1-value
of 75.2%.

5.4.3 Document-Level Relation Extraction

Especially for larger documents, the assumption that relations occur only inside a
sentence is too restrictive. Therefore, some models check for relations on the doc-
ument level. When relation arguments are in different sentences the corresponding
entities are often only referred to via coreferent mentions. Therefore, we assume in
this section that entities have been extracted and grouped into clusters denoting
the same entity by coreference resolution (Sect. 5.4.1). Obviously the errors of
coreference resolution will increase the final relation extraction errors.

5.4 Relation Extraction 211

SSAN [115] (Structured Self-Attention Network) directly takes into account
structural information such as coreference and cooccurrence of entity mentions
for PLMs such as RoBERTa. The authors modify the self-attention computations
in encoder blocks by adding specific biases, if two mentions refer to the same
entity and/or are located in the same sentence. These biases are computed from
the query and key vectors by a “transformation model” trained during fine-tuning.
Therefore, the scalar products between keys and queries are modified depending
on whether the corresponding tokens are coreferent, in the same sentence, or not.
Entity embeddings are obtained via average pooling of token embeddings of the
entity mention. For each pair .embi, embj of entity embeddings the probability of a
relation r is computed by a bilinear transformation .sigmoid(emb

ᵀ
i Wrembj) with a

trainable parameter matrix . Wr .
DocRED [121] is a large benchmark of documents annotated with named entities,

coreferences, and relations whose arguments may be located in different sentences.
Using RoBERTa.LARGE as base network, the authors achieve a SOTA of 65.9% F1 on
DocRED. Using a special BERT version SciBERT [11] trained on scientific papers
from Semantic Scholar, the algorithm also yields SOTA results for benchmarks with
chemical as well as biological texts.

ATLOP [136] marks the start and end of a mentions by a special token
and encodes a document by BERT resulting in embeddings for each token. The
embedding of token at the mention start is used as the mention embeddings. An
entity embedding is computed by pooling coreferent mentions. The first and the
second argument entity embedding of a relation are transformed by different fully
connected layers to . x1 and . x2. Subsequently, the probability of a relation r for
an entity pair is estimated by a sparse bilinear transformation .sigmoid(x

ᵀ
1 Wx2).

Trainable probability thresholds are used to decide if a relation holds. On the
DocRED benchmark the model achieves an F1-value of 63.4%.

5.4.4 Joint Entity and Relation Extraction

Since NER and relation extraction are closely related tasks and relation extraction
depends on the results of NER, it is a natural choice to model these tasks jointly.

UniRE [108] encodes entity and relation properties in a joint matrix, which has
a row and a column for each text token. While named entities, e.g. PER, are marked
on the diagonal, relations are matrix entries off-diagonal. If, for example, “David
Perkins” lives in “California” the matrix entries in the rows of the “David Perkins”
tokens and the columns of the “California” tokens are marked with the PHYS
relation. Note that in this way asymmetric relations may be specified.

All words in the input are encoded using a BERT encoder and then a biaffine
model is used to create a scoring vector for a pair . hi and . hj of embeddings

.p(yi,j |s) = softmax
(
(h

f irst
i)ᵀU1h

sec
j + U2[hf irst

i ,hsec
j] + b

)
, (5.2)

212 5 Foundation Models for Information Extraction

Fig. 5.5 For a possible relation the PL-marker model marks the first relation argument by special
‘solid’ markers and the possible second arguments by ‘leviated’ markers outside the text. The latter
get the same positions as the corresponding tokens, and do not influence the embeddings of normal
tokens during attention computation. The marker embeddings are concatenated to compute the
probability of the corresponding relation [122]

where .hf irst
i = FCLf irst (hi) and .hsec

i = FCLsec(hi) are fully connected layer
transformations of the first and second relation argument respectively. The softmax
function obtains a probability distribution over the entity and relation labels for
all matrix cells. The model minimizes three losses, one based on the actual labels
of each cell, one based on the knowledge that diagonal of entity labels should be
symmetrical and one based on the fact that a relation label implies that respective
entity labels must be present. ACE 2005 [104] consists of text of various types
annotated for entities, relations and events. On ACE 2005 UniRE yields an F1-value
of 66.0% for joint entity and relation extraction, which is less than the current SOTA

of 70.5%.
PL-Marker [122] investigate different types of mention encodings. For a

possible relation it surrounds the first argument span (subject) by solid marker
tokens. The possible second argument spans (objects) are marked by leviated tokens
Oi and ./Oi outside the text (Fig. 5.5). These get the same position embeddings as
the corresponding object spans in the text. Their attention connections are restricted,
i.e they are visible to each other, but not to the text token and other pairs of markers.
Therefore, depending on the subject span the object token embeddings can capture
different aspects. For each pair of subject-object arguments, the corresponding
embeddings are concatenated and used as input to a logistic classifier to estimate
the probability of the possible relations (or ‘no relation’). Pre-trained variants of
BERT are fine-tuned with ACE 2005 to predict the relations. With a BERT. BASE
model of 105M parameters the approach yields an F1-value of 68.8% on the ACE05
benchmark. If ALBERT.XXLARGE [45] with 235M parameters is used to compute the
embeddings, the F1-score grows to 72.3%.

For NER, the PL-Marker model uses a similar approach. For each possible
span in the input starting at token . vi and ending at token .vj,j≥i , leviated markers
are created, which do not affect the embeddings of the normal tokens. Again the
embeddings of the start and end tokens of a span as well as the embeddings of
leviated markers are input for a logistic classifier computing the probability of the

5.4 Relation Extraction 213

“This Must Be the Place” is a song by new wave band
Talking Heads, released in November 1983 as the

second single from its fifth album “Speaking in
Tongues”

(This Must Be the Place, performer, Talking Heads)
(Talking Heads, genre, new wave)

(This Must Be the Place, part of, Speaking in Tongues)
(Speaking in Tongues, performer, Talking Heads)

<triplet> This Must Be the Place
<subj> Talking Heads <obj> performer
<subj> Speaking in Tongues <obj> part of
<triplet> Talking Heads <subj> new
wave <obj> genre
<triplet> Speaking in Tongues <subj>
Talking Heads <obj> performer

inpu�ext

rela�on triples

linearized representa�on

Fig. 5.6 For the training set the relation information on the left side is linearized to the
representation on the right side. The REBEL model thus learns to translate the input text to this
linearized representation [20]

different NE-types. The model uses an efficient ‘packing’ to reduce computational
effort. On the CoNLL03 named entity benchmark, PL-markers with a pre-trained
RoBERTa.LARGE achieve an F1-value of 94.0, which is well below the current SOTA

of 96.1% held by DeBERTa [19]. When the relation extraction employs the entity
types and spans predicted by the PL-MARKER NER, the F1-value of the joint
approach drops to 70.5%, which is SOTA for the ACE05 benchmark on joint NER
and relation extraction.

REBEL [20] uses the encoder-decoder transformer BART.LARGE (Sect. 3.1.3) for
joint entity and relation extraction that outputs each relation .(h, r, t) triplet present
in the input text. It translates a raw input sentence containing entities, together with
implicit relations between them, into a set of triplets that explicitly refer to those
relations. An example is shown in Fig. 5.6. Each relation in the text appears in
the output according to the position of its first argument. An entity may be part
of different relations, which are ordered according to the position of the second
argument. This defines the order of relations in the linearized representation.

The pre-trained BART.LARGE with 400M parameters is first fine-tuned on a Wiki-
pedia and WikiData training set with 220 relation types. Then it is fine-tuned a
second time on varying benchmark datasets. On the DocRED benchmark [121] it
achieves SOTA with an F-value of 47.1%. On the New York Times dataset it has a
SOTA performance with 93.4% F1. On the ReTACRED benchmark it yields 90.4%
F1 without the inclusion of entity type markers used by other approaches.

Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis, also known as aspect-level sentiment analysis,
feature-based sentiment analysis, or simply, aspect sentiment analysis, allows
organizations to perform a detailed analysis of their member or customer feedback
data. This ranges from analyzing customer reactions for a restaurant to evaluating
the attitude to political statements made by a politician. An example is “The
waiter.1-aspect was very friendly.1-positive , but the steak mignon.2-aspect was

214 5 Foundation Models for Information Extraction

extremely burnt.2-negative .” Note that a sentence may contain different aspects and
each sentiment has to be assigned to one aspect. A recent survey of aspect-based
sentiment analysis is given by Zhang et al. [129].

DeBERTa (Sect. 3.1.1) is a powerful BERT-like model, which assumes that the
aspects are already known. It employs a disentangled attention mechanism for
computing separate attention scores between words and positions disentangling
semantic (content) and syntactic (position) representation of the textual data. The
objective is to determine the sentiment of each aspect of a given entity. The input
consist of a text and an aspect, e.g. . x =“[CLS] . . . nice video camera and keyboard
. . . [SEP] keyboard [SEP]”, where “keyboard” is a possible aspect span from the
text [94]. The output embedding of [CLS] is used as input to a logistic classifier
which generates the probabilities of three possible labels positive, negative, neutral.
The model is fine-tuned on the SemEval 2014 Task 4.2 benchmark. It yields a
mean accuracy for the Restaurant and Laptop data of 86.1%. There are much more
complex approaches like LSA (local sentiment aggregation) [119] achieving a SOTA

of 88.6% on this benchmark.
GRACE [54] aims at extracting aspects and labels simultaneously. It consists of

a first BERT.BASE module generating token embeddings of the input text, which are
fine-tuned to mark aspects by IOB2 tags for each token. The resulting information
is fed into a Transformer decoder to predict the sentiments (positive, negative,
neural) for each token. This decoder uses a multi-head cross attention to include
the information from the first aspect module. Again for each token embedding in
the last layer a logistic classifier is used to compute the probabilities of sentiments.
To make the model more robust, small perturbations for input token embeddings
are used during training. Note that no masked cross-attention is necessary as the
decoder is not autoregressive. In this way, the model is able to take into account the
interactions between aspect terms when labeling sentiments. The model achieves
87.9% F1 score for aspect extraction for the laptop reviews from SemEval 2014 and
a SOTA of 70.7% F1-value for the joint extraction of aspects and sentiments. On the
restaurant reviews it yields an F1 of 78.1% and on a tweet benchmark 58.3% for
joint sentiment extraction, again outperforming a number of other models.

Semantic Role Labeling

Semantic role labeling considers a predicate (e.g. verb) of a sentence and word
phrases are classified according to their syntactic roles, such as agent, goal, or result.
It can be used to determine the meaning of the sentence. As an example consider
the sentence “They want to do more .” where “want” is the predicate, “They” is the
agent and “to do more” is the object (thing wanted).

Crf2o [133] is a tree-structured conditional random field (treecrf) [28] using
contextual embeddings of the input tokens computed by RoBERTa as input. The
sequence .x = (x1, . . . , xT) of inputs can be arranged in a tree . y and gets a score,
which is the sum of all scores of its subtrees .s(x, y) = ∑

t∈y s(x, t). Similar to
dependency parsing, this can be used to model the dependency of phrases from the

5.4 Relation Extraction 215

predicate in semantic role labeling [87]. To generate all possible subtrees requires
. T 3 operations, which is very inefficient. The authors were able to reduce this effort
using structural constraints. In addition, they could take into account the dependency
between two branches of the tree, which generated a second order tree. During
training the models maximize the probability of the provided tree structure of the
training data for an input. CoNLL05 [21] and OntoNotes [84] are two widely used
benchmarks for semantic role labeling. For CoNLL05 the Crf2o yields an F1-value
of 89.6% and for OntoNotes it achieves an F1-value of 88.3%, which both constitute
a new SOTA. Note that this technique may also be used for dependency parsing
[132], which describes the syntactic structure of a sentence by a tree structure.

Extracting Knowledge Graphs from Pre-trained PLMs

A systematic way to extract knowledge from big language models has been
demonstrated by Wang et al. [105]. Their MaMa approach consist of a match stage
and a map stage. The match stage generates a set of candidate facts from the text
collection exploiting the internal knowledge of a language model. Similar to TransE
(Sect. 3.4.1) each fact is represented as a relation triple . (head, relation, tail.), or
.(h, r, t). A language model is used to generate tokens corresponding to r or t . As
a condition, the r values should be contiguous text sequences and express frequent
relations.

In the map stage the triples are mapped to related triples with appropriate
relations. As an example . (Dylan, is, songwriter.) is mapped to . (Bob Dylan.Q392,
occupation.P106, Songwriter.Q753110.) according to the Wikidata schema. This
stage is related to entity linking discussed in Sect. 5.3.3. The reason for mapping
to an existing KG schema is to make use of the high-quality schema designed by
experts.

A subgraph of the generated relations is shown in Fig. 5.7. Compared to the
SOTA information extraction system Stanford OpenIE [5] with 27.1% F1-value the
approach yields 29.7% F1-value. The authors report that performance increases with
model size because larger models can store more knowledge.

Available Implementations

• PL-Marker Code and models are publicly available at https://github.com/thunlp/
PL-Marker.

• REBEL on GitHub https://github.com/babelscape/rebel and Hugging Face
https://huggingface.co/Babelscape/rebel-large

• MaMa: Source code and pre-trained models at https://github.com/theblackcat102/
language-models-are-knowledge-graphs-pytorch

https://github.com/thunlp/PL-Marker
https://github.com/thunlp/PL-Marker
https://github.com/thunlp/PL-Marker
https://github.com/thunlp/PL-Marker
https://github.com/thunlp/PL-Marker
https://github.com/thunlp/PL-Marker
https://github.com/babelscape/rebel
https://github.com/babelscape/rebel
https://github.com/babelscape/rebel
https://github.com/babelscape/rebel
https://github.com/babelscape/rebel
https://huggingface.co/Babelscape/rebel-large
https://huggingface.co/Babelscape/rebel-large
https://huggingface.co/Babelscape/rebel-large
https://huggingface.co/Babelscape/rebel-large
https://huggingface.co/Babelscape/rebel-large
https://huggingface.co/Babelscape/rebel-large
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch

216 5 Foundation Models for Information Extraction

Fig. 5.7 A snapshot subgraph of the open KG generated by MAMA [105] using BERT. LARGE
from Wikipedia pages neighboring “Bob Dylan”. The blue node and arrow represent the mapped
facts in the Wikidata schema, while the yellow node and arrow denote the unmapped facts in the
open schema. The correct facts that are new in Wikidata are visualized in yellow. Image source:
[105, p. 6], with kind permission of the authors

5.4.5 Distant Supervision

Obtaining a large annotated dataset for relation extraction is a tedious task and
often difficult due to privacy issues. Since much relational knowledge is stored in
knowledge bases, Mintz et al. [65] proposed the distant supervision paradigm. The
idea behind it is to collect all text mentions where two entities co-occur, which are
in a relation in the knowledge base. Then it is assumed that for this mention pair the
relation holds. Since this is not correct for all such mention pairs, many approaches
aim to combat this ‘noise’. One approach is multi-instance learning, which relaxes
the original assumption that all text mention pairs represent the relation to the
assumption that the relation holds for at least one pair [2, 137], or a specified fraction
like 10% or depending on a score value. Take for example the entities “Barack
Obama” and “Hawaii”, which might be in a relation “born_in” in a KB. Sentences
obtained by searching for occurrences of these two entities could be “Obama was
born in Hawaii” as well as “Obama was on family vacation in Hawaii”, where only
the former represents the relation and should be used for training.

KGPool [67] uses entity pairs obtained from a KB, but also attributes associated
with them. The idea is to create representations of the entity nodes, the sentence in
which they occur, and the attributes of the entity nodes in a knowledge base, such as
their description, instance-of and alias attribute. All this information is embedded
using word and character embeddings and bidirectional LSTMs and connected
as a heterogeneous information graph. Next three layers of graph convolutional
networks are used with readout layers. Only relevant attribute nodes are picked
by using self-attention on the readout representations, calculating a softmax score
and then filtering via a hyperparameter according to the scores. A dynamic mask

5.4 Relation Extraction 217

is created which pools out the less essential entity attribute nodes. Finally, all
intermediate representations of both entities, the sentence and the readouts are each
concatenated to form the final entity, sentence and readout representation. These
representations together with relation representations are then passed through a fully
connected layer with softmax activation to calculate the scores per relation. The
New York Times dataset is a standard benchmark for relation extraction with distant
supervision. KGPool achieves a SOTA precision@10 of 92.3%, which is the fraction
of relevant results if the ‘best’ 10 of the matches are used.

5.4.6 Relation Extraction Using Layout Information

To understand a formal text, often the document layout has be taken into account
in addition to its text. Especially in form-like texts, the positions of words and
filled-in values are important. In Sect. 7.2 we will describe, how text and images
can be simultaneously processed by one or more transformers to extract meaning
from both media. In anticipation, we will use this ability of transformers to process
multimodal inputs and additionally include layout information via 2-dimensional
positional features. A comprehensive overview of progress in layout analysis is
provided by Stanisławek [96]. We will focus on methods for key-value extraction
in this subchapter. In the task of key-value extraction, documents are analyzed
to extract printed values to written keys of interest. Sample applications are the
automatic processing of invoices, in which keys are attributes such as invoice date
or the total amount to be paid.

ReLIE [57] is a framework for key-value extraction from form-like documents.
The candidate generation step has the purpose of finding all possible value
candidates for a certain key, e.g. the value “1/16/2018” for the key “Date”. Often
these value candidates correspond to basic types such as numbers, amounts, dates,
etc. and can be found via rule based matchers. Then a transformer-based scoring
model is trained, to identify valid values among the extracted value candidates. To
this end, embeddings are learned for the keys, the position of the value candidate and
for neighboring tokens and their positions. Positions of a value candidate and each
of its neighbors are described using the 2-D Cartesian coordinates of the centroids
of their respective bounding boxes. Note that the text of the candidate value is
not encoded to avoid overfitting. All embeddings are related to each other by self-
attention in an autoencoder. The field embedding and the candidate embedding are
then compared via cosine similarity and the resulting score is scaled into a range of
.[0, 1]. The model achieves an f1-score of 87.8% on key-value extraction for invoices
and 83.3% for receipts.

DocFormer [6] consists of a CNN visual backbone and an encoder-only
transformer architecture. Visual embeddings of the document are produced via
a ResNet50 model and projected to the appropriate embedding size via a linear
layer. Text tokens are contained in a bounding box and the top-left and lower-
right position of each token bounding box are transformed to embeddings by two

218 5 Foundation Models for Information Extraction

different matrices. In addition, the height, width and distances between neighboring
bounding boxes are encoded. The 2D-positional embeddings are enriched with
absolute positions via 1D-positional embeddings. Separate spatial embeddings are
trained for visual and textual features. The attention mechanism of the DocFormer
is a modified version of the original attention mechanism. Separate attention scores
are calculated for the visual and the textual representation of tokens. In addition
to the key-query attention, the relative position embeddings of both query and key
tokens are used to add relative position attentions as well as a spatial attention for
both the visual and the textual embeddings. The spatial attention weights are shared
between the visual and the textual representations.

DocFormer is pre-trained with three different pre-training tasks: multi-modal
masked language modeling (MM-MLM), learn to reconstruct (LTR) and text
describes image (TDI). In the MM-MLM task, tokens are masked and should be
reconstructed by the model. In LTR, the model is tasked to reconstruct the image
of a document, given the multi-modal representation. A smooth-L1 loss is used to
calculate differences between the original and the reconstructed image. TDI requires
a text-image matching task, in which the model has to predict for random samples
whether the image and the text are aligned or not. The FUNSD benchmark [38]
considers forms in 199 scanned documents, where tokens have to be assigned to a
semantic key, such as ‘question’ or ‘answer’. On FUNSD DocFormer reaches an
F1-value of 84.6%, which was SOTA at publication time.

LayoutLM3 [34] uses an image embedding method inspired by the Vision
Transformer (Sect. 7.2.2). Each image is partitioned into .16 × 16 image patches
similar to the Vision Transformer and linearly transformed to embeddings. As
shown in Fig. 5.8 words and image patches are processed by the same autoregressive
Transformer. For pre-training the model uses the masked language modeling task,
masked image patches and word-patch alignment pre-training task. In the masked
image patches task, image patches have to be reconstructed by the model. The word-
patch alignment task has to enable the model to learn alignments between textual
and visual representations. The model should classify whether text and image patch
of a token are aligned, i.e. both are unmasked, or unaligned, i.e. the image patch
is masked. The PubLayNet benchmark [134] contains the document layout of more
than 1 million pdf documents matched against the correct document structure. Here
LayoutLM3 achieves SOTA with 94.5% mean average precision of bounding boxes.
It outperforms DocFormer on the FUNSD key-value extraction tasks and other
benchmarks. LayoutXLM is a recent multilingual version of LayoutLM2 [116].

5.4 Relation Extraction 219

Fig. 5.8 LayoutLMv3 takes the linear projection of image patches and word tokens as inputs
and encodes them into contextualized vector representations. LayoutLMv3 is pre-trained with
discrete token reconstructive objectives of Masked Language Modeling (MLM) and Masked Image
Modeling (MIM). Additionally, LayoutLMv3 is pre-trained with a Word-Patch Alignment (WPA)
objective to learn cross-modal alignment by predicting whether the corresponding image patch of
a text word is masked. “Seg” denotes segment-level positions. Image source: [34, p. 3], printed
with kind permission of the authors

Available Implementations

• KGPool at https://github.com/nadgeri14/KGPool

5.4.7 Summary

Relation extraction has the task to evaluate the expressed relationship in the text
with respect to specific entities. An example is the assessment of certain product
characteristics by customers, which can help to improve the product or service.
Given the massive amount of textual content, it is intractable to manually process
the opinion information.

For simple cases, the relation arguments are know and relation extraction can
be solved as a simple classification task using some BERT variant like RoBERTa,

https://github.com/nadgeri14/KGPool
https://github.com/nadgeri14/KGPool
https://github.com/nadgeri14/KGPool
https://github.com/nadgeri14/KGPool
https://github.com/nadgeri14/KGPool

220 5 Foundation Models for Information Extraction

DeBERTa, or SpanBERT. However, to actually use these models we have to extract
the relation arguments in a prior step, which leads to an increased total error.

More challenging is the simultaneous extraction of relation arguments and the
corresponding relation type, as these task depend on each other. UniRE annotates
entities and relations in a joint matrix and introduces a corresponding bias into
the self-attention computations. PL-marker marks the first relation arguments with
special tokens and the second argument with so-called leviated tokens. These
tokens have specific attention properties and are able to improve the performance
on popular benchmarks. GRACE employs a specific encoder-decoder architecture
where the encoder labels the relation arguments (aspects) and the decoder assigns
relation tags to each token. REBEL uses the BART encoder-decoder to translate the
input sentence to a unique representation of the covered relations.

Relation extraction models have been adapted to specific applications. GRACE
has been tuned for aspect-based sentiment analysis and Crf2o to semantic role
labeling. The latter uses contextual embeddings and determines the relation between
predicate and corresponding phrases by an efficient TreeCRF. Finally, MaMa can be
used to build a knowledge graph from extracted relations between entities.

Often the spatial layout of documents and web pages contains relevant informa-
tion for the extraction of relation arguments. In this case, visual information from
the document image can be exploited to arrive at a valid interpretation. This visual
information can be included via the position of bounding boxes for keys and values,
but also in the form of image patches, which are explored later with the image
transformer.

All recent relation extraction approaches are based on PLMs. Most models use
small BERT variants for their experiments. Therefore, it can be assumed that larger
models will directly increase performance. In addition, Foundation Models like
GPT-3 may be fine-tuned (Sect. 3.6.2) and probably will result in a higher accuracy.
A related alternative is InstructGPT (Sect. 3.6.5), which can be easily directed to
perform a relation extraction via question answering, e.g. “Who built the statue of
liberty?” [77, p. 29]. However, it seems to be difficult to evaluate the performance
of this approach with respect to some test data.

References

1. J. Abreu, L. Fred, D. Macêdo, and C. Zanchettin. “Hierarchical Attentional Hybrid Neural
Networks for Document Classification”. In: Int. Conf. Artif. Neural Netw. Springer, 2019, pp.
396–402.

2. L. Adilova, S. Giesselbach, and S. Rüping. “Making Efficient Use of a Domain Expert’s Time
in Relation Extraction”. 2018. arXiv: 1807.04687.

3. N. Alex et al. “RAFT: A Real-World Few-Shot Text Classification Benchmark”. Jan. 18,
2022. arXiv: 2109.14076 [cs].

4. Z. Alyafeai, M. S. AlShaibani, and I. Ahmad. “A Survey on Transfer Learning in Natural
Language Processing”. 2020. arXiv: 2007.04239.

References 221

5. G. Angeli, M. J. J. Premkumar, and C. D. Manning. “Leveraging Linguistic Structure for
Open Domain Information Extraction”. In: Proc. 53rd Annu. Meet. Assoc. Comput. Linguist.
7th Int. Jt. Conf. Nat. Lang. Process. Vol. 1 Long Pap. 2015, pp. 344–354.

6. S. Appalaraju, B. Jasani, B. U. Kota, Y. Xie, and R. Manmatha. “Docformer: End-to-end
Transformer for Document Understanding”. In: Proc. IEEECVF Int. Conf. Comput. Vis. 2021,
pp. 993–1003.

7. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. “DBpedia: A Nucleus
for a Web of Open Data”. In: Semantic Web. Ed. by K. Aberer et al. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2007, pp. 722–735. ISBN: 978-3-540-76298-0. https://
doi.org/10.1007/978-3-540-76298-0_52.

8. E. Barba, T. Pasini, and R. Navigli. “ESC: Redesigning WSD with Extractive Sense
Comprehension”. In: Proc. 2021 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum.
Lang. Technol. 2021, pp. 4661–4672.

9. E. Barba, L. Procopio, N. Campolungo, T. Pasini, and R. Navigli. “MuLaN: Multilingual
Label propagatioN for Word Sense Disambiguation”. In: Proc IJCAI. 2020, pp. 3837–3844.

10. E. Barba, L. Procopio, and R. Navigli. “ConSeC: Word Sense Disambiguation as Continuous
Sense Comprehension”. In: Proc. 2021 Conf. Empir. Methods Nat. Lang. Process. 2021, pp.
1492–1503.

11. I. Beltagy, K. Lo, and A. Cohan. “SciBERT: A Pretrained Language Model for Scientific
Text”. 2019. arXiv: 1903.10676.

12. M. Bevilacqua and R. Navigli. “Breaking through the 80% Glass Ceiling: Raising the State
of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information”.
In: Proc Assoc. Comput. Linguist. 2020, pp. 2854–2864.

13. M. Bevilacqua, T. Pasini, A. Raganato, and R. Navigli. “Recent Trends in Word Sense Dis-
ambiguation: A Survey”. In: Proc. Thirtieth Int. Jt. Conf. Artif. Intell. IJCAI-21. International
Joint Conference on Artificial Intelligence, Inc, 2021.

14. K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The
Extreme Classification Repository. June 7, 2021. URL: http://manikvarma.org/downloads/XC/
XMLRepository.html (visited on 06/07/2021).

15. T. Blevins and L. Zettlemoyer. “Moving down the Long Tail of Word Sense Disambiguation
with Gloss-Informed Biencoders”. 2020. arXiv: 2005.02590.

16. P. Bojanowski. fastText. 2016. URL: https://fasttext.cc/index.html (visited on 02/21/2021).
17. F. Bond and R. Foster. “Linking and Extending an Open Multilingual Wordnet”. In: Proc.

51st Annu. Meet. Assoc. Comput. Linguist. Vol. 1 Long Pap. 2013, pp. 1352–1362.
18. P. Bose, S. Srinivasan, W. C. Sleeman, J. Palta, R. Kapoor, and P. Ghosh. “A Survey on Recent

Named Entity Recognition and Relationship Extraction Techniques on Clinical Texts”. In:
Appl. Sci. 11.18 (2021), p. 8319.

19. F. Brandon. Brandon25/Deberta-Base-Finetuned-Ner · Hugging Face. Oct. 12, 2021. URL:
https://huggingface.co/brandon25/deberta-base-finetuned-ner (visited on 02/15/2022).

20. P.-L. H. Cabot and R. Navigli. “REBEL: Relation Extraction By End-to-end Language
Generation”. In: Find. Assoc. Comput. Linguist. EMNLP 2021. 2021, pp. 2370–2381.

21. X. Carreras and L. Màrquez. “Introduction to the CoNLL-2005 Shared Task: Semantic Role
Labeling”. In: Proc. Ninth Conf. Comput. Nat. Lang. Learn. CoNLL-2005. 2005, pp. 152–164.

22. W.-C. Chang et al. “Extreme Multi-label Learning for Semantic Matching in Product Search”.
June 23, 2021. arXiv: 2106.12657 [cs].

23. G. Choi, S. Oh, and H. Kim. “Improving Document-Level Sentiment Classification Using
Importance of Sentences”. In: Entropy 22.12 (2020), p. 1336.

24. A. D. Cohen, S. Rosenman, and Y. Goldberg. “Relation Extraction as Two-way Span-
Prediction”. 2020. arXiv: 2010.04829.

25. N. De Cao, G. Izacard, S. Riedel, and F. Petroni. “Autoregressive Entity Retrieval”. Mar. 24,
2021. arXiv: 2010.00904.

26. S. Ding, J. Shang, S. Wang, Y. Sun, H. Tian, H. Wu, and H. Wang. “ERNIE-DOC: The
Retrospective Long-Document Modeling Transformer”. 2020. arXiv: 2012.15688.

27. V. Dobrovolskii. “Word-Level Coreference Resolution”. 2021. arXiv: 2109.04127.

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://fasttext.cc/index.html
https://fasttext.cc/index.html
https://fasttext.cc/index.html
https://fasttext.cc/index.html
https://fasttext.cc/index.html
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner
https://huggingface.co/brandon25/deberta-base-finetuned-ner

222 5 Foundation Models for Information Extraction

28. J. Eisner. “Bilexical Grammars and Their Cubic-Time Parsing Algorithms”. In: Advances in
Probabilistic and Other Parsing Technologies. Springer, 2000, pp. 29–61.

29. D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. Ie, and D. Garcia-Olano.
“Learning Dense Representations for Entity Retrieval”. 2019. arXiv: 1909.10506.

30. GitHub. GitHub. 2021. URL: https://github.com/.
31. Gu. BLURB Leaderboard. 2021. URL: https://microsoft.github.io/BLURB/ (visited on

02/13/2022).
32. J. He, L. Wang, L. Liu, J. Feng, and H. Wu. “Long Document Classification from Local Word

Glimpses via Recurrent Attention Learning”. In: IEEE Access 7 (2019), pp. 40707–40718.
33. L. Huang, C. Sun, X. Qiu, and X. Huang. “GlossBERT: BERT for Word Sense Disambigua-

tion with Gloss Knowledge”. 2019. arXiv: 1908.07245.
34. Y. Huang, T. Lv, L. Cui, Y. Lu, and F. Wei. “LayoutLMv3: Pre-training for Document AI with

Unified Text and Image Masking”. 2022. arXiv: 2204.08387.
35. huggingface. Transformers – Transformers 4.3.0 Documentation. 2021. URL: https://

huggingface.co/transformers/ (visited on 02/21/2021).
36. M. S. Jahan and M. Oussalah. “A Systematic Review of Hate Speech Automatic Detection

Using Natural Language Processing”. 2021. arXiv: 2106.00742.
37. K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hullermeier.

“Extreme F-Measure Maximization Using Sparse Probability Estimates”. In: Int. Conf. Mach.
Learn. PMLR, 2016, pp. 1435–1444.

38. G. Jaume, H. K. Ekenel, and J.-P. Thiran. “Funsd: A Dataset for Form Understanding in Noisy
Scanned Documents”. In: 2019 Int. Conf. Doc. Anal. Recognit. Workshop ICDARW. Vol. 2.
IEEE, 2019, pp. 1–6.

39. T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang. “Lightxml: Transformer with
Dynamic Negative Sampling for High-Performance Extreme Multi-Label Text Classifica-
tion”. 2021. arXiv: 2101.03305.

40. J. Johnson, M. Douze, and H. Jégou. “Billion-Scale Similarity Search with Gpus”. In: IEEE
Trans. Big Data (2019).

41. M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. “Spanbert: Improving
Pre-Training by Representing and Predicting Spans”. In: Trans. Assoc. Comput. Linguist. 8
(2020), pp. 64–77.

42. K. raj Kanakarajan, B. Kundumani, and M. Sankarasubbu. “BioELECTRA:Pretrained
Biomedical Text Encoder Using Discriminators”. In: Proc. 20th Workshop Biomed. Lang.
Process. BioNLP-NAACL 2021. Online: Association for Computational Linguistics, June
2021, pp. 143–154. https://doi.org/10.18653/v1/2021.bionlp-1.16.

43. J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. “GENIA Corpus-a Semantically Annotated
Corpus for Bio-Textmining”. In: Bioinformatics 19 (suppl_1 2003), pp. i180–i182.

44. K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown. “Text
Classification Algorithms: A Survey”. In: Information 10.4 (2019), p. 150.

45. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. “Albert: A Lite BERT
for Self-Supervised Learning of Language Representations”. 2020. arXiv: 1909.11942.

46. H. Langone, B. R. Haskell, and G. A. Miller. Annotating Wordnet. PRINCETON UNIV NJ
COGNITIVE SCIENCE LAB, 2004.

47. Q. V. Le and T. Mikolov. “Distributed Representations of Sentences and Documents”. May
22, 2014. arXiv: 1405.4053 [cs].

48. J. Li, A. Sun, J. Han, and C. Li. “A Survey on Deep Learning for Named Entity Recognition”.
In: IEEE Trans. Knowl. Data Eng. (2020).

49. Q. Li et al. “A Survey on Text Classification: From Shallow to Deep Learning”. 2020. arXiv:
2008.00364.

50. X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, and J. Li. “A Unified MRC Framework for Named
Entity Recognition”. 2019. arXiv: 1910.11476.

51. X. Liu, W.-C. Chang, H.-F. Yu, C.-J. Hsieh, and I. S. Dhillon. “Label Disentanglement in
Partition-based Extreme Multilabel Classification”. 2021. arXiv: 2106.12751.

https://github.com/
https://github.com/
https://github.com/
https://microsoft.github.io/BLURB/
https://microsoft.github.io/BLURB/
https://microsoft.github.io/BLURB/
https://microsoft.github.io/BLURB/
https://microsoft.github.io/BLURB/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16

References 223

52. D. Loureiro, K. Rezaee, M. T. Pilehvar, and J. Camacho-Collados. “Analysis and Evaluation
of Language Models for Word Sense Disambiguation”. In: Comput. Linguist. 2021 47 2 387–
443 (Mar. 17, 2021).

53. E. Loza Mencía and J. Fürnkranz. “Efficient Pairwise Multilabel Classification for Large-
Scale Problems in the Legal Domain”. In: Jt. Eur. Conf. Mach. Learn. Knowl. Discov.
Databases. Springer, 2008, pp. 50–65.

54. H. Luo, L. Ji, T. Li, N. Duan, and D. Jiang. “Grace: Gradient Harmonized and Cascaded
Labeling for Aspect-Based Sentiment Analysis”. 2020. arXiv: 2009.10557.

55. S. Lyu and H. Chen. “Relation Classification with Entity Type Restriction”. 2021. arXiv:
2105.08393.

56. A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning Word Vectors
for Sentiment Analysis”. In: Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang.
Technol. 2011, pp. 142–150.

57. B. P. Majumder, N. Potti, S. Tata, J. B. Wendt, Q. Zhao, and M. Najork. “Representation
Learning for Information Extraction from Form-like Documents”. In: Proc. 58th Annu. Meet.
Assoc. Comput. Linguist. 2020, pp. 6495–6504.

58. T. Mandl, S. Modha, P. Majumder, D. Patel, M. Dave, C. Mandlia, and A. Patel. “Overview of
the HASOC Track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-
European Languages”. In: Proc. 11th Forum Inf. Retr. Eval. FIRE ’19: Forum for Information
Retrieval Evaluation. Kolkata India: ACM, Dec. 12, 2019, pp. 14–17. ISBN: 978-1-4503-
7750-8. https://doi.org/10.1145/3368567.3368584.

59. B. Mathew, P. Saha, S. M. Yimam, C. Biemann, P. Goyal, and A. Mukherjee. “HateXplain:
A Benchmark Dataset for Explainable Hate Speech Detection”. 2021. arXiv: 2012.10289
[cs].

60. J. McAuley and J. Leskovec. “Hidden Factors and Hidden Topics: Understanding Rating
Dimensions with Review Text”. In: Proc. 7th ACM Conf. Recomm. Syst. 2013, pp. 165–172.

61. R. Mihalcea. SemCor Corpus. June 13, 2008. URL: https://kaggle.com/nltkdata/semcorcorpus
(visited on 01/04/2022).

62. G. A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM 38.11 (1995),
pp. 39–41.

63. G. A. Miller, C. Leacock, R. Tengi, and R. T. Bunker. “A Semantic Concordance”. In: Hum.
Lang. Technol. Proc. Workshop Held Plainsboro N. J. March 21–24 1993. 1993.

64. S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao. “Deep
Learning-Based Text Classification: A Comprehensive Review”. In: ACM Comput. Surv.
CSUR 54.3 (2021), pp. 1–40.

65. M. Mintz, S. Bills, R. Snow, and D. Jurafsky. “Distant Supervision for Relation Extraction
without Labeled Data”. In: Proc. Jt. Conf. 47th Annu. Meet. ACL 4th Int. Jt. Conf. Nat. Lang.
Process. AFNLP. 2009, pp. 1003–1011.

66. A. Moro and R. Navigli. “Semeval-2015 Task 13: Multilingual All-Words Sense Disambigua-
tion and Entity Linking”. In: Proc. 9th Int. Workshop Semantic Eval. SemEval 2015. 2015,
pp. 288–297.

67. A. Nadgeri, A. Bastos, K. Singh, I. O. Mulang, J. Hoffart, S. Shekarpour, and V. Saraswat.
“Kgpool: Dynamic Knowledge Graph Context Selection for Relation Extraction”. 2021.
arXiv: 2106.00459.

68. Z. Nasar, S. W. Jaffry, and M. K. Malik. “Named Entity Recognition and Relation Extraction:
State-of-the-art”. In: ACM Comput. Surv. CSUR 54.1 (2021), pp. 1–39.

69. R. Navigli. “Word Sense Disambiguation: A Survey”. In: ACM Comput. Surv. CSUR 41.2
(2009), pp. 1–69.

70. R. Navigli, D. Jurgens, and D. Vannella. “Semeval-2013 Task 12: Multilingual Word Sense
Disambiguation”. In: Second Jt. Conf. Lex. Comput. Semant. SEM Vol. 2 Proc. Seventh Int.
Workshop Semantic Eval. SemEval 2013. 2013, pp. 222–231.

71. R. Navigli and S. P. Ponzetto. “BabelNet: The Automatic Construction, Evaluation and
Application of a Wide-Coverage Multilingual Semantic Network”. In: Artif. Intell. 193
(2012), pp. 217–250.

https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://kaggle.com/nltkdata/semcorcorpus
https://kaggle.com/nltkdata/semcorcorpus
https://kaggle.com/nltkdata/semcorcorpus
https://kaggle.com/nltkdata/semcorcorpus
https://kaggle.com/nltkdata/semcorcorpus

224 5 Foundation Models for Information Extraction

72. ner. Papers with Code - Named Entity Recognition. 2021. URL: https://paperswithcode.com/
task/named-entity-recognition-ner (visited on 07/09/2021).

73. NIH. Download Data. PubMed. 2022. URL: https://pubmed.ncbi.nlm.nih.gov/download/
(visited on 06/15/2022).

74. NLP. The NLP Index. 2021. URL: https://index.quantumstat.com/.
75. Omegawiki. OmegaWiki. 2021. URL: http://www.omegawiki.org/ (visited on 01/03/2022).
76. OpenAi. OpenAI API. 2021. URL: https://beta.openai.com (visited on 11/14/2021).
77. L. Ouyang et al. “Training Language Models to Follow Instructions with Human Feedback”.

Jan. 31, 2022. arXiv: 2203.02155.
78. G. Paaß and F. Reichartz. “Exploiting Semantic Constraints for Estimating Supersenses with

CRFs”. In: Proc. 2009 SIAM Int. Conf. Data Min. SIAM, 2009, pp. 485–496.
79. Papers-with-code. Papers with Code. 2021. URL: https://paperswithcode.com/.
80. M. E. Peters, M. Neumann, R. L. Logan IV, R. Schwartz, V. Joshi, S. Singh, and N. A. Smith.

“Knowledge Enhanced Contextual Word Representations”. 2019. arXiv: 1909.04164.
81. M. T. Pilehvar, J. Camacho-Collados, R. Navigli, and N. Collier. “Towards a Seamless

Integration of Word Senses into Downstream Nlp Applications”. 2017. arXiv: 1710.06632.
82. A. Pilz and G. Paaß. “From Names to Entities Using Thematic Context Distance”. In: Proc.

20th ACM Int. Conf. Inf. Knowl. Manag. 2011, pp. 857–866.
83. Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. “Parabel: Partitioned Label Trees

for Extreme Classification with Application to Dynamic Search Advertising”. In: Proc. 2018
World Wide Web Conf. 2018, pp. 993–1002.

84. S. Pradhan, A. Moschitti, N. Xue, O. Uryupina, and Y. Zhang. “CoNLL-2012 Shared
Task: Modeling Multilingual Unrestricted Coreference in OntoNotes”. In: Jt. Conf. EMNLP
CoNLL-Shar. Task. 2012, pp. 1–40.

85. J. W. Rae et al. “Scaling Language Models: Methods, Analysis & Insights from Training
Gopher”. In: ArXiv Prepr. ArXiv211211446 (Dec. 8, 2021), p. 118.

86. P. Ramachandran, B. Zoph, and Q. V. Le. “Searching for Activation Functions”. 2017. arXiv:
1710.05941.

87. F. Reichartz, H. Korte, and G. Paass. “Semantic Relation Extraction with Kernels over Typed
Dependency Trees”. In: Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2010,
pp. 773–782.

88. S. G. Roy, U. Narayan, T. Raha, Z. Abid, and V. Varma. “Leveraging Multilingual Transform-
ers for Hate Speech Detection”. 2021. arXiv: 2101.03207.

89. E. F. Sang and F. De Meulder. “Introduction to the CoNLL-2003 Shared Task: Languagein-
dependent Named Entity Recognition”. 2003. arXiv: cs/0306050.

90. T. Schick and H. Schütze. “True Few-Shot Learning with Prompts – A Real-World Perspec-
tive”. Nov. 26, 2021. arXiv: 2111.13440 [cs].

91. P. Schmid. Few-Shot Learning in Practice: GPT-Neo and the .. Accelerated Inference API.
June 3, 2021. URL: https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-
api (visited on 05/23/2022).

92. O. Sevgili, A. Shelmanov, M. Arkhipov, A. Panchenko, and C. Biemann. “Neural Entity
Linking: A Survey of Models Based on Deep Learning”. 2020. arXiv: 2006.00575.

93. Y. Shen, X. Ma, Z. Tan, S. Zhang, W. Wang, and W. Lu. “Locate and Label: A Two-stage
Identifier for Nested Named Entity Recognition”. 2021. arXiv: 2105.06804.

94. E. H. Silva and R. M. Marcacini. “Aspect-Based Sentiment Analysis Using BERT with
Disentangled Attention”. In: (2021). URL: https://repositorio.usp.br/bitstreams/701d2a63-
e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction

95. Spanbert. Papers with Code - The Latest in Machine Learning. July 17, 2021. URL: https://
paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781 (visited
on 07/17/2021).

96. T. Stanisławek. Awesome Document Understanding. July 2, 2022. URL: https://github.com/
tstanislawek/awesome-document-understanding (visited on 07/08/2022).

97. G. Stoica, E. A. Platanios, and B. Póczos. “Re-Tacred: Addressing Shortcomings of the Tacred
Dataset”. In: Proc. AAAI Conf. Artif. Intell. Vol. 35. 15. 2021, pp. 13843–13850.

https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://pubmed.ncbi.nlm.nih.gov/download/
https://pubmed.ncbi.nlm.nih.gov/download/
https://pubmed.ncbi.nlm.nih.gov/download/
https://pubmed.ncbi.nlm.nih.gov/download/
https://pubmed.ncbi.nlm.nih.gov/download/
https://pubmed.ncbi.nlm.nih.gov/download/
https://pubmed.ncbi.nlm.nih.gov/download/
https://index.quantumstat.com/
https://index.quantumstat.com/
https://index.quantumstat.com/
https://index.quantumstat.com/
http://www.omegawiki.org/
http://www.omegawiki.org/
http://www.omegawiki.org/
http://www.omegawiki.org/
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com
https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://repositorio.usp.br/bitstreams/701d2a63-e3f4-450d-8617-ad80de4345ed.2185FoundationModelsforInformationExtraction
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://paperswithcode.com/paper/spanbert-improving-pre-training-by/review/?hl=28781
https://github.com/tstanislawek/awesome-document-understanding
https://github.com/tstanislawek/awesome-document-understanding
https://github.com/tstanislawek/awesome-document-understanding
https://github.com/tstanislawek/awesome-document-understanding
https://github.com/tstanislawek/awesome-document-understanding
https://github.com/tstanislawek/awesome-document-understanding
https://github.com/tstanislawek/awesome-document-understanding

References 225

98. N. Stylianou and I. Vlahavas. “A Neural Entity Coreference Resolution Review”. In: Expert
Syst. Appl. 168 (2021), p. 114466.

99. Y. Sun et al. “Ernie: Enhanced Representation through Knowledge Integration”. 2019. arXiv:
1904.09223.

100. C. Sutton and A. McCallum. “An Introduction to Conditional Random Fields for Relational
Learning”. In: Introd. Stat. Relational Learn. 2 (2006), pp. 93–128.

101. T. Thongtan and T. Phienthrakul. “Sentiment Classification Using Document Embeddings
Trained with Cosine Similarity”. In: Proc. 57th Annu. Meet. Assoc. Comput. Linguist. Stud.
Res. Workshop. Florence, Italy: Association for Computational Linguistics, July 2019, pp.
407–414. https://doi.org/10.18653/v1/P19-2057.

102. R. Tinn et al. “Fine-Tuning Large Neural Language Models for Biomedical Natural Language
Processing”. Dec. 14, 2021. arXiv: 2112.07869 [cs].

103. S. Toshniwal, S. Wiseman, A. Ettinger, K. Livescu, and K. Gimpel. “Learning to Ignore:
Long Document Coreference with Bounded Memory Neural Networks”. 2020. arXiv:
2010.02807.

104. C. Walker, S. Strassel, J. Medero, and K. Maeda. ACE 2005 Multilingual Training Corpus.
Linguistic Data Consortium, Feb. 15, 2006. https://doi.org/10.35111/MWXC-VH88.

105. C. Wang, X. Liu, and D. Song. “Language Models Are Open Knowledge Graphs”. Oct. 22,
2020. arXiv: 2010.11967.

106. X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu. “Automated
Concatenation of Embeddings for Structured Prediction”. 2020. arXiv: 2010.05006.

107. X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu. “Improving Named
Entity Recognition by External Context Retrieving and Cooperative Learning”. 2021. arXiv:
2105.03654.

108. Y. Wang, C. Sun, Y. Wu, H. Zhou, L. Li, and J. Yan. “UniRE: A Unified Label Space for
Entity Relation Extraction”. 2021. arXiv: 2107.04292.

109. R. Weischedel, M. Palmer, R. B. S. P. L. Ramshaw, N. Xue, and E. Hovy. “Ontonotes: A
Large Training Corpus for Enhanced Processing”. In: Joseph Olive Caitlin Christ. And- John
McCary Ed. Handb. Nat. Lang. Mach. Transl. DARPA Glob. Lang. Exploit. (2011).

110. G. Wiedemann, S. M. Yimam, and C. Biemann. “UHH-LT at SemEval-2020 Task 12: Fine-
Tuning of Pre-Trained Transformer Networks for Offensive Language Detection”. June 10,
2020. arXiv: 2004.11493 [cs].

111. wiktionary. Wiktionary. 2021. URL: https://www.wiktionary.org/ (visited on 01/03/2022).
112. R. J. Williams. “Simple Statistical Gradient-Following Algorithms for Connectionist Rein-

forcement Learning”. In: Mach. Learn. 8.3 (1992), pp. 229–256.
113. L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer. “Scalable Zero-shot Entity

Linking with Dense Entity Retrieval”. In: Proc. 2020 Conf. Empir. Methods Nat. Lang.
Process. EMNLP. 2020, pp. 6397–6407.

114. W. Wu, F. Wang, A. Yuan, F. Wu, and J. Li. “Coreference Resolution as Query-Based Span
Prediction”. July 18, 2020. arXiv: 1911.01746.

115. B. Xu, Q. Wang, Y. Lyu, Y. Zhu, and Z. Mao. “Entity Structure Within and Throughout:
Modeling Mention Dependencies for Document-Level Relation Extraction”. 2021. arXiv:
2102.10249.

116. Y. Xu et al. “Layoutxlm: Multimodal Pre-Training for Multilingual Visually-Rich Document
Understanding”. 2021. arXiv: 2104.08836.

117. I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto. “LUKE: Deep Contextualized
Entity Representations with Entity-Aware Self-Attention”. 2020. arXiv: 2010.01057.

118. I. Yamada, K. Washio, H. Shindo, and Y. Matsumoto. “Global Entity Disambiguation
with Pretrained Contextualized Embeddings of Words and Entities”. Nov. 24, 2021. arXiv:
1909.00426 [cs].

119. H. Yang, B. Zeng, M. Xu, and T. Wang. “Back to Reality: Leveraging Pattern-driven Modeling
to Enable Affordable Sentiment Dependency Learning”. 2021. arXiv: 2110.08604.

120. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xlnet: Generalized
Autoregressive Pretraining for Language Understanding”. In: Adv. Neural Inf. Process. Syst.
2019, pp. 5753–5763.

https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://www.wiktionary.org/
https://www.wiktionary.org/
https://www.wiktionary.org/
https://www.wiktionary.org/

226 5 Foundation Models for Information Extraction

121. Y. Yao et al. “DocRED: A Large-Scale Document-Level Relation Extraction Dataset”. 2019.
arXiv: 1906.06127.

122. D. Ye, Y. Lin, and M. Sun. “Pack Together: Entity and Relation Extraction with Levitated
Marker”. 2021. arXiv: 2109.06067.

123. W. Yin and A. Zubiaga. “Towards Generalisable Hate Speech Detection: A Review on
Obstacles and Solutions”. In: PeerJ Comput. Sci. 7 (2021), e598.

124. R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu. “Attentionxml: Label
Tree-Based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text
Classification”. 2018. arXiv: 1811.01727.

125. J. Yu, B. Bohnet, and M. Poesio. “Named Entity Recognition as Dependency Parsing”. 2020.
arXiv: 2005.07150.

126. Z. Yuan, Y. Liu, C. Tan, S. Huang, and F. Huang. “Improving Biomedical Pretrained Language
Models with Knowledge”. 2021. arXiv: 2104.10344.

127. M. Zaheer et al. “Big Bird: Transformers for Longer Sequences”. In: Adv. Neural Inf. Process.
Syst. 33 (Jan. 8, 2021).

128. M. Zampieri et al. “SemEval-2020 Task 12: Multilingual Offensive Language Identification
in Social Media (OffensEval 2020)”. 2020. arXiv: 2006.07235.

129. W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam. A Survey on Aspect-Based Sentiment
Analysis: Tasks, Methods, and Challenges. Mar. 2, 2022. https://doi.org/10.48550/2203.
01054. arXiv: 2203.01054 [cs].

130. W. Zhang, W. Hua, and K. Stratos. “EntQA: Entity Linking as Question Answering”. 2021.
arXiv: 2110.02369.

131. X. Zhang, J. Zhao, and Y. LeCun. “Character-Level Convolutional Networks for Text
Classification”. 2015. arXiv: 1509.01626.

132. Y. Zhang, Z. Li, and M. Zhang. “Efficient Second-Order TreeCRF for Neural Dependency
Parsing”. 2020. arXiv: 2005.00975.

133. Y. Zhang, Q. Xia, S. Zhou, Y. Jiang, Z. Li, G. Fu, and M. Zhang. “Semantic Role Labeling
as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments”. 2021. arXiv:
2110.06865.

134. X. Zhong, J. Tang, and A. J. Yepes. PubLayNet: Largest Dataset Ever for Document Layout
Analysis. Aug. 15, 2019. https://doi.org/10.48550/1908.07836. arXiv: 1908.07836 [cs].

135. W. Zhou and M. Chen. “An Improved Baseline for Sentence-level Relation Extraction”. 2021.
arXiv: 2102.01373.

136. W. Zhou, K. Huang, T. Ma, and J. Huang. “Document-Level Relation Extraction with
Adaptive Thresholding and Localized Context Pooling”. 2020. arXiv: 2010.11304.

137. Z.-H. Zhou. “Multi-Instance Learning: A Survey”. In: Dep. Comput. Sci. Technol. Nanjing
Univ. Tech Rep 1 (2004).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/2203.01054
https://doi.org/10.48550/1908.07836
https://doi.org/10.48550/1908.07836
https://doi.org/10.48550/1908.07836
https://doi.org/10.48550/1908.07836
https://doi.org/10.48550/1908.07836
https://doi.org/10.48550/1908.07836
https://doi.org/10.48550/1908.07836
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	5 Foundation Models for Information Extraction
	5.1 Text Classification
	5.1.1 Multiclass Classification with Exclusive Classes
	5.1.2 Multilabel Classification
	5.1.3 Few- and Zero-Shot Classification
	Available Implementations

	5.1.4 Summary

	5.2 Word Sense Disambiguation
	5.2.1 Sense Inventories
	5.2.2 Models
	Available Implementations

	5.2.3 Summary

	5.3 Named Entity Recognition
	5.3.1 Flat Named Entity Recognition
	5.3.2 Nested Named Entity Recognition
	Available Implementations

	5.3.3 Entity Linking
	Available Implementations

	5.3.4 Summary

	5.4 Relation Extraction
	5.4.1 Coreference Resolution
	Available Implementations

	5.4.2 Sentence-Level Relation Extraction
	5.4.3 Document-Level Relation Extraction
	5.4.4 Joint Entity and Relation Extraction
	Aspect-Based Sentiment Analysis
	Semantic Role Labeling
	Extracting Knowledge Graphs from Pre-trained PLMs

	5.4.5 Distant Supervision
	5.4.6 Relation Extraction Using Layout Information
	Available Implementations

	5.4.7 Summary

	References

