Skip to main content

Neurodevelopmental Disorders of the Cerebellum: Autism Spectrum Disorder

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an incidence of 1 in 68 children. Cerebellar abnormalities have been observed in many ASD patients. The cerebellum is an elaborate brain region crucially important for motor learning and coordination of movement, and increasing lines of evidence indicate that the cerebellum also contributes to emotion and cognition. In this chapter, we will review the genetic and environmental factors that may contribute to cerebellar deficits in ASD patients. Structural and functional cerebellar abnormalities based on neuroimaging and histopathological studies and current approaches to management will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Millon T. On the history and future study of personality and its disorders. Annu Rev Clin Psychol. 2012;8:1–19.

    Article  PubMed  Google Scholar 

  2. Tonge BJ, Dissanayake C, Brereton AV. Autism: fifty years on from Kanner. J Paediatr Child Health. 1994;30(2):102–7.

    Article  CAS  PubMed  Google Scholar 

  3. Volkmar FR, McPartland JC. From Kanner to DSM-5: autism as an evolving diagnostic concept. Annu Rev Clin Psychol. 2014;10:193–212.

    Article  PubMed  Google Scholar 

  4. Olmsted D, Blaxill M. Leo Kanner’s mention of 1938 in his report on autism refers to his first patient. J Autism Dev Disord. 2016;46(1):340–1.

    Article  PubMed  Google Scholar 

  5. Barahona-Correa JB, Filipe CN. A concise history of Asperger syndrome: the short reign of a troublesome diagnosis. Front Psychol. 2015;6:2024.

    CAS  PubMed  Google Scholar 

  6. Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci. 2013;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci. 2015;9:420.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci. 2015;9:296.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hagmeyer S, Mangus K, Boeckers TM, Grabrucker AM. Effects of trace metal profiles characteristic for autism on synapses in cultured neurons. Neural Plast. 2015;2015:985083.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ismail MM, Keynton RS, Mostapha MM, ElTanboly AH, Casanova MF, Gimel’farb GL, et al. Studying autism spectrum disorder with structural and diffusion magnetic resonance imaging: a survey. Front Hum Neurosci. 2016;10:211.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2016;81(5):411–23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34.

    Article  CAS  PubMed  Google Scholar 

  14. Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci. 2013;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wallace GL, Dankner N, Kenworthy L, Giedd JN, Martin A. Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain. 2010;133(Pt 12):3745–54.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry. 1997;36(2):282–90.

    Article  CAS  PubMed  Google Scholar 

  17. Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Kennedy DN, Filipek PA, et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain. 2005;128(Pt 1):213–26.

    CAS  PubMed  Google Scholar 

  18. Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci. 2010;30(12):4419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry. 2012;169(6):589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306(18):2001–10.

    Article  CAS  PubMed  Google Scholar 

  21. Sudarov A. Defining the role of cerebellar Purkinje cells in autism spectrum disorders. Cerebellum. 2013;12(6):950–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taylor MJ, Doesburg SM, Pang EW. Neuromagnetic vistas into typical and atypical development of frontal lobe functions. Front Hum Neurosci. 2014;8:453.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ecker C, Bookheimer SY, Murphy DG. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 2015;14(11):1121–34.

    Article  PubMed  Google Scholar 

  24. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408.

    PubMed  PubMed Central  Google Scholar 

  25. Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat. 2013;7:29.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Avino TA, Hutsler JJ. Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res. 2010;1360:138–46.

    Article  CAS  PubMed  Google Scholar 

  27. Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127(Pt 12):2572–83.

    Article  PubMed  Google Scholar 

  28. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.

    Article  CAS  PubMed  Google Scholar 

  29. Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ. Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum. 2008;7(3):406–16.

    Article  CAS  PubMed  Google Scholar 

  30. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  31. Dolen G, Sahin M. Editorial: essential pathways and circuits of autism pathogenesis. Front Neurosci. 2016;10:182.

    Article  PubMed  PubMed Central  Google Scholar 

  32. ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250(9):1025–36.

    Article  PubMed  Google Scholar 

  33. Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.

    Article  PubMed  Google Scholar 

  34. Limperopoulos C. Autism spectrum disorders in survivors of extreme prematurity. Clin Perinatol. 2009;36(4):791–805. vi

    Article  PubMed  Google Scholar 

  35. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolduc ME, Du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.

    Article  PubMed  Google Scholar 

  37. Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. 2015;14(11):1109–20.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ishii K, Kubo KI, Nakajima K. Reelin and neuropsychiatric disorders. Front Cell Neurosci. 2016;10:229.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barnard RA, Pomaville MB, O’Roak BJ. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci. 2015;9:477.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sadakata T, Shinoda Y, Sato A, Iguchi H, Ishii C, Matsuo M, et al. Mouse models of mutations and variations in autism spectrum disorder-associated genes: mice expressing Caps2/Cadps2 copy number and alternative splicing variants. Int J Environ Res Public Health. 2013;10(12):6335–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roppongi RT, Karimi B, Siddiqui TJ. Role of LRRTMs in synapse development and plasticity. Neurosci Res. 2016;116:18–28.

    Article  PubMed  Google Scholar 

  42. Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sala C, Vicidomini C, Bigi I, Mossa A, Verpelli C. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem. 2015;135(5):849–58.

    Article  CAS  PubMed  Google Scholar 

  44. Baig DN, Yanagawa T, Tabuchi K. Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders. Brain Res Bull. 2017;129:82–90.

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Zou H, Brown WT. Genes associated with autism spectrum disorder. Brain Res Bull. 2012;88(6):543–52.

    Article  CAS  PubMed  Google Scholar 

  46. Cotney J, Muhle RA, Sanders SJ, Liu L, Willsey AJ, Niu W, et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun. 2015;6:6404.

    Article  CAS  PubMed  Google Scholar 

  47. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155(5):997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weissberg O, Elliott E. The mechanisms of CHD8 in neurodevelopment and autism spectrum disorders. Genes (Basel). 2021;12(8):1133.

    Article  CAS  PubMed  Google Scholar 

  49. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hormozdiari F, Penn O, Borenstein E, Eichler EE. The discovery of integrated gene networks for autism and related disorders. Genome Res. 2015;25(1):142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, et al. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep. 2021;35(1):108932.

    Article  CAS  PubMed  Google Scholar 

  52. Fatemi SH. The role of Reelin in pathology of autism. Mol Psychiatry. 2002;7(9):919–20.

    Article  CAS  PubMed  Google Scholar 

  53. Persico AM, D’Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry. 2001;6(2):150–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR, et al. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry. 2002;7(9):1012–7.

    Article  CAS  PubMed  Google Scholar 

  55. Skaar DA, Shao Y, Haines JL, Stenger JE, Jaworski J, Martin ER, et al. Analysis of the RELN gene as a genetic risk factor for autism. Mol Psychiatry. 2005;10(6):563–71.

    Article  CAS  PubMed  Google Scholar 

  56. Dutta S, Guhathakurta S, Sinha S, Chatterjee A, Ahmed S, Ghosh S, et al. Reelin gene polymorphisms in the Indian population: a possible paternal 5’UTR-CGG-repeat-allele effect on autism. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  57. Chudley AE. Genetic landmarks through philately – autism spectrum disorders: a genetic update. Clin Genet. 2004;65(5):352–7.

    Article  CAS  PubMed  Google Scholar 

  58. Hernandez-Garcia I, Chamorro AJ, Ternavasio-de la Vega HG, Carbonell C, Marcos M, Miron-Canelo JA. Association of allelic variants of the Reelin gene with autistic spectrum disorder: a systematic review and meta-analysis of candidate gene association studies. Int J Environ Res Public Health. 2020;17(21):8010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fatemi SH, Stary JM, Halt AR, Realmuto GR. Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord. 2001;31(6):529–35.

    Article  CAS  PubMed  Google Scholar 

  60. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281(5381):1322–6.

    Article  CAS  PubMed  Google Scholar 

  61. de Bergeyck V, Nakajima K, Lambert de Rouvroit C, Naerhuyzen B, Goffinet AM, Miyata T, et al. A truncated Reelin protein is produced but not secreted in the ‘Orleans’ reeler mutation (Reln[rl-Orl]). Brain Res Mol Brain Res. 1997;50(1–2):85–90.

    Article  PubMed  Google Scholar 

  62. Lacor PN, Grayson DR, Auta J, Sugaya I, Costa E, Guidotti A. Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proc Natl Acad Sci U S A. 2000;97(7):3556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fatemi SH, Stary JM, Egan EA. Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cell Mol Neurobiol. 2002;22(2):139–52.

    Article  CAS  PubMed  Google Scholar 

  64. Cuchillo-Ibáñez I, Andreo-Lillo P, Pastor-Ferrandiz L, Carratala-Marco F, Saez-Valero J. Elevated plasma Reelin levels in children with autism. Front Psychol. 2020;11:242.

    Article  Google Scholar 

  65. Boukhtouche F, Brugg B, Wehrle R, Bois-Joyeux B, Danan JL, Dusart I, et al. Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORalpha. Neural Dev. 2010;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature. 1996;379(6567):736–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Billon C, Walker JK, Burris TP. Therapeutic effect of a synthetic RORalpha/gamma agonist in an animal model of autism. ACS Chem Neurosci. 2016;7(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  68. Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature. 2011;472(7344):486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24(8):3036–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Devanna P, Vernes SC. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Sci Rep. 2014;4:3994.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Boukhtouche F, Doulazmi M, Frederic F, Dusart I, Brugg B, Mariani J. RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum. 2006;5(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  72. Gold DA, Gent PM, Hamilton BA. ROR alpha in genetic control of cerebellum development: 50 staggering years. Brain Res. 2007;1140:19–25.

    Article  CAS  PubMed  Google Scholar 

  73. Liu A, Losos K, Joyner AL. FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development. 1999;126(21):4827–38.

    Article  CAS  PubMed  Google Scholar 

  74. Kuemerle B, Gulden F, Cherosky N, Williams E, Herrup K. The mouse Engrailed genes: a window into autism. Behav Brain Res. 2007;176(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  75. Benayed R, Choi J, Matteson PG, Gharani N, Kamdar S, Brzustowicz LM, et al. Autism-associated haplotype affects the regulation of the homeobox gene, ENGRAILED 2. Biol Psychiatry. 2009;66(10):911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernandes BS, Berk M, Turck CW, Steiner J, Goncalves CA. Decreased peripheral brain-derived neurotrophic factor levels are a biomarker of disease activity in major psychiatric disorders: a comparative meta-analysis. Mol Psychiatry. 2014;19(7):750–1.

    Article  CAS  PubMed  Google Scholar 

  77. Qin XY, Feng JC, Cao C, Wu HT, Loh YP, Cheng Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: a systematic review and meta-analysis. JAMA Pediatr. 2016;170(11):1079–86.

    Article  PubMed  Google Scholar 

  78. Farmer CA, Thurm AE, Honnekeri B, Kim P, Swedo SE, Han JC. The contribution of platelets to peripheral BDNF elevation in children with autism spectrum disorder. Sci Rep. 2021;11(1):18158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sato A, Sekine Y, Saruta C, Nishibe H, Morita N, Sato Y, et al. Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum. Neural Netw. 2008;21(8):1056–69.

    Article  PubMed  Google Scholar 

  80. Sadakata T, Furuichi T. Developmentally regulated Ca2+−dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility. Cerebellum. 2009;8(3):312–22.

    Article  CAS  PubMed  Google Scholar 

  81. Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, et al. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest. 2007;117(4):931–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.

    Article  CAS  PubMed  Google Scholar 

  83. Ertan G, Arulrajah S, Tekes A, Jordan L, Huisman TA. Cerebellar abnormality in children and young adults with tuberous sclerosis complex: MR and diffusion weighted imaging findings. J Neuroradiol (Journal de neuroradiologie). 2010;37(4):231–8.

    Article  CAS  PubMed  Google Scholar 

  84. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488(7413):647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward. Nature. 2017;544(7648):96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gzielo K, Nikiforuk A. Astroglia in autism spectrum disorder. Int J Mol Sci. 2021;22(21):11544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism. 2014;5(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiat. 2013;70(1):49–58.

    Article  Google Scholar 

  89. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, et al. Autism-related transcription factors underlying the sex-specific effects of prenatal bisphenol a exposure on transcriptome-interactome profiles in the offspring prefrontal cortex. Int J Mol Sci. 2021;22(24):13201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu X, Rahman MM, Wang Z, Carter SA, Schwartz J, Chen Z, et al. Evidence of susceptibility to autism risks associated with early life ambient air pollution: a systematic review. Environ Res. 2022;208:112590.

    Article  CAS  PubMed  Google Scholar 

  92. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet. 2001;2(12):943–55.

    Article  CAS  PubMed  Google Scholar 

  93. Grabrucker AM. Environmental factors in autism. Front Psychol. 2012;3:118.

    Google Scholar 

  94. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res. 2006;1116(1):166–76.

    Article  CAS  PubMed  Google Scholar 

  95. Lee MH, Kim M, Lee BH, Kim JH, Kang KS, Kim HL, et al. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver. Toxicol Appl Pharmacol. 2008;226(3):271–84.

    Article  CAS  PubMed  Google Scholar 

  96. Cole TB, Fisher JC, Burbacher TM, Costa LG, Furlong CE. Neurobehavioral assessment of mice following repeated postnatal exposure to chlorpyrifos-oxon. Neurotoxicol Teratol. 2012;34(3):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Krishnan K, Mitra NK, Yee LS, Yang HM. A comparison of neurotoxicity in cerebellum produced by dermal application of chlorpyrifos in young and adult mice. J Neural Transm. 2012;119(3):345–52.

    Article  CAS  PubMed  Google Scholar 

  98. Abou-Donia MB, Khan WA, Dechkovskaia AM, Goldstein LB, Bullman SL, Abdel-Rahman A. In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch Toxicol. 2006;80(9):620–31.

    Article  CAS  PubMed  Google Scholar 

  99. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet. 2000;37(7):489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones. 2002;7(1):73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Maroni P, Bendinelli P, Tiberio L, Rovetta F, Piccoletti R, Schiaffonati L. In vivo heat-shock response in the brain: signalling pathway and transcription factor activation. Brain Res Mol Brain Res. 2003;119(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  102. Dean SL, Wright CL, Hoffman JF, Wang M, Alger BE, McCarthy MM. Prostaglandin E2 stimulates estradiol synthesis in the cerebellum postnatally with associated effects on Purkinje neuron dendritic arbor and electrophysiological properties. Endocrinology. 2012;153(11):5415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rowland J, Wilson CA. The association between gestational diabetes and ASD and ADHD: a systematic review and meta-analysis. Sci Rep. 2021;11(1):5136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Johnson RT. Effects of viral infection on the developing nervous system. N Engl J Med. 1972;287(12):599–604.

    Article  CAS  PubMed  Google Scholar 

  105. Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40(12):1423–30.

    Article  PubMed  Google Scholar 

  106. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23(1):297–302.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Beraki S, Aronsson F, Karlsson H, Ogren SO, Kristensson K. Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice. Mol Psychiatry. 2005;10(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  108. Asp L, Beraki S, Kristensson K, Ogren SO, Karlsson H. Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice. Brain Behav Immun. 2009;23(6):733–41.

    Article  CAS  PubMed  Google Scholar 

  109. Shi L, Smith SE, Malkova N, Tse D, Su Y, Patterson PH. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun. 2009;23(1):116–23.

    Article  PubMed  Google Scholar 

  110. Steinman G. COVID-19 and autism. Med Hypotheses. 2020;142:109797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Steinman G, Mankuta D. Insulin-like growth factor and the etiology of autism. Med Hypotheses. 2013;80(4):475–80.

    Article  CAS  PubMed  Google Scholar 

  112. Chen J, Alberts I, Li X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int J Dev Neurosci. 2014;35:35–41.

    Article  PubMed  Google Scholar 

  113. Luna RA, Savidge TC, Williams KC. The brain-gut-microbiome axis: what role does it play in autism spectrum disorder? Curr Dev Disord Rep. 2016;3(1):75–81.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mazurek MO, Vasa RA, Kalb LG, Kanne SM, Rosenberg D, Keefer A, et al. Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol. 2013;41(1):165–76.

    Article  PubMed  Google Scholar 

  115. Srikantha P, Mohajeri MH. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci. 2019;20(9):2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64.

    Article  CAS  PubMed  Google Scholar 

  117. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Flores-Pajot MC, Ofner M, Do MT, Lavigne E, Villeneuve PJ. Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: a review and meta-analysis. Environ Res. 2016;151:763–76.

    Article  CAS  PubMed  Google Scholar 

  119. Croen LA, Qian Y, Ashwood P, Zerbo O, Schendel D, Pinto-Martin J, et al. Infection and fever in pregnancy and autism spectrum disorders: findings from the study to explore early development. Autism Res. 2019;12(10):1551–61.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Aavani T, Rana SA, Hawkes R, Pittman QJ. Maternal immune activation produces cerebellar hyperplasia and alterations in motor and social behaviors in male and female mice. Cerebellum. 2015;14(5):491–505.

    Article  CAS  PubMed  Google Scholar 

  121. Gottfried C, Bambini-Junior V, Francis F, Riesgo R, Savino W. The impact of neuroimmune alterations in autism spectrum disorder. Front Psychol. 2015;6:121.

    Google Scholar 

  122. Verkhratsky A, Rodriguez JJ, Parpura V. Neuroglia in ageing and disease. Cell Tissue Res. 2014;357(2):493–503.

    Article  PubMed  Google Scholar 

  123. Murphy CM, Wilson CE, Robertson DM, Ecker C, Daly EM, Hammond N, et al. Autism spectrum disorder in adults: diagnosis, management, and health services development. Neuropsychiatr Dis Treat. 2016;12:1669–86.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Johnston K, Dittner A, Bramham J, Murphy C, Knight A, Russell A. Attention deficit hyperactivity disorder symptoms in adults with autism spectrum disorders. Autism Res. 2013;6(4):225–36.

    Article  PubMed  Google Scholar 

  125. Russell AJ, Murphy CM, Wilson E, Gillan N, Brown C, Robertson DM, et al. The mental health of individuals referred for assessment of autism spectrum disorder in adulthood: a clinic report. Autism. 2016;20(5):623–7.

    Article  PubMed  Google Scholar 

  126. Vakorin VA, Doesburg SM, Leung RC, Vogan VM, Anagnostou E, Taylor MJ. Developmental changes in neuromagnetic rhythms and network synchrony in autism. Ann Neurol. 2017;81(2):199–211.

    Article  PubMed  Google Scholar 

  127. Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord. 2010;40(10):1227–40.

    Article  PubMed  Google Scholar 

  128. Hilton CL, Zhang Y, Whilte MR, Klohr CL, Constantino J. Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism. 2012;16(4):430–41.

    Article  PubMed  Google Scholar 

  129. Gowen E, Hamilton A. Motor abilities in autism: a review using a computational context. J Autism Dev Disord. 2013;43(2):323–44.

    Article  PubMed  Google Scholar 

  130. Zwaigenbaum L, Bryson S, Garon N. Early identification of autism spectrum disorders. Behav Brain Res. 2013;251:133–46.

    Article  PubMed  Google Scholar 

  131. Landa R, Garrett-Mayer E. Development in infants with autism spectrum disorders: a prospective study. J Child Psychol Psychiatry. 2006;47(6):629–38.

    Article  PubMed  Google Scholar 

  132. Gernsbacher MA, Sauer EA, Geye HM, Schweigert EK, Hill Goldsmith H. Infant and toddler oral- and manual-motor skills predict later speech fluency in autism. J Child Psychol Psychiatry. 2008;49(1):43–50.

    Article  PubMed  Google Scholar 

  133. Bhat AN, Galloway JC, Landa RJ. Relation between early motor delay and later communication delay in infants at risk for autism. Infant Behav Dev. 2012;35(4):838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Papadopoulos N, McGinley J, Tonge B, Bradshaw J, Saunders K, Murphy A, et al. Motor proficiency and emotional/behavioural disturbance in autism and Asperger’s disorder: another piece of the neurological puzzle? Autism. 2012;16(6):627–40.

    Article  PubMed  Google Scholar 

  135. Jones V, Prior M. Motor imitation abilities and neurological signs in autistic children. J Autism Dev Disord. 1985;15(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  136. Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Azuma J, Matsuzaki J, et al. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum. 2013;12(5):645–56.

    Article  PubMed  Google Scholar 

  137. Anteraper SA, Guell X, Taylor HP, D’Mello A, Whitfield-Gabrieli S, Joshi G. Intrinsic functional connectivity of dentate nuclei in autism spectrum disorder. Brain Connect. 2019;9(9):692–702.

    Article  PubMed  PubMed Central  Google Scholar 

  138. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, et al. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage. 2010;49(1):44–56.

    Article  PubMed  Google Scholar 

  140. Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008;23(4):289–99.

    Article  PubMed  Google Scholar 

  141. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57(2):245–54.

    Article  CAS  PubMed  Google Scholar 

  142. Hallahan B, Daly EM, McAlonan G, Loth E, Toal F, O’Brien F, et al. Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med. 2009;39(2):337–46.

    Article  CAS  PubMed  Google Scholar 

  143. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318(21):1349–54.

    Article  CAS  PubMed  Google Scholar 

  144. Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH, et al. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am J Roentgenol. 1994;162(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  145. Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011;1380:138–45.

    Article  CAS  PubMed  Google Scholar 

  146. Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989;46(6):689–94.

    Article  CAS  PubMed  Google Scholar 

  147. Hodge SM, Makris N, Kennedy DN, Caviness VS Jr, Howard J, McGrath L, et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2010;40(3):300–16.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cheung C, Chua SE, Cheung V, Khong PL, Tai KS, Wong TK, et al. White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. J Child Psychol Psychiatry. 2009;50(9):1102–12.

    Article  CAS  PubMed  Google Scholar 

  149. Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35(6):866–74.

    Article  CAS  PubMed  Google Scholar 

  150. Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res. 2009;87(10):2245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7(2):269–78.

    Article  CAS  PubMed  Google Scholar 

  152. Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E. Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci. 2002;22(21):9244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006;26(26):6897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.

    Article  CAS  PubMed  Google Scholar 

  155. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23(2–3):183–7.

    Article  PubMed  Google Scholar 

  156. Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, et al. Regional alterations in purkinje cell density in patients with autism. PLoS One. 2014;9(2):e81255.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22(2):171–5.

    Article  PubMed  Google Scholar 

  158. Vajda S, Vakser IA, Sternberg MJ, Janin J. Modeling of protein interactions in genomes. Proteins. 2002;47(4):444–6.

    Article  CAS  PubMed  Google Scholar 

  159. Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger syndrome. NeuroImage. 2008;41(4):1184–91.

    Article  PubMed  Google Scholar 

  160. Shukla DK, Keehn B, Lincoln AJ, Muller RA. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49(12):1269-78–78 e1-2.

    PubMed  Google Scholar 

  161. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  162. Eccles JC, Sasaki K, Strata P. Interpretation of the potential fields generated in the cerebellar cortex by a mossy fibre volley. Exp Brain Res. 1967;3(1):58–80.

    Article  CAS  PubMed  Google Scholar 

  163. Percheron G, Francois C, Talbi B, Yelnik J, Fenelon G. The primate motor thalamus. Brain Res Brain Res Rev. 1996;22(2):93–181.

    Article  CAS  PubMed  Google Scholar 

  164. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44(2):113–28.

    Article  CAS  PubMed  Google Scholar 

  165. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.

    Article  CAS  PubMed  Google Scholar 

  166. Zuber BL, Stark L, Cook G. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science. 1965;150(3702):1459–60.

    Article  CAS  PubMed  Google Scholar 

  167. Kase M, Miller DC, Noda H. Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol. 1980;300:539–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vaillancourt DE, Mayka MA, Corcos DM. Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex. J Neurophysiol. 2006;95(2):922–31.

    Article  PubMed  Google Scholar 

  170. Spraker MB, Corcos DM, Kurani AS, Prodoehl J, Swinnen SP, Vaillancourt DE. Specific cerebellar regions are related to force amplitude and rate of force development. NeuroImage. 2012;59(2):1647–56.

    Article  CAS  PubMed  Google Scholar 

  171. Neely KA, Coombes SA, Planetta PJ, Vaillancourt DE. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force. Hum Brain Mapp. 2013;34(3):698–712.

    PubMed  Google Scholar 

  172. Brisson J, Warreyn P, Serres J, Foussier S, Adrien-Louis J. Motor anticipation failure in infants with autism: a retrospective analysis of feeding situations. Autism. 2012;16(4):420–9.

    Article  PubMed  Google Scholar 

  173. Cheng Y, Chou KH, Chen IY, Fan YT, Decety J, Lin CP. Atypical development of white matter microstructure in adolescents with autism spectrum disorders. NeuroImage. 2010;50(3):873–82.

    Article  CAS  PubMed  Google Scholar 

  174. Provost B, Lopez BR, Heimerl S. A comparison of motor delays in young children: autism spectrum disorder, developmental delay, and developmental concerns. J Autism Dev Disord. 2007;37(2):321–8.

    Article  PubMed  Google Scholar 

  175. Brian J, Bryson SE, Garon N, Roberts W, Smith IM, Szatmari P, et al. Clinical assessment of autism in high-risk 18-month-olds. Autism. 2008;12(5):433–56.

    Article  CAS  PubMed  Google Scholar 

  176. Van Waelvelde H, Oostra A, Dewitte G, Van Den Broeck C, Jongmans MJ. Stability of motor problems in young children with or at risk of autism spectrum disorders, ADHD, and or developmental coordination disorder. Dev Med Child Neurol. 2010;52(8):e174–8.

    Article  PubMed  Google Scholar 

  177. Solomon M, Ozonoff SJ, Cummings N, Carter CS. Cognitive control in autism spectrum disorders. Int J Dev Neurosci. 2008;26(2):239–47.

    Article  PubMed  Google Scholar 

  178. Middleton FA, Strick PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000;42(2):183–200.

    Article  CAS  PubMed  Google Scholar 

  179. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.

    Article  CAS  PubMed  Google Scholar 

  180. Robbins TW, Roberts AC. Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb Cortex. 2007;17(Suppl 1):i151–60.

    Article  PubMed  Google Scholar 

  181. Fallon JH, Riley JN, Moore RY. Substantia nigra dopamine neurons: separate populations project to neostriatum and allocortex. Neurosci Lett. 1978;7(2–3):157–62.

    Article  CAS  PubMed  Google Scholar 

  182. Mevel K, Fransson P. The functional brain connectome of the child and autism spectrum disorders. Acta Paediatr. 2016;105(9):1024–35.

    Article  PubMed  Google Scholar 

  183. Di Martino A, Fair DA, Kelly C, Satterthwaite TD, Castellanos FX, Thomason ME, et al. Unraveling the miswired connectome: a developmental perspective. Neuron. 2014;83(6):1335–53.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Mevel K, Fransson P, Bolte S. Multimodal brain imaging in autism spectrum disorder and the promise of twin research. Autism. 2015;19(5):527–41.

    Article  PubMed  Google Scholar 

  185. Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev. 2012;36(1):604–25.

    Article  PubMed  Google Scholar 

  186. Uddin LQ, Supekar K, Menon V. Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci. 2013;7:458.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Huerta M, Lord C. Diagnostic evaluation of autism spectrum disorders. Pediatr Clin N Am. 2012;59(1):103–11. xi

    Article  Google Scholar 

  188. Taylor LJ, Eapen V, Maybery MT, Midford S, Paynter J, Quarmby L, et al. Diagnostic evaluation for autism spectrum disorder: a survey of health professionals in Australia. BMJ Open. 2016;6(9):e012517.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Filipek PA, Accardo PJ, Ashwal S, Baranek GT, Cook EH Jr, Dawson G, et al. Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology. 2000;55(4):468–79.

    Article  CAS  PubMed  Google Scholar 

  190. Zwaigenbaum L, Bauman ML, Choueiri R, Kasari C, Carter A, Granpeesheh D, et al. Early intervention for children with autism spectrum disorder under 3 years of age: recommendations for practice and research. Pediatrics. 2015;136(Suppl 1):S60–81.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.

    Article  CAS  PubMed  Google Scholar 

  192. Stone WL, Coonrod EE, Ousley OY. Brief report: screening tool for autism in two-year-olds (STAT): development and preliminary data. J Autism Dev Disord. 2000;30(6):607–12.

    Article  CAS  PubMed  Google Scholar 

  193. Wetherby AM, Allen L, Cleary J, Kublin K, Goldstein H. Validity and reliability of the communication and symbolic behavior scales developmental profile with very young children. J Speech Lang Hear Res JSLHR. 2002;45(6):1202–18.

    Article  PubMed  Google Scholar 

  194. Kim SH, Lord C. Restricted and repetitive behaviors in toddlers and preschoolers with autism spectrum disorders based on the Autism Diagnostic Observation Schedule (ADOS). Autism Res. 2010;3(4):162–73.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Listhaus AD, Freeman WR. Fluorescein angiography in patients with posterior uveitis. Int Ophthalmol Clin. 1990;30(4):297–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by grants from the Natural Sciences and Engineering Research Council (HM: NSERC Discovery Grant # RGPIN-2018-06040), the Children’s Hospital Research Institute of Manitoba (HM: CHRIM Grant # 320035), and Research Manitoba Tri-Council Bridge Funding Program (HM: Grant # 47955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Marzban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toback, M. et al. (2023). Neurodevelopmental Disorders of the Cerebellum: Autism Spectrum Disorder. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-23104-9_21

Download citation

Publish with us

Policies and ethics