Skip to main content

Buffalo Embryo Production

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 59

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 59))

Abstract

The domestic buffalo, Bubalus bubalis, has gained an increasing demand for in vitro embryo production technologies in the last few years for faster propagation of superior germplasm. This demand is explained by the low efficiency of multiple-ovulation, adverse effects of heat stress, less survival rate post-vitrification, not well-defined in vitro culture media, and embryo transfer programs. The early procedures for the buffalo in vitro embryo production were borrowed from the techniques being efficiently used in cattle. The progressive availability of more specific information about the in vitro culture requirements of the buffalo oocyte and embryo has improved the efficiency over the years. Although the figures of in vitro embryo production have attained a rise, which is indicated by competitive embryo yields; pregnancy rate and development to term are still poor. This all emphasizes the demand for the optimization of embryo cryopreservation methods. This chapter reviews in vitro embryo production in buffalo species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6-DMAP:

6-dimethylaminopurine

ACAT2:

Acetyl-CoA Acetyltransferase 2

ACSL4:

Acyl-CoA Synthase 4

BO:

Brackett Oliphant

BSA:

Bovine Serum Albumen

COCs:

Cumulus Oocytes Complexes

CRISPR Cas-9:

Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9

E2:

Estradiol

ER:

Endoplasmic Reticulum

FAOSTAT:

The Food and Agriculture Organization Corporate Statistical Database

FSH:

Follicle-Stimulating Hormone

ICSI:

Intracytoplasmic Sperm Injection

iTRAQ:

isobaric Tag for Relative and Absolute Quantitation

IVC:

In Vitro Culture

IVEP:

In Vitro Embryo Production

IVF:

In Vitro Fertilization

IVM:

In Vitro Maturation

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MEM:

Minimal Essential Medium

MOET:

Multiple Ovulation and Embryo Transfer

MS:

Mass Spectrometry

SCNT:

Somatic Cell Nuclear Transfer

SOF:

Synthetic Oviductal Fluid

TALP:

Tyrode Modified Medium

TCM:

Tissue Culture Medium

TG:

Triglycerides

References

  • Abdelrazik H, Sharma R, Mahfouz R, Agarwal A (2009) L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil Steril 91:589–596

    Article  CAS  Google Scholar 

  • Abdoon AS, Gabler C, Holder C, Kandil OM, Einspanier R (2014) Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology 82:1055–1067

    Article  CAS  Google Scholar 

  • Abe H, Hoshi H (2003) Evaluation of bovine embryos produced in high performance serum-free media. J Reprod Dev 49:193–202

    Article  CAS  Google Scholar 

  • Attanasio L, De Rosa A, De Blasi M, Neglia G, Zicarelli L, Campanile G, Gasparrini B (2010) The influence of cumulus cells during in vitro fertilization of buffalo (Bubalus bubalis) denuded oocytes that have undergone vitrification. Theriogenology 74:1504–1508

    Article  Google Scholar 

  • Baruselli PS, de Carvalho JGS, Elliff FM, da Silva JCB, Chello D, de Carvalho NAT (2020) Embryo transfer in buffalo (Bubalus bubalis). Theriogenology 150:221–228

    Article  CAS  Google Scholar 

  • Bavister BD, Rose-Hellekant TA, Pinnyomminter T (1992) Development of in vitro and matured in vitro fertilized bovine embryos into morula and blastocyst in defined culture media. Theriogenology 37:127–146

    Article  Google Scholar 

  • Bilal MQ, Suleman M, Raziq A (2006) Buffalo: black gold of Pakistan. Livest Res Rural Dev 18:140–151

    Google Scholar 

  • Bongso A, Soon-Chye N, Sathananthan H, Lian NP, Rauff M, Ratnam S (1989) Improved quality of human embryos when co-cultured with human ampullary cells. Hum Reprod 4:706–713

    Article  CAS  Google Scholar 

  • Boni R, Sangella L, Dale B, Rovello S, Di Palo R, Barbieri V (1992) Maturazione in vitro di oociti bufalini: indagine ultrastrutturale. Acta Med Vet 38:153–161

    Google Scholar 

  • Capra E, Lazzari B, Russo M, Kosior MA, Della Valle G, Longobardi V, Stella A, Consiglio AL, Gasparrini B (2020) Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep 10:1–12

    Article  Google Scholar 

  • Carroll J, Depypere H, Matthews C (1990) Freeze–thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen–thawed mouse oocytes. Reproduction 90:547–553

    Article  CAS  Google Scholar 

  • Chauhan MS, Singla SK, Palta P, Manik RS, Madan ML (1998) In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus bubalis) embryos: effects of oocyte quality and type of serum. Reprod Fertil Dev 10:173–177

    Article  CAS  Google Scholar 

  • Chen L, Liu K, Zhao Z, Blair HT, Zhang P, Li D, Ma RZ (2012) Identification of sheep ovary genes potentially associated with off-season reproduction. J Genet Genomics 39:181–190

    Article  Google Scholar 

  • Chen F, Fu Q, Pu L, Zhang P, Huang Y, Hou Z, Xu Z, Chen D, Huang F, Deng T (2018) Integrated analysis of quantitative proteome and transcriptional profiles reveals the dynamic function of maternally expressed proteins after parthenogenetic activation of buffalo oocyte. Mol Cell Proteomics 17:1875–1891

    Article  Google Scholar 

  • Choudhary KK, Kavya KM, Jerome A, Sharma RK (2016) Advances in reproductive biotechnologies. Vet World 9:388–395

    Article  CAS  Google Scholar 

  • Correddu F, Serdino J, Manca MG, Cosenza G, Pauciullo A, Ramunno L, Macciotta NPP (2017) Use of multivariate factor analysis to characterize the fatty acid profile of buffalo milk. J Food Compos Anal 60:25–31

    Article  CAS  Google Scholar 

  • Das GK, Jain GC, Solanki VS, Tripathi VN (1996) Efficacy of various collection methods for oocyte retrieval in buffalo. Theriogenology 46:1403–1411

    Article  Google Scholar 

  • Del Collado M, Saraiva NZ, Lopes FL, Gaspar RC, Padilha LC, Costa RR, Rossi GF, Vantini R, Garcia JM (2016) Influence of bovine serum albumin and fetal bovine serum supplementation during in vitro maturation on lipid and mitochondrial behaviour in oocytes and lipid accumulation in bovine embryos. Reprod Fertil Dev 28:1721–1732

    Article  Google Scholar 

  • Di Francesco S, Novoa MVS, Vecchio D, Neglia G, Boccia L, Campanile G, Zicarelli L, Gasparrini B (2012) Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology 77:148–154

    Article  Google Scholar 

  • Diez C, Heyman Y, Le Bourhis D, Guyader-Joly C, Degrouard J, Renard JP (2001) Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability. Theriogenology 55:923–936

    Article  CAS  Google Scholar 

  • Dominko T, First NL (1997) Timing of meiotic progression in bovine oocytes and its effect on early embryo development. Mol Reprod Dev 47:456–467

    Article  CAS  Google Scholar 

  • Drost M, Wright JM Jr, Cripe WS, Richter AR (1983) Embryo transfer in water buffalo (Bubalus bubalis). Theriogenology 20:579–584

    Article  CAS  Google Scholar 

  • Edwards JL, Saxton AM, Lawrence JL, Payton RR, Dunlap JR (2005) Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J Dairy Sci 88:4326–4333

    Article  CAS  Google Scholar 

  • FAOSTAT (2015) Statistical database of the Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Ferguson E, Leese H (1999) Triglyceride content of bovine oocytes and early embryos. Reproduction 116:373–378

    Article  CAS  Google Scholar 

  • Fernández-Gonzalez R, Moreira P, Bilbao A, Jiménez A, Pérez-Crespo M, Ramírez MA, De Fonseca FR, Pintado B, Gutiérrez-Adán A (2004) Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci 101:5880–5885

    Article  Google Scholar 

  • Fu Q, Huang Y, Wang Z, Chen F, Huang D, Lu Y, Liang X, Zhang M (2016) Proteome profile and quantitative proteomic analysis of buffalo (Bubalusbubalis) follicular fluid during follicle development. Int J Mol Sci 17:618

    Article  Google Scholar 

  • Gasparrini B (2002) In vitro embryo production in buffalo species: state of the art. Theriogenology 57:237–256

    Article  CAS  Google Scholar 

  • Gasparrini B (2019) Effects of reproductive season on embryo development in the buffalo. Reprod Fertil Dev 31(1):68–81

    Article  Google Scholar 

  • Gasparrini B, Boccia L, De Rosa A, Vecchio D, Di Palo R, Zicarelli L (2004a) In vitro fertilization of buffalo (Bubalus bubalis) oocytes: effects of media and sperm motility inducing agents. Reprod Fertil Dev 16:255

    Article  Google Scholar 

  • Gasparrini B, Boccia L, Rosa AD, Palo RD, Campanile G, Zicarelli L (2004b) Chemical activation of buffalo (Bubalus bubalis) oocytes by different methods: effects of aging on post-parthenogenetic development. Theriogenology 62:1627–1637

    Article  CAS  Google Scholar 

  • Gasparrini B, De Rosa A, Attanasio L, Boccia L, Di Palo R, Campanile G, Zicarelli L (2008) Influence of the duration of in vitro maturation and gamete co-incubation on the efficiency of in vitro embryo development in Italian Mediterranean Buffalo (Bubalus bubalis). Anim Reprod Sci 105:354–364

    Article  Google Scholar 

  • George F, Daniaux C, Genicot G, Verhaeghe B, Lambert P, Donnay I (2008) Set up of a serum-free culture system for bovine embryos: embryo development and quality before and after transient transfer. Theriogenology 69:612–623

    Article  CAS  Google Scholar 

  • George A, Shah RA, Sharma R, Palta P, Singla SK, Manik RS, Chauhan MS (2011) Activation of zona-free buffalo (Bubalus bubalis) oocytes by chemical or electrical stimulation, and subsequent parthenogenetic embryo development. Reprod Domest Anim 46:444–447

    Article  CAS  Google Scholar 

  • Goovaerts I, Leroy J, Rizos D, Bermejo-Alvarez P, Gutierrez-Adan A, Jorssen E, Bols P (2011) Single in vitro bovine embryo production: coculture with autologous cumulus cells, developmental competence, embryo quality and gene expression profiles. Theriogenology 76:1293–1303

    Article  CAS  Google Scholar 

  • Held-Hoelker E, Klein SL, Rings F, Salilew-Wondim D, Saeed-Zidane M, Neuhoff C, Tesfaye D, Schellander K, Hoelker M (2017) Cryosurvival of in vitro produced bovine embryos supplemented with l-Carnitine and concurrent reduction of fatty acids. Theriogenology 96:145–152

    Article  CAS  Google Scholar 

  • Heras S, De Coninck DI, Van Poucke M, Goossens K, Pascottini OB, Van Nieuwerburgh F, Deforce D, De Sutter P, Leroy JL, Gutierrez-Adan A (2016) Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genomics 17:1–15

    Article  Google Scholar 

  • Herrler A, Lucas Hann A, Niemann A (1992) Effects of insulin like growth factors-1 on in vitro production of bovine embryos. Theriogenology 37:1213–1224

    Article  CAS  Google Scholar 

  • Holm P, Booth P, Callesen H (2002) Kinetics of early in vitro development of bovine in vivo-and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction (Cambridge, England) 123:553–565

    Article  CAS  Google Scholar 

  • Hussain R, Ullah N, Akhter S (2005) In vitro maturation and vitrification of cattle and buffalo oocytes in different media. Int J Biol Biotechnol 2:455–458

    Google Scholar 

  • Jamil H, Samad HA, Rehman NU, Qureshi ZI, Lodhi LA (2007) In vitro maturation and fertilization of riverine Buffalo follicular oocytes in media supplemented with oestrus Buffalo serum and hormones. Acta Vet Brno 76:399–404

    Article  CAS  Google Scholar 

  • Kim J, Kim J-S, Jeon Y-J, Kim D-W, Yang T-H, Soh Y, Lee HK, Choi N-J, Park S-B, Seo KS (2011) Identification of maturation and protein synthesis related proteins from porcine oocytes during in vitro maturation. Proteome Sci 9:1–12

    Article  CAS  Google Scholar 

  • Kochhar HS, Kochhar KP, Basrur PK, King WA (2003) Influence of the duration of gamete interaction on cleavage, growth rate and sex distribution of in vitro produced bovine embryos. Anim Reprod Sci 77:33–49

    Article  Google Scholar 

  • Konrad J, Clerico G, Garrido MJ, Taminelli G, Yuponi M, Yuponi R, Crudeli G, Sansinena M (2017) Ovum pick-up interval in buffalo (Bubalus bubalis) managed under wetland conditions in Argentina: effect on follicular population, oocyte recovery, and in vitro embryo development. Anim Reprod Sci 183:39–45

    Article  CAS  Google Scholar 

  • Kuch EM, Vellaramkalayil R, Zhang I, Lehnen D, Brugger B, Sreemmel W, Ehehalt R, Poppelreuther M, Fullekrug J (2014) Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of acids towards phosphatidylinositol. Biochim Biophys Acta 1841:227–239

    Article  Google Scholar 

  • Kumar G, Purohit N (2004) Effect of epidermal and insulin like growth factor-1 on cumulus expansion, nuclear maturation and fertilization of buffalo cumulus oocyte complexes in simple serum free media DMEM and Ham’s F-10. Veterinarski Arhiv 74:13–25

    CAS  Google Scholar 

  • Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C (2002) Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod 67:767–775

    Article  CAS  Google Scholar 

  • Li R, Norman RJ, Armstrong DT, Gilchrist RB (2000) Oocyte-secreted factor (s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod 63:839–845

    Article  CAS  Google Scholar 

  • Liang Y, Phermthai T, Nagai T, Somfai T, Parnpai R (2011) In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology 75:1652–1660

    Article  CAS  Google Scholar 

  • Lonergan P, Carolon C, Langendonckt AV, Donway I, Khatri H, Mermillod P (1996) Role of epidermal growth factor in bovine oocyte maturation and pre-implantation embryo development in vitro. Biol Reprod 54:1420–1429

    Article  CAS  Google Scholar 

  • Lonergan P, Khatir H, Piumi F, Rieger D, Humblot P, Boland M (1999) Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. Reproduction 117:159–167

    Article  CAS  Google Scholar 

  • Lorenzo PL, Illera MJ, Illera JC, Illera M (1994) Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in vitro by the addition of epidermal growth factors and insulin-like growth factors. J Reprod Fertil 101:697–701

    Article  CAS  Google Scholar 

  • Madan ML, Chauhan MS, Singla SK, Manik RS (1994) Pregnancies established from water buffalo (Bubalus bubalis) blastocysts derived from in vitro matured, in vitro fertilized oocytes and co-cultured with cumulus and oviductal cells. Theriogenology 42:591–600

    Article  CAS  Google Scholar 

  • Mandawala AA, Harvey SC, Roy TK, Fowler KE (2016) Cryopreservation of animal oocytes and embryos: current progress and future prospects. Theriogenology 86:1637–1644

    Article  CAS  Google Scholar 

  • Mara L, Sanna D, Casu S, Dattena M, Muñoz IM (2014) Blastocyst rate of in vitro embryo production in sheep is affected by season. Zygote 22:366

    Article  CAS  Google Scholar 

  • Marcus SF, Brinsden PR (1996) In-vitro fertilization and embryo transfer in women aged 40 years and over. Hum Reprod Update 2:459–468

    Article  CAS  Google Scholar 

  • Marin DFD, de Souza EB, de Brito VC, Nascimento CV, Ramos AS, Filho STR, da Costa NN, Cordeiro MDS, Santos S, Ohashi OM (2019) In vitro embryo production in buffaloes: from the laboratory to the farm. Anim Reprod 16:260–266

    Article  Google Scholar 

  • Memili E, Peddinti D, Shack L, Nanduri B, McCarthy F, Sagirkaya H, Burgess SC (2007) Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction 133:1107–1120

    Article  CAS  Google Scholar 

  • Merilainen G, Poikela V, Kursula P, Wierenga RK (2009) The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Biochemistry 48:11011–11025

    Article  CAS  Google Scholar 

  • Nandi S, Raghu HM, Ravindranatha BM, Chauhan MS (2002) Production of buffalo (Bubalus bubalis) embryos in vitro: premises and promises. Reprod Domest Anim/Zuchthygiene 37:65–74

    Article  CAS  Google Scholar 

  • Neglia G, Marino M, Di Palo R, Wilding M, Caracciolo di Brienza V, Dale B, Gasparrini B, Zicarelli L (2001) A comparison of in vitro maturation in buffalo (Bubalus Bubalis) and bovine oocytes using confocal microscopy. Theriogenology 55:488

    Google Scholar 

  • Neglia G, Gasparrini B, Caracciolo di Brienza V, Di Palo R, Campanile G, Presicce GA, Zicarelli L (2003) Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology 59:1123–1130

    Article  Google Scholar 

  • Orsi NM, Reischl JB (2007) Mammalian embryo co-culture: trials and tribulations of a misunderstood method. Theriogenology 67:441–458

    Article  CAS  Google Scholar 

  • Pandey S, Bhat IA, Bharti MK, Shabir U, Peer BA, Baiju I, Sonwane A, Chandra V, Kumar GS, Sharma GT (2020) Progesterone modulates adhesion molecules in uterine epithelial cells and in vitro embryo production in buffalo. Reprod Domest Anim 55(7):833–843

    Article  CAS  Google Scholar 

  • Parnpai R, Liang Y, Ketudat-Cairns M, Somfai T, Nagai T (2016) Vitrification of buffalo oocytes and embryos. Theriogenology 86:214–220

    Article  CAS  Google Scholar 

  • Payton RR, Romar R, Coy P, Saxton AM, Lawrence JL, Edwards JL (2004) Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro. Biol Reprod 71:1303–1308

    Article  CAS  Google Scholar 

  • Payton RR, Rispoli LA, Saxton AM, Edwards JL (2011) Impact of heat stress exposure during meiotic maturation on oocyte, surrounding cumulus cell, and embryo RNA populations. J Reprod Dev 57:481–491

    Article  CAS  Google Scholar 

  • Peddinti D, Memili E, Burgess SC (2010) Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction. PLoS One 5:e11240

    Article  Google Scholar 

  • Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C (1997) Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 68:724–726

    Article  CAS  Google Scholar 

  • Powell MD, Manandhar G, Spate L, Sutovsky M, Zimmerman S, Sachdev SC, Hannink M, Prather RS, Sutovsky P (2010) Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Proteomics Clin Appl 4:337–351

    Article  CAS  Google Scholar 

  • Prather RS, Day BN (1998) Practical considerations for the in vitro production of pig embryos. Theriogenology 49:23–32

    Article  CAS  Google Scholar 

  • Pu L, Shahzad Q, Chen F, Yao S, Tang Y, Chen D, Yu K, Xie L, Xu H, Zhang M (2020) Proteomic analysis demonstrates that parthenogenetically activated swamp buffalo embryos have dysregulated energy metabolism. Reprod Domest Anim 55:1764–1773

    Article  CAS  Google Scholar 

  • Rexroad CE Jr (1989) Co-culture of domestic animal embryos. Theriogenology 31:105–114

    Article  Google Scholar 

  • Ross PJ, Beyhan Z, Iager AE, Yoon S-Y, Malcuit C, Schellander K, Fissore RA, Cibelli JB (2008) Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. BMC Dev Biol 8:1–12

    Article  Google Scholar 

  • Sagirkaya H, Yaǧmur M, Zekariya N, Soylu MK (2004) Replacement of Fetal calf serum with synthetic serum substitute in the in vitro maturation medium: effects on maturation, fertilization and subsequent development of cattle oocytes in vitro. Turk J Vet Anim Sci 28:779–784

    Google Scholar 

  • Saliba WP, Gimenes LU, Drumond RM, Bayão HXS, Di Palo R, Gasparrini B, Rubessa M, Baruselli PS, Sales JNS, Bastianetto E, Leite RC (2020) Which factors affect pregnancy until calving and pregnancy loss in Buffalo recipients of in vitro produced embryos? Front Vet Sci 7:945

    Article  Google Scholar 

  • Salomon AK, Leon K, Campbell MM, Young KA (2018) Folliculogenic factors in photoregressed ovaries: differences in mRNA expression in early compared to late follicle development. Gen Comp Endocrinol 260:90–99

    Article  CAS  Google Scholar 

  • Samad HA, Raza A, Rehman NU (1999) Effect of media on in vitro maturation, fertilization and early embryonic development in Nili-Ravi buffaloes. Int J Agric Biol 1:128–130

    Google Scholar 

  • Selokar NL, Sharma P, Saini M, Sheoran S, Rajendran R, Kumar D, Sharma RK, Motiani RK, Kumar P, Jerome A, Khanna S (2019) Successful cloning of a superior buffalo bull. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  • Shah RA, George A, Singh MK, Kumar D, Chauhan MS, Manik R, Palta P, Singla SK (2008) Hand-made cloned buffalo (Bubalus bubalis) embryos: comparison of different media and culture systems. Cloning Stem Cells 10:435–442

    Article  CAS  Google Scholar 

  • Shahzad Q, Waqas M, Pu L, Wadood AA, Xie L, Husna AU, Yang K, Wang J, Xu H, Lu K (2020a) Seasonality and photoperiod influence in vitro production of buffalo embryos. Reprod Domest Anim 55:1115–1123

    Article  CAS  Google Scholar 

  • Shahzad Q, Xu H-Y, Pu L, Waqas M, Wadood AA, Xie L, Lu K-H, Liang X, Lu Y (2020b) Developmental potential of buffalo embryos cultured in serum free culture system. Theriogenology 149:38–45

    Article  CAS  Google Scholar 

  • Shahzad Q, Pu L, Ahmed Wadood A, Waqas M, Xie L, Shekhar Pareek C, Xu H, Liang X, Lu Y (2020c) Proteomics analysis reveals that Warburg effect along with modification in lipid metabolism improves vitro embryo development under low oxygen. Int J Mol Sci 21:1996

    Article  CAS  Google Scholar 

  • Shi D, Lu F, Wei Y, Cui K, Yang S, Wei J, Liu Q (2007) Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol Reprod 77:285–291

    Article  CAS  Google Scholar 

  • Singh KP, Kaushik R, Garg V, Sharma R, George A, Singh MK, Manik RS, Palta P, Singla SK, Chauhan MS (2012) Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation. Cell Reprogram 14:530–538

    Article  CAS  Google Scholar 

  • Singh K, Mohapatra S, Kaushik R, Singh M, Palta P, Singla S, Manik R, Chauhan M (2021) Parthenogenetic activation of buffalo (Bubalus bubalis) oocytes: comparison of different activation reagents and different media on their developmental competence and quantitative expression of developmentally regulated genes. Zygote 29:49–58

    Article  CAS  Google Scholar 

  • Sirard MA, Florman HM, Leibfried-Rutledge ML (1989) Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod 40:1527–1563

    Article  Google Scholar 

  • Sirard M, Dufort I, Coenen K, Tremblay K, Massicotte L, Robert C (2003) The use of genomics and proteomics to understand oocyte and early embryo functions in farm animals. Reprod Suppl 61:117–129

    CAS  Google Scholar 

  • Smith S, Schmidt M, Purwantara B, Greve T (1992) Oviduct epithelial cell co-culture of early porcine embryos. Acta Vet Scand 33:349–355

    Article  CAS  Google Scholar 

  • Stagmiller RB (1988) In vitro methods for production of viable oocytes. J Anim Sci 66:54–64

    Google Scholar 

  • Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr (2009) The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284:5352–5361

    Article  CAS  Google Scholar 

  • Sumantri C, Boediono A, Ooe M, Murakami M, Saha S, Suzuki T (1997) The effect of sperm-oocyte incubation time on in vitro embryo development using sperm from a tetraparental chimeric bull. Anim Reprod Sci 48:187–195

    Article  CAS  Google Scholar 

  • Totey SM, Singh G, Taneja M, Pawshe CH, Talwar GP (1992) In vitro maturation, fertilization and development of follicular oocytes from buffalo (Bubalus bubalis). J Reprod Fertil 95:597–607

    Article  CAS  Google Scholar 

  • Totey SM, Pawshe CH, Singh GP (1993) In vitro maturation and fertilization of buffalo oocytes Bubalus bubalis: effects of media, hormones and sera. Theriogenology 39:1153–1171

    Article  CAS  Google Scholar 

  • Totey SM, Daliri M, Appa Rao KB, Pawshe CH, Taneja M, Chillar RS (1996) Differential cleavage and developmental rates and their correlation with cell numbers and sex ratios in buffalo embryos generated in vitro. Theriogenology 45:521–533

    Article  CAS  Google Scholar 

  • Van Soom A, Yuan Y, Peelman L, De Matos D, Dewulf J, Laevens H, de Kruif A (2002) Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology 57:1453–1465

    Article  Google Scholar 

  • Verma M, Pandey S, Bhat IA, Mukesh B, Anand J, Chandra V, Sharma GT (2018) Impact of l-carnitine on lipid content and post thaw survivability of buffalo embryos produced in vitro. Cryobiology 82:99–105

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  • Ward F, Enright B, Rizos D, Boland M, Lonergan P (2002) Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57:2105–2117

    Article  Google Scholar 

  • Wiemer KE, Cohen J, Amborskir GF, Wright G, Wiker S, Munyakazi L, Godke RA (1989) In-vitro development and implantation of human embryos following culture on fetal bovine uterine fibroblast cells. Hum Reprod 4:595–600

    Article  CAS  Google Scholar 

  • Wydooghe E, Heras S, Dewulf J, Piepers S, Van den Abbeel E, De Sutter P, Vandaele L, Van Soom A (2014) Replacing serum in culture medium with albumin and insulin, transferrin and selenium is the key to successful bovine embryo development in individual culture. Reprod Fertil Dev 26:717–724

    Article  CAS  Google Scholar 

  • Xu J, Cheung T, Chan ST-H, Ho P, Yeung W (2000) Human oviductal cells reduce the incidence of apoptosis in cocultured mouse embryos. Fertil Steril 74:1215–1219

    Article  CAS  Google Scholar 

  • Yadav BR, Katiyar PK, Chauhan MS, Madan ML (1997) Chromosome configuration during in vitro maturation of goat, sheep and buffalo oocytes. Theriogenology 47:943–951

    Article  CAS  Google Scholar 

  • Yang C, Li R, Pang C, Yang B, Qin G, Chen M, Zhang X, Huang F, Zheng H, Huang Y (2010) Study on the inter-subspecies nuclear transfer of river buffalo somatic cell nuclei into swamp buffalo oocyte cytoplasm. Anim Reprod Sci 121:78–83

    Article  CAS  Google Scholar 

  • Yang C, Pang C, Yang B, Li R, Lu Y, Liang X (2012) Optimization of cryopreservation of buffalo (Bubalus bubalis) blastocysts produced by in vitro fertilization and somatic cell nuclear transfer. Theriogenology 78:1437–1445

    Article  CAS  Google Scholar 

  • Yangqing Lu, Kehuan Lu (2015) Buffalo reproductive biotechnologies: the Current Status in China. 8th Asian Buffalo Congress, Istanbul, Turkey

    Google Scholar 

  • Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3:155–163

    Article  CAS  Google Scholar 

  • Yuan YQ, Van Soom A, Coopman FO, Mintiens K, Boerjan ML, Van Zeveren A, de Kruif A, Peelman LJ (2003) Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59:1585–1596

    Article  CAS  Google Scholar 

  • Zheng HY, Yang CY, Yu NQ, Huang JX, Zheng W, Abdelnour SA, Shang JH (2020) Effect of season on the in-vitro maturation and developmental competence of buffalo oocytes after somatic cell nuclear transfer. Environ Sci Pollut Res 27(7):7729–7735

    Article  CAS  Google Scholar 

  • Zicarelli L, Esposito L, Campanile G, Di Palo R, Armstrong DT (1997) Effects of using vasectomized bulls in artificial insemination practice on the reproductive efficiency of Italian buffalo cows. Anim Reprod Sci 47:171–180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahzad, Q., Waqas, M., Lu, Y. (2023). Buffalo Embryo Production. In: Yata, V.K., Mohanty, A.K., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 59. Sustainable Agriculture Reviews, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-21630-5_7

Download citation

Publish with us

Policies and ethics