
Chapter 1 
Introduction 

Abstract With the development of efficient Deep Learning models about a decade 
ago, many Deep Neural Networks have been used to solve pattern recognition tasks 
such as natural language processing and image recognition. An advantage of these 
models is that they automatically create features arranged in layers which represent 
the content and do not require manually constructed features. These models rely on 
Machine Learning employing statistical techniques to give machines the capability 
to ‘learn’ from data without being given explicit instructions on what to do. Deep 
Learning models transform the input in layers step by step in such a way that 
complex patterns in the data can be recognized. This chapter first describes how 
a text is pre-processed and partitioned into tokens, which form the basis for natural 
language processing. Then we outline a number of classical Machine Learning 
models, which are often used as modules in advanced models. Examples include 
the logistic classifier model, fully connected layers, recurrent neural networks and 
convolutional neural networks. 

Keywords Natural language processing · Text preprocessing · Vector space 
model · Static embeddings · Recurrent networks · Convolutional networks 

1.1 Scope of the Book 

With the development of efficient Deep Learning models about a decade ago, 
many Deep Neural Networks have been used to solve pattern recognition tasks 
such as natural language processing (NLP) and image processing. Typically, the 
models have to capture the meaning of a text or an image and make an appropriate 
decision. Alternatively they can generate a new text or image according to the task 
at hand. An advantage of these models is that they create intermediate features 
arranged in layers and do not require manually constructed features. Deep Neural 
Networks such as Convolutional Neural Networks (CNNs) [32] and Recurrent 
Neural Networks (RNNs) [65] use low-dimensional dense vectors as a kind of 
distributed representation to express the syntactic and semantic features of language. 
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2 1 Introduction

All these models can be considered as Artificial Intelligence (AI) Systems. AI 
is a broad research field aimed at creating intelligent machines, acting similar 
to humans and animals having natural intelligence. It captures the field’s long-
term goal of building machines that mimic and then surpass the full spectrum of 
human cognition. Machine Learning (ML) is a subfield of artificial intelligence 
that employs statistical techniques to give machines the capability to ‘learn’ from 
data without being given explicit instructions on what to do. This process is also 
called ‘training’, whereby a ‘learning algorithm’ gradually improves the model’s 
performance on a given task. Deep Learning is an area of ML in which an input 
is transformed in layers step by step in such a way that complex patterns in the 
data can be recognized. The adjective ‘deep’ refers to the large number of layers in 
modern ML models that help to learn expressive representations of data to achieve 
better performance. 

In contrast to computer vision, the size of annotated training data for NLP 
applications was rather small, comprising only a few thousand sentences (except 
for machine translation). The main reason for this was the high cost of manual 
annotation. To avoid overfitting, i.e. overadapting models to random fluctuations, 
only relatively small models could be trained, which did not yield high performance. 
In the last 5 years, new NLP methods have been developed based on the Transformer 
introduced by Vaswani et al. [67]. They represent the meaning of each word by a 
vector of real numbers called embedding. Between these embeddings various kinds 
of “attentions” can be computed, which can be considered as a sort of “correlation” 
between different words. In higher layers of the network, attention computations are 
used to generate new embeddings that can capture subtle nuances in the meaning 
of words. In particular, they can grasp different meanings of the same word that 
arise from context. A key advantage of these models is that they can be trained 
with unannotated text, which is almost infinitely available, and overfitting is not a 
problem. 

Currently, there is a rapid development of new methods in the research field, 
which makes many approaches from earlier years obsolete. These models are 
usually trained in two steps: In a first pre-training step, they are trained on a large 
text corpus containing billions of words without any annotations. A typical pre-
training task is to predict single words in the text that have been masked in the 
input. In this way, the model learns fine subtleties of natural language syntax and 
semantics. Because enough data is available, the models can be extended to many 
layers with millions or billions of parameters. 

In a second fine-tuning step, the model is trained on a small annotated training 
set. In this way, the model can be adapted to new specific tasks. Since the fine-
tuning data is very small compared to the pre-training data and the model has a 
high capacity with many millions of parameters, it can be adapted to the fine-
tuning task without losing the stored information about the language structure. 
It was demonstrated that this idea can be applied to most NLP tasks, leading to 
unprecedented performance gains in semantic understanding. This transfer learning 
allows knowledge from the pre-training phase to be transferred to the fine-tuned 
model. These models are referred to as Pre-trained Language Models (PLM).



1.1 Scope of the Book 3

In the last years the number of parameters of these PLMs was systematically 
enlarged together with more training data. It turned out that in contrast to con-
ventional wisdom the performance of these models got better and better without 
suffering from overfitting. Models with billions of parameters are able to generate 
syntactically correct and semantically consistent fluent text if prompted with some 
starting text. They can answer questions and react meaningful to different types of 
prompts. 

Moreover, the same PLM architecture can simultaneously be pre-trained with 
different types of sequences, e.g. tokens in a text, image patches in a picture, sound 
snippet of speech, image patch sequences in video frames, DNA snippets, etc. They 
are able to process these media types simultaneously and establish connections 
between the different modalities. They can be adapted via natural language prompts 
to perform acceptably on a wide variety of tasks, even though they have not 
been explicitly trained on these tasks. Because of this flexibility, these models are 
promising candidates to develop overarching applications. Therefore, large PLMs 
with billions of parameters are often called Foundation Models [9]. 

This book is intended to provide an up-to-date overview of the current Pre-trained 
Language Models and Foundation Models, with a focus on applications in NLP: 

• We describe the necessary background knowledge, model architectures, pre-
training and fine-tuning tasks, as well as evaluation metrics. 

• We discuss the most relevant models for each NLP application group that 
currently have the best accuracy or performance, i.e. are close to the state of 
the art (SOTA). Our purpose here is not to describe a spectrum of all models 
developed in recent years, but to explain some representative models so that their 
internal workings can be understood. 

• Recently PLMs have been applied to a number of speech, image and video 
processing tasks giving rise to the term Foundation Models. We give an overview 
of most relevant models, which often allow the joint processing of different 
media, e.g. text and images 

• We provide links to available model codes and pre-trained model parameters. 
• We discuss strengths and limitations of the models and give an outlook on 

possible future developments. 

There are a number of previous surveys of Deep Learning and NLP [1–4, 10, 15, 16, 
27, 39, 50, 53, 54, 59, 66]. The surveys of Han et al. [22], Lin et al. [41], and Kalyan 
et al. [31] are the most up-to-date and comprehensive. Jurafsky and Martin [30] 
prepare an up-to-date book on this field. In addition, there are numerous surveys 
for specific model variants or application areas. Where appropriate, we provide 
references to these surveys. New terminology is usually printed in italics and models 
in bold. 

The rest of this chapter introduces text preprocessing and classical NLP models, 
which in part are reused inside PLMs. The second chapter describes the main 
architectures of Pre-trained Language Models, which are currently the workhorses 
of NLP. The third chapter considers a large number of PLM variants that extend 
the capabilities of the basic models. The fourth chapter describes the information
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captured by PLMs and Foundation Models and analyses their syntactic skills, world 
knowledge, and reasoning capabilities. 

The remainder of the book considers various application domains and identifies 
PLMs and Foundation Models that currently provide the best results in each 
domain at a reasonable cost. The fifth chapter reviews information extraction 
methods that automatically identify structured information and language features 
in text documents, e.g. for relation extraction. The sixth chapter deals with natural 
language generation approaches that automatically generate new text in natural 
language, usually in response to a prompt. The seventh chapter is devoted to models 
for analyzing and creating multimodal content that typically integrate content 
understanding and production across two or more modalities, such as text, speech, 
image, video, etc. The general trend is that more data, computational power, and 
larger parameter sets lead to better performance. This is explained in the last 
summary chapter, which also considers social and ethical aspects of Foundation 
Models and summarizes possible further developments. 

1.2 Preprocessing of Text 

The first step in preprocessing is to extract the actual text. For each type of text 
document, e.g. pdf, html, xml, docx, ePUB, there are specific parsers, which resolve 
the text into characters, words, and formatting information. Usually, the layout and 
formatting information is removed. 

Then, the extracted text is routinely divided into tokens, i.e. words, numbers, and 
punctuation marks. This process is not trivial, as text usually contains special units 
like phone numbers or email addresses that must be handled in a special way. Some 
text mining tasks require the splitting of text into sentences. Tokenizers and sentence 
splitters for different languages have been developed in the past decades and can be 
included from many programming toolboxes, e.g. Spacy [64]. 

In the past, many preprocessing methods aimed at generating new relevant 
features (part-of-speech tags, syntax parse trees) and removing unnecessary tokens 
(stemming, stop word removal, lemmatization). In most cases, this is no longer 
necessary with modern approaches that internally automatically derive the features 
relevant for the task at hand. 

In an optional final step, the word-tokens can be further subdivided and rear-
ranged. A simple technique creates character n-grams (i.e. all sequences of n 
adjacent characters in a word) as additional features. Alternatively, word n-grams 
can be formed consisting of n consecutive words. 

Currently, the most popular approach tries to limit the number of different words 
in a vocabulary. A common choice is byte-pair encoding [19]. This method first 
selects all characters as tokens. Then, successively the most frequent token pair is 
merged into a new token and all instances of the token pair are replaced by the 
new token. This is repeated until a vocabulary of prescribed size is obtained. Note 
that new words can always be represented by a sequence of vocabulary tokens and



1.3 Vector Space Models and Document Classification 5

characters. Common words end up being a part of the vocabulary, while rarer words 
are split into components, which often retain some linguistic meaning. In this way, 
out-of-vocabulary words are avoided. 

The WordPiece [69] algorithm also starts by selecting all characters of the 
collection as tokens. Then it assumes that the text corpus has been generated by 
randomly sampling tokens according to their observed frequencies. It merges tokens 
a and b (inside words) in such a way that the likelihood of the training data is 
maximally increased [60]. There is a fast variant whose computational complexity 
is linear in the input length [63]. SentencePiece [35] is a package containing 
several subword tokenizers and can also be applied to all Asian languages. All the 
approaches effectively interpolate between word level inputs for frequent words and 
character level inputs for infrequent words. 

Often the language of the input text has to be determined [29, 57]. Most language 
identification methods extract character n-grams from the input text and evaluate 
their relative frequencies. Some methods can be applied to texts containing different 
languages at the same time [42, 71]. To filter out offensive words from a text, one 
can use lists of such toxic words in different languages [62]. 

1.3 Vector Space Models and Document Classification 

To apply Machine Learning to documents, their text has to be transformed into 
scalars, vectors, matrices, or higher-dimensional arrangements of numbers, which 
are collectively called tensors. In the previous section, text documents in a corpus 
were converted into a sequence of tokens by preprocessing. These tokens now have 
to be translated into tensors. 

The bag-of-words representation describes a given text document d by a vector 
. x of token counts. The vocabulary is a list of all different tokens contained in the 
collection of training documents, the training corpus. Ignoring the order of tokens, 
this bag-of-words vector records how often each token of the vocabulary appears in 
document d. Note that most vector entries will be zero, as each document will only 
contain a small fraction of vocabulary tokens. The vector of counts may be modified 
to emphasize tokens with high information content, e.g. by using the tf-idf statistic 
[43]. Table 1.1 summarizes different representations for documents used for NLP. 

Document classification methods aim to categorize text documents according to 
their content [33, 61]. An important example is the logistic classifier, which uses a 
bag-of-words vector . x as input and predicts the probability of each of the k possible 
output classes .y ∈ {1, . . . , k}. More precisely, there is a random variable Y which 
may take the values .1, . . . , k. To predict the output class y from the input . x, a score 
vector is first generated as 

.u = Ax + b (1.1)
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Table 1.1 Representations for documents used in NLP Models. 

Type Generated by ... Used by ... 

Bag-of-words Tokenization and counting Logistic classifier, SVM. 
Section 1.3. 

Simple embeddings Correlation and regression: 
topic models [7], Word2Vec 
[46], GloVe [51]. 

Classifiers, clustering, 
visualization, RNN, etc. 
Section 1.5 

Contextual embeddings Attention computation: ElMo 
[52], Transformer [67], GPT 
[55], BERT [17] and  many  
others. 

Fine-tuning with supervised 
training data. Section 2.1. 

using an affine transformation of the input . x. Here, the vector . x is transformed by 
a linear transformation . Ax and then a bias vector . b is added. The resulting score 
vector . u of length k is then transformed to a probability distribution over the k 
classes by the softmax function 

. softmax(u1, . . . , uk) = (exp(u1), . . . , exp(uk))

exp(u1) + · · · + exp(uk)
, . (1.2) 

p(Y =m|x; A, b) = softmax(Ax + b). (1.3) 

Since the softmax function converts any vector into a probability vector, we obtain 
the conditional probability of output class m as a function of input . x. The function 

.LRM(x) = softmax(Ax + b) (1.4) 

is called a logistic classifier model [48] with parameter vector .w = vec(A, b). In  
general, a function mapping the input . x to the output y or a probability distribution 
over the output is called a model .f (x;w). 

The model is trained using training data .T r = {(x[1], y[1]), . . . , (x[N ], y[N ])}, 
whose examples .(x[i], y[i]) have to be independent and identically distributed 
(i.i.d.). The task is to adjust the parameters . w such that the predicted probability 
.p(Y =m|x;w) is maximized. Following the Maximum Likelihood principle, this  
can be achieved by modifying the parameter vector . w such that the complete training 
data has a maximal probability [24, p. 31] 

.max
w

p(y[1]|x[1];w) ∗ · · · ∗ p(y[N ]|x[N ];w). (1.5) 

Transforming the expression by log and multiplying by .−1.0 gives the classification 
loss function .LMC(w), also called maximum entropy loss. 

.LMC(w) = −
[
logp(y[1]|x[1];w) + · · · + logp(y[N ]|x[N ];w)

]
. (1.6)
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To optimize the loss function, its gradient is computed and minimized by stochastic 
gradient descent or another optimizer (c.f. Sect. 2.4.1). 

The performance of classifiers is measured on separate test data by accuracy, 
precision, recall, F1-value, etc. [21, p. 410f]. Because the bag-of-words representa-
tion ignores important word order information, document classification by a logistic 
classifier is less commonly used today. However, this model is still a component in 
most Deep Learning architectures. 

1.4 Nonlinear Classifiers 

It turns out that the logistic classifier partitions the input space by linear hyperplanes 
that are not able to solve more complex classification tasks, e.g., the XOR problem 
[47]. An alternative is to generate an internal hidden vector . h by an additional affine 
transformation .A1x + b1 followed by a monotonically non-decreasing nonlinear 
activation function g and use this hidden vector as input for the logistic classifier to 
predict the random variable Y 

.h = g(A1x + b1), . (1.7) 

p(Y =m|x; w) = softmax(A2h + b2), (1.8) 

where the parameters of this model can be collected in a parameter vector . w =
vec(A1, b1, A2, b2). The form of the nonlinear activation function g is quite 
arbitrary, often .tanh(x) or a rectified linear unit .ReLU(x) = max(0, x) is used. 
.FCL(x) = g(A1x + b1) is called a fully connected layer. 

This model (Fig. 1.1) is able to solve any classification problem arbitrarily well, 
provided the length of . h is large enough [21, p. 192]. By prepending more fully 
connected layers to the network we get a Deep Neural Network, which needs 

Fig. 1.1 A neural network for classification transforms the input by layers with affine transforma-
tions and nonlinear activation functions, e.g. ReLU. The final layer usually is a logistic classifier
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fewer parameters than a shallow network to approximate more complex functions. 
Historically, it has been called Multilayer Perceptron (MLP). Liang et al. [40] show  
that for a large class of piecewise smooth functions, the sizes of hidden vectors 
needed by a shallow network to approximate a function is exponentially larger than 
the corresponding number of neurons needed by a deep network for a given degree 
of function approximation. 

The support vector machine [14] follows a different approach and tries to 
create a hyperplane, which is located between the training examples of the two 
classes in the input space. In addition, this hyperplane should have a large distance 
(margin) to the examples. This model reduces overfitting and usually has a high 
classification accuracy, even if the number of input variables is high, e.g. for 
document classification [28]. It was extended to different kernel loss criteria, 
e.g. graph kernels [56] which include grammatical features. Besides SVM, many 
alternative classifiers are used, such as random forests [24, p.588f] and gradient 
boosted trees [24, p.360], which are among the most popular classifiers. 

For these conventional classifiers the analyst usually has to construct input 
features manually. Modern classifiers for text analysis are able to create relevant 
features automatically (Sect. 2.1). For the training of NLP models there exist three 
main paradigms: 

• Supervised training is based on training data consisting of pairs .(x, y) of an 
input . x, e.g. a document text, and an output . y, where . y usually is a manual 
annotation, e.g. a sentiment. By optimization the unknown parameters of the 
model are adapted to predict the output from the input in an optimal way. 

• Unsupervised training just considers some data . x and derives some intrinsic 
knowledge from unlabeled data, such as clusters, densities, or latent represen-
tations. 

• Self-supervised training selects parts of the observed data vector as input . x and 
output . y. The key idea is to predict . y from . x in a supervised manner. For 
example, the language model is a self-supervised task that attempts to predict 
the next token .vt+1 from the previous tokens .v1, . . . , vt . For NLP models, this 
type of training is used very often. 

1.5 Generating Static Word Embeddings 

One problem with bag-of word representations is that frequency vectors of 
tokens are unable to capture relationships between words, such as synonymy 
and homonymy, and give no indication of their semantic similarity. An alternative 
are more expressive representations of words and documents based on the idea of 
distributional semantics [58], popularized by Zellig Harris [23] and John Firth [18]. 
According to Firth “a word is characterized by the company it keeps”. This states 
that words occurring in the same neighborhood tend to have similar meanings.
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Fig. 1.2 Word2vec predicts the words in the neighborhood of a central word by logistic classifier 
L. The input to L is the embedding of the central word. By training with a large set of documents, 
the parameters of L as well as the embeddings are learned [54, p. 2]  

Based on this idea each word can be characterized by a .demb-dimensional vector 
.emb(word) ∈ Rdemb , a  word embedding. Usually, a value between 100 and 1000 
is chosen for .demb. These embeddings have to be created such that words that 
occur in similar contexts have embeddings with a small vector distance, such 
as the Euclidean distance. A document then can be represented by a sequence 
of such embeddings. It turns out that words usually have a similar meaning, 
if their embeddings have a low distance. Embeddings can be used as input for 
downstream text mining tasks, e.g. sentiment analysis. Goldberg [20] gives an 
excellent introduction to static word embeddings. The embeddings are called static 
embeddings as each word has a single embedding independent of the context. 

There are a number of different approaches to generate word embeddings in an 
unsupervised way. Collobert et al. [13] show that word embeddings obtained by 
predicting neighbor words can be used to improve the performance of downstream 
tasks such as named entity recognition and semantic role labeling. 

Word2vec [45] predicts the words in the neighborhood of a central word with 
an extremely simple model. As shown in Fig. 1.2 it uses the embedding vector of 
the central word as input for a logistic classifier (1.3) to infer the probabilities of 
words in the neighborhood of about five to seven positions. The training target 
is to forecast all neighboring words in the training set with a high probability. 
For training, Word2Vec repeats this prediction for all words of a corpus, and the 
parameters of the logistic classifier as well as the values of the embeddings are 
optimized by stochastic gradient descent to improve the prediction of neighboring 
words. 

The vocabulary of a text collection contains k different words, e.g. .k = 100,000. 
To predict the probability of the i-th word by softmax  (1.2), k exponential terms 
.exp(ui) have to be computed. To avoid this effort, the fraction is approximated as 

.
exp(ui)

exp(u1) + · · · + exp(uk)
≈ exp(ui)

exp(ui) + ∑
j∈S exp(uj )

, (1.9)



10 1 Introduction

where S is a small sample of, say, 10 randomly selected indices of words. This 
technique is called noise contrastive estimation [21, p. 612]. There are several 
variants available, which are used for almost all classification tasks involving 
softmax computations with many classes. Since stochastic gradient descent works 
with noisy gradients, the additional noise introduced by the approximation of the 
softmax function is not harmful and can even help the model escape local minima. 
The shallow architecture of Word2Vec proved to be far more efficient than previous 
architectures for representation learning. 

Word2Vec embeddings have been used for many downstream tasks, e.g. docu-
ment classification. In addition, words with a similar meaning may be detected by 
simply searching for words whose embeddings have a small Euclidean distance to 
the embedding of a target word. The closest neighbors of “neutron”, for example, are 
“neutrons”, “protons”, “deuterium”, “positron”, and “decay”. In this way, synonyms 
can be revealed. Projections of embeddings on two dimensions may be used for the 
exploratory analysis of the content of a corpus. GloVe generates similar embedding 
vectors using aggregated global word-word co-occurrence statistics from a corpus 
[51]. 

It turns out that differences between the embeddings often have an interpre-
tation. For example, the result of . emb(Germany) − emb(Berlin) + emb(Paris)
has .emb(France) as its nearest neighbor with respect to Euclidean distance. This 
property is called analogy and holds for a majority of examples of many relations 
such as capital-country, currency-country, etc. [45]. 

FastText [8] representations enrich static word embeddings by using subword 
information. Character n-grams of a given length range, e.g., 3–6, are extracted 
from each word. Then, embedding vectors are defined for the words as well 
as their character n-grams. To train the embeddings all word and character n-
gram embeddings in the neighborhood of a central word are averaged, and the 
probabilities of the central word and its character n-grams are predicted by a 
logistic classifier. To improve the probability prediction, the parameters of the model 
are optimized by stochastic gradient descent. This is repeated for all words in a 
training corpus. After training, unseen words can be reconstructed using only their 
n-gram embeddings. Starspace [68] was introduced as a generalization of FastText. 
It allows embedding arbitrary entities (such as authors, products) by analyzing 
texts related to them and evaluating graph structures. An alternative are spherical 
embeddings, where unsupervised word and paragraph embeddings are constrained 
to a hypersphere [44]. 

1.6 Recurrent Neural Networks 

Recurrent Neural Networks were developed to model sequences .v1, . . . , vT of 
varying length T , for example the tokens of a text document. Consider the task to 
predict the next token .vt+1 given the previous tokens .(v1, . . . , vt ). As proposed by 
Bengio et al. [6] each token . vt is represented by an embedding vector .xt = emb(vt )
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Fig. 1.3 The RNN starts on the left side and successively predicts the probability of the next 
token with the previous tokens as conditions using a logistic classifier L. The hidden vector . ht

stores information about the tokens that occur before position t 

indicating the meaning of . vt . The previous tokens are characterized by a hidden 
vector . ht , which describes the state of the subsequence .(v1, . . . , vt−1). The  RNN is  
a function .RNN(ht , xt ) predicting the next hidden vector .ht+1 by 

.ht+1 = RNN(ht , xt ). (1.10) 

Subsequently, a logistic classifier (1.3) with parameters H and . g predicts a 
probability vector for the next token .vt+1 using the information contained in .ht+1, 

.p(Vt+1|v1, . . . , vt ) = softmax(H ∗ ht+1 + g), (1.11) 

as shown in Fig. 1.3. Here . Vt is the random variable of possible tokens at position t . 
According to the definition of the conditional probability the joint probability of the 
whole sequence can be factorized as 

. p(v1, . . . , vT ) = p(VT =vT |v1, . . . , vT −1) ∗ · · · ∗ p(V2=v2|v1) ∗ p(V1=v1).

(1.12) 

A model that either computes the joint probability or the conditional probability 
of natural language texts is called language model as it potentially covers all 
information about the language. A language model sequentially predicting the next 
word by the conditional probability is often referred to autoregressive language 
model. According to (1.12), the observed tokens .(v1, . . . , vt ) can be used as input 
to predict the probability of the next token .Vt+1. The product of these probabilities 
yields the correct joint probability of the observed token sequence .(v1, . . . , vT ). The  
same model .RNN(h, x) is repeatedly applied and generates a sequence of hidden 
vectors . ht . A  simple RNN just consists of a single fully connected layer 

.RNN(ht , xt ) = tanh

(
A ∗

[
ht

xt

]
+ b

)
. (1.13)
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The probabilities of the predicted words .v1, . . . , vT depend on the parameters 
.w = vec(H,g, A, b, emb(v1), . . . , emb(vT )). To improve these probabilities, we 
may use the stochastic gradient descent optimizer (Sect. 2.4.1) and adapt the 
unknown parameters in . w. Note that this also includes the estimation of new token 
embeddings .emb(vt ). A recent overview is given in [70, Ch. 8–9]. 

It turns out that this model has difficulties to reconstruct the relation between 
distant sequence elements, since gradients tend to vanish or “explode” as the 
sequences get longer. Therefore, new RNN types have been developed, e.g. the Long 
Short-Term Memory (LSTM) [26] and the Gated Recurrent Unit (GRU) [11], which 
capture long-range dependencies in the sequence much better. 

Besides predicting the next word in a sequence, RNNs have been successfully 
applied to predict properties of sequence elements, e.g. named entity recognition 
[36] and relation extraction [38]. For these applications bidirectional RNNs have 
been developed, consisting of a forward and a backward language model. The 
forward language model starts at the beginning of a text and predicts the next 
token, while the backward language model starts at the end of a text and predicts 
the previous token. Bidirectional LSTMs are also called biLSTMs. In addition, 
multilayer RNNs were proposed [72], where the hidden vector generated by the 
RNN-cell in one layer is used as the input to the RNN-cell in the next layer, and the 
last layer provides the prediction of the current task. 

Machine translation from one language to another is an important application of 
RNNs [5]. In this process, an input sentence first is encoded by an encoder RNN as 
a hidden vector . hT . This hidden vector is in turn used by a second decoder RNN 
as an initial hidden vector to generate the words of the target language sentence. 
However, RNNs still have difficulties to capture relationships over long distances 
between sequence elements because RNNs do not cover direct relations between 
distant sequence elements. 

Attention was first used in the context of machine translation to communicate 
information over long distances. It computes the correlation between hidden vectors 
of the decoder RNN and hidden vectors of the encoder RNN at different positions. 
This correlation is used to build a context vector as a weighted average of relevant 
encoder hidden vectors. Then, this context vector is exploited to improve the final 
translation result [5]. The resulting translations were much better than those with the 
original RNN. We will see in later sections that attention is a fundamental principle 
to construct better NLP model. 

ELMo [52] generates embeddings with bidirectional LSTM language models in 
several layers. The model is pre-trained as forward and backward language model 
with a large non-annotated text corpus. During fine-tuning, averages of the hidden 
vectors are used to predict the properties of words based on an annotated training 
set. These language models take into account the words before and after a position, 
and thus employ contextual representations for the word in the central position. 
For a variety of tasks such as sentiment analysis, question answering, and textual 
entailment, ELMo was able to improve SOTA performance.
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1.7 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) [37] are widely known for their success in 
the image domain. They start with a small quadratic arrangement of parameters 
called filter kernel, which is moved over the input pixel matrix of the image. 
The values of the filter kernel are multiplied with the underlying pixel values and 
generate an output value. This is repeated for every position of the input pixel 
matrix. During training the parameters of a filter kernel are automatically tuned 
such that they can detect local image patterns such as blobs or lines. Each layer of 
the network, which is also called convolution layer, consists of many filter kernels 
and a network contains a number of convolution layers. Interspersed max pooling 
layers perform a local aggregation of pixels by maximum. The final layer of a 
Convolutional Neural Network usually is a fully connected layer with a softmax 
classifier. 

Their breakthrough was AlexNet [34], which receives the RGB pixel matrix of an 
image as input and is tasked with assigning a content class to the image. This model 
won the 2012 ImageNet competition, where images had to be assigned to one of 
1000 classes, and demonstrated the superior performance of Deep Neural Networks. 
Even earlier the deep CNN of Cireşan et al. [12] achieved SOTA performance on a 
number of image classification benchmarks. A highly successful CNN is ResNet 
[25] which employs a so-called residual connection working as a bypass. It can 
circumvent many layers in the beginning of the training and is the key to training 
neural networks with many hundred layers. It resulted in image classifiers which 
have a higher accuracy than humans. 

While Recurrent Neural Networks were regarded as the best way to process 
sequential input such as text, some CNN-based architectures were introduced, which 
achieved high performance on some NLP tasks. Kim [32] proposed a rather shallow 
CNN for sentence classification. It contains an embedding layer, a convolutional 
layer, a max-pooling layer, and a fully connected layer with softmax output. 
1-D convolutions were applied to the embeddings of the input words, basically 
combining the information stored in adjacent words, treating them as n-grams. 
The embeddings are processed by a moving average with trainable weights. Using 
this architecture for classification proved to be very efficient, having a similar 
performance as recurrent architectures that are more difficult to train. 

Another interesting CNN architecture is wavenet [49], a deeper network used 
mainly for text-to-speech synthesis. It consists of multiple convolutional layers 
stacked on top of each other, with its main ingredient being dilated causal 
convolutions. Causal means that the convolutions at position t can only utilize prior 
information .x1, . . . , xt−1. Dilated means that the convolutions can skip input values 
with a certain step size k, i.e. that in some layer the features at position t are 
predicted using information from positions .t, t − k, t − 2k, . . . . This step size k 
is doubled in each successive layer, yielding dilations of size .k0, k1, k2, . . . . In this 
way, very long time spans can be included in the prediction. This model architecture 
has been shown to give very good results for text-to-speech synthesis.
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1.8 Summary 

Classical NLP has a long history, and machine learning models have been used in 
the field for several decades. They all require some preprocessing steps to generate 
words or tokens from the input text. Tokens are particularly valuable because they 
form a dictionary of finite size and allow arbitrary words to be represented by 
combination. Therefore, they are used by most PLMs. Early document representa-
tions like bag-of-words are now obsolete because they ignore sequence information. 
Nevertheless, classifiers based on them like logistic classifiers and fully connected 
layers, are important building blocks of PLMs. 

The concept of static word embeddings initiated the revolution in NLP, which 
is based on contextual word embeddings. These ideas are elaborated in the next 
chapter. Recurrent neural networks have been used to implement the first successful 
language models, but were completely superseded by attention-based models. 
Convolutional neural networks for image processing are still employed in many 
applications. PLMs today often have a similar performance on image data, and 
sometimes CNNs are combined with PLMs to exploit their respective strengths, 
as discussed in Chap. 7. 

References 

1. M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and K. Kochut. 
“A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques”. 2017. 
arXiv: 1707.02919. 

2. M. Z. Alom et al. “A State-of-the-Art Survey on Deep Learning Theory and Architectures”. In: 
Electronics 8.3 (2019), p. 292. 

3. M. Z. Alom et al. “The History Began from Alexnet: A Comprehensive Survey on Deep 
Learning Approaches”. 2018. arXiv: 1803.01164. 

4. Z. Alyafeai, M. S. AlShaibani, and I. Ahmad. “A Survey on Transfer Learning in Natural 
Language Processing”. 2020. arXiv: 2007.04239. 

5. D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly Learning to 
Align and Translate”. 2014. arXiv: 1409.0473. 

6. Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. “A Neural Probabilistic Language Model”. 
In: J. Mach. Learn. Res. 3 (Feb 2003), pp. 1137–1155. 

7. D. M. Blei. “Introduction to Probabilistic Topic Models”. In: Commun. ACM 55.4 (2011), pp. 
77–84. 

8. P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. “Enriching Word Vectors with Subword 
Information”. In: Trans. Assoc. Comput. Linguist. 5 (2017), pp. 135–146. 

9. R. Bommasani et al. “On the Opportunities and Risks of Foundation Models”. 2021. arXiv: 
2108.07258. 

10. J. Chai and A. Li. “Deep Learning in Natural Language Processing: A State-of-the-Art 
Survey”. In: 2019 Int. Conf. Mach. Learn. Cybern. ICMLC. 2019 International Conference 
on Machine Learning and Cybernetics (ICMLC). July 2019, pp. 1–6. https://doi.org/10.1109/ 
ICMLC48188.2019.8949185. 

11. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical Evaluation of Gated Recurrent 
Neural Networks on Sequence Modeling”. 2014. arXiv: 1412.3555.

https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICMLC48188.2019.8949185


References 15
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