
Chapter 4 
Knowledge Acquired by Foundation 
Models 

Abstract During pre-training, a Foundation Model is trained on an extensive 
collection of documents and learns the distribution of words in correct and fluent 
language. In this chapter, we investigate the knowledge acquired by PLMs and the 
larger Foundation Models. We first discuss the application of Foundation Models to 
specific benchmarks to test knowledge in a large number of areas and examine if 
the models are able to derive correct conclusions from the content. Another group 
of tests assesses Foundation Models by completing text and by applying specific 
probing classifiers that consider syntactic knowledge, semantic knowledge, and 
logical reasoning separately. Finally, we investigate if the benchmarks are reliable 
and reproducible, i.e. whether they actually test the targeted properties and yield the 
same performance values when repeated by other researchers. 

Keywords Knowledge in foundation models · Common Sense knowledge · 
Logical coherence · Benchmark collections · Reproducibility 

During pre-training, Pre-trained Language Models (PLMs) and the larger Foun-
dation Models are trained on an extensive collection of documents and learn the 
distribution of words in correct and fluent language. During fine-tuning, the models 
are adapted to a specific task using the knowledge from the pre-training and 
requiring only a small set of manually labeled fine-tuning data. In this chapter, we 
investigate the knowledge acquired by these models by different types of tests: 

• We first assess PLMs and Foundation Models by specific benchmarks to test 
knowledge in a large number of areas and examine if the models are able to 
derive correct conclusions from the content (Sect. 4.1). Usually these benchmark 
collections have an aggregated performance measure averaging over different 
tests. Benchmark tests can be accomplished by fine-tuning models to perform 
specific classification tasks or by few-shot querying Foundation Models. 

• Then we assess Foundation Models by completing text and by applying specific 
probing classifiers without adapting model parameters (Sect. 4.2). We separately 
consider syntactic knowledge, semantic knowledge and logical reasoning and 
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demonstrate the achievements and deficits in different areas and for different 
model architectures. 

• Finally, we investigate if the benchmarks are reliable, i.e. actually test the targeted 
properties (Sect. 4.3). Moreover, we analyze if published benchmark results are 
reproducible and yield the same performance values if they are repeated by other 
researchers. 

4.1 Benchmark Collections 

In order to arrive at quantitative measures of common sense knowledge and 
commonsense reasoning, the community has compiled a number of benchmarks. 
These allow a standardized comparison of different aspects of natural language 
understanding and provide comparable scores for the strength and weaknesses 
of different PLMs. Benchmarks have been a key driver for the development of 
language models. A comprehensive collection of benchmarks and the corresponding 
leaderboards are provided by PapersWithCode [45]. A survey of actual benchmarks 
is given by Storks et al. [62]. 

A fair comparison of model architectures requires that the number of parameters, 
the size of the training data, and the computing effort for training are similar. This 
has been extensively discussed in Sect. 3.5.1. Therefore, many authors conduct 
extensive ablation studies to adjust their training resources to a standard, e.g. to 
BERT as a “benchmark model”. This is really important, as it helps the reader to get 
an intuition for the impact of pre-training resources. Nevertheless, comparability is 
often hampered by two problems: 

1. Some training datasets, e.g. the BooksCorpus of BERT, are not publicly avail-
able. 

2. These comparisons do not show the performance of a model when the size of 
data, the number of parameters, or the computing effort are increased. 

Therefore, statements like “Model architecture A is superior to model architecture 
B on performing task X.” in general are not valid, but have to be qualified [2], e.g. 
“Model architecture A is superior to model architecture B on performing task X, 
when pre-trained on a small/large corpus of low/high quality data from domain Y 
with computing effort Z.” 

4.1.1 The GLUE Benchmark Collection 

To test the ability of PLMs to capture the content of a document, the GLUE 
(Sect. 2.1.5) set of benchmarks has been developed. This is a collection of 9 
benchmarks testing different aspects of Natural Language Understanding (NLU). 
The joint performance is measured by a single score, which has the value 87.1 for
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human annotators. The tasks are described in detail by examples in Table 2.1. It  
turns out that variants of BERT fine-tuned to the different GLUE-tasks can yield 
better results than people. The results are determined for the large variants of the 
models and shown in Table 4.1. 

In the past years GLUE was routinely employed to demonstrate the NLU 
capabilities of PLMs. Currently, the best average value of 91.4 after fine-tuning was 
reached by DeBERTaV3 [18] (Sect. 3.1.1). It uses separate embeddings for content 
and position and employs a corresponding disentangled attention mechanism. There 
are only three tasks where PLMs are worse than humans, but only by a small margin. 
Note that ensembles of several models often yield slightly better results. Nangia et 
al. [42] also measures the performance of human teams of 5 people. The numbers 
are not comparable as cases were excluded when the teams arrived at split judgment. 
Newer models such as PaLM use SuperGLUE instead of GLUE because GLUE is 
considered too simple. 

4.1.2 SuperGLUE: An Advanced Version of GLUE 

Due to the progress in the last years, PLMs have reached human performance 
in most tasks and the GLUE is no longer able to discriminate between models. 
Therefore, the authors of GLUE proposed a more demanding test suite called 
SuperGLUE [68] as an advanced version of GLUE with eight challenging tasks. 
The tasks are similar to GLUE with longer contexts to consider. 

• BoolQ is a QA-task with questions collected from Google search and yes/no 
answers. 

• CB is a textual entailment task. 
• COPA is a causal reasoning task in which a system must determine either the 

cause or effect of a given premise from two possible choices. 
• MultiRC is a QA task where each instance consists of a context passage, a 

question about that passage, and a list of possible answers. 
• In ReCoRD each example consists of a news article and an article in which one 

entity is masked out. The system must predict the masked entity from a list of 
possible entities. 

• RTE requires detecting whether a hypothesis is implied by a premise. 
• WiC is a word sense disambiguation task, where for two given sentences the 

system has to determine if a polysemous word is used with the same sense in 
both sentences. 

• WSC is the Winograd Schema Challenge, where the system has to determine the 
correct noun phrase represented by a pronoun. 

The performance again is measured by a single average score with a value of 89.8 
for human annotators [66].
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GPT-3 [7] is a huge language model (Sect. 3.1.2), which can be instructed to 
perform a task without fine-tuning (Sect. 3.2). With this few-shot learning GPT-
3 achieved an average SuperGLUE score of only 71.8 as shown in Table 4.2. 
Obviously fine-tuning the specific tasks seems to be important. Recently a fine-tuned 
DeBERTa ensemble (Sect. 3.1.1) surpassed human performance on SuperGLUE 
with an average score of 90.3. The most difficult task is a comparison of word 
senses in two sentences (WiC), where an accuracy of about 77% can be reached. 
The autoregressive LM PaLM 540B was fine-tuned on SuperGLUE and achieved 
an average of 90.4% on the test set [9, p. 13]. The best average of 91.2% 
was obtained by the ST-MoE32B mixture-of-experts model (Sect. 3.5.2) with 269B 
parameters [73]. This shows that Foundation Models are able to analyze complex 
text semantics. 

GLUE and SuperGLUE have been criticized, as the answers of the posed 
problems always can be reduced to a classification task and the systems do not 
have to formulate an answer in natural language. In addition, it turns out that the 
performance of PLMs is not very stable. It has been shown that the prediction of 
current models often change in an inconsistent way, if some words are replaced [51]. 
If, for instance, in a sentiment analysis the input “I love the flight” is classified as 
positive, then “I didn’t love the flight” should not be classified as neutral . Ribeiro 
et al. [51] show that inconsistencies like this often occur. They developed the 
CheckList system (Sect. 4.3.1), which automatically generates test examples for 
probing a model. 

4.1.3 Text Completion Benchmarks 

The task of an autoregressive language models is the reliable generation of the 
next word in a text. This has to obey grammatical correctness as well as semantic 
consistency. The LAMBADA benchmark [44] is a good test to demonstrate this 
ability. It consists of about 10,000 passages from the BooksCorpus containing 
unpublished novels. The task is to predict the missing last word of the last sentence 
of each passage. Examples were filtered by humans to ensure that models need to 
take into account the full passage of at least 50 tokens to induce the final word. 

An example is the passage “Both its sun-speckled shade and the cool grass 
beneath were a welcome respite after the stifling kitchen, and I was glad to relax 
against the tree’s rough, brittle bark and begin my breakfast of buttery, toasted 
bread and fresh fruit. Even the water was tasty, it was so clean and cold. It almost 
made up for the lack of .”, where “coffee” is the missing target word to be 
predicted. Examples which could be easily predicted by simpler language models 
were omitted. Examples were only selected, if the target word could be predicted by 
humans from the full passage but not from the last sentence. 

The GPT-3175B autoregressive language model [48] predicted the last word with 
76.2% [7, p. 12]. PaLM540B with few-shot instructions could increase the accuracy 
to 89.7 [9, p. 79]. This means that in nearly nine of ten cases, the predicted word 
was exactly the missing word in the test data.
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Another relevant benchmark for language modeling is WikiText-103 [38] of 28k  
articles from Wikipedia with 103M tokens. If large Foundation Models are applied 
to this corpus the following perplexities result: GPT-21.7B 17.5 [48], Megatron-
LM 10.8 [58], Gopher280B 8.1 [49, p. 61]. Recently a small Retro1.8B model with 
retrieval could reduce this perplexity to 3.9 [49, p. 12]. Note that there might 
be a partial overlap of Wikitext 103 with Retro’s training data not caught by 
deduplication. 

4.1.4 Large Benchmark Collections 

Recently large autoregressive language models like GPT-3, Gopher, and PaLM have 
been developed, which are trained on extremely large document collections with 
hundreds of billions of tokens. The models should perform well across a wide range 
of tasks. Therefore, instead of the limited GLUE benchmarks a large number of 
benchmarks covering many aspects of possible applications are used to evaluate 
their performance. 

A frequent opinion is that current benchmarks are insufficient and “saturate”, 
“have artifacts”, and are “overfitted by researchers”. Bowman et al. [5] argue that 
“evaluation for many natural language understanding (NLU) tasks is broken”. They 
complain that there are systems at the top of the leaderboards which fail in simple 
test cases (cf. [51]). As a consequence they formulate four requirements on new 
benchmarks: 

• A model should only reach good performance on the benchmark if it also has a 
good performance on actual applications. 

• The annotation of benchmarks should be accurate and not ambiguous (e.g. 36% 
of the answers in Natural Questions are ambiguous). 

• The benchmarks should be large and challenging enough to detect relevant 
performance differences between models. 

• Benchmarks should reveal plausibly harmful social biases in systems, and should 
not encourage the creation of biases. 

They summarize some promising developments that could support these challenges, 
including data collection involving both crowdworkers and domain experts, and 
larger-scale data validation. 

To address this criticism, two comprehensive collections of benchmarks have 
been defined. The Massive Multitask Language Understanding (MMLU) bench-
mark [20] emulates human exams with multiple choice questions, each with four 
responses. In addition to logical and mathematical reasoning it tests a model’s ability 
across a wide range of academic subjects from computer science to history and law. 
The other collection is the BIG-bench collaborative benchmark [1, 60], designed 
to evaluate language interpretation aspects like reading comprehension, question 
answering, world understanding, etc. Both benchmark collections include more than 
a hundred tasks.
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Table 4.3 Groups of evaluation benchmarks for Gopher and related models [49, p. 8]  

Task group # Tasks  Examples 

Language modeling 20 WikiText-103, The Pile: PG-19, arXiv, FreeLaw, . . . 

Reading comprehension 3 RACE-m, RACE-h, LAMBADA 

Fact checking 3 FEVER (2-way & 3-way), MultiFC 

Question answering 3 Natural questions, TriviaQA, TruthfulQA 

Common sense 4 HellaSwag, Winogrande, PIQA, SIQA 

Massive multitask language 
understanding (MMLU) [20] 

57 High school chemistry, astronomy, clinical 
knowledge, social science, math, . . . 

BIG-bench [60] 62 Causal judgement, epistemic reasoning, temporal 
sequences, logic, math, code, social reasoning, . . . 

The Gopher model with 280B parameters together with alternatives like GPT-3, 
Jurassic-1, and Megatron-Turing NLG (all discussed in Sect. 3.1.2) were tested on 
these and other benchmarks. Note that this was done with a total of 152 benchmarks 
described in Table 4.3. Gopher shows an improvement on 100 of 124 tasks (81%) 
compared to the previous SOTA scores. In language modeling (next word prediction) 
Gopher improves SOTA for 10 of 19 benchmarks. Note that all benchmark results 
were not obtained after fine-tuning but by zero-shot or few-shot learning. 

The distribution Gopher accuracies for thematic groups are shown in Fig. 4.1. 
Gopher is able to increase SOTA for 4 out of 7 math tasks, 5 out of 9 common 
sense tasks, 9 out of 12 logical reasoning tasks, 22 out of 24 fact checking 
and general knowledge tasks, all 24 STEM (Science Technology Engineering 
Mathematics) and medicine tasks, all 15 humanities and ethics task, and 10 out 
of 11 reading comprehension tasks. The average accuracies for common sense and 
general knowledge are about 50%, indicating that some knowledge exists but can 
be improved. Among these tests were benchmarks on logical reasoning, which, 
for instance, include “Formal Fallacies Syllogisms Negation” or “Logical Fallacy 
Detection”. Only two of the 19 benchmarks achieved an accuracy of more than 
60% [49, p. 58], indicating that even for this large model correct reasoning is a 
major obstacle. Obviously this spectrum of evaluation gives a deep insight into the 
capabilities of the compared models. It can be expected that the new Retro model 
(Sect. 6.2.3), which performs retrieval during language generation, will improve 
these results. 

The PaLM autoregressive language model with 580B parameters [9, p. 15] 
recently was evaluated with the BIG-bench benchmark. On the 150 tasks, PaLM 
with 5-shot prompts achieved an normalized average score of 46%, which was better 
than the average human score of 39%. However, the best human experts have a score 
of about 77%. The detailed results for the different BIG benchmark areas are not yet 
available. On a subset of 58 BIG-tasks, which were also used by prior models, PaLM 
obtained a 5-shot normalized score of about 55%, again above the human average 
of 49%, outperforming Chinchilla (47%) and Gopher (30%). GPT-3 achieved a 1-
shot performance of 16% on the 58 tasks. In general Foundation Models like Gopher 
and PaLM with several hundred billion parameters have ‘dramatically better’ results
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Fig. 4.1 Accuracies in percent of different groups covering 152 different benchmarks evaluated 
for the Gopher model [49, p. 57]. The 25% and 75% percentiles are given by the box, and the inner 
line is the median. The outside lines indicate variability outside the upper and lower quartiles 

on BIG than smaller models, even if the model architecture is not fundamentally 
different [1]. In this respect Foundation Models show a qualitatively new behavior. 

Researchers at Google have proposed to use the BIG-bench benchmark with 
currently 200 tasks as a replacement for the Turing test for “intelligence” [61]. 
In this way the knowledge of an AI-System can be checked at a large scale. 
Recently, a Google engineer published a dialog [31] with the LaMDA language 
model (Sect. 6.6.3). In his view this indicates that LaMDA is “sentient”. However, 
this aspect of human intelligence is not checked by knowledge and reasoning tests 
such as BIG and requires the development of new types of tests. 

4.1.5 Summary 

Benchmark collections are a popular way to demonstrate the superiority of a Pre-
trained Language Model for specific tasks. To show the merits of an architecture, 
however, also the number of parameters, the size of training data, and the computing
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effort has to be reported and compared, because these numbers also affect the model 
performance. 

The GLUE benchmark collection of nine language understanding tasks has 
demonstrated the considerable progress of PLMs during the last years. It tests the 
ability of PLMs to detect paraphrases, coreference relations, logical entailments 
and grammatical correctness. Meanwhile, the average accuracy exceeds the average 
human performance. The similar, more challenging SuperGLUE benchmark suite 
has been introduced, where human performance is also surpassed. For autoregres-
sive language models the LAMBADA benchmark requires an impressive ability to 
determine the most probable last word of a paragraph. Current models like PaLM 
are able to predict the last word with an accuracy of nearly 90% demonstrating its 
ability to capture the flow of arguments. 

Foundation Models are usually tested by extensive standardized test collections 
covering many aspects like common sense knowledge, emotional intelligence, logi-
cal reasoning, or social sciences. Recent Foundation Models like Gopher and PaLM, 
with several hundred billion parameters, have been able to achieve performance 
better than that the human average and ‘dramatically better’ than smaller models. 
However, these models still have a lower accuracy than human experts. Although the 
benchmarks are very expressive, they do not take into account the societal impact of 
the models and are unable to detect features like self-awareness and sentience. 

4.2 Evaluating Knowledge by Probing Classifiers 

In this section, we examine the extent to which PLMs acquire different types of 
knowledge. We discuss the covered knowledge for the small BERT model and later 
review the improvements for foundation models such as GPT-3 and PaLM. First, 
we consider their syntactic knowledge of correct language. Then, we investigate 
how much common sense knowledge is represented by PLMs. Finally, we explore 
whether the output produced by PLMs is logically consistent. 

4.2.1 BERT’s Syntactic Knowledge 

We discuss the syntactic knowledge incorporated in PLMs using BERT as an exam-
ple. In the course of pre-training BERT is able to capture syntactic knowledge [54]. 
Embeddings can encode information about parts of speech, syntactic phrases and 
syntactic roles. Probing classifiers can predict part-of-speech tags and supersense 
information with an accuracy of 85% [33]. Obviously, this information has to be 
encoded in BERT’s final embeddings. BERT also has knowledge of subject-verb 
agreement [17] and semantic roles [14]. It is also possible to extract dependency 
trees and syntactic constituency trees from BERT [21, 23, 27]. While probing 
indicates that the information can be extracted from the representation, it can be
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shown [13] that in some cases the features are not used for prediction. According to 
an empirical evaluation PLMs encode linguistic information with phrase features in 
the bottom layers, syntactic features in the middle layers and semantic features in 
the top layers [23]. 

However, BERT’s syntactic knowledge is incomplete and there is, for example, 
evidence that BERT often does not capture negations. For instance, BERT.LARGE is 
able to determine the correct supersense, e.g. “bird” in the masked sentence “A robin 
is a [MASK]” with high probability [14]. On the other hand, the model predicts 
“robin”, “bird”, “penguin”, “man”, “fly” with maximum probabilities for the mask 
in “A robin is not a [MASK]”, effectively ignoring the negation. 

Some benchmarks described in Sect. 4.1 check the syntactic knowledge of PLMs. 
An example is the GLUE’s CoLA task testing the grammatical correctness of 
sentences, which is the most difficult task of GLUE where the best models only yield 
about 75% correct answers (Table 4.1). SuperGLUE (Sect. 4.1.2) is a benchmark, 
which requires syntactic knowledge, e.g. for the textual entailment task COPA and 
the coreference resolution task WSC. While the fine-tuned BERT gets an average 
score of 69.0 the fine-tuned PaLM540B achieves an average of 91.4 (Table 4.2). 
Large foundation models such as PaLM, which has more than 1000 times as many 
parameters as BERT, are obviously able to capture syntactical knowledge much 
better than the ‘small’ BERT. 

4.2.2 Common Sense Knowledge 

World knowledge, also called common sense knowledge, consists of facts about 
our every day world, such as “fire is hot”. A simple method of checking world 
knowledge is to query BERT with cloze statements, for example, “Einstein was 
born in [MASK]”. BERT acquires some semantic knowledge about semantic roles 
and encodes information about entity types and relations [54]. For instance, in 
the sentence “to tip a [MASK]” the token “waiter” gets a high probability for 
the position of [MASK]. Petroni et al. [46] and Zhou et al. [72] experimented 
with such queries and concluded that BERT contains world knowledge competitive 
with traditional supervised information extraction methods. It has been shown that 
BERT’s contextual embeddings make up clusters corresponding to word senses [56]. 
This explains why BERT is quite capable of word sense disambiguation (Fig. 2.10). 

Petroni et al. [46] remark that certain types of factual knowledge are learned 
much more easily than others by the standard language model pre-training 
approaches. They state that without fine-tuning, BERT contains relational 
knowledge competitive with traditional NLP methods that have some access to 
oracle knowledge. In addition, BERT also does remarkably well on open-domain 
question answering against a supervised baseline. These capabilities of BERT are a 
great achievement. 

The language model GPT-3 has one hundred times more parameters than BERT 
and a dramatically better common sense knowledge. This, for example, can be seen
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from its answers (A) to the questions (Q): “Q: Are there any animals with three 
legs?” “A: No, there are no animals with three legs.” or “Q: Which is heavier, a 
football player or a car?” “A: A car is heavier than a football player.” [29]. In an 
initial experiment eighty persons were asked to assess, if short 200 word articles 
were written by humans or GPT-3. The persons judged incorrectly 48% of the time, 
doing only slightly better than random guessing [7]. 

However, the semantic knowledge of PLMs is not perfect. BERT, for instance, 
has difficulties with the representation of numbers and often has problems with 
the replacement of named entities (NEs), e.g. person names or location names. 
For example, replacing names in the coreference task changes 85% of coreference 
assignments of expressions that refer to the same entity [3]. Obviously the pre-
trained version of BERT struggles to generalize the relations involving one named 
entity to other named entities of the same type. Moreover, BERT has problems to 
transfer knowledge based on the roles or types of objects. In addition, it is possible 
to mislead BERT by adding some content to a cloze query. An example is the word 
“Talk” in “Talk? Birds can [MASK]”. A human would ignore “Talk?” and use his 
world knowledge to generate a result like “fly”. In contrast, PLMs can be misled 
and produce the wrong answer “talk” for the mask [26]. 

A related phenomenon is the invariance to paraphrases. Elazar et al. [12] 
generate a high-quality set of 328 paraphrases to express 38 relations. Examples 
are “X originally aired on [MASK]” and “X premiered on [MASK]”, which should 
give the same prediction for [MASK], if  “X” is replaced by some TV series like 
“Seinfeld”. Although the models in about 60% of the cases have access to the 
required knowledge to fill the mask correctly, BERT.LARGE yields a consistency in 
paraphrases in only 48.7% of the cases. This indicates that not every fact present in 
the training data is encoded in the parameters and that the model does not always 
detect the equivalence of paraphrases. The model variants RoBERTa and ALBERT 
achieve a lower consistency, although they are superior to BERT in other tasks. 

It is instructive to consider the influence of word order on the performance of 
BERT. Word order is taken into account by specific position embeddings, which 
are added to the token embeddings. It turns out, however that masked language 
models like BERT still achieve a high accuracy, if word positions are permuted. For 
pre-training Sinha et al. [59] perform sentence permutations, where each word in a 
sentence is randomly placed at a different position. The model was fine-tuned on 
GLUE, a set of classification tasks for natural language understanding (Sect. 2.1.5). 
If we ignore the CoLA-task, which checks linguistic acceptability, the model on 
average only looses 3.4% accuracy if the word order is permuted compared to the 
original RoBERTa results (88.7% on average). The authors conclude that BERT-like 
models achieve high performance on downstream tasks almost entirely by exploiting 
higher-order word co-occurrence statistics. 

Another aspect of common sense knowledge is time. When a PLM is applied 
to new documents it often does not know the meaning of new named entities and 
concepts [30]. Often, the model cannot infer the time and region of a document 
and may not be able to correctly combine facts from documents that originate 
from different time periods or geographical regions. A benchmark for assessing
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the temporal reasoning capabilities of PLMs in dialogs shows that BERT and T5 
have major deficits on this task [47]. In summary it can be expected that the 
new Retro (Sect. 6.2.3) or WebGPT (Sect. 6.2.3) models, which perform retrieval 
during language generation, will considerably mitigate the problems discussed in 
this section. 

To be able to check a multitude of different knowledge types in a standardized 
way large benchmarks like BIG-bench have been developed (Sect. 4.1.4). It com-
prises benchmarks on common sense, emotional intelligence, ethics, fact checking, 
general knowledge, humanities, mathematics, medicine, reading comprehension, 
science and social sciences. Figure 4.1 shows the performance of the Gopher model 
with 280B parameters on these benchmark groups. On most groups more than 
50% accuracy was achieved. The PaLM model with 540B parameters was able 
to improve these performance figures. On about .2/3 of these tasks PaLM using 
5-shot prompts achieves a better performance than average humans [9, p. 17].  
This indicates that PaLM has a much better common sense knowledge than earlier 
models. Nevertheless, PaLM surpasses the performance of human experts only in a 
small fraction of cases suggesting further headroom for improvement. 

An interesting idea is to use large pre-trained multilingual language models 
as a multilingual knowledge base [25]. The authors evaluate this for mBERT 
(Sect. 3.3.1), a standard BERT model, which has been pre-trained with the MLM 
loss on non-parallel Wikipedia texts from 104 languages. The authors find that 
correct entities can be retrieved for many languages. However, there is a clear 
performance gap between English and, e.g., Japanese and Thai. This suggests that 
mBERT does not store knowledge about entities in a language-independent way. It 
would be revealing if these experiments could be repeated with up-to-date language 
models like PaLM. 

4.2.3 Logical Consistency 

A set of statements is logically inconsistent if they cannot all be true at the same 
time. As an example consider the statements “John is Tom’s father. Tom is the 
daughter of John.” Sometimes, BERT is unable to reason, i.e. logically connect 
different pieces of knowledge. It reproduces, for instance, the relations that persons 
can walk into houses, and that houses are big, but it cannot infer that houses are 
bigger than persons [15, 52]. However, semantic knowledge problems tend to be 
smaller for models with more parameters. 

Richardson et al. [52] formulated nine different types of simple sentence pairs 
containing e.g. negations, quantifiers, comparatives, etc. These sentences express 
logical entailment, contradiction or neutrality. In addition, they also employ chains 
of hypernomy, e.g. poodle . ≤ dog . ≤ mammal . ≤ animal, and use these relations 
to generate new sentences expressing the corresponding logical properties. It turns 
out that BERT fine-tuned with the ‘logical tasks’ SNLI and MNLI predicts correct 
statements only with 47.3% accuracy of the cases.
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Ribeiro et al. [51] propose to generate a large number of simple examples to test 
relations by a CheckList procedure described in Sect. 4.3.1. It tests, for instance, 
whether negating a positive sentiment expression leads to a negative sentiment 
rating. For more than half of the tests with commercial and open-source models 
they observed failure rates of more than 50%. 

Even the larger model GPT-3 is not perfect, e.g. it incorrectly answers some 
common sense physics questions like “If I put cheese into the fridge, will it 
melt?” [7]. In addition, it has difficulties with logical reasoning, e.g. to determine 
if one sentence implies another. If a question is not covered in its training material, 
GPT-3 compiles the most probable answer and sometimes this is wrong, e.g. “Q: 
How many eyes does the sun have?” “A: The sun has one eye.” or “Q: Who was 
president of the United States in 1600?” “A: Queen Elizabeth I was president of 
the United States in 1600.” [29]. As another example consider the following input 
“You poured yourself a glass of cranberry, but then absentmindedly, you poured 
about a teaspoon of grape juice into it. It looks OK. You try sniffing it, but you 
have a bad cold, so you can’t smell anything. You are very thirsty. So you . . . ”. The  
continuation generated by GPT-3 is “drink it. You are now dead.”. GPT-3 assumes 
wrongly that “grape juice” is a poison and drinking it will kill you [36]. 

Improving Logical Consistency 

PLMs can improve logical reasoning capabilities if they are trained with appro-
priately generated textual expressions. By fine-tuning a BERT model with created 
sentences containing negations, hypernomy, etc., and testing with other generated 
sentences, Richardson et al. [52] achieve an accuracy of 98%. This approach is 
similar to the data generation strategy proposed in Sect. 3.6.6. 

Similarly, Clark et al. [10] generate datasets of the form (context, statement, 
answer), where context contains different logical facts and rules, statement is a 
logical question to prove and answer is either T or F. Facts, rules, and the question 
statements are then expressed in (synthetic) English. The problems require simulta-
neous consideration of a number of different statements to reach a conclusion, from 
depth 0 (simple lookup) to depth 5. During fine-tuning on this data, RoBERTa was 
trained to answer these questions as true or false. On the test data RoBERTa is able 
to answer the questions with 99% accuracy. If the facts and rules are paraphrased the 
accuracy drops to 66%. However, by training on paraphrased rules the model again 
reaches an accuracy beyond 90%. Clark et al. [10] suggest that by this approach 
the transformer can be considered as a “soft theorem prover” able to work with 
statements in language. 

It is possible to combine the implicit, pre-trained knowledge of an LM and 
explicit statements in natural language. Talmor et al. [64] show that models trained 
with such datasets can perform inferences involving implicit world knowledge and 
taxonomic knowledge (e.g. the WordNet hierarchy) . In addition, inference patterns 
provided by examples are used by the model to solve logical problems.
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There were a number of prior approaches to combine logical reasoning with 
neural networks. If a neural network provides probabilities for logical facts, then 
we can use a probabilistic reasoning system to enforce additional constraints. 
Examples are DeepProblog [35] that incorporates Deep Learning by means of 
neural predicates, i.e. statements whose probability is determined by a neural 
network. An alternative is probabilistic soft logic (PSL) [28], which allows first 
order probabilistic reasoning in relational domains. However, PLMs do not directly 
provide probabilities for facts. There have been approaches to translate natural 
language sentences to logical statements and apply logical reasoning. However, this 
“semantic parsing” [24] was not very successful. 

A number of researchers have developed methods for neural theorem proving. 
This work combines symbolic and neural methods to reason about results derived 
from language. Examples are e.g. Minervini et al. [39], which jointly embed logical 
predicates and text in a shared space by using an end-to-end differentiable model, 
or Weber et al. [70] which combine a Prolog prover with a language model to apply 
rule-based reasoning to natural language. The DeepCTRL approach [57] integrates  
rules with Deep Learning. It has a rule encoder which allows to control the strengths 
of the rules at inference. It can be applied to domains like healthcare, physical 
models or accounting, where obeying rules is essential. 

A simple but effective way to improve logical consistency is to increase the 
number of model parameters creating a Foundation Model. A large fraction of the 
tasks in the BIG-bench benchmark [1, 60] is devoted to checking logical consistency, 
e.g. the benchmark groups with analogical reasoning and logical reasoning. Gopher 
(Sect. 3.1.2) is a language model with 280B parameters. It was applied to about 
150 benchmarks, among them 19 logical reasoning tasks. In all but 4 benchmarks it 
could increase SOTA indicating that larger PLMs have better reasoning capabilities. 
Nevertheless, the average accuracy was only about 50%. It was not yet evaluated 
whether the recent Retro (Sect. 6.2.3) language model with retrieval of additional 
text documents is able to improve these results. 

PaLM (Sect. 3.1.2) is an even larger language model with 540B parameters. 
On the SuperGLUE logical tasks CB, COPA, RTE, it can drastically increase the 
scores compared to BERT, e.g. for COPA from 70.6 to 99.2 (Table 4.2). It has been 
evaluated on hundreds of benchmarks including those used for Gopher. It uses a 
new prompt technique to pose logical questions, where examples are presented to 
the system together with thought chains partitioning a reasoning task into smaller 
problems (Sect. 3.6.4). Two examples are shown in Fig. 2.21. Note that k-shot 
reasoning only requires a single sequence of k thought chain prompts to be provided 
for the training examples. The model then generates a thought chain for each test 
example. This can be used for error analysis and explaining the model behavior. 

Using this technique, PaLM is able to match or surpass the performance level of 
an average human asked to solve the task. As an example consider the StrategyQA 
benchmark [16], which contains questions like “Did Aristotle use a laptop?”. For  
this question the model has to collect facts on the lifespan of Aristotle and the year, 
when the first laptop was invented to arrive at the answer “No”. Without thought 
chain prompts PaLM reached 69%, while the use of thought chain prompts could
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improve the prior SOTA from 70% to 73.9%. As a comparison, average humans 
achieve 62.9%, while expert humans have an accuracy of 90%. 

There are other ways to improve learning with such intermediate outputs. Wang 
et al. [69] sample multiple chains of thought exploiting the diversity of reasoning 
paths and then return the most consistent final answer in the set. Since it is expensive 
to obtain chains-of-thought for a large number of examples, Zelikman et al. [71] 
generate explanations for a large dataset by bootstrapping a model in the few-shot 
setting and only retaining chains-of-thought that lead to correct answers. 

4.2.4 Summary 

Pre-trained PLMs have a huge number of parameters and are able to represent 
an enormous amount of syntactic and factual knowledge. This knowledge can 
be elicited by probing classifiers, the prediction of masked words, by generating 
answers to inputs, or by solving benchmark tasks. 

As far as syntactic knowledge is concerned, Foundation Models like GPT-3 
produce almost error-free text and ‘know’ a lot about syntactic rules. One problem 
is to adequately reflect the effect of negations. 

Even smaller models like BERT are capable of producing a lot of common-
sense knowledge. Here, the effect of substituting names or using paraphrases is 
problematic. Larger language models like GPT-3 are more robust, and the recently 
proposed language models with retrieval (WebGPT, Retro) are able to include 
relevant external documents for the current task. This information can reduce errors 
considerably. However, there is no comprehensive evaluation yet. One problem is 
the correct temporal and spatial location of information. Here, smaller models like 
BERT and T5 have large deficits. Foundation Models meanwhile surpass the average 
human score in 2/3 of the BIG-bench tests on common sense knowledge. They can 
even be used as a multilingual knowledge base, since models like PaLM cover many 
languages. 

Logical consistency of inferences is a problem, and the PLMs often associate 
answers that are plausible but wrong. The models are only able to make logical 
inferences for relationships mentioned in the training text, and they are often 
incapable of making abstractions and generalizing an observed relationship to 
other objects or entities of the same type. Logical consistency can be improved 
by generating additional training texts containing assumptions and valid logical 
consequences resulting from them. The direct inclusion of logical reasoning systems 
in Foundation Models was not very successful. The PaLM language model with 
540B parameters achieved a fundamental improvement of the accuracy of logical 
reasoning through the use of thought chain prompts. Here in a few-shot prompt a 
logical derivation is broken down into smaller logical substeps . At present, it is 
not clear, to what extent language models with retrieval can reduce the still existing 
deficits in logical reasoning.
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4.3 Transferability and Reproducibility of Benchmarks 

In this section, we consider whether benchmarks actually evaluate the properties 
they are supposed to test. We also discuss the extent to which they are reproducible. 

4.3.1 Transferability of Benchmark Results 

On a number of benchmarks, the performance of human annotators is exceeded 
by Foundation Models. This is an indication that the model has learned valuable 
contents about language. However, Ribeiro et al. [51] argue that this can be 
misleading, because the test sets often do not cover the right content. While 
performance on held-out test data is a useful measure, these datasets are often not 
comprehensive. Hence, there is the danger of overestimating the usability of the 
model in real applications. 

Benchmarks May Not Test All Aspects 

On the MRPC task of the GLUE benchmark for detecting paraphrases RoBERTa, 
BERT.LARGE, and humans have F1 scores of 90.9% [34], 89.3% [42] and 86.3% 
respectively. Therefore, both models perform better than humans. To test whether 
the models respect basic logical relationships, Ribeiro et al. [51] propose to generate 
a large number of simple examples using a CheckList procedure. This approach is 
similar to testing software by systematically generating a large variety of inputs in 
unit tests. 

The following scheme, for instance, can be used to check the effect of a 
negation in a sentiment classification task “I . <negation.> . <positive_verb. > the 
. <thing. >”. It generates sentences like “I didn’t love the food” or “I don’t enjoy 
sailing”. The authors formulate minimum functionality tests, which are useful to 
check if the model actually detected the reason of an outcome or used some 
unjustified association. In addition, they utilize invariance tests to find out, if neutral 
perturbations or paraphrases change the result. Finally, they create directional 
expectation tests, where a modification is known to change the result in an expected 
way. 

For MPRC it turned out that the failure rates of RoBERTa and BERT on these 
23 test templates are larger than 50% for 11 and 14 of the templates respectively. 
Therefore, the “superhuman” performance of the two models should be taken with 
a grain of salt. 

The authors also tested five current PLMs: BERT.BASE, RoBERTa.BASE, 
Microsoft’s Text Analytics, Google Cloud’s Natural Language, and Amazon’s 
Comprehend. They report the results of 17 tests for sentiment classification, where 
most problems occurred with negations. For instance, the following example “I 
thought the plane would be awful, but it wasn’t.” was misclassified by most models.
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Also very difficult is the detection of paraphrases with 23 tests templates. Here 
RoBERTa had for 11 and BERT for 14 of the test templates a failure rate of more 
than 50%. A similar failure rate was observed for reading comprehension when 
test cases were generated with logical templates. These results indicate that the 
examples in the original test sets of the benchmarks are too easy. 

To increase robustness of PLMs it is possible to generate adversarial examples 
[8, 65]. The authors discuss methods that augment training data with adversarial 
examples as well as methods that produce certificates of robustness. They also 
investigate methods to avoid spurious correlations, i.e. predictive patterns that work 
well on a specific dataset but do not hold in general. 

Talman et al. [63] checked, if the results for benchmarks may be transferred 
to similar datasets. They trained six PLMs on different benchmarks for natural 
language inference (NLI) containing sentence pairs manually labeled with the labels 
entailment, contradiction, and neutral. While six models perform well when the test 
set matches the training set, accuracy is significantly lower when a test set from 
another benchmark is used. BERT.BASE, for instance, yields a test accuracy of 90.4% 
for SNLI, which drops on average 21.2% for the test sets of the other benchmarks. 
The reason behind this drop is a slightly different definition of the task as well as 
small differences in the documents domains. Obviously, it cannot be expected that 
the performance of PLMs can simply be transferred to new data. 

Logical Reasoning by Correlation 

The Winograd schema challenge (WNLI) was developed by Levesque et al. [32] and 
is part of the GLUE benchmark collection. The test consists of a pair of sentences 
differing by exactly one word, each followed by a question [41], e.g. 

• The sports car passed the mail truck because it was going faster. Question: Which 
was going faster, the sports car or the mail truck? 

• The sports car passed the mail truck because it was going slower. Question: 
Which was going slower, the sports car or the mail truck? 

In this pair of sentences, the difference of one word changes which thing or person 
a pronoun refers to. Answering these questions correctly seems to require common 
sense reasoning and world knowledge. In addition, the authors have designed the 
questions to be “Google-proof”: The system should not be able to use a web search 
(or anything similar) to answer the questions. GPT-3 reaches a value of 88.6% using 
few-shot prompts without fine-tuning [7] and DeBERTa managed an accuracy of 
95.6% after fine-tuning [19]. This accuracy roughly equals human performance. 

As Mitchell [41] argues, this does not necessarily mean that neural network 
language models have attained human-like understanding. For a number of question 
pairs it seems possible to answer the question by some sort of correlation instead 
of actual world knowledge. If pre-trained on a large corpus the model will learn 
the high correlation between “sports car” and “fast” and between “mail truck” and 
“slow” for the above example. Therefore, it can give the correct answer on the
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coreference of “it” based on those correlations alone and not by recourse to any 
understanding. It turns out that many of the Winograd schema challenge question 
follow this pattern. A similar argument states [6, 37] that a model might heuristically 
accept a hypothesis by assuming that the premise entails any hypothesis whose 
words all appear in the premise. This means that the model can give the right answer 
without ‘understanding’ the situation in question. 

To reduce the deficits of the Winograd schema challenge a much larger Wino-
grande benchmark [55] was created using crowdsourcing. The researchers discarded 
sentences which could be answered by exploiting intuition and correlation. They 
used the embeddings created by RoBERTa (Sect. 3.1.1) to determine if these embed-
dings strongly indicated the correct response option. In this case they discarded the 
question pair and finally ended up with 44k sentences. An example for a question 
pair without correlation problems is: 

• The trophy doesn’t fit into the brown suitcase because it’s too large. (it: trophy) 
• The trophy doesn’t fit into the brown suitcase because it’s too small. (it: suitcase) 

While humans reach an accuracy of 94%, the best PLMs, standard models like 
RoBERTa only reached 79.1% accuracy. Recently, T5-XXL achieved an accuracy 
of about 91% [43] and the ST-MoE-32B mixture-of-experts model [73] with 269B 
parameters (Sect. 3.5.2) obtained 96.1%, drastically reducing the errors. It appears 
that in most cases the latter models are able to perform ‘reasoning’ without simply 
correlating statements. 

4.3.2 Reproducibility of Published Results in Natural 
Language Processing 

Many publications in NLP claim that their model achieves SOTA for some bench-
mark. Examples are the GLUE benchmark [67] for language understanding and 
the SQuAD data [50] for reading comprehension. There are two main problems 
with this approach. First it is difficult to assess, if the results are reproducible and 
significant. As Crane [11] demonstrates, there are usually a number of unreported 
conditions that affect the reproducibility of the result. An example is the random ini-
tialization of the network parameters. The resulting variance is often larger than the 
reported improvement in SOTA scores. However, the variance resulting from these 
phenomena is usually not reported. Other effects are the underlying programming 
frameworks and libraries, which change over time. Often the hyperparameters and 
the details of preprocessing and model configuration are not communicated. 

To document the model architecture, the training and evaluation process of 
a model, Mitchell et al. [40] proposed the description of relevant facts and 
hyperparameters in a model card. After a short high-level description of the model 
and its purpose the model card should contain nine different sections [40]: 

1. Basic information about the model, 
2. Intended uses and scope limitations,
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3. Model performance across a variety of relevant factors, 
4. Performance metrics, 
5. Evaluation data, 
6. Training data, 
7. Evaluation results according to the chosen metrics. 
8. Ethical consideration, risks and harms. 
9. Caveats and recommendations. 

More details are given by huggingface [22]. Even if models still can be published 
without a model card, the explicit documentation of the model can only benefit 
future users. Therefore, model cards should be provided if possible. For most recent 
models, a model card is provided even if the model is not open-source. 

A survey on reproducibility in NLP is given by Belz et al. [4]. They note 
that the performance results often depend on seemingly small differences in 
model parameters and settings, for example minimum counts for rare word or the 
normalization of writing. The authors state in their study on repeated experiments 
that only 14% of the 513 reported scores were the same. An annoying fraction 
of 59% of the scores were worse than the published numbers. Therefore, the 
experimental results published in papers should be treated with caution. 

Another issue is the question of what causes an increase in performance. As we 
have discussed above, a growth in the number of parameters and in the computing 
effort regularly leads to better results for PLMs (Sect. 3.5.1). As a consequence, it 
is often not clear, whether the architectural changes to a model yield the improved 
performance or just the number of additional parameters or the larger training set 
[53]. 

Obviously a first place in a leaderboard can be achieved with a larger model 
and more computing effort. This, however, “is not research news” according to 
Rogers [53]. In addition, these results are often not reproducible: Who can afford to 
retrain GPT-3 for 4.6 million dollars. As a consequence, the development of smaller 
but more innovative models is less rewarding, as it is difficult to beat the bigger 
model. Only if the authors of a new model can show that their architecture is better 
than the previous SOTA model with the same number of parameters and compute 
budget, they can claim to have made a valuable contribution. Rogers [53] proposes 
to provide a standard training corpus for a leaderboard and limit the amount of 
computation effort to that of a strong baseline model. As an alternative the size of 
the training data and the computational effort should be reported and taken into 
account in the final score. 

Available Implementations 

• There are model codes and trained models for RoBERTa and ELECTRA at 
Hugging Face https://huggingface.co/transformers/. 

• The code for DeBERTa is available at https://github.com/microsoft/DeBERTa 
and Hugging Face. 

• The Checklist code is at https://github.com/marcotcr/checklist.

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
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4.3.3 Summary 

The transferability of benchmark results to real applications is not always granted. 
Even if a PLM is better than humans at logical reasoning on the test set, it may not 
be able to classify generated logical reasoning chains correctly. This indicates that 
the test set does not cover the full spectrum of possible examples. It is common for 
performance to be lower on related benchmarks because the domain or the definition 
of the task may deviate. 

There are cases where a logical conclusion is obtained not by logical deduc-
tion, but by a simple correlation of antecedent and consequent. This could be 
demonstrated for the Winograd task of the GLUE benchmark. To avoid this type of 
‘reasoning’ a new variant task called Winogrande was developed where correlations 
are unrelated to the reasoning task. Meanwhile, a Foundation Model with 269B 
parameters was also able to solve this task better than humans. 

A survey on the reproducibility of results in NLP demonstrated that the published 
performance often depends on a number of unreported effects, such as random 
number initialization. Often the variability of such effects is larger than the reported 
improvement. Therefore, it is necessary to report the variance caused by these 
effects. In addition, the details of the model architecture, its training and evaluation 
should be documented in a model card. In about 500 repeated experiments, an 
irritating rate of about 60% of final scores were lower than reported. Note that 
improvements due to more parameters, more training data, or higher computational 
effort are not indicative of a better model architecture. 
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