Skip to main content

Circadian Rhythm Manipulations: Implications on Behavioral Restoration in Central Nervous System Insults

  • Chapter
  • First Online:
Sleep and Clocks in Aging and Longevity

Abstract

Ambient light is a crucial environmental factor that influences physiology and behavior in all organisms including human beings. A fair understanding of the importance of circadian rhythms and timekeeping would enable us to develop strategies for the management of disrupted circadian rhythm-associated disorders such as depression, Alzheimer’s, and Parkinson’s diseases. Circadian manipulation protocols such as bright light exposure, acute sleep deprivation and photoperiod manipulation have been reported to be beneficial in humans and animal models. This chapter briefly summarizes the current knowledge on the efficacious role of circadian rhythm manipulation strategies in facilitating behavioral recovery and the possible underlying mechanisms. We have also tried to highlight the limitations and implications of futuristic combinatorial circadian rhythm manipulation and pharmacological approaches in the management of chronodisruption-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alessi CA, Martin JL, Webber AP, Kim EC, Harker JO, Josephson KR (2005) Randomized, controlled trial of a nonpharmacological intervention to improve abnormal sleep/wake patterns in nursing home residents. J Am Geriatr Soc 53(5):803–810. https://doi.org/10.1111/j.1532-5415.2005.53251.x

    Google Scholar 

  • Ancoli-Israel S, Gehrman P, Martin JL, Shochat T, Marler M, Corey-Bloom J, Levi L (2003) Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med 1(1):22–36. https://doi.org/10.1207/S15402010BSM0101_4

  • Andrews RV, Belknap RW (1993) Seasonal acclimation of prairie deer mice. Int J Biometeorol 37(4):190–193. https://doi.org/10.1007/BF01387521

    Google Scholar 

  • Archer ZA, Findlay PA, Rhind SM, Mercer JG, Adam CL (2002) Orexin gene expression and regulation by photoperiod in the sheep hypothalamus. Regul Pept 104(1–3):41–45. https://doi.org/10.1016/S0167-0115(01)00347-0

    Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-schor N (2009a) Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav Brain Res 201:343–346. https://doi.org/10.1016/j.bbr.2009.03.005

    Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009b) We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 12(01):83–93. https://doi.org/10.1017/S1461145708009115

    Google Scholar 

  • Avery DH, Khan A, Dager SR, Cox GB, Dunner DL (1990) Bright light treatment of winter depression: morning versus evening light. Acta Psychiatr Scand 82(5):335–338. https://doi.org/10.1111/j.1600-0447.1990.tb01397.x

    Google Scholar 

  • Beecher ME, Eggett D, Erekson D, Rees LB, Bingham J, Klundt J, Bailey RJ, Ripplinger C, Kirchhoefer J, Gibson R, Griner D, Cox JC, Boardman RD (2016) Sunshine on my shoulders: weather, pollution, and emotional distress. J Affect Disord 205:234–238. https://doi.org/10.1016/j.jad.2016.07.021

    Google Scholar 

  • Beery AK, Loo TJ, Zucker I (2008) Day length and estradiol affect same-sex affiliative behavior in the female meadow vole. Horm Behav 54(1):153–159. https://doi.org/10.1016/j.yhbeh.2008.02.007

    Google Scholar 

  • Benedetti F, Colombo C, Barbini B, Campori E, Smeraldi E (2001) Morning sunlight reduces length of hospitalization in bipolar depression. J Affect Disord 62(3):221–223. https://doi.org/10.1016/S0165-0327(00)00149-X

    Google Scholar 

  • Benedetti F, Barbini B, Fulgosi MC, Colombo C, Dallaspezia S, Pontiggia A, Smeraldi E (2005) Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry 66(12):1535–1540. https://doi.org/10.4088/jcp.v66n1207

  • Bilu C, Einat H, Zimmet P, Vishnevskia-Dai V, Schwartz WJ, Kronfeld-Schor N (2022) Beneficial effects of voluntary wheel running on activity rhythms, metabolic state, and affect in a diurnal model of circadian disruption. Scientific reports. Nature Publishing Group, UK, vol 12(1), pp 1–12. https://doi.org/10.1038/s41598-022-06408-z

  • Bowrey HE, James MH, Aston-Jones G (2017) New directions for the treatment of depression: targeting the photic regulation of arousal and mood (PRAM) pathway. Depress Anxiety 34(7):588–595. https://doi.org/10.1002/da.22635

    Google Scholar 

  • Campbell PD, Miller AM, Woesner ME (2017) Bright light therapy: seasonal affective disorder and beyond. Einstein J Biol Med : EJBM 32:E13–E25. Available at: http://www.ncbi.nlm.nih.gov/pubmed/31528147

  • Challet E (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148(12):5648–5655. https://doi.org/10.1210/en.2007-0804

    Google Scholar 

  • Cuesta M, Aungier J, Morton AJ (2014) Behavioral therapy reverses circadian deficits in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 63:85–91. https://doi.org/10.1016/j.nbd.2013.11.008

  • Daan S, Aschoff J (2001) The entrainment of circadian systems. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology, pp 7–43. https://doi.org/10.1007/978-1-4615-1201-1_2

  • Dallaspezia S, Benedetti F (2015) Sleep deprivation therapy for depression. In: Current topics in behavioral neurosciences, vol 25(November 2011), pp 483–502. https://doi.org/10.1007/7854_2014_363

  • Dowling GA, Mastick J, Hubbard EM, Luxenberg JS, Burr RL (2005) Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. Int J Geriatr Psychiatry 20(8):738–43. https://doi.org/10.1002/gps.1352

  • Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC (2013) Neurotransmitter switching in the adult brain regulates behavior. Science 340(April):449–453

    Google Scholar 

  • Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80(4):973–983. https://doi.org/10.1016/j.neuron.2013.08.022

  • Farajnia S, Meijer JH, Michel S (2015) Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons. Neurobiol Aging 36(6):2176–2183. https://doi.org/10.1016/j.neurobiolaging.2014.12.040

    Google Scholar 

  • Ferris CF (2005) Vasopressin/oxytocin and aggression. In: Novartis foundation symposium. Novartis Foundation, pp 190–198. https://doi.org/10.1002/0470010703.ch13

  • Fetveit A, Skjerve A, Bjorvatn B (2003) Bright light treatment improves sleep in institutionalised elderly—an open trial. Int J Geriatr Psychiatry 18(6):520–526. https://doi.org/10.1002/gps.852

    Google Scholar 

  • Fu Y, Zhong H, Wang MH, Luo D, Liao H, Maeda H, Hattar S, Frishman LJ, Yau K (2005) Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci USA 102(29):10339–10344. https://doi.org/10.1073/pnas.0501866102

    Google Scholar 

  • Fuchs E, Simon M, Schmelting B (2006) Pharmacology of a new antidepressant: benefit of the implication of the melatonergic system. Int Clin Psychopharmacol 21(SUPPL.1):17–20. https://doi.org/10.1097/01.yic.0000199456.39552.c7

  • Giedke H, Schwärzler F (2002) Therapeutic use of sleep deprivation in depression. Sleep Med Rev 6(5):361–377. https://doi.org/10.1053/smrv.2002.0235

    Google Scholar 

  • Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, Wisner KL, Nemeroff CB (2005) The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162(April):656–662

    Google Scholar 

  • GomesJI, Miguel Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastiã AM, Vaz SH (2021) Of adenosine and the blues: the adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res163. https://doi.org/10.1016/j.phrs.2020.105363

  • Gorgulu Y, Caliyurt O (2009) Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain Res Bull 80(3):158–162. https://doi.org/10.1016/j.brainresbull.2009.06.016

    Google Scholar 

  • Hale A, Corral R-M, Mencacci C, Saiz Ruiz J, Severo CA, Gentil V (2010) Superior antidepressant efficacy results of agomelatine versus fluoxetine in severe MDD patients: a randomized, double-blind study. Int Clin Psychopharmacol 25(6):305–314. https://doi.org/10.1097/YIC.0b013e32833a86aa

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4(8):649–661. https://doi.org/10.1038/nrn1177

    Google Scholar 

  • Hines DJ, Schmitt LI, Hines RM, Moss SJ, Haydon PG (2013) Antidepressant effects of sleep deprivation require astrocyte- dependent adenosine mediated signaling. Trans Psychiatry 3(August 2012). https://doi.org/10.1038/tp.2012.136

  • Huang LY, Devries GJ, Bittman EL (1998) Bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol 36:410–420

    Google Scholar 

  • Hurley SW, Johnson AK (2014) The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors. Front Syst Neurosci 8(November):1–10. https://doi.org/10.3389/fnsys.2014.00216

    Google Scholar 

  • Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J (2016) Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s Disease. Front Neurosci 9:1–15. https://doi.org/10.3389/fnins.2015.00500

    Google Scholar 

  • Kapgal V, Prem N, Hegde P, Laxmi TR, Kutty BM (2016) Long term exposure to combination paradigm of environmental enrichment, physical exercise and diet reverses the spatial memory deficits and restores hippocampal neurogenesis in ventral subicular lesioned rats. Neurobiol Learn Memory 130:61–70. https://doi.org/10.1016/j.nlm.2016.01.013

  • Kent ST, McClure LA, Crosson WL, Arnett DK, Wadley VG, Sathiakumar N (2009) Effect of sunlight exposure on cognitive function among depressed and non-depressed participants: a REGARDS cross-sectional study. Environ Health: Glob Access Sci Source 8(1). https://doi.org/10.1186/1476-069X-8-34

  • Kumar U (2007) Colocalization of somatostatin receptor subtypes (SSTR1–5) with somatostatin, NADPH-diaphorase (NADPH-d), and tyrosine hydroxylase in the rat hypothalamus. J Comp Neurol 504(2):185–205. https://doi.org/10.1002/cne.21444

    Google Scholar 

  • Lee HJ, Macbeth AH, Pagani J, Young WS (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88(2):127–151. https://doi.org/10.1016/j.pneurobio.2009.04.001

    Google Scholar 

  • Lee Y, Field JM, Sehgal A (2021) Circadian rhythms, disease and chronotherapy. J Biol Rhythms 36(6):503–531. https://doi.org/10.1177/07487304211044301

    Google Scholar 

  • LeGates TA, Fernandez DC, Hattar S (2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15(7):443–54. https://doi.org/10.1038/nrn3743

  • Lemoine P, Guilleminault C, Alvarez E (2007) Improvement in subjective sleep in major depressive disorder with a novel antidepressant, agomelatine: randomized, double- blind comparison with venlafaxine. J Clin Psychiatry 68(11):1723–1732. https://doi.org/10.4088/jcp.v68n1112

  • Liu RJ, Van Den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22(21):9453–9464. https://doi.org/10.1523/jneurosci.22-21-09453.2002

    Google Scholar 

  • Lopez-Rodriguez F, Wilson CL, Maidment NT, Poland RE, Engel J (2003) Total sleep deprivation increases extracellular serotonin in the rat hippocampus. Neuroscience 121(2):523–530. https://doi.org/10.1016/S0306-4522(03)00335-X

    Google Scholar 

  • Lopez-Rodriguez F, Kim J, Poland RE (2004) Total sleep deprivation decreases immobility in the forced-swim test. Neuropsychopharmacology 29(6):1105–1111. https://doi.org/10.1038/sj.npp.1300406

    Google Scholar 

  • Loving RT, Kripke DF, Elliott JA, Knickerbocker NC, Grandner MA (2005) Bright light treatment of depression for older adults. BMC Psychiatry 5(1):1–14. https://doi.org/10.1186/1471-244x-5-41

    Google Scholar 

  • Lyketsos CG, Lindell VL, Baker A, Steele C (1999) A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care. Int J Geriatr Psychiatry 14(7):520–525. https://doi.org/10.1002/(SICI)1099-1166(199907)14:7%3c520:AID-GPS983%3e3.0.CO;2-M

    Google Scholar 

  • Ouk K, Aungier J, Morton AJ (2017) Prolonged day length exposure improves circadian deficits and survival in a transgenic mouse model of Huntington’s disease. Neurobiol Sleep Circadian Rhythm 2:27–38. https://doi.org/10.1016/j.nbscr.2016.11.004

    Google Scholar 

  • Paus S, Schmitz-Hübsch T, Wüllner U, Vogel A, Klockgether T, Abele M (2007) Bright light therapy in Parkinson’s disease: a pilot study. Movement Disorders 22(10):1495–1498. https://doi.org/10.1002/mds.21542

  • Perrin F, Peigneux P, Fuchs S, Verhaeghe S, Laureys S, Middleton B, Degueldre C, Del Fiore G, Vandewalle G, Balteau E, Poirrier R, Moreau V, Luxen A, Maquet P, Dijk D-J (2004) Nonvisual responses to light exposure in the human brain during the circadian night. Curr Biol 14(20):1842–1846. https://doi.org/10.1016/j.cub.2004.09.082

    Google Scholar 

  • Pritchard R, Chen H, Romoli B, Spitzer NC, Dulcis D (2020) Photoperiod-induced neurotransmitter plasticity declines with aging: an epigenetic regulation? J Comp Neurol 528(2):199–210. https://doi.org/10.1002/cne.24747

    Google Scholar 

  • Rainer Q, Xia L, Guilloux JP, Gabriel C, Mocaër E, Hen R, Enhamre E, Gardier AM, David DJ (2012) Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol 15(3):321–335. https://doi.org/10.1017/S1461145711000356

    Google Scholar 

  • Salgado-Delgado R, Tapia Osorio A, Saderi N, Escobar C (2011) Disruption of circadian rhythms: a crucial factor in the etiology of depression. Depression Res Treatment 1–9. https://doi.org/10.1155/2011/839743

  • Sasaki N, Gusain P, Hayano M, Sugaya T, Tonegawa N, Hatanaka Y, Tamura R, Okuyama K, Osada H, Ban N, Mitsukura Y, Lang RA, Mimura M, Tsubota K (2021) Violet light modulates the central nervous system to regulate memory and mood. bioRxiv. https://doi.org/10.1101/2021.11.02.466604

  • Scammell TE (2015) Narcolepsy. In: Campion EW (ed). N Eng J Med 373(27):2654–2662. https://doi.org/10.1056/NEJMra1500587

  • Sharma R, Sahota P, Thakkar MM (2018) Melatonin promotes sleep in mice byinhibiting orexin neurons in the perifornical lateral hypothalamus. J Pineal Res 65(2):0–1. https://doi.org/10.1111/jpi.12498

  • Sinclair RC, Mark MM, Clore GL (1994) Mood-related persuasion depends on (mis)attributions. Soc Cogn 12(4):309–326. https://doi.org/10.1521/soco.1994.12.4.309

    Google Scholar 

  • Sloane PD, Williams CS, Mitchell CM, Preisser JS, Wood W, Barrick AL, Hickman SE, Gill KS, Connell BR, Edinger J, Zimmerman S (2007) High-intensity environmental light in dementia: effect on sleep and activity. J Am Geriatr Soc 55(10):1524–1533. https://doi.org/10.1111/j.1532-5415.2007.01358.x

    Google Scholar 

  • Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM (2017) Exposure to short photoperiod regime reduces ventral subicular lesion-induced anxiety-like behavior in Wistar rats. Physiol Behav 170:124–132. https://doi.org/10.1016/j.physbeh.2016.11.040

  • Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM (2020) Short photoperiod restores ventral subicular lesion-induced deficits in affective and socio-cognitive behavior in male Wistar rats. J Neurosci Res 98(6):1114–1136. https://doi.org/10.1002/jnr.24601

  • Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM (2021) Exposure to short photoperiod regime restores spatial cognition in ventral subicular lesioned rats: potential role of hippocampal plasticity, glucocorticoid receptors, and neurogenesis. Mole Neurobiol 58(9):4437–4459. https://doi.org/10.1007/s12035-021-02409-7

  • Tal-Krivisky K, Kronfeld-Schor N, Einat H (2015) Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes. Physiol Behav 151(April 2016):441–447. https://doi.org/10.1016/j.physbeh.2015.08.002

  • Terman M, Terman JS (2005) Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectrums 10(8):647–663; quiz 672. https://doi.org/10.1017/S1092852900019611

  • Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61(2):162–176. https://doi.org/10.1124/pr.109.001321

    Google Scholar 

  • Tuma J, Strubbe JH, Mocaër E, Koolhaas JM (2005) Anxiolytic-like action of the antidepressant agomelatine (S 20098) after a social defeat requires the integrity of the SCN. Eur Neuropsychopharmacol 15(5):545–555. https://doi.org/10.1016/j.euroneuro.2005.02.004

    Google Scholar 

  • Vandewalle G, Balteau E, Phillips C, Degueldre C, Moreau V, Sterpenich V, Albouy G, Darsaud A, Desseilles M, Dang-Vu TT, Peigneux P, Luxen A, Dijk DJ, Maquet P (2006) Daytime light exposure dynamically enhances brain responses. Curr Biol 16(16):1616–1621. https://doi.org/10.1016/j.cub.2006.06.031

    Google Scholar 

  • Voderholzer U, Fiebich BL, Dersch R, Feige B, Piosczyk H, Kopasz M, Riemann D, Lieb K (2012) Effects of sleep deprivation on nocturnal cytokine concentrations in depressed patients and healthy control subjects. J Neuropsychiatry Clin Neurosci 24(3):354–366. https://doi.org/10.1176/appi.neuropsych.11060142

    Google Scholar 

  • Walton JC, Pyter LM, Weil ZM, Nelson RJ (2012a) Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus). PLoS ONE 7(8). https://doi.org/10.1371/journal.pone.0042743

  • Walton JC, Haim A, Spieldenner JM, Nelson RJ (2012b) Photoperiod alters fear responses and basolateral amygdala neuronal spine density in white-footed mice (Peromyscus leucopus). Behav Brain Res 233(2):345–350. https://doi.org/10.1016/j.bbr.2012.05.033

  • Walton JC, Aubrecht TG, Weil ZM, Leuner B, Nelson RJ (2014) Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus). Eur J Neurosci 40(4):2674–2679. https://doi.org/10.1111/ejn.12626

    Google Scholar 

  • Wang HB, Whittaker DS, Truong D, Mulji AK, Ghiani CA, Loh DH, Colwell CS (2017) Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington’s disease. Neurobiol Sleep Circadian Rhythm 2:39–52. https://doi.org/10.1016/j.nbscr.2016.12.002

    Google Scholar 

  • Willis GL, Turner EJD (2007) Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int 24(3):521–537. https://doi.org/10.1080/07420520701420717

    Google Scholar 

  • Yamadera H, Ito T, Suzuki H, Asayama K, Ito R, Endo S (2000) Effects of bright light on cognitive and sleep-wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiatry Clin Neurosci 54(3):352–353. https://doi.org/10.1046/j.1440-1819.2000.00711.x

    Google Scholar 

  • Yan L, Smale L, Nunez AA (2018) Circadian and photic modulation of daily rhythms in diurnal mammals. Eur J Neurosci 51(1):551–566. https://doi.org/10.1111/ejn.14172

    Google Scholar 

  • Yan L, Lonstein JS, Nunez AA (2019) Light as a modulator of emotion and cognition: lessons learned from studying a diurnal rodent. Hormones Behav 111:78–86. https://doi.org/10.1016/j.yhbeh.2018.09.003

    Google Scholar 

  • Young JW, Cope ZA, Romoli B, Schrurs E, Aniek J, van Enkhuizen J, Sharp RF, Dulcis D (2018) Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology 43:1721–1731. https://doi.org/10.1038/s41386-018-0031-y

    Google Scholar 

  • Zhu H, Wang N, Yao L, Chen Q, Zhang R, Qian J, Hou Y, Guo W, Fan S, Liu S, Zhao Q, Du F, Zuo X, Guo Y, Xu Y, Li J, Xue T, Zhong K, Song X, Huang G, Xiong W (2018) Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell 173(7):1716-1727.e17. https://doi.org/10.1016/j.cell.2018.04.014

    Google Scholar 

Download references

Acknowledgments

The study was funded by Science and Engineering Research Board (SERB), New Delhi (EMR/2017/001237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bindu M. Kutty .

Editor information

Editors and Affiliations

Ethics declarations

All experimental protocols were approved by the Institute Animal Ethics Committee (AEC/66/403/N.P.) following the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, at the National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subhadeep, D., Srikumar, B.N., Shankaranarayana Rao, B.S., Kutty, B.M. (2023). Circadian Rhythm Manipulations: Implications on Behavioral Restoration in Central Nervous System Insults. In: Jagota, A. (eds) Sleep and Clocks in Aging and Longevity. Healthy Ageing and Longevity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-22468-3_16

Download citation

Publish with us

Policies and ethics