
Case Study on Verification-Witness Validators:

Where We Are and Where We Go

Dirk Beyer1 and Jan Strejček2

1 LMU Munich, Munich, Germany
2 Masaryk University, Brno, Czechia

Abstract. Software-verification tools sometimes produce incorrect an-
swers, which can be a false alarm or a wrong claim of correctness. To
increase the reliability of verification results,manyverifiersnowaccompany
their answers by witnesses in an interoperable standard format. There
exist witness validators that can examine the witnesses and potentially
confirm the verification results. This case study analyzes the quality of
existing witness validators for C programs using the witnesses produced by
a wide variety of 40 verification tools that participated in SV-COMP 2022.
In particular, we show that many witness validators sometimes confirm
witnesses that are invalid. To remedy this situation, we suggest some
advances in witness validation, including a regular comparative evaluation
of validators. Our suggestions were recently adopted by the SV-COMP
community for the next edition of the competition.

Keywords: Software verification ·Programanalysis ·Software validation ·
Software bugs · Verification witnesses · Evaluation · Benchmarking

1 Introduction

There are now many tools for verification of computer programs, but as far as
we know, none of them claims to always produce correct results. The results of
the Competition on Software Verification (SV-COMP) show that out of the 57
verifiers participating in the main category called Overall in the last five years
(there were 10, 13, 11, 10, and 13 participants in this category in years 2018–2022,
respectively), only four provide no incorrect results, namely Ultimate Kojak in
2018,CPA-Seq andSymbiotic in 2019, andGoblint in 2022.Moreover, commu-
nication with industrial developers reveals that even a relatively small portion of
incorrect results can devaluate credibility of a verification tool. As a solution, many
verifiers now accompany their verification results by some evidence in the form of
verification witnesses. These verification witnesses can be independently analyzed
and potentially confirmed by witness validators. Industrial developers can use
witness validation to triage the verification results: the results with unconfirmed
witnesses are ignored and attention is focused on the confirmed ones.

Independent validation of verificationwitnesses is possible thanks to amachine-
readable exchange format for witnesses. The first such format [11] was introduced
in 2015. It supported only violation witnesses (also called counterexamples)

c© The Author(s) 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 160–174, 2022.
https://doi.org/10.1007/978-3-031-22308-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22308-2_8&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-031-22308-2_8

Case Study on Verification-Witness Validators 161

produced when a verifier reports that a given program violates a considered
safety specification. The authors of this format also extended the verification
tools CPAchecker and Ultimate Automizer to support validation of these
witnesses. In 2016, the format was extended to accommodate also witnesses
for the cases when a verifier decides that a given program satisfies a given
specification [9]. Such witnesses are called correctness witnesses, and they should
contain some hints for the proof of program correctness. In the same year, the two
mentioned tools were extended to support validation of correctness witnesses as
well. In 2018, a new (execution-based) approach for checking of violation witnesses
was introduced and implemented in tools CPA-witness2test and FShell-

witness2test [12]. Another two witness validators called MetaVal [14] and
NitWit [21] were introduced in 2020, followed by validators Dartgnan [19] and
Symbiotic-Witch [1] introduced in 2022. The evolution of the witness format
and validators is driven by the SV-COMP community. Since SV-COMP 2021,
the competition rewards with points only the verification results with witnesses
confirmed by at least one witness validator (with the exception of several categories
for which witness confirmation is not required for correctness witnesses due to
unavailability of suitable witness validators).

The witness format [10,11] is based on GraphML. Each witness contains
information about the corresponding verification task (in particular, the program
and the specification) and the verification result it witnesses. The main part of the
witness resembles an automaton decorated with additional information. Hence, we
talk about witness automata. A violation witness automaton represents a set of
program paths and it is valid if at least one of these paths is feasible and violates
the considered specification. Figure 1 provides an example of a C program that
violates the specification that function reach_error is never called, and three
different violation witnesses. In general, a violation witness automaton describes
a set of program paths by specifying passed program locations (depicted by line
numbers on edges), called functions, takenbranches, constraints on variable values,
etc. Each violation witness automaton has to contain at least one error state
representing a specification violation (depicted in red). Further, it can also contain
sink states (depicted in blue) saying that the represented paths violating the
specification are elsewhere. A witness can represent a single program path by
specifying all program inputs (as in Fig. 1b), it can say nothing about input values
and prescribe taken branches (as in Fig. 1c), or it can combine some branching
information with restrictions on input values (as in Fig. 1d).

A correctness witness automaton represents program invariants and it is
valid if all these invariants hold and the corresponding program satisfies the
considered specification. Ideally, a correctness witness contains a minimal set
of invariants implying that the program satisfies the specification. Figure 2
shows a fixed version of the C program (see the rectangle), which can be proven
correct, and the correctness witness shows invariants (depicted in green) that
help to re-establish the proof of correctness.

The examples of witnesses are adopted from literature [10] which provides
their detailed description: in Sect. 4.2, Examples 7 and 8 explain the violation

162 Dirk Beyer and Jan Strejček

Fig. 1. Example C program with a bug (a) and violation witnesses for it: with test
values (b), with branching information (c) and with intervals (d); taken from [10]

Case Study on Verification-Witness Validators 163

Fig. 2. Corrected C program (a) and a correctness witness for it (b); the only difference
to Fig. 1a is the corrected type in line 9 (highlighted); taken from [10]

witnesses (pages 21–27), and in Sect. 4.3., Example 9 explains the correctness
witness (pages 31–33). The witness format admits also trivial witnesses that
provide no useful information. A trivial violation witness represents all program
paths and a trivial correctness witness provides no invariant. Validation of a
trivial witness is as hard as the original verification task.

Overview and Outline. A witness validator is given a witness and the corre-
sponding verification task, and it aims at confirming the verification result by prov-
ing that the witness is valid.1 On one side, the addition of the witness-validation
step to the verificationprocess increases the reliability of the confirmed verification
results. On the other side, the reliability of witness validators is not challenged
or even properly studied. As validators are often implemented using the same
techniques as their corresponding verifiers (and by the same development teams),
it is reasonable to expect that they also sometimes produce incorrect results.

In Sect. 2, we focus on the first goal of this paper, namely to evaluate
the performance and reliability of current witness validators for C programs.2

There are currently 8 such validators which can be divided into several cate-
gories according to their approach.

1 Note that the current SV-COMP rules use the term invalid for witnesses that are not
syntactically correct. In our case study, we ignore such witnesses as they can be filtered out
by WitnessLint (https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint).

2 There are only very few validators that support other languages. We know only about
GWit [18] and Wit4Java [20] for Java programs.

https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint

164 Dirk Beyer and Jan Strejček

– CPAchecker [11], MetaVal [14], and Ultimate Automizer [11] create
a product of a witness automaton and the original program and analyze
it. A violation witness is confirmed if the product exhibits the specification
violation described by the witness. A correctness witness is confirmed if
the product satisfies the specification and the invariants in the witness are
valid (cf. [16], Sect. 4.3).

– CPA-witness2test[12],CProver-witness2test(originallycalledFShell-

witness2test) [12], and NitWit [21] can handle only violation witnesses.
They derive a single test from a given witness automaton and execute it. The
witness is confirmed if the execution violates the considered specification.

– Symbiotic-Witch [1] can process also only violation witnesses. It performs
symbolic execution of the given program and tracks the corresponding set
of states in the witness automaton. A witness is confirmed if the symbolic
execution violates the considered specification and the tracked set contains
an error state of the witness automaton.

– Dartgnan [19] is a bounded model checker for parallel programs, which has
been extended with the ability to analyze violation witnesses. It transforms
the violation witness and the program into an SMT query, and it confirms
the witness if the query is satisfiable.

We evaluate the validators on witnesses produced in SV-COMP 2022. As
various validators support different specifications and program features, they
are applicable only to witnesses created for verification tasks of selected SV-
COMP categories. Verification tasks with C programs are currently divided into
6 main categories, which can be roughly characterized as follows.

– ReachSafety contains sequential programs that should be checked for unreach-
ability of a given error function.

– MemSafety consists of sequential programs that should be checked to contain
no invalid dereference, no invalid deallocation, and no memory leaks.

– ConcurrencySafety contains parallel programs that should be checked for
unreachability of a given error function.

– NoOverflows collects sequential programs that should contain no overflow of
a signed integer.

– Termination consists of sequential programs that should be checked to have
no infinite execution.

– SoftwareSystems collects more complex programs that are usually a part of
real software projects and they should be checked for specifications described
in ReachSafety, MemSafety, or NoOverflows.

The applicability of the considered validators to violation and correctness
witnesses of individual SV-COMP categories is summarized in Table 1. Please
note that even if the table indicates that a certain validator is applicable to
violation or correctness witnesses of a certain category, it does not mean that the
validator can handle all such witnesses of this category (for example, a validator
may not support a specific feature of some programs).

Verification tasks in SV-COMP are labelled with expected verification re-
sults. We consider the labelling with expected results as highly reliable due

Case Study on Verification-Witness Validators 165

Table 1. Applicability of validators to violation and correctness witnesses from
individual SV-COMP categories; some validator names are abbreviated

violation-witness validators correctness-
witness

validators

Category C
P
A

c
h
e
c
k
e
r

[1
1]

C
P
A

-
w

2
t

[1
2]

C
P
r
o
v
e
r
-
w

2
t

[1
2]

D
a
r
t
g
n
a
n

[1
9]

M
e
t
a
V
a
l

[1
4]

N
it

W
it

[2
1]

U
A

u
t
o
m
iz

e
r

[1
1]

S
y
m
b
io

t
ic

-
W

it
c
h

[1
]

C
P
A

c
h
e
c
k
e
r

[9
]

M
e
t
a
V
a
l

[1
4]

U
A

u
t
o
m
iz

e
r

[9
]

ReachSafety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MemSafety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ConcurrencySafety ✓ ✓

NoOverflows ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Termination ✓ ✓ ✓

SoftwareSystems ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

to the following penalty mechanism of SV-COMP and competitiveness of its
community. In SV-COMP, if a verifier produces an incorrect result (i.e., the
opposite to the expected one), it immediately gets many penalty points. If the
authors of the verifier are confident that the result is correct, they can (and often
do) challenge the expected result. The verification task is then discussed and
potentially relabelled.3 Unfortunately, there is no set of witnesses labelled as
valid or invalid, and we cannot safely assume that all witnesses accompanying
correct verification results are valid. In fact, there are known cases of correct
verification results accompanied by invalid witnesses. For example, this is the
case of some violation witnesses produced by Symbiotic 9 for some MemSafety
benchmarks [17]. However,when a verifier produces an incorrect verification result,
the corresponding witness has to be invalid. In our experiments, we apply the
existing witness validators on all relevant witnesses of both correct and incorrect
verification results computed in SV-COMP2022.

Section 3 is devoted to the second goal of this paper: to initiate qualita-
tive improvement of witness validators. In particular, we suggest extending the
semantics of possible validator outcomes and we propose a formula for evaluat-
ing validators. Our suggestions have been recently accepted by the SV-COMP
community and a new competition track for witness validators has been an-
nounced starting from SV-COMP2023.

Related Work. Existing papers on witness validators typically present only
the confirmation rates of considered validators on the set of witnesses accom-
panying correct verification results, which are implicitly assumed to be valid

3 For example, see Merge Request 1336 of the SV-Benchmarks repository.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1336
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

166 Dirk Beyer and Jan Strejček

witnesses [10,14,19,21]. Evaluation of validators on invalid witnesses accompa-
nying incorrect verification results has been previously done only twice: in 2015
for a limited set of invalid violation witnesses and the initial versions of witness
validators CPAchecker and Ultimate Automizer [11] and in 2018 for a
larger set of invalid violation witnesses and initial versions of witness validators
CPA-witness2test and CProver-witness2test and then-current versions of
CPAchecker and Ultimate Automizer [12]. In contrast, we consider invalid
verification witnesses for both violation and correctness results and all 8 currently
available witness validators in their versions used in SV-COMP2022.

More information about witnesses and their validation in the context of SV-
COMP can be found in regular competition reports [5,6]. There is also a study [4]
on violation and correctness witnesses produced in SV-COMP 2019.

2 Evaluation

We would like to investigate the state of the art of witness validation. There-
fore, we take a large set of 158 848 known syntactically correct witnesses from
SV-COMP2022 and validate all those witnesses using all available witness val-
idators for C programs and report the results.

Execution Environment. We executed all experiments on a cluster with 167
machines, each with a CPU of type Intel Xeon E3-1230 v5, 3.4GHz, with 8 pro-
cessing units (virtual cores), 33GB RAM, operating system Ubuntu 20.04 (Linux
5.4.0-94-generic). Each validation run (execution of one validator on one verifi-
cation task and witness) was limited to 2 processing units, 7 GB memory, and
900 s of CPU time for correctness validators and 90 s of CPU time for violation
validators. We chose this configuration because it was used in SV-COMP2022. In
order to ensure reliable measurement and control of the computing resources and
isolation of processes, we used the benchmarking framework BenchExec [13].

Evaluated Validators. In this evaluation,we consider all eightwitness validators
for C programs that participated in SV-COMP2022. Table 1 lists the validators
and the categories for which they can validate witnesses.

Data Set and Benchmark. The witnesses and the verification tasks (program
and specification) are taken from the data set of SV-COMP2022 at Zenodo [8].
SV-COMP organizes the verification tasks with C programs into six categories.We
take all witnesses produced for these tasks by all participating verification tools.
Then we remove the witnesses for which WitnessLint produced an exception.
Exceptions are typically caused by syntax problems or too large witness files.

We classify each violation witness for a correct program as invalid (because
the competition classified the result of the verifier as false alarm), and we classify
each correctness witness for a buggy program as invalid (because the competition
classified the result of the verifier aswrong claimof correctness).All otherwitnesses
are classified as valid∗, because they do not contradict the expected result. We use
the term valid∗ with asterisk because there are witnesses that do not contradict
the expected result but are still invalid (e.g., there can be a violation witness

https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint

Case Study on Verification-Witness Validators 167

Table 2. Validation of violation witnesses by eight violation validators; the numbers
are hyperlinked to the tables generated by BenchExec

Category W
it
n
es

se
s

C
P
A

c
h
e
c
k
e
r

C
P
A

-
w

2
t

C
P
r
o
v
e
r
-
w

2
t

D
a
r
t
g
n
a
n

M
e
t
a
V
a
l

N
it

W
it

S
y
m
b
io

t
ic

-
W

it
c
h

U
A

u
t
o
m
iz

e
r

ReachSafety

valid∗
26 797 14 908 8628 14 168 – 0 15 507 11 176 8592

invalid 5177 28 12 2 – 0 10 0 0

MemSafety

valid∗
16 984 12 594 231 954 – 116 – 8394 4197

invalid 2804 0 0 26 – 2 – 0 0

ConcurrencySafety

valid∗
4746 2700 – – 1464 – – – –

invalid 1293 40 – – 0 – – – –

NoOverflows

valid∗
2808 2334 887 1436 – 1982 – 2609 2468

invalid 167 0 0 0 – 0 – 0 0

Termination

valid∗
3652 2580 – – – 598 – – 960

invalid 56 21 – – – 0 – – 0

SoftwareSystems

valid∗
2102 621 6 33 – 0 0 179 26

invalid 5903 5 0 27 – 0 0 51 4

representing no feasible path violating the considered specification, even if such a
path exists). However, there is currently no reliable way to automatically identify
invalid witnesses that do not contradict the expected result. Tables 2 and 3 report
in column ‘Witnesses’ the number of valid∗ and invalid witnesses for each category.

Results. We report the results of our validation experiments in two tables.
The results on violation witnesses are presented in Table 2 and the results on
correctness witnesses in Table 3. For each category and validator, row ‘valid∗’
reports the number of valid∗ witnesses confirmed by the validator, and row
‘invalid’ reports the number of invalid witnesses erroneously confirmed by the
validator. Due to the source of invalid witnesses described above, each erroneous
confirmation of an invalid witness here means that the validator either confirmed
a violation witness, but the program does not violate the specification, or it
confirmed a correctness witness, but the program does violate the specification.
In the following we highlight a few observations revealed by the results.

https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_dartagnan-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_dartagnan-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_SoftwareSystems.table.html

168 Dirk Beyer and Jan Strejček

Table 3. Validation of correctness witnesses by three correctness validators; the
numbers are hyperlinked to the tables generated by BenchExec

Category Witnesses CPAchecker MetaVal UAutomizer

ReachSafety

valid∗
31 013 17 312 19 655 19 632

invalid 894 0 315 3

MemSafety

valid∗
16 948 – 227 14 384

invalid 326 – 0 0

ConcurrencySafety

valid∗
3177 – – –

invalid 389 – – –

NoOverflows

valid∗
2089 1718 1608 1713

invalid 300 0 36 0

Termination

valid∗
4502 – – –

invalid 14 – – –

SoftwareSystems

valid∗
25 819 6771 20 624 19 343

invalid 888 0 403 0

Soundness of validators. There is only one validator, namely Dartgnan, that
does not confirm any invalid violation witness. The validator participated only in
category ConcurrencySafety as it is specialized in parallel programs (Table 2).
CPAchecker does not confirm any invalid correctness witness (Table 3).

There seems to be a particularly difficult category. The category SoftwareSystems
has a large number of invalid violation witnesses (Table 2, ‘Witnesses’ column).
This means that in this category, many verification runs report a false alarm
for a correct program, accompanied by an invalid violation witness. The vi-
olation witnesses in this category seem to be difficult for validation, as only
CPAchecker confirmed more than 10 % of valid∗ violation witnesses. Moreover,
all validators that confirmed at least ten valid∗ violation witnesses confirmed
also some invalid violation witnesses.

Our evaluation revealed technical problems. The validator MetaVal does
not confirm any violation witness (Table 2) in categories ReachSafety and
SoftwareSystems and confirms a large number of invalid correctness witnesses
(Table 3) in these categories. The reason for those incorrect validation results
is that the validator was not adapted to a new rule of SV-COMP that was
introduced for SV-COMP2021: All verification tasks in those categories were
changed to using a new logic to encode invalid function calls. Other specifi-
cations are not affected by this change.

https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_SoftwareSystems.table.html

Case Study on Verification-Witness Validators 169

Summary. Most of the invalid witnesses that were incorrectly confirmed were due
to bugs in validators. The conclusion is that the quality of validators should be
increased by establishing means to stimulate the inspection and quality control
of validation tools. A competition track for validators suggested in the following
section could help drawing the attention of developers to inspecting results of
validators. Currently, SV-COMP uses validators for confirmation of verification
results, but does not evaluate the quality of their results.

Threats to Validity. Regarding internal validity, the main threat to our results is
that we rely on the expected results for verification tasks. If those were incorrectly
specified, our classification of validator results would also be incorrect. But the
verification tasks in the benchmark collection that we use are actively maintained
by the community and the participating teams inspected the results of their
verifiers. The 33 actively participating teams in SV-COMP 2022 have approved
the results of their verifiers before the results were published.

For executing the experiments, we used the publicly-available benchmarking
framework BenchExec [13], which gives us access to the modern features of
the Linux kernel for controling the resources and for isolating executions. This
framework is used by several competitions and is actively maintained. For job
distribution on the cluster we use VerifierCloud, which is also used by several
competitions and research groups for their lab work. It is unlikely that a bug
in the benchmarking infrastructure causes wrong results.

Regarding external validity, our results are specific to witness validators for the
programming language C, because this is the only language for which a large set of
verification and validation tools exist. The first two validators [18,20] for Java were
introduced for SV-COMP 2022. Further, our results are specific to validators that
participated in SV-COMP and to the verification tasks from the SV-Benchmarks
collection. We are not aware of any validators besides those participating in the
competition, and we are not aware of a benchmark that is better suited for the
evaluation than what is used by the competition. Therefore, we assume that our
results are still significant because SV-COMP is comprehensive.

3 Suggestions for Advances in Witness Validation

Extended Semantics of Validator Outcomes. Possible validator answers
recognized by SV-COMP are the same as possible answers of verifiers, which are

– false, meaning that the given program violates the given specification and a
violation witness was generated,

– true, meaning that the given program satisfies the given specification and a
correctness witness was generated, and

– unknown, meaning that the verifier was unable to decide.

The interpretation of a witness-validator answer depends on the kind of the
analyzed witness. A violation witness is confirmed if a validator outputs false.
All other answers (including true and unknown) mean that the witness is not con-
firmed by this validator. Similarly, a correctness witness is confirmed if a validator

170 Dirk Beyer and Jan Strejček

outputs true and all other answers mean that the validator did not confirm the
witness. In other words, even if a validator has the confidence to say that some
witness is invalid, the competition rules give it the same semantics as unknown. As
a consequence, there is no difference between witnesses that are not confirmed due
to insufficient power of validators and those that were refuted by some validators.

We suggest to explicitly state the semantics of a validator output as follows.
On violation witnesses, a validator should produce

– false to confirm that there exists a program execution represented by the
witness such that it violates the considered specification,

– true to refute the witness as there is no program execution represented by
the witness that violates the considered specification, or

– unknown to indicate that it is unable to decide.

On correctness witnesses, a validator produces

– false to refute the witness as there exists some execution violating the
considered specification or some invariant given in the witness,

– true to confirm the witness as the validator can prove that the program
satisfies the considered specification with help of the invariants given in the
witness and that all invariants given in the witness are valid, or

– unknown to indicate that it is unable to decide.

Evaluation of Validators. One can find many areas of computer science (e.g.,
SMT solving), where some kind of competition or regular evaluation led to a
rapid improvement of the state of the art. With this motivation, we suggest to
extend SV-COMP with a comparative evaluation of witness validators, and we
propose the following scoring schema for this evaluation.

Assume that we are given a witness validator, a set of valid∗ witnesses, and
a set of invalid witnesses. Our scoring schema is inspired by the established
scoring schema for evaluating verifiers in SV-COMP. The community agreed that
showing that a system satisfies a given specification deserves more credit than
showing that the specification is violated. Hence, SV-COMP rewards correct (and
confirmed) answers truewith 2 points and correct (and confirmed) answers false
with 1 point. The penalty factor for incorrect answers is −16, which means that
incorrect true yields −32 points and incorrect false −16 points.

The proposed scoring schema for validators is depicted in Fig. 3. We first
describe the scores for invalid violation witnesses (the right side of the figure).
Refutation of an invalid witness is rewarded with 2 points as it means to decide
that all program paths represented by the witness satisfy the specification, which
is an analogy to showing that a program satisfies its specification. Refutation
of an invalid correctness witness is rewarded with 1 point as it corresponds to
finding a violation of the specification or some invariant given in the witness.
Confirmation of an invalid witness yields the penalty p for a violation witness and
2p for a correctness witness, where p is the penalty factor (with p < 0). Points and
penalties for invalid witnesses are accumulated in pinvalid. The proposed scores for
valid∗ witnesses (the left side of the figure) reflect the fact that these witnesses

Case Study on Verification-Witness Validators 171

witness

validator

validator

validator

validator

0

0

1

0

2

0

0

2

1p

0

2p

1

valid∗ invalid

violation

correctness

violation

correctness

unknown

true

false

unknown

true

false

unknown

true

false

unknown

true

false

points for pvalid
∗ points for pinvalid

Fig. 3. Proposed scoring schema for evaluation of validators (with p < 0)

are only assumed to be valid and some of them can be actually invalid. Hence,
we suggest to reward only confirmation of valid∗ witnesses: 2 points for each
confirmed correctness witness and 1 point for each confirmed violation witness.
Points for valid∗ witnesses are accumulated in pvalid∗ .

One can observe in Tables 2 and 3 that the number of incorrect witnesses
is typically one or two orders of magnitude lower than the number of valid∗

witnesses and this disbalance is assumed to increase if verifiers produce less
incorrect verification results. Further, the pinvalid deserves a higher impact than
pvalid∗ as we do not really know whether valid∗ witnesses are indeed valid. Hence,
we propose to compute the score as the sum

score =
pvalid∗

|valid∗|
+ q ·

pinvalid

|invalid|

where the points in pvalid∗ and pinvalid are normalized by the cardinality of the
corresponding witness sets and pinvalid is given a higher weight using the factor q.

We suggest to compute the validator scores separately for witnesses of each
category. The overall score of a validator can be computed by the normalization
used in SV-COMP to compute the overall scores of verifiers (see [3], page 597).

Our proposal of a comparative evaluation of witness validators based on the
scoring schema above was presented and discussed at the SV-COMP community
meeting on April 7, 2022.The community decided to establish a witness-validation
track from SV-COMP 2023 onwards. The community further decided to use the
suggested scoring schema and set the parameters to p = −16 and q = 2.

172 Dirk Beyer and Jan Strejček

4 Conclusion

Verification tools are complicated software systems, which naturally contain con-
ceptual and programming mistakes. Therefore, it is imperative to apply validators
to ensure that a verification engineer is not bothered with incorrect verification
results. Our case study investigates the correctness of witness validators, in partic-
ular, how many invalid witnesses are confirmed by validators. The results indicate
that there is room for improvement of the validators. We initiated the extension
of SV-COMP by a comparative evaluation of witness validators that will utilize
the full set of validator answers and use the presented scoring schema for ranking
validators. If there is an incentive, then there will be improvement, as is shown
by the enormous success of competitions in the field of formal methods [2].

Data-Availability Statement. Our experiments are based on publicly available
data sets from SV-COMP2022, where a large number of verification tasks [7] was
executed and a large number of verification witnesses [8] was produced. The wit-
ness format is maintained in a GitHub repository: https://github.com/sosy-lab/sv-
witnesses/tree/svcomp22/. Our experimental results are available on a supplementary
web page (https://sv-comp.sosy-lab.org/2022/results/validators/) as tables produced
by BenchExec [13] (also linked to from Tables 2 and 3). The log output is available
by clicking on the status of a result in the tables. All experimental results (raw data,
tables) and scripts are available in our reproduction package [15].

References

1. Ayaziová, P., Chalupa, M., Strejček, J.: Symbiotic-Witch: A Klee-based violation
witness checker (competition contribution). In: Proc. TACAS (2). pp. 468–473.
LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_33

2. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sut-
cliffe, G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions
in formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

3. Beyer, D.: Second competition on software verification (Summary of SV-COMP
2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_43

4. Beyer, D.: A data set of program invariants and error paths. In: Proc. MSR. pp.
111–115. IEEE (2019). https://doi.org/10.1109/MSR.2019.00026

5. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021).
In: Proc. TACAS (2). pp. 401–422. LNCS 12652, Springer (2021). https://doi.org/
10.1007/978-3-030-72013-1_24

6. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS
(2). pp. 375–402. LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-
99527-0_20

7. Beyer, D.: SV-Benchmarks: Benchmark set for software verification and testing
(SV-COMP 2022 and Test-Comp 2022). Zenodo (2022). https://doi.org/10.5281/
zenodo.5831003

https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/
https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/
https://sv-comp.sosy-lab.org/2022/results/validators/
https://doi.org/10.1007/978-3-030-99527-0_33
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1109/MSR.2019.00026
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003

Case Study on Verification-Witness Validators 173

8. Beyer, D.: Verification witnesses from verification tools (SV-COMP 2022). Zenodo
(2022). https://doi.org/10.5281/zenodo.5838498

9. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23. LNCS
10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

13. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/
10.1007/s10009-017-0469-y

14. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/978-3-
030-53291-8_10

15. Beyer, D., Strejček, J.: Reproduction package for article ‘case study on verification-
witness validators: Where we are and where we go’. Zenodo (2022). https://doi.org/
10.5281/zenodo.7096382

16. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

17. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zaoral, L., Strejček, J.: Symbiotic

9: String analysis and backward symbolic execution with loop folding (competition
contribution). In: Proc. TACAS (2). pp. 462–467. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_32

18. Howar, F., Mues, M.: GWit (competition contribution). In: Proc. TACAS (2). pp.
446–450. LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0_29

19. Ponce-De-Leon, H., Haas, T., Meyer, R.: Dartagnan: Smt-based violation witness
validation (competition contribution). In: Proc. TACAS (2). pp. 418–423. LNCS
13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_29

20. Wu, T., Schrammel, P., Cordeiro, L.: Wit4Java: A violation-witness validator for
Java verifiers (competition contribution). In: Proc. TACAS (2). pp. 484–489. LNCS
13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_36

21. J. Švejda, Berger, P., Katoen, J.P.: Interpretation-based violation witness valida-
tion for C: NitWit. In: Proc. TACAS. pp. 40–57. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_3

https://doi.org/10.5281/zenodo.5838498
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.5281/zenodo.7096382
https://doi.org/10.5281/zenodo.7096382
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_29
https://doi.org/10.1007/978-3-030-99527-0_29
https://doi.org/10.1007/978-3-030-99527-0_29
https://doi.org/10.1007/978-3-030-99527-0_36
https://doi.org/10.1007/978-3-030-45190-5_3

174 Dirk Beyer and Jan Strejček

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Case Study on Verification-Witness Validators: Where We Are and Where We Go
	1 Introduction
	2 Evaluation
	3 Suggestions for Advances in Witness Validation
	4 Conclusion
	References

