
Chapter 2
Pre-trained Language Models

Abstract This chapter presents the main architecture types of attention-based
language models, which describe the distribution of tokens in texts: Autoencoders
similar to BERT receive an input text and produce a contextual embedding for each
token. Autoregressive language models similar to GPT receive a subsequence of
tokens as input. They produce a contextual embedding for each token and predict
the next token. In this way, all tokens of a text can successively be generated.
Transformer Encoder-Decoders have the task to translate an input sequence to
another sequence, e.g. for language translation. First they generate a contextual
embedding for each input token by an autoencoder. Then these embeddings are
used as input to an autoregressive language model, which sequentially generates
the output sequence tokens. These models are usually pre-trained on a large general
training set and often fine-tuned for a specific task. Therefore, they are collectively
called Pre-trained Language Models (PLM). When the number of parameters of
these models gets large, they often can be instructed by prompts and are called
Foundation Models. In further sections we described details on optimization and
regularization methods used for training. Finally, we analyze the uncertainty of
model predictions and how predictions may be explained.

Keywords BERT · Language model · GPT-2 · Transformer · Pre-training ·
Fine-tuning · Sequence-to-sequence model

A model that either computes the joint probability or the conditional probability
of natural language texts is called a language model as it potentially covers all
information about the language. In this chapter, we present the main architecture
types of attention-based language models (LMs), which process texts consisting of
sequences of tokens, i.e. words, numbers, punctuation, etc.:

• Autoencoders (AE) receive an input text and produce a contextual embedding
for each token. These models are also called BERT models and are described in
Sect. 2.1.

© The Author(s) 2023
G. Paaß, S. Giesselbach, Foundation Models for Natural Language Processing,
Artificial Intelligence: Foundations, Theory, and Algorithms,
https://doi.org/10.1007/978-3-031-23190-2_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23190-2protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2
https://doi.org/10.1007/978-3-031-23190-2_2

20 2 Pre-trained Language Models

• Autoregressive language models (AR) receive a subsequence .v1, . . . , vt−1 of
tokens of the input text. They generate contextual embeddings for each token
and use them to predict the next token . vt . In this way, they can successively
predict all tokens of the sequence. These models are also called GPT models and
are outlined in Sect. 2.2.

• Transformer Encoder-Decoders have the task to translate an input sequence in to
another sequence, e.g. for language translation. First they generate a contextual
embedding for each input token by an autoencoder. Then these embeddings are
used as input to an autoregressive language model, which sequentially generates
the output sequence tokens. These models are also called Transformers and are
defined in Sect. 2.3.

In this chapter, we focus on NLP, where we consider sequences of text tokens.
Historically, the transformer encoder-decoder was developed in 2017 by Vaswani
et al. [141] to perform translation of text into another language. The autoencoder
[39] and the autoregressive language model [118] are the encoder-part and the
decoder-part of this transformer encoder-decoder and were proposed later. As they
are conceptually simpler, they are introduced in preceding sections. A final section
(Sect. 2.4) describes methods for optimizing models during training, determining a
model architecture, and estimating the uncertainty of model predictions.

It turned out that the models can first be trained on a large training set of general
text documents and are able to acquire the distribution of tokens in correct and fluent
language. Subsequently, they can be adapted to a specific task, e.g. by fine-tuning
with a small supervised classification task. Therefore, the models are called Pre-
trained Language models.

As we will see later, all models can be applied to arbitrary sequences, e.g. musical
notes, sound, speech, images, or even videos. When the number of parameters of
these models gets large, they often can be instructed by prompts and are called
Foundation Models.

2.1 BERT: Self-Attention and Contextual Embeddings

Common words often have a large number of different meanings. For the word
“bank”, for instance, the lexical database WordNet [94] lists 18 different senses
from “sloping land” to “financial institution”. In a simple embedding of the word
“bank” introduced in Sect. 1.5 all these meanings are conflated. As a consequence,
the interpretation of text based on these embeddings is flawed.

As an alternative, contextual embeddings or contextualized embeddings were
developed, where the details of a word embedding depend on the word itself as
well as on the neighboring words occurring in the specific document. Consequently,
each occurrence of the same word in the text has a different embedding depending
on the context. Starting with the Transformer [141], a number of approaches have
been designed to generate these contextual embeddings, which are generally trained
in an unsupervised manner using a large corpus of documents.

2.1 BERT: Self-Attention and Contextual Embeddings 21

BERT (Bidirectional Encoder Representations from Transformers) was pro-
posed by Devlin et al. [39] and is the most important approach for generating
contextual embeddings. BERT is based on the concept of attention [8] and on
prior work by Vaswani et al. [141]. The notion of attention is inspired by a brain
mechanism that tends to focus on distinctive parts of memory when processing
large amounts of information. The details of the computations are explained by
Rush [126].

2.1.1 BERT Input Embeddings and Self-Attention

As input BERT takes some text which is converted to tokens, e.g. by the Wordpiece
tokenizer (Sect. 1.2) with a vocabulary of a selected size, e.g. 30,000. This means
that frequent words like “dog” are represented by a token of their own, but more
rare words like “playing” are split into several tokens, e.g. “play” and “##ing”,
where “##” indicates that the token is part of a word. As all characters are retained
as tokens, arbitrary words may be represented by a few tokens. In addition, there
are special tokens like [CLS] at the first position of the input text and two “[SEP]”
tokens marking the end of text segments. Finally, during training, there are [MASK]
tokens as explained later. Each token is represented by a token embedding, a vector
of fixed length .demb, e.g. .demb = 768. Input sequences of variable length are padded
to the maximal length with a special padding token.

Since all token embeddings are processed simultaneously, the tokens need an
indication of their position in the input text. Therefore, each position is marked
with position embeddings of the same length as the token embeddings, which
encode the position index. The BERT paper encodes the position number by
trainable embeddings, which are added to the input token embeddings [39]. Finally,
BERT compares the first and second input segment. Therefore, the algorithm needs
the information, which token belongs to the first and second segment. This is
also encoded by a trainable segment embedding added to the token and position
embedding. The sum of all embeddings is used as input embedding for BERT. An
example is shown in Fig. 2.1.

Self-Attention to Generate Contextual Embeddings

BERT starts with input embeddings . xt of length .demb for each token . vt of the input
sequence .v1, . . . , vT . These embeddings are transformed by linear mappings to so-
called query-vectors . q t , key-vectors . kt and value-vectors . vt . These are computed by
multiplying . xt with the matrices .W (q), .W (k), and .W (v) with dimensions .demb × dq ,
.demb × dq and .demb × dv respectively

.q
ᵀ
t = x

ᵀ
t W (q) k

ᵀ
t = x

ᵀ
t W (k) v

ᵀ
t = x

ᵀ
t W (v). (2.1)

22 2 Pre-trained Language Models

[] [] [] ## []

1 2 3 4 5 7 8 9 10 116

+ + + + + + + + + +

+ + + + + + + + + +

[] my dog is [] [] he likes play ##ing []input tokens

token
embeddings

segment
embeddings

posi�on
embeddings

+

+

Fig. 2.1 The input of the BERT model consist of a sequence of embeddings corresponding to the
input tokens. Each token is represented by a sum consisting of the embedding of the token text, the
embedding of its segment indicator and an embedding of its position [39]

Note that the query- and key-vectors have the same length. Then scalar products
.q
ᵀ
r kt between the query-vector . qr of a target token . vr and the key-vectors . kt of all

tokens of the sequence are computed:

.(αr,1, . . . , αr,T) = softmax

(
q
ᵀ
r k1√
dk

, . . . ,
q
ᵀ
r kT√
dk

)
. (2.2)

Each scalar product yields a real-valued association score .(qᵀ
r kt)/

√
dk between

the tokens, which depends on the matrices .W (q) and .W (k). This association score is
called scaled dot-product attention. It is normalized to a probability score . αr,t by the
softmax function. The factor .1/

√
dk avoids large values, where the softmax function

has only tiny gradients. With these weights a weighted average of the value vectors
. vt of all sequence elements is formed yielding the new embedding . ̆xr of length . dv

for the target token . vr :

.x̆r = αr,1 ∗ v1 + · · · + αr,T ∗ vT . (2.3)

This algorithm is called self-attention and was first proposed by Vaswani et al. [141].
Figure 2.2 shows the computations for the r-th token “mouse”. Note that the
resulting embedding is a contextual embedding as it includes information about all
words in the input text. A component of . vt gets a high weight whenever the scalar
product .qᵀ

r kt is large. It measures a specific form of a correlation between . xr and
. xt and is maximal if the vector .x

ᵀ
r W (q) points in the same direction as .x

ᵀ
t W (k).

The self-attention mechanism in general is non-symmetric, as the matrices . W (q)

and .W (k) are different. If token . vi has a high attention to token . vj (i.e. . qᵀ
i kj

is large), this does not necessarily mean that . vj will highly attend to token . vi

(i.e. .qᵀ
j ki also is large). The influence of . vi on the contextual embedding of . vj

therefore is different from the influence of . vj on the contextual embedding of . vi .
Consider the following example text “Fred gave roses to Mary”. Here the word
“gave” has different relations to the remaining words. “Fred” is the person who
is performing the giving, “roses” are the objects been given, and “Mary” is the
recipient of the given objects. Obviously these semantic role relations are non-
symmetric. Therefore, they can be captured with the different matrices .W (q) and
.W (k) and can be encoded in the embeddings.

2.1 BERT: Self-Attention and Contextual Embeddings 23

Fig. 2.2 Computation of a contextual embedding for a single token “mouse” by self-attention. By
including the embedding of “cheese”, the embedding of mouse can be shifted to the meaning of
“rodent” and away from “computer pointing device”. Such an embedding is computed for every
word of the input sequence

Self-attention allows for shorter computation paths and provides direct avenues
to compare distant elements in the input sequence, such as a pronoun and its
antecedent in a sentence. The multiplicative interaction involved in attention
provides a more flexible alternative to the inflexible fixed-weight computation of
MLPs and CNNs by dynamically adjusting the computation to the input at hand.
This is especially useful for language modeling, where, for instance, the sentence
“She ate the ice-cream with the X” is processed. While a feed-forward network
would always process it in the same way, an attention-based model could adapt its
computation to the input and update the contextual embedding of the word “ate” if
X is “spoon”, or update the embedding of “ice-cream” if X refers to “strawberries”
[17].

In practice all query, key, and value vectors are computed in parallel by . Q =
XW (q), .K = XW (k), .V = XW (v), where . X is the .T × demb matrix of input
embeddings [141]. The query-vectors . q t , key-vectors . kt and value vectors . vt are
the rows of . Q, . K , . V respectively. Then the self-attention output matrix ATTL(X) is
calculated by one large matrix expression

.X̆ = ATTL(X) = ATTL(Q,K,V) = softmax

(
QKᵀ
√

dk

)
V , (2.4)

24 2 Pre-trained Language Models

resulting in a .T × dv-matrix . X̆. Its r-th row contains the new embedding . ̆xr of the
r-th token . vr .

A number of alternative compatibility measures instead of the scaled dot-product
attention (2.2) have been proposed. They are, however, rarely used in PLMs, as
described in the surveys [27, 46].

It turns out that a single self-attention module is not sufficient to characterize
the tokens. Therefore, in a layer .dhead parallel self-attentions are computed with
different matrices .W (q)

m , .W (k)
m , and .W (v)

m , .m = 1, . . . , dhead, yielding partial new
embeddings

.X̆m = ATTL(XW
(q)
m ,XW (k)

m ,XW (v)
m). (2.5)

The emerging partial embeddings .x̆m,t for a token . vt are able to concentrate on
complementary semantic aspects, which develop during training.

The BERT.BASE model has .dhead=12 of these parallel attention heads. The
lengths of these head embeddings are only a fraction .demb/dhead of the original
length .demb. The resulting embeddings are concatenated and multiplied with a
.(dhead ∗ dv) × demb-matrix .W(o) yielding the matrix of intermediate embeddings

.X̆ =
[
X̆1, . . . , X̆dhead

]
W 0, (2.6)

where .W 0 is a parameter matrix. If the length of the input embeddings is .demb,
the length of the query, key, and value vector is chosen as .dk = dv = demb/dhead.
Therefore, the concatenation again creates a .T ×demb matrix . X̆. This setup is called
multi-head self-attention. Because of the reduced dimension of the individual heads,
the total computational cost is similar to that of a single-head attention with full
dimensionality.

Subsequently, each row of . X̆, the intermediate embedding vectors . ̆x
ᵀ
t , is

converted by a fully connected layer FCL with a ReLU activation followed by
another linear transformation [141]

.x̃
ᵀ
t = FCL(x̆t) = ReLU(x̆

ᵀ
t ∗ W 1 + b

ᵀ
1) ∗ W 2 + b

ᵀ
2 . (2.7)

The matrices .W 0,W 1,W 2 and the vectors .b1, b2 are parameters. These transfor-
mations are the same for each token . vt of the sequence yielding the embedding . ̃xt .

To improve training speed, residual connections are added as a “bypass”, which
simply copy the input. They were shown to be extremely helpful for the optimization
of multi-layer image classifiers [54]. In addition, layer normalization [6] is used
for regularization (Sect. 2.4.2), as shown in Fig. 2.3. Together the multi-head self-
attention (2.5), the concatenation (2.6), and the fully connected layer (2.7) form an
encoder block.

This procedure is repeated for a number of k layers with different encoder blocks,
using the output embeddings of one block as input embeddings of the next block.
This setup is shown in Fig. 2.4. The embeddings .x̃k,t of the last encoder block

2.1 BERT: Self-Attention and Contextual Embeddings 25

Fig. 2.3 Multi-head self-attention computes self-attentions for each layer l and head m with
different matrices .W (q)

l,m, .W
(k)
l,m, and .W (v)

l,m. In this way, different aspects of the association
between token pairs, e.g. “mouse” and “cheese”, can be computed. The resulting embeddings are
concatenated and transformed by a feedforward network. In addition, residual connections and
layer normalization improve training convergence [39]

Fig. 2.4 Parallel computation of contextual embeddings in each encoder block by BERT. The
output embeddings of an encoder block are used as input embeddings of the next encoder block.
Finally, masked tokens are predicted by a logistic classifier L using the corresponding contextual
embedding of the last encoder block as input

26 2 Pre-trained Language Models

provides the desired contextual embeddings. The structure of an encoder block
overcomes the limitations of RNNs (namely the sequential nature of RNNs) by
allowing each token in the input sequence to directly determine associations with
every other token in the sequence. BERT.BASE has .k=12 encoder blocks. It was
developed at Google by Devlin et al. [39]. More details on the implementation of
self-attention can be found in these papers [38, 41, 126].

2.1.2 Training BERT by Predicting Masked Tokens

The BERT model has a large number of unknown parameters. These parameters are
trained in a two-step procedure.

• Pre-training enables the model to acquire general knowledge about language in
an unsupervised way. The model has the task to fill in missing words in a text.
As no manual annotation is required, pre-training can use large text corpora.

• Fine-tuning adjusts the pre-trained model to a specific task, e.g. sentiment
analysis. Here, the model parameters are adapted to solve this task using a smaller
labeled training dataset.

The performance on the fine-tuning task is much better than without pre-training
because the model can use the knowledge acquired during pre-training through
transfer learning.

To pre-train the model parameters, a training task is designed: the masked
language model (MLM). Roughly 15% of the input tokens in the training documents
are selected for prediction, which is performed by a logistic classifier (Sect. 1.3)

.p(Vt |v1, . . . , vt−1, vt+1 . . . , vT) = softmax(Ax̃k,t + b), (2.8)

receiving the embedding .x̃k,t of the last layer at position t as input to predict the
random variable . Vt of possible tokens at position t . This approach avoids cycles
where words can indirectly “see themselves”.

The tokens to be predicted have to be changed, as otherwise the prediction would
be trivial. Therefore, a token selected for prediction is replaced by:

• a special [MASK] token for 80% of the time (e.g., “the mouse likes cheese”
becomes “the mouse [MASK] cheese”);

• a random token for 10% of the time (e.g., “the mouse likes cheese” becomes “the
mouse absent cheese”);

• the unchanged label token for 10% of the time (e.g., “the mouse likes cheese”
becomes “the mouse likes cheese”).

The second and third variants were introduced, as there is a discrepancy between
pre-training and the subsequent fine-tuning, were there is no [MASK] token. The
authors mitigate this issue by occasionally replacing [MASK] with the original
token, or by sampling from the vocabulary. Note that in 1.5% of the cases a

2.1 BERT: Self-Attention and Contextual Embeddings 27

random token is inserted. This occasional noise encourages BERT to be less biased
towards the masked token (especially when the label token remains unchanged)
in its bidirectional context encoding. To predict the masked token, BERT has to
concentrate all knowledge about this token in the corresponding output embedding
of the last layer, which is the input to the logistic classifier. Therefore, it is often
called an autoencoder, which generates extremely rich output embeddings.

In addition to predicting the masked tokens, BERT also has to predict, whether
the next sentence is a randomly chosen sentence or the actual following sentence
(next sentence prediction). This requires BERT to consider the relation between two
consecutive pieces of text. Again a logistic classifier receiving the embedding of the
first [CLS] token is used for this classification. However, this task did not have a
major impact on BERT’s performance, as BERT simply learned if the topics of both
sentences are similar [158].

In Fig. 2.4 the task is to predict a high probability of the token “likes” for the
input text “The mouse [MASK] cheese”. At the beginning of the training this
probability will be very small (.≈ 1/no. of tokens). By backpropagation for each
unknown parameter the derivative can be determined, indicating how the parameters
should be changed to increase the probability of “likes”. The unknown parameters
of BERT comprise the input embeddings for each token of the vocabulary, the
position embeddings for each position, matrices.W (q)

l,m, .W
(k)
l,m, .W

(v)
l,m for each layer

l and attention head m (2.4), the parameters of the fully connected layers (2.7) as
well as .A, b of the logistic classifier (2.8). BERT uses the Adam algorithm [69] for
stochastic gradient descent.

The BERT.BASE model has a hidden size of .demb =768, .k=12 encoder blocks
each with .dhead=12 attention heads, and a total of 110million parameters. The
BERT.LARGE model has a hidden size of .demb =1024, and .k=24 encoder blocks
each with .dhead=16 attention heads and a total of 340million parameters [39]. The
English Wikipedia and a book corpus with 3.3 billion words were encoded by the
WordPiece tokenizer [154] with a vocabulary of 30,000 tokens and used to pre-train
BERT. No annotations of the texts by humans were required, so the training is self-
supervised. The pre-training took 4 days on 64 TPU chips, which are very fast GPU
chips allowing parallel processing. Fine-tuning can be done on a single Graphical
Processing Unit (GPU).

To predict the masked tokens, the model has to learn many types of language
understanding features: syntax ([MASK] is a good position for a verb), seman-
tics (e.g. the mouse prefers cheese), pragmatics, coreference, etc. Note that the
computations can be processed in parallel for each token of the input sequence,
eliminating the sequential dependency in Recurrent Neural Networks. This par-
allelism enables BERT and related models to leverage the full power of modern
SIMD (single instruction multiple data) hardware accelerators like GPUs/TPUs,
thereby facilitating training of NLP models on datasets of unprecedented size.
Reconstructing missing tokens in a sentence has long been used in psychology.
Therefore, predicting masked tokens is also called a cloze task from ‘closure’ in
Gestalt theory (a school of psychology).

28 2 Pre-trained Language Models

It turns out that BERT achieves excellent results for the prediction of the masked
tokens, and that additional encoder blocks markedly increase the accuracy. For
example, BERT is able to predict the original words (or parts of words) with an
accuracy of 45.9%, although in many cases several values are valid at the target
position [125]. In contrast to conventional language models, the MLM takes into
account the tokens before and after the masked target token. Hence, it is called a
bidirectional encoder. In addition, self-attention directly provides the relation to
distant tokens without recurrent model application. Finally, self-attention is fast, as
it can be computed in parallel for all input tokens of an encoder block.

2.1.3 Fine-Tuning BERT to Downstream Tasks

Neural networks have already been pre-trained many years ago [16], but the success
of pre-training has become more evident in recent years. During pre-training BERT
learns general syntactic and semantic properties of the language. This can be
exploited for a special training task during subsequent fine-tuning with a modified
training task. This approach is also called transfer learning as the knowledge
acquired during pre-training is transferred to a related application. In contrast to
other models, BERT requires minimal architecture changes for a wide range of
natural language processing tasks. At the time of its publication, BERT improved
the SOTA on various natural language processing tasks.

Usually, a fine-tuning task requires a classification, solved by applying a logistic
classifier L to the output embedding .x̃k,1 of the [CLS] token at position 1 of
BERT’s last encoder block. There are different types of fine-tuning tasks, as shown
in Fig. 2.5.

• Text classification assigns a sentence to one of two or more classes. Examples are
the classification of restaurant reviews as positive/negative or the categorization
of sentences as good/bad English. Here the output embedding of the start token
[CLS] is used as input to L to generate the final classification.

• Text pair classification compares two sentences separated by “[SEP]”. Examples
include classifying whether the second sentence implies, contradicts, or is neutral
with respect to the first sentence, or whether the two sentences are semantically
equivalent. Again the output embedding of the start token [CLS] is used as
input to L. Sometimes more than one sentence is compared to the root sentence.
Then outputs are computed for every sentence pair and jointly normalized to a
probability.

• Word annotation marks each word or token of the input text with a specific
property. An example is Named Entity Recognition (NER) annotating the tokens
with five name classes (e.g. “person”, “location”, , “other”). Here the same
logistic model L is applied to every token output embedding .x̃k,t at position t
and yields a probability vector of the different entity classes.

2.1 BERT: Self-Attention and Contextual Embeddings 29

Fig. 2.5 For fine-tuning, BERT is enhanced with an additional layer containing one or more
logistic classifiers L using the embeddings of the last layer as inputs. This setup may be employed
for text classification and comparison of texts with the embedding of [CLS] as input of the logistic
classifier. For sequence tagging, L predicts a class for each sequence token. For span prediction,
two logistic classifiers . L1 and . L2 predict the start and end of the answer phrase [39]

• Span prediction tags a short sequence of tokens within a text. An example is
question answering. The input to BERT consists of a question followed by
“[SEP]” and a context text, which is assumed to contain the answer. Here two
different logistic classifiers L and . L̃ are applied to every token output embedding
.x̃k,t of the context and generate the probability that the answer to the question
starts/ends at the specific position. The valid span (i.e. the end is not before
the start) with the highest sum of start/end scores is selected as the answer. An
example is the input “[CLS] When did Caesar die ? [SEP] . . . On the Ides of
March, 44 BC, Caesar was assassinated by a group of rebellious senators . . . ”,
where the answer to the question is the span “Ides. start of March, 44 BC. end”. Span
prediction may be applied to a number of similar tasks.

Therefore, BERT just needs an extra layer with one or more logistic classifiers for
fine-tuning. During fine-tuning with a downstream application, parameters of the
logistic models are learned from scratch and usually all parameters in the pre-trained
BERT model are adapted. The parameters for the logistic classifiers of the masked
language model and the next sentence prediction are not used during fine-tuning.

30 2 Pre-trained Language Models

2.1.4 Visualizing Attentions and Embeddings

According to Bengio et al. [14], a good representation of language should capture
the implicit linguistic rules and common sense knowledge contained in text data,
such as lexical meanings, syntactic relations, semantic roles, and the pragmatics of
language use. The contextual word embeddings of BERT can be seen as a big step
in this direction. They may be used to disambiguate different meanings of the same
word.

The self-attention mechanism of BERT computes a large number of “associa-
tions” between tokens and merges embeddings according to the strengths of these
associations. If .x1, . . . , xT are the embeddings of the input tokens .v1, . . . , vT , the
associations .qᵀ

r kt are determined between the query .qᵀ
r = x

ᵀ
r W (q) and the key

.k
ᵀ
t = x

ᵀ
t W (k) vectors (2.1). Then a sum of value vectors .vᵀt = x

ᵀ
t W (v) weighted

with the normalized associations is formed yielding the new embeddings (2.3).
This is repeated with different matrices .W (q)

l,m,W
(k)
l,m,W

(v)
l,m in m self-attention

heads and l layers. Each layer and head the new embeddings thus captures different
aspects of the relations between the embeddings of each layer. For BERT.BASE we
have .l = 12 layers and .m = 12 bidirectional self-attention heads in each layer
yielding 144 different “associations” or self-attentions. For the input sentence “The
girl and the boy went home. She entered the door.” Figure 2.6 shows on the left side
the strength of associations for one of the 144 self-attention heads. Between every
pair of tokens of the sentence an attention value is calculated and its strength is
symbolized by lines of different widths. We see that the pronoun “she” is strongly
associated with “the girl”. In the subsequent calculations (c.f. Fig. 2.2) the word
“she” is disambiguated by merging its embedding with the embeddings of “the” and
“girl” generating a new contextual embedding of “she”, which includes its relation
to “girl”. On the right side of the figure the input “The girl and the boy went home.
He entered the door.” is processed. Then the model creates an association of “boy”
with “he”.

Fig. 2.6 Visualization of a specific self-attention in the fifth layer of a BERT model with BERTviz
[142]. If the next sentence contains the pronoun “she” this is associated with “the girl”. If this
pronoun is changed to “he” it is related to “the boy”. Image created with BERTviz [142], with
kind permission of the author

2.1 BERT: Self-Attention and Contextual Embeddings 31

Fig. 2.7 Visualization of some of the 144 self-attention patterns computed for the sentence “[CLS]
the cat sat on the mat [SEP] the cat lay on the rug[SEP]” with BERTviz. Image reprinted with kind
permission of the author [142]

Figure 2.7 shows a subset of the self-attention patterns for the sentence “[CLS]
the cat sat on the mat [SEP] the cat lay on the rug [SEP]”. The self-attention
patterns are automatically optimized in such a way that they jointly lead to an
optimal prediction of the masked tokens. It can be seen that the special tokens
[CLS] and [SEP] often are prominent targets of attentions. They usually function as
representatives of the whole sentence [124]. Note, however, that in a multilayer PLM
the embeddings generated by different heads are concatenated and transformed by
a nonlinear transformation. Therefore, the attention patterns of a single head do
not contain the complete information [124]. Whenever the matrices are randomly
initialized, the self-attention patterns will be completely different, if the training
is restarted with new random parameter values. However, the overall pattern of
attentions between tokens will be similar.

Figure 2.10 shows on the left side a plot of six different senses of the token
embeddings of “bank” in the Senseval-3 dataset projected to two dimensions by
T-SNE [140]. The different senses are identified by different colors and form well-
separated clusters of their own. Senses which are difficult to distinguish, like “bank
building” and “financial institution” show a strong overlap [153]. The graphic

32 2 Pre-trained Language Models

demonstrates that BERT embeddings have the ability to distinguish different senses
of words which are observed frequently enough.

There is an ongoing discussion on the inner workings of self attention.Tay
et al [134] empirically evaluated the importance of the dot product .qᵀ

r ks on
natural language processing tasks and concluded that query-key interaction is
“useful but not that important”. Consequently they derived alternative formulae,
which in some cases worked well and failed in others. A survey of attention
approaches is provided by de Santana Correia et al. [37]. There are a number
of different attention mechanisms computing the association between embedding
vectors [50, 61, 104, 151]. However, most current large-scale models still use the
original scaled dot-product attention with minor variations, such as other activation
functions and regularizers (c.f. Sect. 3.1.4).

The fully connected layers .FCL(x̆t) in (2.7) contain 2/3 of the parameters of
BERT, but their role in the network has hardly been discussed. Geva et al. [49]
show that fully connected layers operate as key-value memories, where each key
is correlated with text patterns in the training samples, and each value induces a
distribution over the output vocabulary. For a key the authors retrieve the training
inputs, which yield the highest activation of the key. Experts were able to assign
one or more interpretations to each key. Usually lower fully connected layers were
associated with shallow patterns often sharing the last word. The upper layers are
characterized by more semantic patterns that describe similar contexts. The authors
demonstrate that the output of a feed-forward layer is a composition of its memories.

2.1.5 Natural Language Understanding by BERT

An outstanding goal of PLMs is Natural Language Understanding (NLU). This
cannot be evaluated against a single task, but requires a set of benchmarks covering
different areas to assess the ability of machines to understand natural language text
and acquire linguistic, common sense, and world knowledge. Therefore, PLMs are
fine-tuned to corresponding real-world downstream tasks.

GLUE [146] is a prominent benchmark for NLU. It is a collection of nine NLU
tasks with public training data, and an evaluation server using private test data.
Its benchmarks cover a number of different aspects, which can be formulated as
classification problems:

• Determine the sentiment (positive/negative) of a sentences (SST-2).
• Classify a sentence as grammatically acceptable or unacceptable (CoLA).
• Check if two sentences are similar or are paraphrases (MPRC, STS-B, QQP).
• Determine if the first sentence entails the second one (MNLI, RTE).
• Check if sentence B contains the answer to question A (QNLI).
• Specify the target of a pronoun from a set of alternatives (WNLI).

2.1 BERT: Self-Attention and Contextual Embeddings 33

Each task can be posed as text classification or text pair classification problem.
The performance of a model is summarized in a single average value, which has
the value 87.1 for human annotators [145]. Usually, there is an online leaderboard
where the performance of the different models are recorded. A very large repository
of leaderboards is on the PapersWithCode website [109]. Table 2.1 describes the
tasks by examples and reports the performance of BERT.LARGE. BERT was able to
lift the SOTA of average accuracy from 75.2 to 82.1%. This is a remarkable increase,
although the value is still far below the human performance of 87.1 with much room
for improvement. Recent benchmark results for NLU are described in Sect. 4.1 for
the more demanding SuperGLUE and other benchmarks.

BERT’s Performance on Other Fine-Tuning Tasks

The pre-training data is sufficient to adapt the large number of BERT parameters
and learn very detailed peculiarities about language. The amount of training data
for pre-training usually is much higher than for fine-tuning. Fine-tuning usually
only requires two or three passes through the fine-tuning training data. Therefore,
the stochastic gradient optimizer changes most parameters only slightly and sticks
relatively close to the optimal pre-training parameters. Consequently, the model is
usually capable to preserve its information about general language and to combine
it with the information about the fine-tuning task.

Because BERT can reuse its general knowledge about language acquired during
pre-training, it produces excellent results even with small fine-tuning training data
[39].

• CoNLL 2003 [128] is a benchmark dataset for Named entity recognition (NER),
where each token has to be marked with a named entity tag, e.g. PER (for
person), LOC (for location), . . . , O (for no name) (Sect. 5.3). The task involves
text annotation, where a label is predicted for every input token. BERT increased
SOTA from 92.6% to 92.8% F1-value on the test data.

• SQuAD 1.0 [120] is a collection of 100k triples of questions, contexts, and
answers. The task is to mark the span of the answer tokens in the context.
An example is the question “When did Augustus die?”, where the answer “14
AD” has to be marked in the context “. . . the death of Augustus in AD 14 . . . ”
(Sect. 6.2). Using span prediction BERT increased the SOTA of SQuAD from
91.7% to 93.2%, while the human performance was measured as 91.2%.

From these experiments a large body of evidence has been collected demonstrating
the strengths and weaknesses of BERT [124]. This is discussed in Sect. 4.2.

In summary, the advent of the BERT model marks a new era of NLP. It combines
two pre-training tasks, i.e., predicting masked tokens and determining whether the
second sentence matches the first sentence. Transfer learning with unsupervised pre-
training and supervised fine-tuning becomes the new standard.

34 2 Pre-trained Language Models

Table 2.1 GLUE language understanding tasks. BERT.LARGE was trained for three epochs on the
fine-tuning datasets [38]. The performance of the resulting models is printed in the last column
yielding an average value of 82.1

Task Description Example Metric BERT

CoLA Is the sentence
grammatical or
ungrammatical?

“This building is than that
one.” . → Ungrammatical

Matthews
correlation

60.5

SST-2 Is the movie positive,
negative, or neutral?

“The movie is funny, smart,
visually inventive, and most
of all, alive.” . → Positive

Accuracy 94.9

MRPC Is the sentence B a
paraphrase of
sentence A?

A: “Today, Taiwan reported
35 new infections.” B:
“Taiwan announced another
35 probable cases at noon.”
. → Paraphrase

Accuracy 89.3

STS-B How similar are
sentences A and B?

A: “Elephants are walking
down a trail.” B: “A herd of
elephants is walking down a
trail.” . → Similar

Pearson/
Spearman
correlation

86.5

QQP Are the two questions
similar?

A: “How can I increase the
speed of my Internet
connection while using a
VPN?” B: “How can Internet
speed be increased by
hacking through DNS?”
. → Not Similar

Accuracy 72.1

MNLI-mm Does sentence A
entail or contradict
sentence B?

A: “Tourist information
offices can be very helpful.”
B: “Tourist information
offices are never of any help.”
. → Contradiction

Accuracy 85.9

QNLI Does sentence B
contain the answer to
the question in
sentence A?

A: “Which collection of
minor poems are sometimes
attributed to Virgil.” B: “A
number of minor poems,
collected in the Appendix
Vergiliana, are often
attributed to him.”
. → contains answer

Accuracy 92.7

RTE Does sentence A
entail sentence B?

A: “Yunus launched the
microcredit revolution,
funding 50,000 beggars,
whom Grameen Bank
respectfully calls ‘Struggling
Members.”’ B: “Yunus
supported more than 50,000
Struggling Members.”
. → Entailed

Accuracy 70.1

WNLI Sentence B replaces
sentence A’s pronoun
with a noun - is this
the correct noun?

A: “Lily spoke to Donna,
breaking her concentration.”
B: “Lily spoke to Donna,
breaking Lily’s
concentration.” . → Incorrect

Accuracy 60.5

2.1 BERT: Self-Attention and Contextual Embeddings 35

2.1.6 Computational Complexity

It is instructive to illustrate the computational effort required to train PLMs. Its
growth determines the time needed to train larger models that can massively
improve the quality of language representation. Assume D is the size of the hidden
embeddings and the input sequence has length T , then the intermediate dimension of
the fully connected layer FCL is set to 4D and the dimension of the keys and values
are set to .D/H as in Vaswani et al. [141]. Then according to Lin et al. [81] we get
the following computational complexities and parameters counts of self-attention
and the position-wise FCL (2.7):

Module Complexity # Parameters

Self-attention .O(T 2 ∗ D) . 4D2

Position-wise FCL .O(T ∗ D2) . 8D2

As long as the input sequence length T is small, the hidden dimension D
mainly determines the complexity of self-attention and position-wise FCL. The
main limiting factor is the FCL. But when the input sequences become longer,
the sequence length T gradually dominates the complexity of these modules, so
that self-attention becomes the bottleneck of the PLM. Moreover, the computation
of self-attention requires that an attention score matrix of size .T × T is stored,
which prevents the computation for long input sequences. Therefore, modifications
reducing the computational effort for long input sequences are required.

To connect all input embeddings with each other, we could employ different
modules. Fully connected layers require .T ∗ T networks between the different
embeddings. Convolutional layers with a kernel width K do not connect all pairs
and therefore need .O(logK(T)) layers in the case of dilated convolutions. RNNs
have to apply a network T times. This leads to the following complexities per layer
[81, 141]

Sequential Maximum

Layer type Complexity per layer operations path length

Self-attention .O(T 2 ∗ D) .O(1) . O(1)

Recurrent .O(T ∗ D2) .O(T) . O(T)

Fully connected .O(T 2 ∗ D2) .O(1) . O(1)

Convolutional .O(K ∗ T ∗ D2) .O(1) . O(logK(T))

Restricted self-attention .O(R ∗ T ∗ D) .O(1) . O(T/R)

The last line describes a restricted self-attention, where self-attention only
considers a neighborhood of size R to reduce computational effort. Obviously the
computational complexity per layer is a limiting factor. In addition, computation for
recurrent layers need to be sequential and cannot be parallelized, as shown in the

36 2 Pre-trained Language Models

column for sequential operations. The last column shows the path length, i.e. the
number of computations to communicate information between far-away positions.
The shorter these paths between any combination of positions in the input and output
sequences, the easier it is to learn long-range dependencies. Here self-attention
has a definite advantage compared to all other layer types. Section 3.2 discusses
advanced approaches to process input sequences of larger length. In conclusion,
BERT requires less computational effort than alternative layer types.

2.1.7 Summary

BERT is an autoencoder model whose main task is to derive context-sensitive
embeddings for tokens. In a preliminary step, tokens are generated from the words
and letters of the training data in such a way that most frequent words are tokens
and arbitrary words can be composed of tokens. Each token is encoded by an input
embedding. To mark the position of each input token, a position embedding is added
to the input embedding.

In each layer of BERT, the lower layer embeddings are transformed by self-
attention to a new embedding. Self-attention involves the computation of scalar
products between linear transformations of embeddings. In this way, the embed-
dings in the next layer can adapt to tokens from the context, and the embed-
dings become context-sensitive. The operation is performed in parallel for several
attention heads involving different linear projections. The heads can compute
associations in parallel with respect to different semantic features. The resulting
partial embeddings are concatenated to a new embedding. In addition to self-
attention heads, each encoder block contains a fully connected layer as well as
normalization operations.

The original BERT model consists of six encoder blocks and generates a final
embedding for each input token. BERT is pre-trained on a very large document
collection. The main pre-training task is to predict words from the input sequence,
which have been replaced by a [MASK] token. This is done by using the last
layer embedding of the token as input to a logistic classifier, which predicts the
probabilities of tokens for this position. During pre-training the model parameters
are optimized by stochastic gradient descent. This forces the model to collect all
available information about that token in the output embedding. The first input token
is the [CLS] token. During pre-training, it is used for next sentence prediction, where
a logistic classifier with the [CLS]-embedding as input has to decide, if the first and
second sentence of the input sequence belong together or not.

Typically, the pre-trained model is fine-tuned for a specific task using a small
annotated training dataset. An example is the supervised classification task of
whether the input text expresses a positive, negative or neutral sentiment. Again
a logistic classifier with the [CLS]-embedding as input has to determine the
probability of the three sentiments. During pre-training all parameters of the model
are adjusted slightly. It turns out that this transfer learning approach has a much

2.2 GPT: Autoregressive Language Models 37

higher accuracy than supervised training only on the small training dataset, since
the model can use knowledge about language acquired during pre-training.

Experiments show that BERT is able to raise the SOTA considerably in many
language understanding tasks, e.g. the GLUE benchmark. Other applications are
named entity recognition, where names of persons, locations, etc. have to be
identified in a text, or question answering, where the answer to a question has to
be extracted from a paragraph. An analysis of computational complexity shows that
BERT requires less computational effort than alternative layer types. Overall, BERT
is the workhorse of natural language processing and is used in different variants to
solve language understanding problems. Its encoder blocks are reused in many other
models.

Chapter 3 describes ways to improve the performance of BERT models, espe-
cially by designing new pre-training tasks (Sect. 3.1.1). In Chap. 4 the knowledge
acquired by BERT models is discussed. In the Chaps. 5–7, we describe a number
of applications of BERT models such as relation extraction (Sect. 5.4) or document
retrieval (Sect. 6.1).

2.2 GPT: Autoregressive Language Models

2.2.1 The Task of Autoregressive Language Models

To capture the information in natural language texts the conditional probability
of tokens can be described by a language model. These autoregressive language
models aim to predict the probability of the next token in a text given the previous
tokens. If .Vt+1 is a random variable whose values are the possible tokens . vt+1
at position .t + 1, we have to calculate the conditional probability distribution
.p(Vt+1|v1, . . . , vt). According to the definition of conditional probability the
probability of the complete text .v1, . . . , vT can be computed as

.p(V1=v1, . . . , VT =vT) = p(VT =vT |v1, . . . , vT −1) ∗ · · · ∗ p(V1=v1). (2.9)

Therefore, the conditional probability can represent all information about valid
sentences, including adequate and bad usage of language. Qudar et al. [115] provide
a recent survey of language models.

In Sect. 1.6, we used RNNs to build language models. However, these had
problems determining long-range interactions between tokens. As an alternative,
we can employ self-attention to infer contextual embeddings of the past tokens
.v1, . . . , vt and predict the next token .vt+1 based on these embeddings.

Consequently, we need to restrict self-attention to the tokens .v1, . . . , vt . This is
the approach taken by the Generative Pre-trained Transformer (GPT) [116, 118].
Before training, the text is transformed to tokens, e.g. by byte-pair encoding
(Sect. 1.2). On input, these tokens are represented by token embeddings and
position embeddings (Sect. 2.1.1). During training the GPT-model performs the self-
attention computations described in Sect. 2.1.1 in the same way as for BERT. For

38 2 Pre-trained Language Models

predicting the probabilities of different tokens at position .t + 1, the self-attentions
are restricted to previous tokens .v1, . . . , vt and their embeddings. The probability
of the possible next tokens at position .t + 1 is computed by a logistic classifier

.p(Vt+1|v1, . . . , vt) = softmax(Ax̃k,t + b), (2.10)

which takes as input the embedding .x̃k,t of the last layer k at position t to predict the
random variable .Vt+1 of possible tokens at position .t +1 (Fig. 2.8). This approach is
called masked self-attention or causal self-attention because the prediction depends
only on past tokens. Since GPT generates the tokens by sequentially applying the
same model, it is called an autoregressive language model.

2.2.2 Training GPT by Predicting the Next Token

The training objective is adapted to the language modeling task of GPT. Figure 2.8
shows the range of computations for two consecutive tokens. By teacher forcing the
model uses the observed tokens .v1, . . . , vt up to position t to compute self-attentions
and predict the token probabilities for the next token .vt+1. This is justified by the
factorization (2.9) of the full distribution. Note that the contextual embedding of
a token . vs , .s < t , changes each time when a new token .vt+1, vt+2, . . . is taken
into account in the masked self-attention. As GPT considers only the tokens before
the target token .vt+1, it is called an unidirectional encoder. An intuitive high-level
overview over GPT is given by Alammar [3].

During training the model parameters have to be changed by optimization such
that the probabilities of observed documents (2.9) get maximal. By this Maximum
Likelihood estimation (MLE) the parameters can be optimized for a large corpus
of documents. To avoid numerical problems this is solved by maximizing the log-
likelihood, sum of logarithms of (2.9)

. logp(v1, . . . , vT) = logp(vT |v1, . . . , vT −1) + · · · + logp(v2|v1) + logp(v1).

(2.11)

Alternatively we can minimize the negative log-likelihood .− logp(v1, . . . , vT).
GPT-2 can process an input sequence of 1024 tokens with an embedding size

of 1024. In its medium version it has 345M parameters and contains 24 layers,
each with 12 attention heads. For the training with gradient descent a batch size of
512 was utilized. The model was trained on 40GB of text crawled from Reddit, a
social media platform. Only texts that were well rated by other users were included,
resulting in a higher quality data set. The larger model was trained on 256 cloud
TPU v3 cores. The training duration was not disclosed, nor the exact details of
training.

The quality of a language model may be measured by the probability
.p(v1, . . . , vT) of a given text collection .v1, . . . , vT . If we normalize its inverse

2.2 GPT: Autoregressive Language Models 39

Fig. 2.8 The input of the GPT model are the embeddings of tokens .v1, . . . , vt up to position t .
GPT computes contextual self-embeddings of these tokens in different layers and uses the output
embedding of the last token .vt =“to” in the highest layer to predict the probabilities of possible
tokens at position .t + 1 with a logistic classifier L. This probability should be high for the actually
observed token “new” (left). Then the observed token .vt+1 =“new” is appended to the input
sequence and included in the self-attention computation for predicting the probabilities of possible
tokens at position .t + 2, which should be high for “york” (right)

by the number T of tokens we get the perplexity [28]

.ppl(v1, . . . , vT) := p(v1, . . . , vT)−
1
T . (2.12)

A low perplexity indicates a high probability of the text. If we assume that
the conditional probabilities .p(vt |v1, . . . , vt−1) are identical for all t , we get
.ppl(v1, . . . , vT) = 1/p(vt |v1, . . . , vt−1), i.e. the inverse probability of the next
token. GPT-2 was able to substantially reduce the perplexity on a number of
benchmark data sets, e.g. from 46.5 to 35.8 for the Penn Treebank corpus [117]
meaning that the actual words in the texts were predicted with higher probability.

Visualizing GPT Embeddings

Kehlbeck et al. [66] investigated the relative location of embeddings in multivariate
space for both BERT and GPT-2, each with 12 layers. They calculated 3-D
projections using both principal component analysis (PCA) [111] and UMAP [89].
The latter can preserve the local structure of neighbors, but—differently to PCA—is
unable to correctly maintain the global structure of the data. These 3d-scatterplots
can be interactively manipulated on the website [66]. It turns out that GPT-2 forms
two separate clusters: There is a small cluster containing just all tokens at position
0, while the embeddings at other positions form ribbon-like structures in the second
cluster.

Careful investigations have indicated that most embedding vectors are located
in a narrow cone, leading to high cosine similarities between them [25]. The
authors identify isolated clusters and low dimensional manifolds in the contextual
embedding space. Kehlbeck et al. [66] show that tokens with the same part-of-
speech tag form ribbon-like structures in the projections (Fig. 2.9 left). Function
words are all located on a tight circular structure, whereas content words like nouns

40 2 Pre-trained Language Models

Fig. 2.9 Visualization of embeddings with PCA together with the corresponding part-of speech
tags. On the left side are GPT-2 embeddings of layer 0 of tokens of positions .> 0 which form
ribbon-like structures for the different POS tags, with function words close to the top. On the right
side the embeddings of BERT for layer 0 are shown. Image reprinted with kind permission of the
author [66]

and verbs are located in other elongated structures and have overlap with other POS-
tags. The embeddings generated by BERT form one or more clusters (Fig. 2.9 right).
They are quite separated for function words, but show some overlap for content
words like nouns, verbs, or adjectives.

The GPT-2 embeddings of content words like “banks” and “material” at
positions .> 0 form elongated band-structures, as shown in the right part of Fig. 2.10.
For higher layers the PCA projections get more diffuse. The user can read the token
context by pointing to each dot.

Token-based self-similarity is the mean cosine similarity of the same token found
in different sentences. In BERT as well as GPT-2, the self-similarity is higher
for content than function words [66]. This may indicate that function words have
more diverse semantic roles in different contexts. It is interesting to evaluate the 10
nearest neighbors of a token with respect to cosine similarity. In the lower layers,
for both models the nearest tokens were in most cases the same tokens, except
for a few content words. In the higher layers this changed and different tokens
were the nearest tokens. This shows that more and more context is included in the
embeddings of higher layers.

The authors also investigated the embeddings generated by a number of other
PLM types. They find that their structure is very different as they form different
clusters and manifolds. They argue that this structure has to be taken into account
for new applications of the models.

2.2 GPT: Autoregressive Language Models 41

Fig. 2.10 Plot of BERT-embeddings of different senses of “bank” projected to two dimensions
by T-SNE (left). The legend contains a short description of the respective WordNet sense and the
frequency of occurrence in the training data. Image[153]. The right side shows PCA projections
of the embeddings of “banks” (lower strip) and “material” (middle strip) as well as other words
computed for different contexts. Image interactively generated, printed with kind permission of the
authors [66]

2.2.3 Generating a Sequence of Words

After training the GPT model can predict the probabilities of the tokens at the next
position .t + 1 given the previous tokens .v1, . . . , vt . To generate a text we have to
select a sequence of tokens according to these probabilities.

• Random sampling selects the next token according to the predicted probabilities.
This approach sometimes can select very improbable tokens such that the prob-
ability of the whole sentence gets too low. Although the individual probabilities
are tiny, the probability of selecting an element of the group of improbable tokens
is quite high. In addition, the estimates of small probability are often affected by
errors.

• Top-k sampling takes into account only the k tokens with the highest probability
to generate the next token. The probability mass is redistributed among them [42]
and used for randomly selecting a token.

• Top-p sampling considers the smallest set of top candidates with the cumulative
probability above a threshold (e.g. .p = 0.95) and then selects the next
token according to the redistributed probabilities [58]. This approach limits the
probability mass of rare tokens which are ignored.

There are also strategies which explicitly avoid previously generated tokens by
reducing the corresponding scores in the update formula [67]. Both top-k and top-p
sampling usually generate plausible token sequences and are actually employed to
generate texts.

42 2 Pre-trained Language Models

There are a number of approaches to improve token selection. Meister et al. [90]
found that human-produced text tends to have evenly distribution of “surprise”. This
means that the next token should on average not be too rare and not be too frequent.
They propose a number of sampling criteria, e.g. a variance regularizer.

Martins et al. [86] argue that softmax-generated output distributions are unre-
alistic, as they assign a positive probability to every output token. They propose
the Entmax transformation which generates a sparse probability distribution from
the computed scores, where part of the probabilities are exactly zero. The Entmax
transformation can be controlled by a parameter .α ≥ 1. For .α = 1 we get softmax
and .α = ∞ recovers .argmax. For intermediate values .∞ > α > 1.0 some
tokens get exactly zero probability. Entmax losses are convex and differentiable
and therefore may be trained by backpropagation. As in top-p sampling and in
opposition to top-k sampling, Entmax sampling considers a varying number of
tokens depending on the context. Experiments show that Entmax leads to better
perplexities and less repetitions than other approaches. Compared with top-p
sampling it has a higher variation in the number of tokens considered.

Khandelwal et al. [68] try to improve the estimated probabilities of the language
model by statistics of token n-grams. They perform a nearest neighbor search on the
last tokens already processed. As distance measure they use the distances of the pre-
trained embedding space. From the retrieved nearest neighbors they get additional
evidence on the probable next token, which is merged with the token probabilities of
the language model. In this way, they are able to improve the perplexity of language
models. The approach is particularly helpful in predicting rare patterns, e.g. factual
knowledge.

Yang et al. [157] analyze the properties of the softmax function. They find that
the standard softmax does not have enough capacity to model natural language,
as it restricts the rank of the mapping to probabilities. They propose to predict
probabilities by a Mixture of Softmaxes, a convex combination of different logistic
classifiers, which is more expressive than a single softmax. The authors show that
this modification yields better perplexities in language modeling and also improves
the performance of other transformer architectures [101].

2.2.4 The Advanced Language Model GPT-2

GPT-2 [118] is the first language model, which is able to generate documents of
grammatically correct and semantically plausible text. Its largest version has 48
encoder blocks with 1.5B parameters and covers sequences of 1600 tokens. Given
an initial text the model adapts to the style and content of this text and generates an
answer, which often cannot be distinguished from human-generated continuations.
Longer generated texts, however, sometimes tend to be repetitive and less coherent.

For GPT-2 top-k truncated sampling was used to generate the example text [117]
shown in Fig. 2.11. As can be seen there are no syntax errors and the generated
content is plausible. The authors remark that one in two trials were of high quality.

2.2 GPT: Autoregressive Language Models 43

Fig. 2.11 Given the input text, GPT-2 generates a continuation by top-k sampling [117]. Quoted
with kind permission of the authors

The model adapts to the style and content of the input text. This allows the user to
generate realistic and coherent continuations about a topic they like. Obviously the
topic has to be mentioned in the Reddit training data, which covers a broad spectrum
of themes such as news, music, games, sports, science, cooking, and pets.

The model was able to solve many tasks better than previous models without
being trained on the specific task. This type of learning is called zero-shot learning.
For example, GPT-2 had a perplexity of 35.8 on the test set of the Penn Treebank
compared to the inferior prior SOTA of 46.5 [117]. This was achieved without
training GPT-2 on the Penn Treebank corpus [135].

2.2.5 Fine-Tuning GPT

By fine-tuning, GPT-2 may be adapted to new types of text, for example new genres
of text. To create song lyrics, for example, St-Amant [4] uses a dataset of 12,500
English rock song lyrics and fine-tunes GPT-2 for 5 epochs. Then the model is
able to continue the lyrics of pop songs, which had not been seen by the model
during training. The model had a high BLEU score of 68 when applied to song
lyrics. Another experiment describes the generation of poetry [19].

Similar to BERT, a pre-trained GPT-2 can also be modified to perform a
classification task. An example is fine-tuning to the classification of the sentiment
of a document as positive or negative. Radford et al. [116] encode the classification
task as a text with specific tokens and a final end token [END]. Then the model has
to predict the sequence. The embedding of [END] in the highest layer is used as

44 2 Pre-trained Language Models

input to a logistic classifier, which is trained to predict the probability of classes.
The authors found that including language modeling (2.11) of the fine-tuning data
as an auxiliary objective to fine-tuning improved generalization and accelerated
convergence. They were able to improve the score on GLUE (Sect. 2.1.5) from
68.9 to 72.8 and achieved SOTA in 7 out of 8 GLUE tasks for natural language
understanding. The results show that language models capture relevant information
about syntax and semantics.

However, GPT operates from left to right when predicting the next token. In the
sentences “I went to the bank to deposit cash” and “I went to the bank to sit down”,
it will create the same context-sensitive embedding for “bank” when predicting “sit”
or “deposit”, although the meaning of the token “bank” is different in both contexts.
In contrast, BERT is bidirectional and takes into account all tokens of the text when
predicting masked tokens. This fact explains why BERT for some tasks shows a
better performance.

2.2.6 Summary

GPT has an architecture similar to a BERT model that generates the tokens of
a sentence one by one. It starts with an input sequence of tokens, which can be
empty. Tokens are encoded as a sum of token embeddings and position embeddings.
GPT uses the same encoder blocks as BERT, but the computations are masked,
i.e. restricted to the already generated tokens. For these tokens the model produces
contextual embeddings in several layers. The embedding of the last token in the top
layer is entered into a logistic classifier and this calculates the probability of the
tokens for the next position. Subsequently, the observed token is appended to the
input at the next position and the computations are repeated for the next but one
position. Therefore, GPT is called an autoregressive language model.

During training the parameters are changed by stochastic gradient descent in such
a way that the model predicts high probabilities of the observed tokens in the training
data. The maximum likelihood criterion is used, which optimizes the probability of
the input data. When the model has been trained on a large text dataset it can be
applied. Conditional to a start text it can sequentially compute the probability of the
next token. Then a new token can be selected according to the probabilities.

If all alternative tokens are taken into account, rare tokens are often selected.
Usually, the number of eligible tokens is restricted to k high-probability tokens
(top-k sampling) or only high-probability tokens are included up to a prescribed
probability sum p (top-p sampling). In this way, much better texts are generated.
Advanced language models like GPT-2 have billions of parameters and are able to
generate plausible stories without syntactic errors.

GPT models can also be fine-tuned. A first type of fine-tuning adapts the model
to a specific text genre, e.g. poetry. Alternatively, GPT can be used as a classifier,
where the output embedding of the most recently generated token for an input text is
input to a logistic classifier. With this approach, GPT-2 was able to improve SOTA for

2.3 Transformer: Sequence-to-Sequence Translation 45

most natural language understanding task in the GLUE benchmark. This shows that
GPT-2 has acquired a comprehensive knowledge about language. However, since
self-attention is only aware of past tokens, models like BERT are potentially better
as they can take into account all input tokens during computations.

Chapter 3 discusses how to improve the performance of GPT models, in
particular by using more parameters (Sect. 3.1.2). These large models with billions
of parameters can be instructed to perform a number of tasks without fine-tuning
(Sect. 3.6.3). In the Chaps. 5–7, we describe a number of applications of GPT-
models such as question-answering (Sect. 6.2.3), story generation (Sect. 6.5), or
image generation from text (Sect. 7.2.6).

2.3 Transformer: Sequence-to-Sequence Translation

2.3.1 The Transformer Architecture

Translation models based on Recurrent Neural Networks (Sect. 1.6) have a major
limitation caused by the sequential nature of RNNs. The number of operations
required to determine the relation between tokens . vs and . vt grows with the distance
.t − s between positions. The model has to store the relations between all tokens
simultaneously in a vector, making it difficult to learn complex dependencies
between distant positions.

The Transformer [141]—similar to RNN-translation models—is based on an
encoder and a decoder module (Fig. 2.13). The encoder is very similar to BERT,
while the decoder resembles GPT. It is a sequence-to-sequence model (Seq2seq),
which translates a source text of the input language to a target text in the target
language. Instead of relating distant tokens by a large number of computation steps,
it directly computes the self-attention between these token in parallel in one step.

The encoder generates contextual embeddings .x̃1, . . . , x̃Tsrc of the source text
tokens .v1, . . . , vTsrc with exactly the same architecture as the BERTmodel (Fig. 2.4).
The original transformer [141] uses 6 encoder blocks. The generated embeddings of
the last layer are denoted as .x̆1, . . . , x̆Tsrc .

The transformer decoder step by step computes the probability distributions
.p(St |s1, . . . , st−1, v1, . . . , vTsrc) of target tokens . st similar to the Recurrent Neural
Network. Note that the source tokens . vi as well as observed target tokens . sj are
taken as conditions. By the definition of conditional probability this yields the total
probability of the output distribution

. p(S1=s1, . . . , ST =sT |v1, . . . , vTsrc) (2.13)

= p(ST =sT |s1, . . . , sT −1, v1, . . . , vTsrc) · · · p(S1=s1|v1, . . . , vTsrc),

where . St is a random variable with the possible target tokens . st at position t as its
values. This probability is maximized during training.

46 2 Pre-trained Language Models

Fig. 2.12 The transformer [141] uses k encoder blocks with the same architecture as in BERT
(Fig. 2.4) to generate contextual embeddings of all tokens of the input text. The decoder block
is an autoregressive language model (Fig. 2.8) and sequentially predicts the next token in the
target language. Each encoder block contains a multi-head self-attention for the current sequence
of output tokens. By cross-attention the information from the input sequence is included. The
calculations are repeated for all current input tokens and are very similar to the self-attention
computations. The resulting vector is transformed by a fully connected layer yielding the
embeddings of that layer

We denote the already translated tokens by .s0, s1, . . . , st−1 were . s0 is the token
“[BOS]” indicating the beginning of the output text. The decoder first computes
a self-attention for these tokens using the formula (2.4) as for BERT. As only
part of the target tokens are covered and the rest is ‘masked’, this layer is called
masked multi-head self-attention yielding intermediate contextual embeddings
.s̃0, s̃1, . . . , s̃t−1 for the target tokens .s0, s1, . . . , st−1.

Cross-Attention

Then the decoder performs a cross-attention .CATL(Ṽ , X̆) with the input text
embeddings of the highest encoder block (Fig. 2.12). Here the query-vectors are
computed for the embeddings of the target tokens .S̃t = (s̃0, s̃1, . . . , s̃t−1) provided
by the respective decoder block. The key and value vectors are computed for the
embeddings .X̆ = x̆1, . . . , x̆Tsrc of the last encoder block. Note that cross attention
employs the same Eq. (2.4) with matrices .W (q),W (k),W (v) as the BERT self-
attentions. This is done in parallel and called multi-head cross-attention. In this

2.3 Transformer: Sequence-to-Sequence Translation 47

Fig. 2.13 The transformer [141] uses an encoder with the same architecture as BERT to generate
embeddings of all tokens of the input sentence. Each encoder block performs multi-head self-
attention of the input sequence followed by a fully connected layer (FCL) . The decoder is similar
to a GPT model and sequentially predicts the next token in the target language. Each encoder block
contains a multi-head cross-attention including the final embeddings of the encoder. Using the last
output embedding of the final decoder block, a logistic classifier L predicts probabilities of the
next token of the output sentence

way, information from the source text is taken into account. Subsequently, the
embeddings computed by different heads are concatenated (2.6) and the result is
transformed by a fully connected layer with ReLU activation (2.7). In addition,
residual “bypass” connections are used as well as layer normalization [6] for
regularization. The output of the fully connected layer yields a new ‘output’
embedding .s̃0, . . . , s̃t−1 for the target tokens .s1, . . . , st−1. Together these layers are
called a decoder block (Fig. 2.13).

The next decoder block gets the computed token output embeddings of the
previous block as input and computes a new embedding of the target tokens
.s1, . . . , st−1. The decoder consists of several decoder blocks (6 in the original
model). Using the output embedding .s̆t−1 of the righmost token .st−1 in the last
decoder block, the token probabilities .p(St = st |s1, . . . , st−1, v1, . . . , vTsrc) of the
next token . st of the target text at position t are predicted by a logistic classifier, e.g.
for the token “Maus” in Fig. 2.13.

Note that for the prediction of a further token at position .t + 1 the observed
token . st is added to the computation (2.13) of the self-attentions in the decoder.
Hence, the decoder embeddings change and all decoder computations have to be
repeated. In this respect the model still works in a recursive way. Nevertheless, all

48 2 Pre-trained Language Models

self-attentions and cross-attentions in each layer are computed in parallel. However,
the computations for the encoder are only performed once.

Sequences of variable length are padded with a special token up to the maximal
length. This is done for the input and the output sequence. If a sequence is very
short, a lot of space is wasted. Therefore, the sequence length may be varied in
different mini-batches called buckets in the training data.

The transformer has a large set of parameters. First it requires embeddings of the
input and target token vocabularies. Then there are the .W (q),W (k),W (v) matrices
for the multi-head self-attention, the masked multi-head self-attention and the multi-
head cross-attention of the different heads and layers. In addition, the parameters of
the fully connected networks and the final logistic classifier have to be specified.
While the base model had an input sequence length of 512 and 65M parameters, the
big model had an input sequence length of 1024 and 213M parameters [141]. The
values of all these parameters are optimized during training.

The training data consists of pairs of an input sentence and the corresponding
target sentence. Training aims to generate the target tokens with maximal probability
for the given input tokens to maximize the joint conditional probability (2.13) of the
output sequence by stochastic gradient descent. In our example in Fig. 2.13 for the
given input text “The mouse likes cheese” the product of conditional probabilities of
the output tokens “Die Maus mag Käse” has to be maximized. The original model
[141], for instance, used 36M sentences of the WMT English-French benchmark
data encoded as 32,000 wordpiece tokens. Both the encoder and decoder are trained
simultaneously by stochastic gradient descent end-to-end, requiring 3.5 days with
8 GPUs.

Cross-attention is the central part of the transformer, where the information from
the input sentence is related to the translated output sentence. In Fig. 2.14 a German
input sentence is displayed together with its English translation. Both sentences are
tokenized by byte-pair encoding, where the beginning of a word is indicated by “_”.
Below the strength of cross-attentions between the input tokens and output tokens
is depicted for two different heads. Obviously the first input token “_The” has a
special role.

2.3.2 Decoding a Translation to Generate the Words

After training, the Transformer is able to predict the probabilities of output tokens
for an input sentence. For a practical translation, however, it is necessary to generate
an explicit sequence of output tokens. Computing the output sequence with maximal
probability is computationally hard, as then all output possible sequences have to be
considered. Therefore, an approximate solution is obtained using greedy decoding
or beam search.

Greedy decoding simply picks the most likely token with the highest probability
at each decoding step until the end-of-sentence token is generated. The problemwith
this approach is that once the output is chosen at any time step t , it is impossible to

2.3 Transformer: Sequence-to-Sequence Translation 49

_The _log _file _can _be _sent _secret ly _with _email _or _FTP _to
_a _specified _receiver

_Die _Protokoll datei _kann _heimlich _per _E-Mail _oder _FTP _an
_einen _bestimmte n _Empfänger _gesendet _werden .

Fig. 2.14 An English input sentence tokenized by Byte-Pair encoding and the translated tokenized
German output sentence. Below are two cross-attention graphs from different heads of the 4-th
decoder layer [126]. Dark values indicate a low cross-attention score. Image source: [126]

go back and change the selection. In practice there are often problems with greedy
decoding, as the available probable continuation tokens may not fit to a previously
assigned token. As the decision cannot be revised, this may lead to suboptimal
generated translations.

Beam search [52] keeps a fixed number k of possible translations .s1, . . . , st of
growing length (Fig. 2.15). At each step each translation of length t is enlarged by k
different tokens at position .t +1 with the highest conditional probabilities . p(St+1 =
st+1|s1, . . . , st , v1, . . . , vTsrc). From these .k∗k token sequences only the k sequences
with largest total probabilities .p(s1, . . . , st+1|v1, . . . , vTsrc) are retained. A complete
translation (containing the end-of-sentence token) is added to the final candidate list.
The algorithm then picks the translation with the highest probability (normalized by
the number of target words) from this list. For .k = 1 beam search reduces to greedy
decoding. In practice, the translation quality obtained via beam search (size of 4) is
significantly better than that obtained via greedy decoding. Larger beam sizes often
lead to suboptimal solutions [31]. However, beam search is computationally very
expensive (25%–50% slower depending on the base architecture and the beam size)
in comparison to greedy decoding [29].

50 2 Pre-trained Language Models

Fig. 2.15 Beam search is a technique for decoding a language model and producing text. At every
step, the algorithm keeps track of the k most probable partial translations (bold margin). The score
of each translation is equal to its log probability. The beam search continues until it reaches the
end token for every branch [78]

2.3.3 Evaluation of a Translation

Traditionally, evaluation is done by comparing one or more reference translations
to the generated translation, as described in the survey [127]. There are a number of
automatic evaluation metrics:

BLEU compares counts of 1-grams to 4-grams of tokens. The BLEU metric
ranges from 0 to 1, where 1 means an identical output with the reference. Although
BLEU correlates well with human judgment [110], it relies on precision alone and
does not take into account recall—the proportion of the matched n-grams out of the
total number of n-grams in the reference translation.

ROUGE [80] unlike BLEU is a recall-based measure and determines which
fraction of the words or n-grams in the reference text appear in the generated text. It
determines, among other things, the overlap of unigrams or bigrams as well as the
longest common subsequence between a pair of texts. Different versions are used:
ROUGE-1 measures the overlap of unigram (single words) between the pair of texts.
ROUGE-2 determines the overlap of bigrams (two-words sequences) between the
pair of texts. ROUGE-L: measures the length of the longest sequence of words (not
necessarily consecutive, but still in order) that is shared between both texts. This
length is divided by the number of words in the reference text.

METEOR [75] was proposed to address the deficits of BLEU. It performs a word-
to-word alignment between the translation output and a given reference translation.
The alignments are produced via a sequence of word-mapping modules. These

2.3 Transformer: Sequence-to-Sequence Translation 51

check, if the words are exactly the same, same after they are stemmed using the
Porter stemmer, and if they are synonyms of each other. After obtaining the final
alignment, METEOR computes an F-value, which is a parameterized harmonic mean
of unigram precision and recall. METEOR has also demonstrated to have a high level
of correlation with human judgment, often even better than BLEU.

BERTscore [164] takes into account synonyms and measures the similarity
of embeddings between the translation and the reference. It computes the cosine
similarity between all token embeddings of both texts. Then a greedy matching
approach is used to determine assignments of tokens. The maximum assignment
similarity is used as BERTscore.

For high-quality translations, however, there is a noticeable difference between
human judgment and automatic evaluation. Therefore, most high-end comparisons
today use human experts to assess the quality of translation and other text generation
methods. Since the transformer was proposed by Vaswani et al. [141] in 2017, its
variants were able to raise the SOTA in language translation performance, e.g. for
translation on WMT2014 English-French from 37.5 to 46.4 BLEU score.

The transformer architecture was analyzed theoretically. Yun et al. [160, 161]
showed that transformers are expressive enough to capture all continuous sequence
to sequence functions with a compact domain. Pérez et al. [112] derived that the full
transformer is Turing complete, i.e. can simulate a full Turing machine.

2.3.4 Pre-trained Language Models and Foundation Models

A model language model either computes the joint probability or the conditional
probability of natural language texts and potentially includes all information about
the language. BERT is an autoencoder language models containing encoder blocks
to generate contextual embeddings of tokens. GPT is an autoregressive language
models which predicts the next token of a sequence and restricts self-attention
to tokens which already have been generated. Transformers (or Transformer
encoder-decoders) use a transformer encoder to convert the input text to contextual
embeddings and generate the translated text with an autoregressive transformer
decoder utilizing the encoder embeddings as inputs (Fig. 2.16). These models are the
backbone of modern NLP and are collectively called Pre-trained Language Models
(PLM).

All these models, especially BERT and GPT, are initialized via pre-training
on a large corpus of text documents. During pre-training, parts of the input are
hidden from the model, and the model is trained to reconstruct these parts. This
has proven to be extremely effective in building strong representations of language
and in finding parameter initializations for highly expressive NLP models that can
be adapted to specific tasks. Finally, these models provide probability distributions
over language that we can sample from.

Most network types have some built-in assumptions called inductive bias. Con-
volutional networks have local kernel functions that are shifted over the input matrix

52 2 Pre-trained Language Models

the [MASK] eats cheese

Transformer
Encoder Blocks

mouse

the mouse

Transformer
Decoder Blocks

the mouse eats cheese

Transformer
Encoder Blocks

Transformer
Decoder Blocks

die maus frisst

Transformer Encoder-Decoder

BOS die mausBOS

the mouse eats

GPT Language ModelBERT Autoencoder

LLL

Fig. 2.16 Autoencoders like BERT (left) and autoregressive LMs like GPT-2 (middle) use
transformer blocks to generate contextual embeddings of tokens. The transformer (right) combines
a transformer encoder and an autoregressive transformer decoder to produce a translation. All
models predict the probability of tokens with a logistic classifier L. Collectively these models are
called Pre-trained Language Models (PLMs)

Collobert et al

l

l
l

l
l l l

l

ll
l

l
l

l
ll

l

ll
l

Fig. 2.17 Timeline for the development of embeddings, pre-training and fine-tuning

and therefore have an inductive bias of translation invariance and locality. Recurrent
networks apply the same network to each input position and have a temporal
invariance and locality. The BERT architecture makes only few assumptions about
the structural dependency in data. The GPT model is similar to the RNN as it
assumes a Markovian structure of dependencies to the next token. As a consequence,
PLMs often require more training data to learn the interactions between different
data points, but can later represent these interactions more accurately than other
model types.

Historically, learned embedding vectors were used as representations of words
for downstream tasks (Fig. 2.17). As early as 2003 Bengio et al. [15] proposed a
distributed vector representation of words to predict the next word by a recurrent
model. In 2011 Collobert et al. [32] successfully employed word embeddings
for part-of-speech tagging, chunking, named entity recognition, and semantic role
labeling. In 2013 Mikolov et al. [93] derived their word embeddings using a logistic
classifier. In 2015 Dai et al. [33] trained embeddings with an RNN language model
in a self-supervised way and later applied it to text classification. In 2017 McCann
et al. [87] pre-trained multilayer LSTMs for translation computing contextualized
word vectors, which are later used for various classification tasks.

2.3 Transformer: Sequence-to-Sequence Translation 53

In the same year Vaswani et al. [141] developed the attention-only transformer
for language translation. In 2018 Howard et al. [59] pre-trained a language model
(ULMFiT), and demonstrated the effectiveness of fine-tuning to different target
tasks by updating the full (pre-trained) model for each task. In the same year Howard
et al. [116] used a pre-trained autoregressive part of the transformer [141] to solve
a large number of text understanding problems by fine-tuned models. At the same
time Devlin et al. [39] pre-trained the autoencoder using the masked language model
objective and adapted this BERT model to many downstream tasks by fine-tuning.
In 2019 Radford et al. [118] presented the GPT-2 language model, which was able
to generate semantically convincing texts. Brown et al. [21] proposed the GPT-3
model, which could be instructed to solve NLP-tasks by a task description and
some examples. In 2021 Ramesh et al. [121] applied language modeling to text
and pictures and were able to create impressive pictures from textual descriptions.
Borgeaud et al. [18] presented the Retro model that answers questions by retrieving
information from a text collection of 2 trillion tokens and composes an answer in
natural language.

Almost all state-of-the-art NLP models are now adapted from one of a few Pre-
trained Language Models, such as BERT, GPT-2, T5, etc. PLMs are becoming larger
and more powerful, leading to new breakthroughs and attracting more and more
research attention. Due to the huge increase in performance, some research groups
have suggested that large-scale PLMs should be called Foundation Models, as they
constitute a ‘foundational’ breakthrough technology that can potentially impact
many types of applications [17, p. 3]. In this book, we reserve the term ‘Foundation
Models’ for large Pre-trained Language Models with more than a billion parameters,
since these models are able of generating fluent text, can potentially handle different
media, and can usually be instructed by prompts to perform specific tasks.

If one of these models is improved, this high degree of homogeneity can lead to
immediate benefits for many NLP applications. On the other hand all systems could
share the same problematic biases present in a few basic models. As we will see
in later chapters PLM-based sequence modeling approaches are now applied to text
(Sect. 2.2), speech (Sect. 7.1), images (Sect. 7.2), videos (Sect. 7.3), computer code
(Sect. 6.5.6), and control (Sect. 7.4). These overarching capabilities of Foundation
Models are depicted in Fig. 2.18.

The next Sect. 2.4 discusses some common techniques for optimizing and
regularizing pre-trained language models. In addition, some approaches to modify
the architecture of these networks are presented. In Chap. 3 we present a number
of approaches to improve the capabilities of PLMs, especially by modifying the
training tasks (Sect. 3.1.3). In the Chaps. 5–7 we discuss a number of applications
of PLMs. Chapter 5 covers traditional NLP tasks like named entity recognition and
relation extraction, where PLMs currently perform best. Most important applica-
tions of Foundation Models are on the one hand text generation and related tasks
like question-answering and dialog systems, which are introduced in Chap. 6. On
the other hand Foundation Models can simultaneously process different media and
perform tasks like image captioning, object detection in images, image generation
following a text description, video interpretation, or computer game control, which

54 2 Pre-trained Language Models

Data

Text

Images

Speech Training Foundation
Model

Question
Answering

Sentiment

Information
Extraction

Image
Captioning

Object
Recognition

Instruction
Following

Tasks

adaption

Video

Control

Fig. 2.18 A Foundation Model can integrate the information in the data from different modalities.
Subsequently it can be adapted, e.g. by fine-tuning, to a wide range of downstream tasks [17, p. 6].
Credits for image parts in Table A.1

are discussed in Chap. 7. Because of the potential social and societal consequences
of such Foundation Models, it is particularly important that researchers in this field
keep society’s values and human rights in mind when developing and applying these
models. These aspects are summarized in Sect. 8.2.

Available Implementations

• The source code for many pre-trained language models (BERT, GPT, Transform-
ers) as well as pre-trained models for different languages and text corpora can
be downloaded from Hugging Face https://huggingface.co/transformers/, Fairseq
https://github.com/pytorch/fairseq, TensorFlow https://www.tensorflow.org/ and
PyTorch https://pytorch.org/. These toolkits also allow the flexible formulation
of Deep Neural Networks and provide the automatic computation of gradients as
well as optimization methods. All are able to execute computations in parallel
and distribute them to different CPUs and Graphical Processing Units (GPUs).

• PLMs are getting larger than the memory of a single GPU and require to
distribute training code among several GPUs. This is supported by libraries
like FastSeq https://github.com/microsoft/fastseq, LightSeq https://github.com/
bytedance/lightseq, and FastT5 https://github.com/Ki6an/fastT5.

• DeepSpeed [122] was used to train the MT-NLG autoregressive LM with 530B
parameters (Sect. 3.1.2) https://github.com/microsoft/DeepSpeed.

• Ecco [2] https://github.com/jalammar/ecco and BertViz [144] https://github.com/
jessevig/bertviz are tools to visualize the attentions and embeddings of PLMs.

• Transformers-interpret https://github.com/cdpierse/transformers-interpret is a
model explainability tool designed for the Hugging Face package.

• Captum [70] is a library https://captum.ai/ to generate interpretations and expla-
nations for the predictions of PyTorch models.

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://github.com/microsoft/fastseq
https://github.com/microsoft/fastseq
https://github.com/microsoft/fastseq
https://github.com/microsoft/fastseq
https://github.com/microsoft/fastseq
https://github.com/bytedance/lightseq
https://github.com/bytedance/lightseq
https://github.com/bytedance/lightseq
https://github.com/bytedance/lightseq
https://github.com/bytedance/lightseq
https://github.com/Ki6an/fastT5
https://github.com/Ki6an/fastT5
https://github.com/Ki6an/fastT5
https://github.com/Ki6an/fastT5
https://github.com/Ki6an/fastT5
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://captum.ai/
https://captum.ai/
https://captum.ai/

2.3 Transformer: Sequence-to-Sequence Translation 55

2.3.5 Summary

A transformer is a sequence-to-sequence model, which translates a source text of
the input language into a target text in the target language. It consists of an encoder
with the same architecture as an autoencoder BERT model that computes contextual
embeddings of tokens of the source text. The decoder resembles an autoregressive
GPT model and sequentially generates the tokens of the target text. Internally,
contextual embeddings of the target tokens are computed in the different layers.
Each decoder block has an additional cross-attention module in which the query
vectors are taken from the embeddings of the target tokens and the key and value
vectors are computed for the embeddings of the source tokens of the last layer.
In this way, the information from the source text is communicated to the decoder.
The embedding of the last token in the top layer is entered into a logistic classifier
and this calculates the probability of the tokens for the next position. Subsequently,
the observed token at the next position is appended to the target input and the
computations are repeated for the next but one position.

During training the parameters of the transformer are adapted by stochastic
gradient descent in such a way that the model assigns high probabilities to the
observed target tokens of the translation in the training data. When the model has
been trained on a large text dataset it can be applied for translation. Conditional on
an input text, it can sequentially compute the probability of the next token of the
translation.

During application of a trained model either the token with the maximal
probability is selected or several alternatives are generated by beam search and the
final output sequence with maximal probability is chosen. The evaluation of the
translations quality is difficult as different translations may be correct. A number of
metrics, e.g. BLEU, have been developed, which compare the machine translation
to one or more reference translations by comparing the number of common word
n-grams with .n = 1, . . . , 4. Often the results are assessed by human raters.
The transformer was able to generate better translation than prior models. In the
meantime the translation quality for a number of language pairs is on par with
human translators.

In the previous sections, we discussed autoencoder BERT models, autoregressive
GPT models and the encoder-decoder Transformers. Collectively these models are
called pre-trained language models, as transfer learning with a pre-training step
using a large training set and a subsequent fine-tuning step is a core approach for all
three variants. The self-attention and cross-attention modules are central building
blocks used by all three models. Despite the development of many variations in
recent years, the original architecture developed by Vaswani et al. [141] is still
commonly employed.

It turns out that these models can be applied not only to text, but to various
types of sequences, such as images, speech, and videos. In addition, they may be
instructed to perform various tasks by simple prompts. Therefore, large PLMs are
also called Foundation Models, as they are expected to play a crucial role in the
future development of text and multimedia systems.

56 2 Pre-trained Language Models

2.4 Training and Assessment of Pre-trained Language
Models

This section describes some techniques required to train and apply PLMs.

• We need optimization techniques which can process millions and billions of
parameters and training examples.

• Specific regularization methods are required to train the models and to avoid
overfitting.

• The uncertainty of model predictions has to be estimated to asses the perfor-
mance of models.

• The explanation of model predictions can be very helpful for the acceptance of
models.

Approaches to solving these problems are discussed in this section. PLMs are
usually specified in one of the current Deep Learning frameworks. Most popular
are TensorFlow provided from Google [137] and PyTorch from Meta [114]. Both
are based on the Python programming language and include language elements to
specify a network, train it in parallel on dedicated hardware, and to deploy it to
different environments. A newcomer is the JAX framework [22], which is especially
flexible for rapid experimentation. It has a compiler for linear algebra to accelerate
computations for machine learning research.

2.4.1 Optimization of PLMs

Basics of PLM Optimization

For the i.i.d. training sample .T r = {(x[1], y[1]), . . . , (x[N], y[N])} parameter
optimization for Deep Neural Networks aims to find a model that minimizes the
loss function . L(x[i], y[i];w)

.min
w

L(w) = L(x[1], y[1];w) + · · · + L(x[N], y[N];w). (2.14)

First-order optimization methods, also known as gradient-based optimization, are
based on first-order derivatives. A requirement is that the loss function .L(w) is
smooth, i.e. is continuous and in addition differentiable at almost all parameter
values .w = (w1, . . . , wk). Then the partial derivatives .

∂L(w)
∂wj

of .L(w) with respect
to any component . wj of . w can be computed at almost all points. The gradient of
.L(w) in a specific point . w is the vector

.
∂L(w)

∂w
=

(
∂L(w)

∂w1
, . . . ,

∂L(w)

∂wk

)ᵀ
. (2.15)

2.4 Training and Assessment of Pre-trained Language Models 57

Fig. 2.19 On all points of a grid the negative gradients are computed for this two-dimensional
function .L(w) (left). The gradient descent algorithm follows the negative gradients and approaches
the local minima (right). The blue lines are the paths taken during minimization. Image credits in
Table A.1

The gradient points into the direction, where .L(w) in point . w has its steepest
ascent. Consequently, the direction of the steepest descent is in the opposite
direction .− ∂L(w)

∂w
. The batch gradient descent algorithm therefore changes the

current parameter .w(t) in the direction of the negative gradient to get closer to the
minimum

.w(t+1) = w(t) − λ
∂L(w)

∂w
. (2.16)

The learning rate . λ determines the step-size or how much to move in each iteration
until an optimal value is reached. As the gradient is usually different for each
parameter .w(t) it has to be recomputed for every new parameter vector (Fig. 2.19).
The iteration process is repeated until the derivative becomes close to zero. A
zero gradient indicates a local minimum or a saddle point [51, p. 79]. In practical
applications it is sufficient to repeat the optimization beginning with different .w-
values and stop, if the derivative is close to zero.

Deep Neural Networks often require many millions of training examples. The
repeated computation of the gradient for all these examples is extremely costly. The
Stochastic Gradient Descent (SGD) algorithm does not use the entire dataset but
rather computes the gradient only for a small mini-batch of m training examples at
a time. In general, a mini-batch has sizes m ranging from 32 up to 1024, with even
higher values for recent extremely large models. Subsequently, the parameters of
the model are changed according to (2.16).

For each iteration a new mini-batch is selected randomly from the training data.
According to the law of large numbers the gradients computed from these mini-

58 2 Pre-trained Language Models

batches fluctuate around the true gradient for the whole training set. Therefore, the
mini-batch gradient on average indicates an adequate direction for changing the
parameters. Mertikopoulos et al. [91] show that by iteratively reducing the learning
rate to 0, the SGD exhibits almost sure convergence, avoids spurious critical points
such as saddle points (with probability 1), and stabilizes quickly at local minima.
There are a number of variations of the SGD algorithm, which are described below
[65].

An important step of optimization is the initialization of parameters. Their initial
values can determine whether the algorithm converges at all and how fast the
optimization approaches the optimum. To break symmetry, the initial parameters
must be random. Furthermore, the mean and variance of the parameters in each layer
are set such that the resulting outputs of the layer have a well-behaved distribution,
e.g. expectation 0.0 and variance 1.0. In addition, all gradients also should have
such a benign distribution to avoid exploding or vanishing gradients. All Deep
Learning software frameworks contain suitable initialization routines. A thorough
introduction is given by Goodfellow et al. [51, p. 292].

Variants of Stochastic Gradient Descent

Momentum is a method that helps SGD to increase the rate of convergence in
the relevant direction and reduce oscillations. Basically a moving average .u(t) of
recent gradients with a parameter .γ ≈ 0.9 is computed and the parameter update is
performed with this average by

.u(t) = γu(t−1) − λ
∂L(w)

∂w
where w(t) = w(t−1) − u(t). (2.17)

Note that in addition to the parameter vector .w(t) the moving average .u(t) of
the same length has to be stored requiring the same memory as the parameter
vector . w. This can consume a large additional memory size if the number of
parameters approaches the billions. In recent years a number of further optimizers
were developed [65]:

• AdaGrad adapts the learning rate dynamically based on the previous gradients.
It uses smaller learning rates for features occurring often, and higher learning
rates for features occurring rarely.

• AdaDelta modifies AdaGrad. Instead of accumulating all past gradients, it
restricts the accumulation window of the past gradients to some fixed size k.

• RMSProp is also a method in which the learning rate is adapted for each of
the parameters. The idea is to divide the learning rate for a weight by a running
average of the magnitudes of recent gradients for that weight.

• Adam combines the advantages of both AdaGrad and RMSProp. Adam is based
on adaptive estimates of lower-order moments. It uses running averages of both
the gradients and the second moments of the gradients.

2.4 Training and Assessment of Pre-trained Language Models 59

Due to the extremely large number of parameters of PLMs second order optimiza-
tion methods like Conjugate Gradient or Quasi-Newton are rarely employed. As the
number of second order derivatives grows quadratically, only crude approximations
may be used. An example is Adam, as described before.

An important architectural addition to PLMs to improve training are residual
connections, which were proposed by Vaswani et al. [141] for the Transformer.
Residual connections have been shown to be very successful for image classification
networks such as ResNet [54] and allowed training networks with several hundred
layers. The identity shortcuts skip blocks of layers to preserve features. Zhang
et al. [163] analyze the representational power of networks containing residual
connections.

Parallel Training for Large Models

Recently, there have been suggestions to reduce the optimization effort by employ-
ing larger mini-batches. You et al. [159] propose the LAMB optimizer with
layerwise adaptive learning rates to accelerate training of PLMs using large mini-
batches. They prove the convergence of their approach to a stationary point in
a general nonconvex setting. Their empirical results demonstrate the superior
performance of LAMB. It is possible to reduce the BERT training time from 3 days
to just 76min with very little hyperparameter tuning and batch sizes of 32,868
without any degradation of performance. The LAMB program code is available
online [97]. In addition, the memory requirements of the optimization may be
reduced [119] to enable parallelization of models resulting in a higher training
speed.

Large models such as GPT-3 have many billion parameters that no longer fit
into the memory of a single computational device, e.g. a GPU. Therefore, the
computations have to be distributed among several GPUs. There are different
parallelization techniques [156]:

• Data parallelism assigns the same model code and parameters to each GPU but
different training examples [72]. Gradients are computed in parallel and finally
summarized.

• Pipeline parallelism partitions the model into different parts (e.g. layers) that are
executed on different GPUs. If a part is computed it sends its results to the next
GPU. This sequence is reversed in the backward pass of training.

• Within-layer model parallelism distributes the weights of a single layer across
multiple GPUs.

The implementation of a parallelization strategy for a model is a tedious process.
Support is given by the DeepSpeed library [122] that makes distributed training
easy, efficient, and effective. Recently the GSPMD system [156] was developed
which automates this process and is able to combine different parallelism paradigms
in a unified way. GSPMD infers the distribution of computations to a network of
GPUs based on limited user annotations to the model definition. It was, for instance,
applied to distribute models with 1 trillion parameters on 2048GPUs.

60 2 Pre-trained Language Models

2.4.2 Regularization of Pre-trained Language Models

If a model contains too many parameters it can nearly perfectly adapt to the
training data by optimization, reflecting nearly all details of the training data.
During this overfitting the model learns the random variations expressed in the
training data and deviates from the mean underlying distribution. Consequently,
it has usually a lower performance on test data and a larger generalization error.
To avoid this phenomenon, the representational capacity of the model has to be
reduced by regularization methods, which often have the same effect as reducing
the number of parameters. Well known approaches for Deep Learning models are
the . L2 regularization and . L1 regularization penalizing large parameter values, or
Dropout temporarily setting randomly selected hidden variables to 0. A survey of
regularization strategies for Deep Neural Networks is given by Moradi et al. [96].

The training of PLMs is often non-trivial. One problem is the occurrence
of vanishing or exploding gradients, which is connected to the problem of the
vanishing or exploding variance of input values of different layers [55]. Batch
normalization normalizes the values of the components of hidden units to mean 0.0
and variance 1.0 and thus reduces the variation of input values. For a mini-batch of
training cases the component values are aggregated to compute a mean and variance,
which are then used to normalize the input of that component on each training
case [62]. It can be shown that batch normalization makes hidden representations
increasingly orthogonal across layers of a Deep Neural Network [35].

In their paper on the Transformer, Vaswani et al. [141] use a variant called layer
normalization [6] for regularization. The authors compute the mean and variance of
the different components of hidden units for each training example and use this to
normalize the input to mean 0.0 and variance 1.0. In addition, they apply dropout to
the output of self-attention. Finally, they use label smoothing [133] where the loss
function is reformulated such that the observed tokens are not certain but alternative
tokens may be possible with a small probability. This is a form of regularization
which makes optimization easier. The RMSNorm [162] is a variant of the layer
normalization, which only normalizes the input by division with the root-mean-
square error without shifting the mean. In experiments, it compares favorably with
the layer normalization [101].

2.4.3 Neural Architecture Search

The structure of the self-attention block was manually designed, and it is not
clear, whether it is optimal in all cases. Therefore, there are some approaches to
generate the architecture of PLMs in an automatic way called Neural Architecture
Search (NAS). A survey is provided by He et al. [56], who argue that currently the
contributions of architecture search to NLP tasks are minor. Zöller [166] evaluate
architecture search for machine learning models.

2.4 Training and Assessment of Pre-trained Language Models 61

Wang et al. [149] propose an architecture search space with flexible encoder-
decoder attentions and heterogeneous layers. The architecture search produces
several transformer versions and finally concentrates on hardware restrictions to
adapt the computations to processors at hand. The authors report a speedup of 3 and
a size reduction factor of 3.7 with no performance loss. For relation classification
Zhu et al. [165] design a comprehensive search space. They explore the search
space by reinforcement learning strategy and yield models which have a better
performance.

Architecture search may also be formulated as a ranking task. RankNAS [60]
solves this by a series of binary classification problems. The authors investigate
translation and language models. For translation the usual encoder-decoder is
included in a super-net, where each of the .1023 subnetworks is a unique architecture.
The importance of an architectural feature (e.g., the number of layers) is measured
by the increase in the model error after permuting the feature. The authors use
an evolutionary optimization strategy and evaluate their approach on translation
(WMT2014 En-De). They get increases in BLEU-values at a fraction of cost of other
approaches.

Recently differentiable architecture search has been developed, which embeds
architecture search in a continuous search space and finds the optimal architecture
by gradient descent. This leads to an efficient search process that is orders of
magnitude faster than the discrete counterparts. This idea is applied by Fan et
al. [43], who propose a gradient-based NAS algorithm for machine translation.
They explore attention modules and recurrent units, automatically discovering
architectures with better performances. The topology of the connection among
different units is learned in an end-to-end manner. On a number of benchmarks
they were able to improve the performance of the Transformer, e.g. from 28.8
to 30.1 BLEU scores for the WMT2014 English-to-German translation. There are
other successful architecture search approaches for neural translation [130], named
entity recognition [64], and image classification models [34, 147, 148], which may
possibly be applied to other NLP tasks.

2.4.4 The Uncertainty of Model Predictions

Variations in the outcome of a PLM can have two main sources:

• Epistemic uncertainty reflects our limited knowledge about the real world. The
real world situation corresponding to the training set can change causing a
distribution shift. Moreover, the collected documents can have biases or errors
and cover unwanted types of content. It is clear that the structure of the real
world and the PLM differ. Therefore, a PLM can only approximate the correct
conditional probabilities of language. This type of uncertainty is often called
structural uncertainty and is difficult to estimate.

62 2 Pre-trained Language Models

• Aleatoric uncertainty is caused by random variations which can be assessed
more easily. The training data is usually a sample of the underlying data in
the population and therefore affected by the sampling variation. If a model
is randomly re-initialized, it generates a completely different set of parameter
values which leads to different predictions. Finally, language models predict
probabilities of tokens and the generation of new tokens is also affected by
uncertainty. The Bayesian framework offers a well-founded tool to assess this
type of uncertainty in Deep Learning [44].

A recent survey of methods for estimating the model uncertainty is provided by
Gawlikowski et al.[47]. We will describe three approaches to capture model uncer-
tainty: Bayesian statistics, a Dirichlet distributions, and ensemble distributions.

Bayesian Neural Networks

Bayesian Neural Networks directly represent the uncertainty of the estimated
parameters .w = (w1, . . . , wdw) by the posterior distribution

.p(w|X,Y) ∝ p(y|X,w)p(w). (2.18)

Here . X and . Y are the observed inputs and outputs in the training set and . p(Y |X,w)

is the likelihood, i.e. the probability of the outputs given . X and a parameter vector
. w. The prior distribution .p(w) describes the distribution of parameters before data
is available. The distribution of predictions for a new input . ̃x is given by

.p(ỹ|x̃,X,Y) =
∫

p(ỹ|x̃,w)p(w|X,Y)dw. (2.19)

The integral usually cannot be solved analytically and has to be approximated. Often
a Monte Carlo approximation is used, which infers the integral by a sum over
different parameter values .w[i] distributed according to the posterior distribution
.p(w|X,Y). If .ỹ[i] = f (x̃,w[i]) is a deterministic network predicting the output for
a parameter .w[i] and input . ̃x, the resulting sample .ỹ[1], . . . , ỹ[k] can be considered
as a sample of the output distribution .p(ỹ|x̃,X,Y) [108].

Bayesian predictive distributions can be approximated in different ways:

• Sampling approaches use a Markov Chain Monte Carlo algorithm to generate
parameter values distributed according to the posterior distributions, from which
realizations can be sampled [102]. Markov ChainMonte Carlo defines a sampling
strategy, where first a new parameter value . w is randomly generated and then the
algorithm computes the probability to accept . w, or to keep the previous parameter
value. Welling et al. [150] combined this approach with stochastic gradient
descent and demonstrated that Bayesian inference on Deep Neural Networks can
be done by a noisy SGD. A review of the favorable convergence properties has

2.4 Training and Assessment of Pre-trained Language Models 63

been given by Nemeth et al. [103]. Practical evaluations of this technique are
performed by Wenzel et al. [152].

• Variational inference approximates the posterior distribution by a product . q(w)

of simpler distributions, which are easier to evaluate [9]. Using multiple GPUs
and practical tricks, such as data augmentation, momentum initialization and
learning rate scheduling, and learning rate scheduling, Osawa et al. [105]
demonstrated that variational inference can be scaled up to ImageNet size data-
sets and architectures.

It can be shown [45] that dropout regularization (Sect. 2.4.2) can be considered
as approximate variational inference. Hence, the predictive uncertainty can be
estimated by employing dropout not only during training, but also at test time. A
variant called Drop connect randomly removes incoming activations of a node,
instead of dropping an activation for all following nodes. This approach yields a
more reliable uncertainty estimate and can even be combined with the original
dropout technique [88].

• Laplace approximation considers the logarithm of the posterior distribution
around a local mode . ŵ and approximate it by a normal distribution . N(ŵ, [H +
βI]−1) over the network weights [9]. H is the Hessian, the matrix of second
derivatives, of .logp(w|X,Y). This approximation may be computed for already
trained networks and can be applied to Deep Neural Networks [76]. A problem is
the large number of coefficients of H , which limits the computations to elements
on the diagonal. Extensions have been proposed by George et al. [48].

Estimating Uncertainty by a Single Deterministic Model

Most PLMs predict tokens by a discrete probability distribution. If the softmax
function is used to compute these probabilities, the optimization over the training
set usually leads to very extreme probabilities close to 0 or 1. The network is often
overconfident and generates inaccurate uncertainty estimates. To assess uncertainty,
the difference between the estimated distribution and the actual distribution has
to be described. If .v1, . . . , vdv is the vocabulary of tokens and . π a discrete
distribution over these tokens, then we can use the Dirichlet distribution . p(π |α(x))

to characterize a distribution over these discrete distributions. The vector . α depends
on the input . x and has a component . αi for each . vi . The sum .

∑
i αi characterizes the

variance. If it gets larger, the estimate for the probability of . vi has a lower variance.
Malinin et al. [85] use the expected divergence between the empirical distribution

and the predicted distribution to estimate the .p(π |α(x)) for a given input . x. In the
region of the training data the network is trained to minimize the expected Kullback-
Leibler (KL) divergence between the predictions of in-distribution data and a low-
variance Dirichlet distribution. In the region of out-of-distribution data a Dirichlet
distribution with a higher variance is estimated. The distribution over the outputs
can be interpreted as a quantification of the model uncertainty, trying to emulate the
behavior of a Bayesian modeling of the network parameters [44].

64 2 Pre-trained Language Models

Liu et al. [83] argue that the distance between training data elements is relevant
for prediction uncertainty. To avoid that the layers of a network cause a high
distortion of the distances of the input space, the authors propose a spectral nor-
malization. This SNGP approach limits the distance .‖h(x[1]) − h(x[2])‖ compared
to .‖x[1] − x[2]‖, where .x[1] and .x[2] are two inputs and .h(x) is a deep feature
extractor. Then they pass .h(x) into a distance-aware Gaussian Process output layer.
The Gaussian Process posterior is approximated by a Laplace approximation, which
can be predicted by a deterministic Deep Neural Network.

The authors evaluate SNGP on BERT.BASE to decide, if a natural utterance input
is covered by the training data (so that it can be handled by the model) or outside.
The model is only trained on in-domain data, and their predictive accuracy is
evaluated on in-domain and out-of-domain data. While ensemble techniques have
a slightly higher prediction accuracy, SNGP has a better calibration of probabilities
and out-of-distribution detection. An implementation of the approach is available
[138].

A number of alternative approaches are described in [47, p. 10f], which also
discuss mixtures of Dirichlet distributions to characterize predictive uncertainty. In
general single deterministic methods are computational less demanding in training
and evaluation compared to other approaches. However, they rely on a single
network configuration and may be very sensitive to the underlying network structure
and the training data.

Representing the Predictive Distribution by Ensembles

It is possible to emulate the sampling variability of a training set by resampling
methods. A well-founded approach is bagging, where . nb samples of size n are
drawn with replacement from a training set of n elements [20, 107]. For the i-th
sample a model may be trained yielding a parameter . ŵ[i]. Then the distribution
of predictions .f (x, ŵ

[i]
) represent the uncertainty in the model prediction for an

input . x, and it can be shown that their mean value . 1
nb

∑
i f (x, ŵ

[i]
) has a lower

variance than the original model prediction [73]. In contrast to many approximate
methods, ensemble approaches may take into account different local maxima of the
likelihood function and may cover different network architectures. There are other
methods to introduce data variation, e.g. random parameter initialization or random
data augmentation. A survey on ensemble methods is provided by Dong et al. [40].

Besides the improvement in the accuracy, ensembles are widely used for
representing prediction uncertainty of Deep Neural Networks [73]. In empirical
investigations, the approach was at least as reliable as Bayesian approaches (Monte
Carlo Dropout, Probabilistic Backpropagation) [73]. Reordering the training data
and a random parameter initialization induces enough variability in the models
for the prediction of uncertainty, while bagging may reduce the reliability of
uncertainty estimation [77]. Compared to Monte Carlo Dropout, ensembles yield
more reliable and better calibrated prediction uncertainties and are applicable to
real-world training data [13, 53]. Already for a relatively small ensemble size of

2.4 Training and Assessment of Pre-trained Language Models 65

five, deep ensembles seem to perform best and are more robust to data set shifts
than the compared methods [106].

Although PLMs have been adapted as a standard solution for most NLP tasks,
the majority of existing models is unable to estimate the uncertainty associated
with their predictions. This seems to be mainly caused by the high computational
effort of uncertainty estimation approaches. In addition, the concept of uncertainty
of a predicted probability distribution is difficult to communicate. However, it is
extremely important to get a diagnosis, when a PLM is given an input outside the
support of its training data, as then the predictions get unreliable.

Among the discussed approaches the ensemble methods seem to be most reliable.
However, they require a very high computational effort. New algorithms like SNGP
are very promising. More research is needed to reduce this effort or develop
alternative approaches. Recently benchmark repositories and datasets have been
developed to provide high-quality implementations of standard and SOTA methods
and describe best practices for uncertainty and robustness benchmarking [99].

Implementations
Uncertainty Baselines [10, 98] provide a collection high-quality implementations of
standard and state-of-the-art methods for uncertainty assessment.

2.4.5 Explaining Model Predictions

PLMs such as BERT are considered as black box models, as it is hard to understand,
what they really learn and what determines their outputs. Hence, a lot of research
goes into investigating the behavior of these models. There are three main reasons
to explain the model predictions. Trust in the model predictions is needed, i.e. that
the model generates reliable answers for the problem at hand and can be deployed
in real-world applications. Causality asserts that the change of input attributes leads
to sensible changes in the model predictions. Understanding of the model enables
domain experts to compare the model prediction to the existing domain knowledge.
This is a prerequisite for the ability to adjust the prediction model by incorporating
domain knowledge.

Explanations can also be used to debug a model. A striking example was an
image classification, where a horse was not detected by its shape, but by a label in
the image [74]. Explanations are most important for critical decisions that involve
humans or can cause high damage. Examples are health care, the judicial system,
banking, or self-driving cars.

Explanation methods roughly can be grouped into local explanations or global
explanations. A local explanation provides information or justification for the
model’s prediction for a specific input . x, whereas global explanations cover the
model in general. A large majority of models aims at local explanations, as these
may be used to justify specific predictions. Surveys on methods for the explanation
of PLMs are provided by Danilevsky et al. [36], Burkart and Huber [23], Xu et al.

66 2 Pre-trained Language Models

[155], Bauckhage et al. [11], Tjoa and Guan [139], and Belle and Papantonis [12].
Molnar [95] devotes a whole book to this topic and Bommasani et al. [17, p. 125]
provide a recent overview. For language models different types of explanation can
be used:

• Feature importance measures the influence of single input features, e.g. tokens,
on the prediction. It often corresponds to the first derivative of a feature with
respect to the output [79]. As the meaning of input tokens is easily understood,
this type of explanation is readily interpretable by humans.

• Counterfactual explanations investigate, how an input . x has to be modified, to
generate a different target output.

• Surrogate models explain model predictions by a second, simpler model. One
well-known example is LIME [123], which trains a local linear model around a
single input . x of interest.

• Example-driven explanations illustrate the prediction of an input . x by selecting
other labeled instances that are semantically similar to . x. This is close to the
nearest neighbor approach to prediction and has, for instance, been used for text
classification [1].

• Source citation is a general practice of scientific work in which a claim is
supported by citing respectable scientific sources. The same can be done for a
text generated by language models with a retrieval component [57].

Other approaches like a sequence of reasoning steps or rule invocations are unusable
for PLMs with many millions of parameters.

The self-attention mechanism is the central function unit of PLMs. BertViz [144]
is a visualization tool that allows users to explore the strength of attention between
different tokens for the heads and layers in a PLM and allows users to get a quick
overview of relevant attention heads. However, Jain et al. [63] demonstrate that
attention does not correlate with feature importance methods and counterfactual
changes of attention do not lead to corresponding changes in prediction. This may,
for instance, be caused by the concatenation of head outputs and their subsequent
processing by a fully connected nonlinear layer. Attentions are noisy predictors of
the overall importance of components, but are not good at identifying the importance
of features [129].

Linear Local Approximations

An important concept is the contribution of input . xi towards an output . yj , e.g. a
class probability. Gradient-based explanations estimate the contribution of input . xi

towards an output . yj , e.g. a class probability, by computing the partial derivative
.∂yj /∂xi . This derivative is often called saliency and can be interpreted as linear
approximation to the prediction function at input . x. LIME [123] defines a local
linear regression model around a single input . x. Because of correlation of features,
the coefficients of the input features depend on the presence or absence of the other
input features. The SHAP approach therefore determines the influence of a feature

2.4 Training and Assessment of Pre-trained Language Models 67

Fig. 2.20 Contributions for the question classification task (left). Red marks positive influence,
blue negative, and black tokens are neutral. Contributions for the task of translating “good morning
ladies and gentlemen” to the German “Guten Morgen Damen und Herren” are shown on the right
side [132]. Words are tokenized to word pieces

by the average influence of the feature for all combinations of other features [84].
The authors show the favorable theoretical properties of this approach and derive
several efficient computation strategies.

Nonlinear Local Approximations

Sundararajan et al. [132] formulate two basic requirements for this type of expla-
nation. Sensitivity: if the inputs .x[1] and .x[2] differ in just one feature and lead
to different predictions, then the differing feature should be given a non-zero
contribution. Implementation invariance: i.e., the attributions are always identical
for two functionally equivalent networks. As the prediction functions are usually
nonlinear, gradient-based methods violate both requirements and may focus on
irrelevant attributes.

Integrated Gradients [132] generates an approximation to the prediction
function .F : Rn → [0, 1], which captures nonlinear dependencies. To assess the
difference from baseline input .x[1] to another input . x[2], the authors compute the
mean value of gradients .∂F (x)/∂x of the output with respect to inputs along the line
from .x[1] to .x[2] by an integral. It can be shown that this approach meets the above
requirements. The authors apply the approach to question classification according
to the type of the answer (Fig. 2.20). The baseline input is the all zero embedding
vector. Another application considers neural machine translation. Here the output
probability of every output token is attributed to the input tokens. As baseline all
tokens were zeroed except the start and end markers. A similar analysis is based on
a Taylor expansion of the prediction function [7] .

Liu et al. [82] propose a generative explanation framework which simultaneously
learns to make classification decisions and generate fine-grained explanations for
them. In order to reach a good connection between classification and explanation
they introduce a classifier that is trained on their explanation. For product reviews
they, for instance, generate the following positive explanations “excellent picture,

68 2 Pre-trained Language Models

attractive glass-backed screen, hdr10 and dolby vision” and negative reasons “very
expensive”. The authors introduce an explanation factor, which represents the
distance between the probabilities of the classifier trained on the explanations vs.
the classifier trained on the original input and the gold labels. They optimize their
models with minimum risk training.

Explanation by Retrieval

Recently, Deep Learning models have been playing an increasingly important role in
science and technology. The algorithms developed by Facebook are able to predict
user preferences better than any psychologist [24, 71]. AlphaFold, developed by
DeepMind, makes the most accurate predictions of protein structures based on their
amino acids [131]. And the PaLM and Retro models are capable of generating
stories in fluent English, the latter with the knowledge of the Internet as background.
However, none of the programs were actually able to justify their decisions and
cannot indicate why a particular sequence was generated or on what information a
decision was based on.

In 2008, Anderson [5] predicted the end of theory-based science. In his view,
theories are an oversimplification of reality, and the vast amount of accumulated
data contains knowledge in a much more detailed form, so theories are no longer
necessary. This is also the problem of Explainable AI, which aims to explain the
decisions of Deep Learning models. It is always faced with a trade-off where
predictive accuracy must be sacrificed in order to interpret the model output.

As large autoregressive language models are combined with retrieval com-
ponents, document retrieval can be used not only to incorporate more accurate
knowledge into the language generation process, but also to support the generated
answers by authoritative citations. Metzler et al. [92] argues that future PLMs should
justify created text by referring to supporting documents in the training data or
background document collection. To implement this approach Nakano et al. [100]
combine GPT-3 with the search engine BING to enhance language generation for
question-answering by retrieved documents. Their WebGPT [100] first creates a
text in natural language (Sect. 6.2.3). After that, it enhances the generated sentences
by different references to the found documents, similar to the way a scientist
expands his texts by references. By this procedure WebGPT is able to justify and
explain the created answer. This could be a way to make the generated text more
trustworthy. Note that the advanced dialog model LaMDA can include links to
external documents supporting an answer (Sect. 6.6.3).

Explanation by Generating a Chain of Thought

Large autoregressive PLMs like GPT-3 are able to produce a very convincing
continuation of a start text, and, for instance, generate the answer for a question.
It turned out that their ability to generate the correct answer could drastically be

2.4 Training and Assessment of Pre-trained Language Models 69

Fig. 2.21 Explaining by a chain of thoughts. The first box contains two examples of thought
chains, which are used for every query. This chain-of-thought prompt was input to the PaLM
model together with the input query, and the model output was generated by PaLM [30, p. 38]

improved by giving a few examples with a chain of thought (Sect. 3.6.4) for deriving
the correct answer. This has been demonstrated for the PaLM language model [30].

A generated thought chain can be used for other purposes. First, it can be checked
whether the model produces the correct answer for the “right reasons”, rather than
just exploiting superficial statistical correlations. In addition, the explanation can
potentially be shown to an end-user of the system to increase or decrease their
confidence in a given prediction. Finally, for some queries (e.g., explaining a joke),
the explanation itself is the desired output [30].

Figure 2.21 contains a few-shot query and the resulting answer. For application
only a few example chains of thought are necessary, which can be reused. To
generate the best answer for the question greedy decoding has to be used, yielding
the optimal prediction. As PaLM shows, the enumeration of argument steps works
empirically. However, a sound theory of how models actually use such arguments
internally is still lacking. Further, it is not known under which circumstances the
derivation of such a chain of thoughts succeeds. It should be investigated to what
extent the reasoning of a model corresponds to the reasoning steps performed by
humans.

70 2 Pre-trained Language Models

Implementations
Ecco [2] and BertViz [143] are tools to visualize the attentions and embeddings
of PLMs. An implementation and a tutorial on integrated gradients is available for
TensorFlow [136]. Captum [26, 70] is an open-source library to generate interpre-
tations and explanations for the predictions of PyTorch models containing most of
the approaches discussed above. Transformers-interpret [113] is an alternative open-
source model explainability tool for the Hugging Face package.

2.4.6 Summary

Similar to other large neural networks, PLMs are optimized with simple stochastic
gradient descent optimizers that are able to approach the region of minimal cost
even for huge models with billions of parameters and terabytes of training data.
This requires parallel training on computing networks which can be controlled by
suitable software libraries. There are many recipes in the literature for setting hyper-
parameters such as batch size and learning rate schedules. Important ingredients
are residual connections to be able to optimize networks with many layers and
regularization modules to keep parameters in a manageable range.

Neural architecture search is a way to improve performance and reduce memory
requirements of networks. A number of approaches have been proposed that signifi-
cantly speed up training. Some methods provide models with better performance
and lower memory footprint. There are new differential methods that have the
potential to derive better architectures with little effort.

PLMs aim to capture relations between language concepts and can only do
so approximately. Therefore, it is important to evaluate their inherent uncertainty.
Three different approaches to analyze the uncertainty are described. Among these,
ensemble methods appear to be the most reliable, but involve a high computational
cost. New algorithms such as SNGP, which are based on a single model, are very
promising.

To enable a user to decide whether a model result makes sense, it is necessary
to explain how the result was obtained. Explanations can be provided by showing
the importance of features for a result, by exploring the PLM by related examples
or by approximating the PLM with a simple model. Some libraries are available
that allow routine use of these methods. A new way of explaining texts generated
by PLMs is to enhance the texts with appropriate citations of relevant supporting
documents. Finally, a PLM can be instructed by chain-of-thought prompts to provide
an explanation for the model response. This type of explanation is particularly easy
to understand and can reflect the essential parts of a chain of arguments.

The next chapter discusses approaches to improve the three basic PLM types by
new pre-training tasks or architectural changes. The fourth chapter examines the
knowledge, which can be acquired by PLMs and that can be used to interpret text
and to generate new texts.

References 71

References

1. A. Abujabal, R. S. Roy, M. Yahya, and G. Weikum. “Quint: Interpretable Question Answering
over Knowledge Bases”. In: Proc. 2017 Conf. Empir. Methods Nat. Lang. Process. Syst.
Demonstr. 2017, pp. 61–66.

2. J. Alammar. “Ecco: An Open Source Library for the Explainability of Transformer Language
Models”. In: Proc. 59th Annu. Meet. Assoc. Comput. Linguist. 11th Int. Jt. Conf. Nat. Lang.
Process. Syst. Demonstr. 2021, pp. 249–257. URL: https://github.com/jalammar/ecco.

3. J. Alammar. The Illustrated GPT-2 (Visualizing Transformer Language Models). Oct. 12,
2019. URL: http://jalammar.github.io/illustrated-gpt2/ (visited on 01/24/2021).

4. F. St-Amant. How to Fine-Tune GPT-2 for Text Generation. Medium. May 8, 2021. URL:
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
(visited on 07/29/2021).

5. C. Anderson. “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete”.
In: Wired (June 23, 2008). ISSN: 1059–1028. URL: https://www.wired.com/2008/06/pb-
theory/ (visited on 01/11/2022).

6. J. L. Ba, J. R. Kiros, and G. E. Hinton. “Layer Normalization”. 2016. arXiv: 1607.06450.
7. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. “On Pixel-Wise

Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation”. In:
PloS one 10.7 (2015), e0130140.

8. D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly Learning to
Align and Translate”. 2014. arXiv: 1409.0473.

9. D. Barber and C. M. Bishop. “Ensemble Learning in Bayesian Neural Networks”. In: Nato
ASI Ser. F Comput. Syst. Sci. 168 (1998), pp. 215–238.

10. baselines. Uncertainty Baselines. Google, Dec. 5, 2021. URL: https://github.com/google/
uncertainty-baselines (visited on 12/06/2021).

11. C. Bauckhage, J. Fürnkranz, and G. Paass. “Vertrauenswürdiges, Transparentes Und Robustes
Maschinelles Lernen”. In: Handbuch Der Künstlichen Intelligenz. de Gruyter, 2021. ISBN:
978-3-11-065984-9.

12. V. Belle and I. Papantonis. “Principles and Practice of Explainable Machine Learning”.
In: Front. Big Data 4 (2021), p. 39. ISSN: 2624-909X. https://doi.org/10.3389/fdata.2021.
688969.

13. W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler. “The Power of Ensembles
for Active Learning in Image Classification”. In: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. 2018, pp. 9368–9377.

14. Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review and New
Perspectives”. In: IEEE Trans. Pattern Anal. Mach. Intell. 35.8 (2013), pp. 1798–1828.

15. Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. “A Neural Probabilistic Language
Model”. In: J. Mach. Learn. Res. 3 (Feb 2003), pp. 1137–1155.

16. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. “Greedy Layer-Wise Training of Deep
Networks”. In: Adv. Neural Inf. Process. Syst. 19 (2006).

17. R. Bommasani et al. “On the Opportunities and Risks of Foundation Models”. 2021. arXiv:
2108.07258.

18. S. Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”.
Dec. 8, 2021. arXiv: 2112.04426 [cs].

19. G. Branwen. “GPT-2 Neural Network Poetry”. In: (Mar. 3, 2019). URL: https://www.gwern.
net/GPT-2 (visited on 01/27/2021).

20. L. Breiman. “Bagging Predictors”. In: Mach. Learn. 24.2 (1996), pp. 123–140.
21. T. B. Brown et al. “Language Models Are Few-Shot Learners”. 2020. arXiv: 2005.14165.
22. D. Budden and M. Hessel. Using JAX to Accelerate Our Research. Dec. 4, 2020. URL: https://

www.deepmind.com/blog/using-jax-to-accelerate-our-research (visited on 06/21/2022).
23. N. Burkart and M. F. Huber. “A Survey on the Explainability of Supervised Machine

Learning”. In: J. Artif. Intell. Res. 70 (2021), pp. 245–317.

https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://towardsdatascience.com/how-to-fine-tune-gpt-2-for-text-generation-ae2ea53bc272
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://www.gwern.net/GPT-2
https://www.gwern.net/GPT-2
https://www.gwern.net/GPT-2
https://www.gwern.net/GPT-2
https://www.gwern.net/GPT-2
https://www.gwern.net/GPT-2
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

72 2 Pre-trained Language Models

24. C. Cadwalladr and E. Graham-Harrison. “How Cambridge Analytica Turned Facebook
‘Likes’ into a Lucrative Political Tool”. In: Guard. 17032018 (2018).

25. X. Cai, J. Huang, Y. Bian, and K. Church. “Isotropy in the Contextual Embedding Space:
Clusters and Manifolds”. In: Int. Conf. Learn. Represent. 2020.

26. Captum. Captum · Model Interpretability for PyTorch. 2021. URL: https://captum.ai/ (visited
on 12/06/2021).

27. S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath. “An Attentive Survey of Attention
Models”. In: ACM Trans. Intell. Syst. Technol. TIST 12.5 (2021), pp. 1–32.

28. S. F. Chen, D. Beeferman, and R. Rosenfeld. “Evaluation Metrics for Language Models”.
In: (1998). URL: https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/
6605324/files/12095765.pdf.

29. Y. Chen, V. O. Li, K. Cho, and S. R. Bowman. “A Stable and Effective Learning Strategy for
Trainable Greedy Decoding”. 2018. arXiv: 1804.07915.

30. A. Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”. Apr. 5, 2022.
arXiv: 2204.02311 [cs].

31. E. Cohen and C. Beck. “Empirical Analysis of Beam Search Performance Degradation in
Neural Sequence Models”. In: Int. Conf. Mach. Learn. PMLR, 2019, pp. 1290–1299.

32. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. “Natural
Language Processing (Almost) from Scratch”. In: J. Mach. Learn. Res. 12 (2011), pp. 2493–
2537.

33. A. M. Dai and Q. V. Le. “Semi-Supervised Sequence Learning”. In: Adv. Neural Inf. Process.
Syst. 2015, pp. 3079–3087.

34. Z. Dai, H. Liu, Q. V. Le, and M. Tan. “CoAtNet: Marrying Convolution and Attention for All
Data Sizes”. Sept. 15, 2021. arXiv: 2106.04803 [cs].

35. H. Daneshmand, A. Joudaki, and F. Bach. “Batch Normalization Orthogonalizes Representa-
tions in Deep Random Networks”. June 7, 2021. arXiv: 2106.03970 [cs, stat].

36. M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P. Sen. “A Survey of the State
of Explainable AI for Natural Language Processing”. 2020. arXiv: 2010.00711.

37. A. de Santana Correia and E. L. Colombini. “Attention, Please! A Survey of Neural Attention
Models in Deep Learning”. In: Artif. Intell. Rev. (2022), pp. 1–88.

38. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Annotated BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: Proc. 2019 Conf. North Am.
Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Vol. 1 Long Short Pap. NAACL-HLT
2019. Minneapolis, Minnesota: Association for Computational Linguistics, June 2019, pp.
4171–4186. https://doi.org/10.18653/v1/N19-1423.

39. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. 2018. arXiv: 1810.04805.

40. X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma. “A Survey on Ensemble Learning”. In: Front.
Comput. Sci. 14.2 (2020), pp. 241–258.

41. K. Doshi. Transformers Explained Visually (Part 3): Multi-head Attention, Deep
Dive. Medium. June 3, 2021. URL: https://towardsdatascience.com/transformers-explained-
visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853 (visited on 11/19/2021).

42. A. Fan, M. Lewis, and Y. Dauphin. “Hierarchical Neural Story Generation”. 2018. arXiv:
1805.04833.

43. Y. Fan, F. Tian, Y. Xia, T. Qin, X.-Y. Li, and T.-Y. Liu. “Searching Better Architectures for
Neural Machine Translation”. In: IEEEACM Trans. Audio Speech Lang. Process. 28 (2020),
pp. 1574–1585.

44. Y. Gal and Z. Ghahramani. “Bayesian Convolutional Neural Networks with Bernoulli
Approximate Variational Inference”. 2015. arXiv: 1506.02158.

45. Y. Gal, J. Hron, and A. Kendall. “Concrete Dropout”. 2017. arXiv: 1705.07832.
46. A. Galassi, M. Lippi, and P. Torroni. “Attention in Natural Language Processing”. In: IEEE

Transactions on Neural Networks and Learning Systems 32 (Oct. 1, 2021), pp. 4291–4308.
https://doi.org/10.1109/TNNLS.2020.3019893.

https://captum.ai/
https://captum.ai/
https://captum.ai/
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://kilthub.cmu.edu/articles/EvaluationMetricsForLanguageModels/6605324/files/12095765.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visuallypart-3-multi-head-attention-deep-dive-1c1ff1024853
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893
https://doi.org/10.1109/TNNLS.2020.3019893

References 73

47. J. Gawlikowski et al. “A Survey of Uncertainty in Deep Neural Networks”. 2021. arXiv:
2107.03342.

48. T. George, C. Laurent, X. Bouthillier, N. Ballas, and P. Vincent. “Fast Approximate Natural
Gradient Descent in a Kronecker-Factored Eigenbasis”. 2018. arXiv: 1806.03884.

49. M. Geva, R. Schuster, J. Berant, and O. Levy. “Transformer Feed-Forward Layers Are Key-
Value Memories”. In: (Dec. 29, 2020). URL: https://arxiv.org/abs/2012.14913v2 (visited on
11/08/2021).

50. B. Ghojogh and A. Ghodsi. “Attention Mechanism, Transformers, BERT, and GPT: Tutorial
and Survey”. In: (2020). URL: https://osf.io/m6gcn/download.

51. I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Vol. 1. MIT press Cambridge,
2016. URL: https://www.deeplearningbook.org/.

52. A. Graves. “Sequence Transduction with Recurrent Neural Networks”. 2012. arXiv:
1211.3711.

53. F. K. Gustafsson, M. Danelljan, and T. B. Schon. “Evaluating Scalable Bayesian Deep
Learning Methods for Robust Computer Vision”. In: Proc. IEEECVF Conf. Comput. Vis.
Pattern Recognit. Workshop. 2020, pp. 318–319.

54. K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”. In:
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2016, pp. 770–778.

55. K. He, X. Zhang, S. Ren, and J. Sun. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on Imagenet Classification”. In: Proc. IEEE Int. Conf. Comput. Vis. 2015, pp.
1026–1034.

56. X. He, K. Zhao, and X. Chu. “AutoML: A Survey of the State-of-the-Art”. In: Knowl.-Based
Syst. 212 (2021), p. 106622.

57. J. Hilton. WebGPT: Improving the Factual Accuracy of Language Models through
Web Browsing. OpenAI. Dec. 16, 2021. URL: https://openai.com/blog/improving-factual-
accuracy/ (visited on 01/12/2022).

58. A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. “The Curious Case of Neural Text
Degeneration”. Feb. 14, 2020. arXiv: 1904.09751 [cs].

59. J. Howard and S. Ruder. “Universal Language Model Fine-tuning for Text Classification”.
In: Proc. 56th Annu. Meet. Assoc. Comput. Linguist. Vol. 1 Long Pap. ACL 2018. Melbourne,
Australia: Association for Computational Linguistics, July 2018, pp. 328–339. https://doi.org/
10.18653/v1/P18-1031.

60. C. Hu et al. “RankNAS: Efficient Neural Architecture Search by Pairwise Ranking”. 2021.
arXiv: 2109.07383.

61. D. Hu. “An Introductory Survey on Attention Mechanisms in NLP Problems”. In: Proc. SAI
Intell. Syst. Conf. Springer, 2019, pp. 432–448.

62. S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. In: Int. Conf. Mach. Learn. PMLR, 2015, pp. 448–456.

63. S. Jain and B. C. Wallace. “Attention Is Not Explanation”. 2019. arXiv: 1902.10186.
64. Y. Jiang, C. Hu, T. Xiao, C. Zhang, and J. Zhu. “Improved Differentiable Architecture

Search for Language Modeling and Named Entity Recognition”. In: Proc. 2019 Conf. Empir.
Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. EMNLP-IJCNLP. 2019,
pp. 3576–3581.

65. M. Kastrati and M. Biba. “A State-of-the-Art Survey of Advanced Optimization Methods in
Machine Learning”. In: RTA-CSIT (May 1, 2021), pp. 1–10.

66. R. Kehlbeck, R. Sevastjanova, T. Spinner, T. Stähle, and M. El-Assady. Demystifying the
Embedding Space of Language Models. July 31, 2021. URL: https://bert-vs-gpt2.dbvis.de/.

67. N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. “CTRL: A Condi-
tional Transformer Language Model for Controllable Generation”. Sept. 20, 2019. arXiv:
1909.05858.

68. U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis. “Generalization through
Memorization: Nearest Neighbor Language Models”. Feb. 14, 2020. arXiv: 1911.00172.

69. D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. 2014. arXiv:
1412.6980.

https://arxiv.org/abs/2012.14913v2
https://arxiv.org/abs/2012.14913v2
https://arxiv.org/abs/2012.14913v2
https://arxiv.org/abs/2012.14913v2
https://arxiv.org/abs/2012.14913v2
https://arxiv.org/abs/2012.14913v2
https://osf.io/m6gcn/download
https://osf.io/m6gcn/download
https://osf.io/m6gcn/download
https://osf.io/m6gcn/download
https://osf.io/m6gcn/download
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://bert-vs-gpt2.dbvis.de/
https://bert-vs-gpt2.dbvis.de/
https://bert-vs-gpt2.dbvis.de/
https://bert-vs-gpt2.dbvis.de/
https://bert-vs-gpt2.dbvis.de/
https://bert-vs-gpt2.dbvis.de/

74 2 Pre-trained Language Models

70. N. Kokhlikyan et al. “Captum: A Unified and Generic Model Interpretability Library for
PyTorch”. Sept. 16, 2020. arXiv: 2009.07896.

71. M. Kosinski, D. Stillwell, and T. Graepel. “Private Traits and Attributes Are Predictable from
Digital Records of Human Behavior”. In: Proc. Natl. Acad. Sci. 110.15 (2013), pp. 5802–
5805.

72. A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet Classification with Deep Convolu-
tional Neural Networks”. In: Adv. Neural Inf. Process. Syst. 2012, pp. 1097–1105.

73. B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predictive Uncer-
tainty Estimation Using Deep Ensembles”. In: Adv. Neural Inf. Process. Syst. 30 (2017).

74. S. Lapuschkin, A. Binder, G. Montavon, K.-R. Muller, and W. Samek. “Analyzing Classifiers:
Fisher Vectors and Deep Neural Networks”. In: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. 2016, pp. 2912–2920.

75. A. Lavie and A. Agarwal. “METEOR: An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments”. In: Proc. Second Workshop Stat. Mach.
Transl. 2007, pp. 228–231.

76. J. Lee, M. Humt, J. Feng, and R. Triebel. “Estimating Model Uncertainty of Neural Networks
in Sparse Information Form”. In: Int. Conf. Mach. Learn. PMLR, 2020, pp. 5702–5713.

77. S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra. “Why M Heads Are Better
than One: Training a Diverse Ensemble of Deep Networks”. 2015. arXiv: 1511.06314.

78. M. Lewis. Decoding Language Models · Deep Learning. Apr. 20, 2020. URL: https://atcold.
github.io/pytorch-Deep-Learning/en/week12/12-2/ (visited on 07/30/2021).

79. J. Li, X. Chen, E. Hovy, and D. Jurafsky. “Visualizing and Understanding Neural Models in
Nlp”. 2015. arXiv: 1506.01066.

80. C.-Y. Lin. “Rouge: A Package for Automatic Evaluation of Summaries”. In: Text Summ.
Branches Out. 2004, pp. 74–81.

81. T. Lin, Y. Wang, X. Liu, and X. Qiu. “A Survey of Transformers”. 2021. arXiv:
2106.04554.

82. H. Liu, Q. Yin, and W. Y. Wang. “Towards Explainable NLP: A Generative Explanation
Framework for Text Classification”. June 11, 2019. arXiv: 1811.00196.

83. J. Z. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, and B. Lakshminarayanan. “Simple
and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance
Awareness”. Oct. 25, 2020. arXiv: 2006.10108.

84. S. M. Lundberg and S.-I. Lee. “A Unified Approach to Interpreting Model Predictions”. In:
Proc. 31st Int. Conf. Neural Inf. Process. Syst. 2017, pp. 4768–4777.

85. A. Malinin and M. Gales. “Reverse Kl-Divergence Training of Prior Networks: Improved
Uncertainty and Adversarial Robustness”. 2019. arXiv: 1905.13472.

86. P. H. Martins, Z. Marinho, and A. F. Martins. “Sparse Text Generation”. 2020. arXiv:
2004.02644.

87. B. McCann, J. Bradbury, C. Xiong, and R. Socher. “Learned in Translation: Contextualized
Word Vectors”. In: Adv. Neural Inf. Process. Syst. 2017, pp. 6294–6305.

88. P. McClure and N. Kriegeskorte. “Robustly Representing Uncertainty through Sampling in
Deep Neural Networks”. 2016. arXiv: 1611.01639.

89. L. McInnes, J. Healy, and J. Melville. “Umap: Uniform Manifold Approximation and
Projection for Dimension Reduction”. 2018. arXiv: 1802.03426.

90. C. Meister, T. Vieira, and R. Cotterell. “If Beam Search Is the Answer, What Was the
Question?” Jan. 17, 2021. arXiv: 2010.02650 [cs].

91. P. Mertikopoulos, N. Hallak, A. Kavis, and V. Cevher. “On the Almost Sure Conver-
gence of Stochastic Gradient Descent in Non-Convex Problems”. June 19, 2020. arXiv:
2006.11144.

92. D. Metzler, Y. Tay, D. Bahri, and M. Najork. “Rethinking Search: Making Experts out of
Dilettantes”. May 5, 2021. arXiv: 2105.02274 [cs].

93. T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word Representations
in Vector Space”. 2013. arXiv: 1301.3781.

https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week12/12-2/

References 75

94. G. A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM 38.11 (1995),
pp. 39–41.

95. C. Molnar. Interpretable Machine Learning. Jan. 21, 2022. URL: https://christophm.github.io/
interpretable-ml-book/ (visited on 01/26/2022).

96. R. Moradi, R. Berangi, and B. Minaei. “A Survey of Regularization Strategies for Deep
Models”. In: Artif. Intell. Rev. 53.6 (2020), pp. 3947–3986.

97. S. Morgan. Tensorflow/Addons. tensorflow, Dec. 1, 2020. URL: https://github.com/tensorflow/
addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/
lamb.py (visited on 11/08/2021).

98. Z. Nado. Baselines for Uncertainty and Robustness in Deep Learning. Google AI Blog. Oct.
14, 2021. URL: http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html (visited
on 10/25/2021).

99. Z. Nado et al. “Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
Learning”. June 7, 2021. arXiv: 2106.04015.

100. R. Nakano et al. “WebGPT: Browser-assisted Question-Answering with Human Feedback”.
2021. arXiv: 2112.09332.

101. S. Narang et al. “Do Transformer Modifications Transfer Across Implementations and
Applications?” Sept. 10, 2021. arXiv: 2102.11972 [cs].

102. R. M. Neal. Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo
Method. Technical Report CRG-TR-92-1, Dept. of Computer Science, University of Toronto.
Citeseer, 1992.

103. C. Nemeth and P. Fearnhead. “Stochastic Gradient Markov Chain Monte Carlo”. In: J. Am.
Stat. Assoc. 116.533 (2021), pp. 433–450.

104. Z. Niu, G. Zhong, and H. Yu. “A Review on the Attention Mechanism of Deep Learning”. In:
Neurocomputing 452 (2021), pp. 48–62.

105. K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, and M. E. Khan.
“Practical Deep Learning with Bayesian Principles”. 2019. arXiv: 1906.02506.

106. Y. Ovadia et al. “Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty
under Dataset Shift”. 2019. arXiv: 1906.02530.

107. G. Paass. “Assessing and Improving Neural Network Predictions by the Bootstrap Algo-
rithm”. In: Adv. Neural Inf. Process. Syst. Citeseer, 1993, pp. 196–203.

108. G. Paass and J. Kindermann. “Bayesian Classification Trees with Overlapping Leaves
Applied to Credit-Scoring”. In: Res. Dev. Knowl. Discov. Data Min. Ed. by X. Wu, R.
Kotagiri, and K. B. Korb. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1998, pp. 234–245. ISBN: 978-3-540-69768-8. https://doi.org/10.1007/3-540-64383-4_20.

109. Paperswithcode. Browse State-of-the-Art in AI. 2019. URL: https://paperswithcode.com/sota.
110. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “Bleu: A Method for Automatic Evaluation

of Machine Translation”. In: Proc. 40th Annu. Meet. Assoc. Comput. Linguist. 2002, pp. 311–
318.

111. K. Pearson. “On Lines and Planes of Closest Fit to Systems of Points in Space”. In: Lond.
Edinb. Dublin Philos. Mag. J. Sci. 2.11 (1901), pp. 559–572.

112. J. Pérez, J. Marinkoviæ, and P. Barceló. “On the Turing Completeness of Modern Neural
Network Architectures”. 2019. arXiv: 1901.03429.

113. C. Pierse. Transformers Interpret. Version 0.5.2. Feb. 2021. URL: https://github.com/cdpierse/
transformers-interpret (visited on 11/23/2021).

114. Pytorch. PyTorch. 2019. URL: https://pytorch.org/.
115. M. Qudar and V. Mago. A Survey on Language Models. Sept. 7, 2020. URL: https://www.

researchgate.net/publication/344158120ASurveyonLanguage_Models/.
116. A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. “Improving Language Understand-

ing by Generative Pre-Training”. In: (2018).
117. A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and I. Sutskever. “Better

Language Models and Their Implications”. In: OpenAI Blog (2019). URL: https://openai.
%20com/blog/better-language-models.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/0c0fd8dfb4427df6b824c88f700ba5c7efd43bec/tensorflowaddons/optimizers/lamb.py
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
http://ai.googleblog.com/2021/10/baselines-for-uncertainty-and.html
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://paperswithcode.com/sota
https://paperswithcode.com/sota
https://paperswithcode.com/sota
https://paperswithcode.com/sota
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://www.researchgate.net/publication/344158120ASurveyonLanguage_Models/
https://openai.%20com/blog/better-language-models
https://openai.%20com/blog/better-language-models
https://openai.%20com/blog/better-language-models
https://openai.%20com/blog/better-language-models
https://openai.%20com/blog/better-language-models
https://openai.%20com/blog/better-language-models
https://openai.%20com/blog/better-language-models

76 2 Pre-trained Language Models

118. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language Models Are
Unsupervised Multitask Learners”. In: OpenAI blog 1.8 (2019), p. 9.

119. S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. “ZeRO: Memory Optimizations Toward
Training Trillion Parameter Models”. May 13, 2020. arXiv: 1910.02054v3.

120. P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. “Squad: 100,000+ Questions for Machine
Comprehension of Text”. 2016. arXiv: 1606.05250.

121. A. Ramesh, M. Pavlov, G. Goh, and S. Gray. {DALL·E}: Creating Images from Text. Jan. 5,
2021. URL: https://openai.com/blog/dall-e/.

122. J. Rasley. DeepSpeed. Microsoft, Dec. 20, 2021. URL: https://github.com/microsoft/
DeepSpeed (visited on 12/20/2021).

123. M. T. Ribeiro, S. Singh, and C. Guestrin. “Model-Agnostic Interpretability of Machine
Learning”. 2016. arXiv: 1606.05386.

124. A. Rogers, O. Kovaleva, and A. Rumshisky. “A Primer in {Bertology}: What We Know about
How {BERT} Works”. In: Trans. Assoc. Comput. Linguist. 8 (2021), pp. 842–866.

125. S. Rönnqvist, J. Kanerva, T. Salakoski, and F. Ginter. “Is Multilingual BERT Fluent in
Language Generation?” 2019. arXiv: 1910.03806.

126. A. Rush. “The Annotated Transformer”. In: Proc. Workshop NLP Open Source Softw. NLP-
OSS Melbourne, Australia: Association for Computational Linguistics, July 2018, pp. 52–60.
https://doi.org/10.18653/v1/W18-2509.

127. A. B. Sai, A. K. Mohankumar, and M. M. Khapra. “A Survey of Evaluation Metrics Used for
NLG Systems”. 2020. arXiv: 2008.12009.

128. E. F. Sang and F. De Meulder. “Introduction to the CoNLL-2003 Shared Task: Languagein-
dependent Named Entity Recognition”. 2003. arXiv: cs/0306050.

129. S. Serrano and N. A. Smith. “Is Attention Interpretable?” 2019. arXiv: 1906.03731.
130. D. So, Q. Le, and C. Liang. “The Evolved Transformer”. In: Int. Conf. Mach. Learn. PMLR,

2019, pp. 5877–5886.
131. L. Spinney. “Are We Witnessing the Dawn of Post-Theory Science?” In: The Guardian.

Technology (Jan. 9, 2022). ISSN: 0261-3077. URL: https://www.theguardian.com/technology/
2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science (visited on 01/11/2022).

132. M. Sundararajan, A. Taly, and Q. Yan. “Axiomatic Attribution for Deep Networks”. In: Int.
Conf. Mach. Learn. PMLR, 2017, pp. 3319–3328.

133. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the Inception
Architecture for Computer Vision”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
2016, pp. 2818–2826.

134. Y. Tay, D. Bahri, D. Metzler, D.-C. Juan, Z. Zhao, and C. Zheng. “Synthesizer: Rethinking
Self-Attention in Transformer Models”. May 24, 2021. arXiv: 2005.00743 [cs].

135. A. Taylor, M. Marcus, and B. Santorini. “The Penn Treebank: An Overview”. In: Treebanks
(2003), pp. 5–22.

136. Tensorflow. Integrated Gradients | TensorFlow Core. TensorFlow. Nov. 25, 2021.
URL: https://www.tensorflow.org/tutorials/interpretability/integratedgradients (visited on
12/06/2021).

137. Tensorflow. Tensorflow Webseite. 2019. URL: https://www.tensorflow.org/.
138. tensorflow. Uncertainty-Aware Deep Learning with SNGP | TensorFlow Core. Tensor-Flow.

2021. URL: https://www.tensorflow.org/tutorials/understanding/sngp (visited on 07/25/2021).
139. E. Tjoa and C. Guan. “A Survey on Explainable Artificial Intelligence (Xai): Toward Medical

Xai”. In: IEEE Trans. Neural Netw. Learn. Syst. (2020).
140. L. van der Maaten and G. Hinton. “Visualizing Data Using T-SNE”. In: J. Mach. Learn. Res.

9 (Nov 2008), pp. 2579–2605.
141. A. Vaswani et al. “Attention Is All You Need”. In: Adv. Neural Inf. Process. Syst. 2017, pp.

5998–6008.
142. J. Vig. “A Multiscale Visualization of Attention in the Transformer Model”. 2019. arXiv:

1906.05714.
143. J. Vig. BertViz. Nov. 23, 2021. URL: https://github.com/jessevig/bertviz (visited on

11/23/2021).

https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/W18-2509
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/tutorials/interpretability/integratedgradients
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/understanding/sngp
https://www.tensorflow.org/tutorials/understanding/sngp
https://www.tensorflow.org/tutorials/understanding/sngp
https://www.tensorflow.org/tutorials/understanding/sngp
https://www.tensorflow.org/tutorials/understanding/sngp
https://www.tensorflow.org/tutorials/understanding/sngp
https://www.tensorflow.org/tutorials/understanding/sngp
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz

References 77

144. J. Vig. BERTVIZ: A Tool for Visualizing Multihead Self-Attention in the BERT Model. 2019.
URL: https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf.

145. Wang. SuperGLUE Benchmark. SuperGLUE Benchmark. 2021. URL: https://super.
gluebenchmark.com/ (visited on 02/23/2021).

146. A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. “Glue: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding”. Feb. 22, 2019.
arXiv: 1804.07461.

147. D. Wang, C. Gong, M. Li, Q. Liu, and V. Chandra. “AlphaNet: Improved Training of Supernet
with Alpha-Divergence”. 2021. arXiv: 2102.07954.

148. D. Wang, M. Li, C. Gong, and V. Chandra. “Attentivenas: Improving Neural Architecture
Search via Attentive Sampling”. In: Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit.
2021, pp. 6418–6427.

149. H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. “Hat: Hardware-aware
Transformers for Efficient Natural Language Processing”. 2020. arXiv: 2005.14187.

150. M. Welling and Y. W. Teh. “Bayesian Learning via Stochastic Gradient Langevin Dynamics”.
In: Proc. 28th Int. Conf. Mach. Learn. ICML-11. 2011, pp. 681–688.

151. L. Weng. Attention? Attention! Lil’Log. June 24, 2018. URL: https://lilianweng.github.io/
2018/06/24/attention-attention.html (visited on 11/19/2021).

152. F. Wenzel et al. “How Good Is the Bayes Posterior in Deep Neural Networks Really?” 2020.
arXiv: 2002.02405.

153. G. Wiedemann, S. Remus, A. Chawla, and C. Biemann. “Does BERT Make Any Sense?
Interpretable Word Sense Disambiguation with Contextualized Embeddings”. 2019. arXiv:
1909.10430.

154. Y. Wu et al. “Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation”. 2016. arXiv: 1609.08144.

155. F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu. “Explainable AI: A Brief Survey on
History, Research Areas, Approaches and Challenges”. In: CCF Int. Conf. Nat. Lang. Process.
Chin. Comput. Springer, 2019, pp. 563–574.

156. Y. Xu et al. “GSPMD: General and Scalable Parallelization for ML Computation Graphs”.
Dec. 23, 2021. arXiv: 2105.04663 [cs].

157. Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. “Breaking the Softmax Bottleneck: A
High-Rank RNN Language Model”. 2017. arXiv: 1711.03953.

158. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xlnet: Generalized
Autoregressive Pretraining for Language Understanding”. In: Adv. Neural Inf. Process. Syst.
2019, pp. 5753–5763.

159. Y. You et al. “Large Batch Optimization for Deep Learning: Training Bert in 76 Minutes”.
2019. arXiv: 1904.00962.

160. C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. “Are Transformers Universal
Approximators of Sequence-to-Sequence Functions?” 2019. arXiv: 1912.10077.

161. C. Yun, Y.-W. Chang, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. “O(n)
Connections Are Expressive Enough: Universal Approximability of Sparse Transformers”.
2020. arXiv: 2006.04862.

162. B. Zhang and R. Sennrich. “Root Mean Square Layer Normalization”. 2019. arXiv:
1910.07467.

163. C. Zhang et al. “Resnet or Densenet? Introducing Dense Shortcuts to Resnet”. In: Proc.
IEEECVF Winter Conf. Appl. Comput. Vis. 2021, pp. 3550–3559.

164. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. “BERTScore: Evaluating Text
Generation with BERT”. Feb. 24, 2020. arXiv: 1904.09675.

165. W. Zhu, X. Wang, X. Qiu, Y. Ni, and G. Xie. “AutoRC: Improving BERT Based Relation
Classification Models via Architecture Search”. 2020. arXiv: 2009.10680.

166. M.-A. Zöller and M. F. Huber. “Benchmark and Survey of Automated Machine Learning
Frameworks”. In: J. Artif. Intell. Res. 70 (2021), pp. 409–472.

https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19paper2.pdf
https://super.gluebenchmark.com/
https://super.gluebenchmark.com/
https://super.gluebenchmark.com/
https://super.gluebenchmark.com/
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html
https://lilianweng.github.io/2018/06/24/attention-attention.html

78 2 Pre-trained Language Models

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	2 Pre-trained Language Models
	2.1 BERT: Self-Attention and Contextual Embeddings
	2.1.1 BERT Input Embeddings and Self-Attention
	Self-Attention to Generate Contextual Embeddings

	2.1.2 Training BERT by Predicting Masked Tokens
	2.1.3 Fine-Tuning BERT to Downstream Tasks
	2.1.4 Visualizing Attentions and Embeddings
	2.1.5 Natural Language Understanding by BERT
	BERT's Performance on Other Fine-Tuning Tasks

	2.1.6 Computational Complexity
	2.1.7 Summary

	2.2 GPT: Autoregressive Language Models
	2.2.1 The Task of Autoregressive Language Models
	2.2.2 Training GPT by Predicting the Next Token
	Visualizing GPT Embeddings

	2.2.3 Generating a Sequence of Words
	2.2.4 The Advanced Language Model GPT-2
	2.2.5 Fine-Tuning GPT
	2.2.6 Summary

	2.3 Transformer: Sequence-to-Sequence Translation
	2.3.1 The Transformer Architecture
	Cross-Attention

	2.3.2 Decoding a Translation to Generate the Words
	2.3.3 Evaluation of a Translation
	2.3.4 Pre-trained Language Models and Foundation Models
	Available Implementations

	2.3.5 Summary

	2.4 Training and Assessment of Pre-trained Language Models
	2.4.1 Optimization of PLMs
	Basics of PLM Optimization
	Variants of Stochastic Gradient Descent
	Parallel Training for Large Models

	2.4.2 Regularization of Pre-trained Language Models
	2.4.3 Neural Architecture Search
	2.4.4 The Uncertainty of Model Predictions
	Bayesian Neural Networks
	Estimating Uncertainty by a Single Deterministic Model
	Representing the Predictive Distribution by Ensembles

	2.4.5 Explaining Model Predictions
	Linear Local Approximations
	Nonlinear Local Approximations
	Explanation by Retrieval
	Explanation by Generating a Chain of Thought

	2.4.6 Summary

	References

