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Abstract. Over the last two decades, significant advances have been made in the
design and analysis of fixed-parameter algorithms for a wide variety of graph-
theoretic problems. This has resulted in an algorithmic toolbox that is by now
well-established. However, these theoretical algorithmic ideas have received very
little attention from the practical perspective. We survey recent trends in data
reduction engineering results for selected problems. Moreover, we describe con-
crete techniques that may be useful for future implementations in the area and
give open problems and research questions.

Keywords: Data reduction · Kernelization · Fixed-parameter algorithms ·
Algorithm engineering

1 Introduction

Many important real-world optimization problems are NP-hard: it is believed that no
polynomial time algorithm exists that always finds an optimal solution. However, many
NP-hard problems have been shown to be fixed-parameter tractable (FPT): large inputs
can be solved efficiently and provably optimally, as long as some problem parameter is
small. Over the last two decades, significant advances have been made in the design and
analysis of fixed-parameter algorithms for a wide variety of graph-theoretic problems.
This has resulted in an algorithmic toolbox that is by now well-established. However,
these theoretical algorithmic ideas have received very little attention from the practi-
cal perspective. Until recently, few fixed-parameter algorithms have been implemented
and tested on real data sets, and their practical potential is far from understood. Tra-
ditionally, algorithms are designed using simple models of problems and machines. In
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turn, important results are provable, such as performance guarantees for all possible
inputs. This often yields elegant solutions being adaptable to many applications with
predictable performance for previously unknown inputs.

In contrast to algorithm theory, taking up and implementing an algorithm is part
of application development. Unfortunately, transferring results from theory to practice
is a slow process and sometimes the theoretically-best algorithms perform poorly in
experiments. Hence, practitioners often do not read research papers from the theoretical
algorithms community. This causes a growing gap between theory and practice: Realis-
tic hardware with its parallelism, memory hierarchies, etc. is diverging from traditional
machine models. This gap is also partially due to the fact that the research community
working on algorithmic problems is fairly separated. On the one hand, there are “hard
core” algorithms researchers that are focused mainly on theoretical work and rarely
participate in conferences in application areas. On the other hand, researchers of appli-
cation areas publish their work in conferences and journals of their respective fields,
and often do not visit theory conferences. In contrast to algorithm theory, algorithm
engineering uses an innovation cycle where algorithm design based on realistic mod-
els, theoretical analysis, efficient implementation, and careful experimental evaluation
using real-world inputs closes gaps between theory and practice and leads to improved
application code and reusable software libraries (see www.algorithm-engineering.de). This
yields results that practitioners can rely on for their specific application.

On the one hand, experimental results can trigger new theoretical questions and
suggest new properties of inputs that are relevant parameters to use in theoretical anal-
ysis. On the other hand, the rich toolbox of parameterized algorithm theory offers a
rich set of algorithmic ideas that are challenging to implement and engineer in prac-
tical settings. By applying techniques from fixed-parameter algorithms in nontrivial
ways, algorithms can be obtained that perform surprisingly well on real-world instances
for NP-hard problems. The viability of this approach has been demonstrated in recent
years through the Parameterized Algorithms and Computational Experiments Chal-
lenge (PACE) [28,54,55,58], in which teams compete to solve real-world inputs using
ideas from parameterized algorithm design. Many researchers from all over the world
have participated in that challenge. Moreover, the viability of this approach has recently
been demonstrated by a wide range of papers. Since the engineering part in the area has
recently gained some momentum, we survey recent results and techniques that have
started to bridge the gap between theory and practice that is currently observed in the
area.

Theoretical Context. All known exact and deterministic algorithms that solve NP-hard
problems require time that is at least super-polynomial in the total size of the input.
However, some problems can be solved by algorithms that run in time which is expo-
nential only in the size of a fixed parameter while polynomial in the size of the input;
those are called fixed-parameter algorithms. Here, the parameterized problem can be
solved efficiently for small values of the fixed parameter. Formally, a parameterized
problem is a language L ⊆ Σ ∗ ×N, where Σ is a finite alphabet. The second component
is called the parameter of the problem. A parameterized problem L is fixed-parameter
tractable if the question (x,k) ∈ L can be decided by an algorithm in running time
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f (k) · |x|O(1), where f is a computable function depending on k only. The correspond-
ing complexity class is called FPT.

TheW hierarchy [56] is an important hierarchy for the complexity of parameterized
problems. A parameterized problem is in classW [i], if we can transform every instance
(x,k) to a decision circuit (a combinatorial circuit with only a single output gate) with
weft at most i, such that the circuit outputs true if and only if (x,k) ∈ L. The weft of
a combinatorial circuit is the maximum number of gates with more than two inputs
on any path from input to output. Downey et al. [56] show that FPT =W [0] and that
W [0] ⊆W [1] ⊆W [2] ⊆ ·· · ⊆W [poly].

Fixed-parameter tractability is closely related to data reduction and kernelization.
Data reduction rules, or simply reductions, reduce the size of a graph while retaining the
ability to compute an optimal solution. A graph on which a collection of data reduction
rules have been exhaustively applied is called a reduced graph. In kernelization, the
reduced graph is called a kernel K . More formally, given an binary encoded instance
(x,k) ∈ {0,1}∗ × N of some parameterized problem L, a kernelization for L produces
an instance (x′,k′) in polynomial time that satisfies: (x′,k′) ∈ L ⇔ (x,k) ∈ L and |x′|+
k′ ≤ f (k) where f is a computable function. Note that f only depends on the problem
parameter k. So roughly speaking, kernelization can be thought of as a preprocessing
routine that reduces a given problem instance to its “most difficult part”. The function f
measures the kernel size. If f (k) = O(kc) for some constant c then the kernel is called
polynomial kernel, and we say the problem admits a polynomial kernel.

Many exact algorithms for parameterized problems combine these data reductions
with branching. These algorithms are called branch-and-reduce algorithms. First, the
algorithm aims to reduce the graph size by exhaustively applying reduction rules until
there are no further data reductions possible or they are prohibitively expensive. Then,
the algorithm picks an edge e ∈ E (or a vertex v ∈ V , depending on the problem) and
branches the problem into multiple subproblems, one subproblem for each potential
state of e in regard to the problem. As an example, for the maximum cut problem or the
multiterminal cut problem, branching creates two subproblems, one in which e is part of
the cut and one in which e is not part of the cut. The branch-and-reduce algorithm then
continues to apply reduction rules to both of these subproblems and continues branching
when there are no further reductions possible. The branch-and-reduce algorithm returns
the best result over all branches.

Organization. The rest of the paper is organized as follows. We first survey recent data
reduction engineering results for selected NP-hard problems, and then for problems in P.
We then describe concrete techniques that may be useful for future implementations in
the area. Lastly, we give open problems and research questions.

2 Recent Advances for NP-Hard Problems

2.1 Maximum Independent Set and Minimum Vertex Cover

Given an undirected graph G= (V,E), the goal of the maximum independent set (MIS)
problem is to compute a set of vertices I ⊆ V such that (1) no two vertices in I are
adjacent to one another, (2) the set I has maximum cardinality among all such sets. The
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complement of an independent set I, V \ I, is called a vertex cover. The MIS problem
and the complementary problem of finding a minimum vertex cover (MVC) are well-
studied NP-hard optimization problems [75] that attract both researchers and practi-
tioners alike. Furthermore, there is no polynomial time algorithm that approximates the
MIS size within a factor O(n1−ε) for any constant ε > 0, unless P =NP [173]. Finally,
MIS is W [1]-hard [56] when parameterized by solution size k. This makes it unlikely
that the problem is fixed-parameter tractable in k [56]. On the other hand, MVC is
fixed-parameter tractable in solution size k [56].

Exact Approaches. In recent years, the bridge between theoretically efficient algo-
rithms and their practical applicability has been significantly reduced. In particular,
the branch-and-reduce paradigm, i.e., branching algorithms that use a wide variety of
reduction rules, have been (1) shown to achieve theoretical running times that are among
the best for both MIS and MVC [69,170], and (2) are able to solve large real-world net-
works in practice [5]. However, most often the approaches used in practice only use a
small subset of the reduction rules that have been proposed to achieve good theoretical
running times.

Abu-Khzam et al. [4] introduced and analyzed the crown reduction rule (and the
usage of data reduction rules in this context in practice). Even though the crown rule
is not as powerful as the linear programming (LP)-based rule [133] when considering
the worst-case size of the resulting kernel, they experimentally verified that it often
performs as well as the LP-based rule and is significantly faster in many cases. Fur-
thermore, they show that the LP-based rule is most useful for fairly sparse graphs and
should be avoided for dense graphs, as it yields little to no reduction in size.

Later, Akiba and Iwata [5] were the first to show the practicality of the branch-and-
reduce paradigm for MVC (and MIS) compared to other state-of-the-art approaches
like branch-and-bound and branch-and-cut. Their algorithm uses a wide spectrum of
reduction rules that form the foundation of much subsequent work. This includes both
conceptually simple reduction rules like degree-1 and degree-2 vertex folding [69], as
well as more complicated but practically significant rules like unconfined [169] and an
LP-based rule [95,133]. Many of these reduction rules work by removing vertices that
are part of some MIS. We illustrate this by briefly covering the degree-1 and degree-2
vertex fold reduction rules: (1) In the degree-1 reduction rule (see Fig. 1) one removes
vertices v of degree one (and their neighbors), as they are always in at least one MIS.
To see this, note that v or its neighbor w must be in some MIS I, otherwise I∪{v} is an
independent set of larger cardinality. If w is in I, one can obtain an independent set of
the same size by removing w from I and adding v instead. (2) For the degree-2 vertex
fold (see Fig. 2) one removes vertices v with exactly two neighbors u and w that are not
adjacent to each other. In this case a new vertex v′ is inserted and connected to the union
of the neighborhoods of u and w yielding a reduction of the graph size by two vertices.
Finally, if v′ is part of an MIS I′ of the reduced graph, then I = (I′ \ {v′})∪{u,w} is
an MIS of the original graph. Otherwise, I = (I′ \ {v′})∪{v} is an MIS of the original
graph. Using their branch-and-reduce algorithm, Akiba and Iwata were able to solve a
large variety of instances including social networks, web graphs and road networks. A
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Fig. 1. Degree-1: Vertices v and u can be removed.
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Fig. 2. Degree-2 vertex fold: Vertices v,u and w can be removed. In this case a new vertex v′ is
inserted.

similar approach that uses a quantum annealer to solve instances once they are small
enough was recently presented by Pelofske et al. [140].

Although Akiba and Iwata [5] use a sophisticated set of reduction rules, Strash [155]
showed that many of the more complicated rules are not necessary to compute an
MIS in many large complex networks. Furthermore, the initial reduction rules applied
to compute a reduced graph often have a bigger impact on performance, compared
to further techniques used during the branch-and-reduce approach. Recently, Stall-
mann et al. [153] supported this idea by showing that networks G with a small nor-
malized average degree (nad(G)) can be efficiently handled by simple reduction rules.
The nad(G) of a network G on n vertices is defined as the average degree of G normal-
ized using a factor of 200/n if the average is larger than 20. Otherwise, if the average
degree is at most 20, nad(G) is the same as the average degree of G. Additionally, the
authors make use of the so-called degree spread t/b, where t is the degree at the 95th
percentile and b at the 5th percentile. Based on these characteristics, the authors devise
thresholds that indicate (1) if reductions should be used at all, (2) if more complex rules
provide a significant benefit.

Open Problem 1. What are graph characteristics and properties that determine the
success of specific reduction rules?

Recently, Hespe et al. [92] won the PACE Challenge 2019 vertex cover track by using
a portfolio of exact approaches for MIS, MVC and maximum clique. In particular
they use the reduction rules of Akiba and Iwata as an initial preprocessing step. After-
wards, an initial solution is computed using the state-of-the-art local search algorithm



102 F. N. Abu-Khzam et al.

by Andrade et al. [7]. Finally, they switch between the branch-and-reduce algorithm of
Akiba and Iwata [5] and the clique solver by Li et al. [119], which are applied to either
the original graph or the graph resulting from the preprocessing step.

Heuristic Approaches. Reductions are also heavily used in many state-of-the-art
heuristic approaches. Lamm et al. [114,113 SPP,150 SPP] use the same set of reduc-
tions originally used by Akiba and Iwata to develop an evolutionary algorithm that is
able to compute high quality solutions for large graphs that are infeasible for branch-
and-reduce. The authors use reductions for both preprocessing (to compute a kernel)
and during the algorithm itself. In particular, they select vertices that are part of many
highly fit individuals, which are independent sets, in their population. These vertices
are then added to the resulting independent set, which includes removing them and their
neighbors from the graph. Afterwards, reduction rules are applied and the evolutionary
algorithm is called recursively on the resulting graph.

The idea of excluding a subset of vertices that are likely to be part of a high-quality
independent set, is also explored by Gao et al. [73]. To select these vertices they per-
form multiple runs of a state-of-the-art local search algorithm (either NuMVC [33] or
FastVC [34]). Vertices that are present in all resulting solutions are then added to the
final solution and a new graph consisting of the remaining vertices and their corre-
sponding edges is constructed. Afterwards, a final run of the local search on this graph
is executed and its solution is combined with the previously removed vertices.

Dahlum et al. [51,150 SPP] combine both simple exact reduction rules as well as
inexact reductions with the ARW local search algorithm [7]. In particular, they remove
cliques of up to size three (an exact reduction) and the top 1% high-degree vertices
(an inexact reduction). The reasoning behind their inexact reduction is that high-degree
vertices are not likely to be in a large independent set. Additionally, these vertices pose a
significant bottleneck for local search. The authors also compare their algorithm against
an algorithm that uses the data reduction rules of Akiba and Iwata as a preprocessing
step. A similar preprocessing approach that only uses a subset of reduction rules is also
presented by Cai et al. [37]. In particular, they use the degree-0, degree-1, degree-2 and
domination rules.

Chang et al. [42] also make use of the idea of combining simple reduction rules
that can be applied in (near-)linear time with an inexact reduction rule that removes
high-degree vertices. For this purpose, they introduce the reducing-peeling framework
that switches between the two types of reductions. Furthermore, they present a set of
degree-2 path reductions that are special cases of the folding reduction. Combining
these new rules with the degree-0, degree-1, dominance and an LP-based reduction
rule, they propose an efficient preprocessing algorithm that is then combined with the
ARW local search algorithm.

Open Problem 2. Can one derive (near-)linear time special cases of the more complex
reductions like the unconfined reduction that are not covered by existing reductions?

In order to quickly achieve smaller reduced graphs than what is possible by using sim-
ple reduction rules, Hespe et al. [93,150 SPP] provided the first shared-memory data
reduction based on the rules of Akiba and Iwata. For this purpose they make use of both
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graph partitioning and parallel bipartite maximum matchings. The graph partitioning
library KaHIP [148] is used to compute a partition of that graph which allows parallel
execution of reduction rules that only need to check highly localized subgraphs, where
bipartite maximum matchings are used to enable the parallel execution of the LP-based
reduction rule. Furthermore, the authors present two speedup techniques for kerneliza-
tion: (1) dependency checking that prunes applicability checks for certain reductions
and (2) reduction tracking that stops their algorithm once the application of reduction
rules only decreases the graph size by a negligible amount.

Open Problem 3. Can the techniques used by Hespe et al. [93] be extended to a dis-
tributed memory setting? How can one efficiently apply reductions in distributed mem-
ory?

Alsahafy and Chang [6] recently proposed an algorithm that combines the reducing-
peeling framework with the exact clique solver MoMC by Li et al. [119]. Their algo-
rithms splits reduction rules into two sets: ones that can be updated and applied incre-
mentally (similar to Hespe et al. [93]), and ones that can not. Additionally, they contin-
uously compute and maintain the connected components of the graph, which are then
reduced individually. If a reduced component is small enough, it is then transformed
into its complement and solved by MoMC. To ensure that components continue to get
smaller, they use the same inexact reduction rule as Chang et al. [42] and then continue
recursively on the resulting components. The authors also present a new exact reduction
rule called the pyramid reduction.

Lastly, Lavallee et al. [118] evaluated a structural rounding approach for vertex
cover. The main idea is to first edit a graph to a well-structured graph which can be
solved more easily, and then apply a “lifting” algorithm to the partial solution to recover
an approximation on the input network. Lavallee et al. find that their algorithm can
outperform standard 2-approximation algorithms and that simpler lifting strategies are
highly competitive with more sophisticated strategies.

Weighted MIS. Due to the significant practical results achieved for the unweighted
case, there has been an increasing interest in generalizing these techniques for the
weighted maximum independent set (WMIS) and weighted minimum vertex cover
(WMVC) problems. For both problems, one is given an additional real-valued vertex
weighting function w :V → R

+. In case of the WMIS problem one is then tasked with
finding an independent set, such that the sum of the weights of its vertices is maximum
among all possible independent sets. Analogously, for the WMVC one is tasked with
finding a vertex cover of minimum weight.

Recently, Li et al. [120] used a set of four reduction rules during the initial construc-
tion phase of a local search algorithm. In particular, they use weighted reduction rules
that are able to remove degree one and degree two vertices. They then use these reduc-
tion rules exhaustively in the beginning of their algorithm to obtain an improved initial
solution. Their local search algorithm called NuMWVC is able to compute high quality
solutions on a large variety of instances. This includes many instances commonly used
for the unweighted case, which have been given vertex weights drawn from a uniform
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distribution. Since there are not many publicly available weighted instances, this is a
common approach that is also used in other works [35,77,172,115 SPP]

Wang et al. [165] also make use of reduction rules for vertices with degree at most 2
as a preprocessing step for a branch-and-bound solver. Furthermore they evaluate dif-
ferent degree-based heuristics for selecting branching vertices and use pruning based
on the best solution found so far.

Lamm et al. [115 SPP] proposed a practically efficient branch-and-reduce algorithm
for the WMIS problem that is able to solve a large number of real-world instances.
For this purpose they develop a comprehensive set of practically efficient reduction
rules. These include both generalizations of previous weighted and unweighted reduc-
tion rules, as well as two “meta reductions” which serve as a general framework for
the other rules. They use these rules to build a branch-and-reduce algorithm that uses
many of the approaches that worked well in the unweighted case. In particular, they use
local searches to compute initial solution which can be used for pruning, treat connected
components individually and make use of dependency checking. Finally, they show that
their reduction rules can be used to improve the performance of other state-of-the-art
algorithms

Zheng et al. [172] propose an exact and heuristic approach that both make use of
reduction rules for vertices of degree at most 2. Their exact approach is a branch-and-
reduce algorithm that applies these reduction rules recursively. However, the authors
do not provide any details on the bounds or branching strategies used during the
algorithm. Their heuristic approach is inspired by the reducing-peeling framework of
Chang et al. [42]. Thus, it exhaustively applies their reduction rules and subsequently
removes high-degree vertices to extend the space of possible reductions.

Gellner et al. [77] proposed new practically efficient variants of the struction rule
by Ebenegger et al. [59]. The struction is a reduction that is able to be applied to arbi-
trary vertices in a graph, but comes at the cost of potentially increasing the overall
number of vertices. Thus the authors propose three new variants of the struction that
aim to limit the number of newly created vertices. Furthermore, they derive practically
efficient special cases of their reduction rules and use them as a preprocessing step in
the branch-and-reduce solver of Lamm et al. [115 SPP]. The algorithm is able to pro-
duce the smallest-known reduced graphs, solves more instances than previous exact
approaches and has a running time that is comparable to heuristic algorithms.

Open Problem 4. Can other problems also benefit from reductions that may temporar-
ily increase the graph size? If so, how much of an increase should be allowed to remain
practical?

2.2 Finding and Enumerating Maximum Cliques

Given an undirected graph G = (V,E), the goal of the maximum clique (MC) problem
is to compute a set of vertices C ⊆ V such that (1) all vertices in C are adjacent to
one another, (2) the set C has maximum cardinality among all such sets. As mentioned
in the previous section, MC solvers are often used in the context of independent sets.
This is due to the fact that a clique of G is an independent set in the complement graph
Ḡ= (V, Ē) with Ē = {{u,v} | u,v ∈V ∧{u,v} �∈ E}. Thus, one can leverage maximum
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clique algorithms for finding independent sets by computing the complement graph.
Since many algorithms for finding maximum independent sets aim to perform well
on sparse graphs, the resulting complement graphs that need to be handled by clique
algorithms will often be dense. Fortunately MC has been more extensively studied for
dense instances than for sparse instances. Like MIS and MVC, finding a maximum
clique is also an NP-hard optimization problem [75]. Furthermore, unless P=NP, there
is no polynomial time algorithm that approximates the MC size within a factorO(n1−ε)
for any constant ε > 0 [173]. Finally, MC isW [1]-hard [56] parameterized by solution
size k, making it unlikely that the problem is fixed-parameter tractable in k. However,
it is fixed-parameter tractable under different parameterizations, e.g., when parameter-
ized with the degeneracy of the graph [64]. All previous observations also hold for the
maximum clique enumeration (MCE) problem of enumerating all maximum cliques in
a graph.

Eblen et al. [60] presents a maximum clique solver (MCF) that adapts some of the
reduction rules that have already been shown to work well for MVC and MIS. In partic-
ular, their algorithm begins by greedily computing a large cliqueC which is then used as
a lower bound in order to remove vertices of degree less than |C|−1 [1]. Next, they use
an adaptation of the degree-0 reduction rule previously used inMVC algorithms, as well
as a rule based on heuristic colorings [160] to remove additional vertices. The authors
also investigate the use of other reduction rules including an adaptation of the degree-1
reduction rule used in MVC algorithms. Finally, they compare applying reduction rules
as a preprocessing method for a branch-and-bound solver against running them in a
branch-and-reduce solver. Their experiments indicate that the branch-and-reduce app-
roach performs better on real-world genome data.

Eblen et al. [60] then use the previous MCF solver to develop several approaches for
the maximum clique enumeration (MCE) problem based on the algorithm by Bron and
Kerbosch [30]. In particular, they develop two reduction rules based on MCF: First,
they propose a reduction rule that uses MCF to compute a maximum clique cover
and removes vertices not adjacent to this cover. Second, they propose a second data-
driven preprocessing rule that computes so-called essential vertices, i.e., vertices that
are present in every maximum clique. Vertices that are not adjacent to these vertices are
subsequently removed from the graphs. Their experiments indicate that this rule works
particularly well on large transcriptomic graphs, that often have a small set of essential
vertices. However, its performance degrades for networks that do not have a small set
of essential vertices, e.g., for uniform random graphs.

Open Problem 5. Can one give similar data-driven reduction rules for other types of
networks, e.g., social networks or road networks?

Verma et al. [164] propose another type of reduction rule based on k-communities. A k-
community is defined as a subgraph G′ = (V ′,E ′) where each edge {u,v} ∈ E ′ connects
vertices that have at least k common neighbors in G′. Subsequently, a subset of vertices
V ′ ⊆V is called a k-community if there is a k-community with vertex setV ′ in G. Note,
that a clique of size k is a (k− t)-community for any t ∈ {2, . . . ,k}. They then derive
a reduction rule which computes a lower bound on the clique size based on maximum
(k−2)-communities and prune vertices with a smaller degree. They then combine this
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reduction rule with the k-core based approach of Pardalos and Resende [1] and show
that the resulting algorithm works well for handling large low-density graphs.

Chang [40,41] notes that even though many real-world networks are usually sparse,
MC has been more extensively studied for dense instances. Thus, the authors pro-
pose a branch-and-reduce algorithm that leverages the existing work on MC for dense
instances by transforming an instance of MC over a sparse graph to instances of k-clique
finding (KCF) over dense subgraphs. For this purpose, the authors iteratively compute
small and dense subgraphs (so-called ego networks) that are then handled by a KCF
solver. In order to reduce the size of the subgraphs that are handled by this solver, their
algorithm uses a combination of well-known upper bounds and lightweight reduction
rules. In particular, they use five reduction rules for KCF, most of which are targeted
toward removing vertices of high degree. The authors also present a heuristic algorithm
for MC, as well as a two stage approach for MCE that makes use of their exact algorithm
to compute the size of the largest clique. Furthermore, they show that the reduction rules
used for MC can also be adapted for MCE.

Weighted MC. Recently, Cai and Lin [36] proposed the first (and only) practical algo-
rithm for the (vertex-)weighted maximum clique (WMC) problem that uses reduction
rules. The WMC problem is a generalization of MC where one is given an additional
real-valued vertex weighting function w : V → R

+. Subsequently, one is tasked with
finding a clique, such that the sum of the weights of its vertices is maximal among all
possible cliques. In order to solve WMC on large sparse graphs, Cai and Lin [36] inter-
leave clique construction with reduction rules. To be more specific, they gradually add
“beneficial” vertices to a clique using an approximation of the benefit of a vertex. This
is done by computing the mean of a cost-efficient upper and lower bound for each vertex
and then selecting vertices using a dynamic best from multiple selection [34]. Finally,
if a new best clique is found, the graph is reduced using two reduction rules. Both rules
make use of the fact that one is able to remove vertices where an upper bound on any
maximum clique containing this vertex is smaller than the weight of the current best
clique. For their rules, the authors then propose two different upper bounds that make
use of the neighborhood of a vertex.

k-plexes. A k-plex is a generalization of a clique where each vertex is allowed to have
several missing connections, i.e., not every vertex has to be connected to all other ver-
tices in the k-plex [151]. In particular, a k-plex is a subset S ⊆V such that the degree of
every vertex in the induced subgraph G[S] is at least |S|− k. Furthermore, |S| is called
the size of the k-plex and the maximum k-plex problem (MK) is that of finding a k-plex
of maximum size.

Gao et al. [72] present multiple theoretical properties that allow the removal of
vertices based on a lower bound on the maximum k-plex size. Based on these proper-
ties they propose four reduction procedures which are then used in a branch-and-reduce
algorithm. In particular, they then use an extension of the algorithm by Jiang et al. [100]
to compute an initial lower bound and then use this bound to exhaustively apply their
linear-time vertex reduction and the more costly subgraph reduction rules for prepro-
cessing. Afterwards they use different sets of reduction rules depending on the type
of branch (selecting or discarding a vertex). The authors also present a type of targeted
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branching that aims to select vertices which lead to a larger reduction in size. The result-
ing algorithm is able to solve multiple previously infeasible real-world instances and is
considerably faster than previous state-of-the-art solvers (e.g., [168]).

Open Problem 6. Can targeted branching be used for other problems? For example,
the most commonly used branching strategy for independent sets is degree-based and
does not take any reduction rules into account.

Conte et al. [46] investigated reduction rules for the problem of enumerating all maxi-
mum k-plexes. For this purpose, they introduce the concepts of coreness and cliqueness.
Coreness states that vertices of a k-plex of size at leastmmust have a degree not smaller
than m−k. Thus, vertices with a smaller degree can iteratively be removed, resulting in
the computation of (m−k)-cores. Cliqueness states that every vertex of a k-plex of size
at least m is part of a clique not smaller than �m/k
. Therefore, vertices with a degree
less than �m/k
 can be removed from the graph. Furthermore, if one knows the size of
the maximum clique ω the search space for the size of the maximum k-plex can be lim-
ited to [ω,ω ·k]. Based on these observations the authors then present an algorithm that
begins by computing the size of a maximum clique. Afterwards a lower bound for the
size of the maximum k-plex p∈ [ω,ω ·k] is guessed. If this guess turned out to be wrong
(i.e., all k-plexes found are smaller than p), the interval bounds are updated and a new
lower bound is guessed. Otherwise, all k-plexes with maximum size are returned. Their
algorithm is able to reduce a large set of instances by up to 99% and achieves running
times that are multiple orders of magnitude faster than previous approaches [14].

2.3 Maximum Cuts

The max-cut problem originates from important applications in physics and operations
research [10]; therefore, it has long been the subject of engineering more and more
sophisticated algorithms which solve large-scale instances arising in practice. In par-
ticular, max-cut is one of the few problems where engineers and practitioners alike are
interested in finding optimal solutions (rather than just approximate ones). Formally, the
max-cut problem takes as input an edge-weighted graph G and seeks a bipartition of the
vertex set V of G into two disjoint parts, V1 and V2, which maximizes the weight of the
edges which cross the bipartition, that is, edges whose one endpoint is in V1 and the
other endpoint is in V2. The state of the art for max-cut though is that even after much
effort, optimal solutions are still unknown for several benchmark instances. Those rea-
sons are the key motivations for engineering effective, and efficient, kernelization rules.
The objective is to reduce the given graph G to a new instance G′ of smaller size, such
that a maximum cut in G can be recovered efficiently from any maximum cut in G′. To
the best of our knowledge, preprocessing rules with theoretical guarantees have been
studied so far mainly for the unit-weight max-cut. That special case of max-cut, where
all edges have the same (unit) weight, is still NP-hard. The goal is thus to find a bipar-
tition (V1,V2) which maximizes the size of the cut, which is the number of edges with
one endpoint in V1 and the other endpoint in V2. To measure the effectiveness of pre-
processing rules for unit-weight max-cut, one introduces an integer parameter k. This
parameter measures the difference between the size of the maximum cut, and the value
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m/2− (n− 1)/4, which is the well-known lower bound on the size of the maximum
cut in any m-edge n-vertex graph, due to Edwards and Erdős [61,62]. There is a set of
preprocessing rules, devised by Etscheid and Mnich [66 SPP] which compresses anym-
edge n-vertex graph G in linear time to a graph G′ on just O(k) vertices, while allowing
to recover the maximum cut of G. This set of rules strengthened earlier work by Crow-
ston et al. [47 SPP], and is moreover the asymptotically best possible. To understand the
practical relevance of those rules, Ferizovic et al. [68 SPP] expanded and engineered
them. They demonstrated their significant impact on benchmark data sets, including
synthetic instances, and data sets from the VLSI and image segmentation application
domains. Their experiments revealed that current state-of-the-art solvers can be sped
up by up to multiple orders of magnitude when combined with their data reduction
rules. On social and biological networks in particular, the preprocessing enabled them
to solve four instances that were previously unsolved in a ten-hour time limit with state-
of-the-art solvers; three of these instances are now solved in less than two seconds. It is
possible to expand the work on preprocessing for unit-weight max-cut to instances with
all positive weights. However, designing practically-efficient preprocessing rules for the
general max-cut problem, which also provides theoretical guarantees on the kernel size,
remains a challenge. Recent work in this direction was done by Lange et al. [116], who
designed reduction rules for general max-cut. They showed the efficacy of their rules
on instances from computer vision, biomedical image analysis and statistical physics,
and for those instances managed to obtain substantial size reductions.

Open Problem 7. Is it possible to engineer efficient reduction techniques for max-cut
with general edge weights?

2.4 Treewidth and Treedepth

Many NP-hard graph problems can be efficiently solved when the input graph is a tree.
A tree decomposition maps vertices of a graph to vertices in a tree, which allows tech-
niques for trees, especially dynamic programming, to be adapted to arbitrary graphs.
However, the quality of the tree decomposition impacts the efficiency of such algo-
rithms. Treewidth [146] is one measure of this quality, which has been extensively stud-
ied in parameterized algorithms literature, which we now describe.

Formally, a tree decomposition of a graph G = (V,E) is a family of subsets X ⊆
2V \{∅} of V called bags, together with a tree T = (X ,F), such that

– V = ∪X∈X X ,
– for all {u,v} ∈ E there exists a bag X ∈ X such that u,v ∈ X , and
– for all v ∈ V , the bags Xv = {X ∈ X | v ∈ X} containing v induce a connected
subgraph T [Xv] (which is necessarily a subtree of T ).

The width of a tree decomposition of G is one less than the cardinality of its largest bag,
that is, maxX∈X {|X |}− 1. The treewidth of G, denoted tw(G), is the minimum width
over all tree decompositions of G.

Unsurprisingly, computing tw(G) is NP-hard and deciding if tw(G) ≤ k for some
positive integer k is NP-complete. This treewidth problem is a canonical problem
with many theoretical and practical results in the literature. It is fixed-parameter
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tractable with running time 2O(k3)n [21], implying it has a kernel exponential in
k3 [32]. The problem does not have a kernel size subexponential in k unless NP ⊆
coNP/poly [22]. Hence, most work focuses on constructing tree decompositions of
small width, either approximately [23], or exactly using methods such as positive-
instance driven dynamic programming [156]. Both the first and second PACE Chal-
lenges had a treewidth track [55]. However, polynomial kernels exist for other parame-
ters. Bodlaender et al. [25] give polynomial kernels of size O(fvs(G)4) and O(vc(G)3),
where fvs(G) is the size of a minimum feedback vertex set and vc(G) the size of a min-
imum vertex cover of G, respectively. Their work is inspired by data reduction rules
that are known to work well in practice (discussed below), and also includes new rules
based on the notion of “clique seeing” paths. Jansen [98] improved the latter kernel to
size O(vc(G)2) by introducing a new reduction rule to efficiently find independent sets
whose elimination has a predictable effect on the treewidth. To the best of our knowl-
edge, no experiments have been done with clique seeing paths or Jansen’s reduction.

Open Problem 8. Is the rule of Jansen [98] effective in practice?

Much work has been done in making practical data reductions for the treewidth prob-
lem. In early work, Arnborg and Proskurowski [8] introduced reduction rules for rec-
ognizing and characterizing partial 3-trees. Bodlaender et al. [27] categorized these
reductions into six types (islet, twig, series, triangle, buddy, and cube) and extended
these rules, showing them to be highly effective at reducing graph size in practice [27].
Of note here are two variations of well-known reductions from other problems: simpli-
cial vertices and twins of degree 3. They further give a reduction for almost simplicial
vertices (vertices with all but one neighbor inducing a clique). On graphs with up to
3 032 vertices, the reductions quickly remove 77% of vertices on average, whereas the
simplicial vertex reduction alone remove 51% of vertices on average. The worst per-
forming instances had 30% of their vertices removed. Den van Eijkhof et al. [63] gen-
eralized many of these reduction rules. They not only introduce new weighted variants,
but generalize most previous reductions with a “contraction” reduction rule, and further
introduce a reduction for twins of higher degree.

Later, Bodlaender et al. [26] introduced the concept of a safe separator, which
decomposes the graph into subgraphs that can be solved independently. It was already
known that clique separators were safe [136]; however, they generalize the concept and
introduce other easy-to-find separators. They further show that previous reduction rules
are subsumed by their safe separator technique. In experiments, their reductions decom-
posed 33 out of 40 instances. When run as a preprocessing step, their technique speeds
up an existing triangulation heuristic, sometimes by multiple orders of magnitude. How-
ever, it only gives modest speedups over preprocessing using existing reductions.

Open Problem 9. How effective are existing treewidth reductions on large sparse
graphs (e.g.,with millions of vertices) in practice?

Open Problem 10. Can heuristic methods be used to efficiently find safe separators in
practice?

A related concept exists for decompositions into rooted trees. A treedepth decompo-
sition of a graph G = (V,E) is a rooted forest F , together with an injective mapping
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φ : V (G) → V (F) such that, for each edge (u,v) ∈ E, one of φ(v) or φ(u) is an ances-
tor of the other. The treedepth of G, denoted by td(G), is the minimum height of any
treedepth decomposition of G. The treedepth problem, deciding if td(G) ≤ k for some
positive integer k, is NP-complete [142].

Many similar results exist for the treewidth and treedepth problems. Reidl et al. [145]
give a fixed-parameter tractable algorithm for treedepth k, with running time 2O(k2)n,
implying the existence of a kernel of size exponential in k2, and no subexponential kernel
exists unless NP ⊆ coNP/poly [22]. However, when parameterized on the vertex cover
number vc(G), the problem has a kernel of size O(vc(G)3) [109], which is achieved
through two simple reduction rules that also apply to treewidth: removing simplicial
vertices and adding edges between vertices with at least k common neighbors.

However, as far as we are aware, there are significantly fewer experimental works
with data reduction rules for treedepth. The 5th PACE Challenge in 2020 was dedicated
to exact and heuristic solutions for treedepth. The winning solver by Trimble [161] did
not employ any data reduction rules (instead using symmetry breaking together with
a variety of lower bounding techniques); however, the second place solver by Korho-
nen [112] applies the simplicial vertex rule by Kobayashi and Tamaki [109] and a gen-
eralization of their common neighbor rule. Korhonen further introduces a new reduction
rule based on the Schäffer’s linear-time algorithm [149] for computing the treedepth of
trees. This rule replaces a tree subgraph G[T ] having |N(V \T )| = 1 with a subgraph
of size td(G[T ]2). As far as we know there are no published results on the efficacy of
these reduction rules. Of further interest is that this algorithm uses minimal separator
enumeration. We conclude with the following open problems.

Open Problem 11. How effective are the reductions of Kobayashi and Tamaki [109]
and Korhonen [112] in practice?

Open Problem 12. Does the notion of a safe separator extend to the treedepth prob-
lem?

2.5 Hitting Set

Given a set S along with a collection C of its subsets, the hitting set problem asks
for a subset of S, of minimum cardinality, that has a non-empty intersection with each
and every member of C. Hitting set is the dual of set cover, which seeks a minimum-
cardinality subset ofC whose union is S. If the elements of S andC are treated as red and
blue vertices, respectively, of a bipartite graph, the equivalent graph theoretic problem
is known as red-blue dominating set (RBDS).

Hitting set is NP-hard, andW [2]-hard when parameterized by the solution size [56].
It becomes fixed-parameter tractable when each member of C is of size bounded by a
constant d. In this case the problem is often referred to as d-Hitting Set and it corre-
sponds to RBDS restricted to (red-blue) graphs where each red vertex has at most d
neighbors. The problem is also known to be fixed-parameter tractable when parameter-
ized by |C|, but this particular parameter is expected to be large in practice. The most
popular reductions for Hitting Set are due to Weihe [166]. They are simply based on
removing any possible redundant elements from S and C. In this context, an element
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of S is redundant if all members of C that contain it contain another element; while a
member ofC is redundant if it is a superset of another member ofC. The application of
these two rules alone proved to be highly effective on large public transportation net-
works resulting in a huge reduction in size as pointed out recently by Bläsius et al. [15].

More sophisticated reduction algorithms appeared in the context of kernelization for
d-hitting set [2,129,134]. The kernelization approach of Abu-Khzam [2] was adopted
byMellor et al. [125] and proved to be effective in the context of multiple drug selection
for cancer therapy. Moreover, linear-time algorithms that can obtain a kernel of size
O(kd) were presented by van Bevern [162] and Fafianie and Kratsch [67]. Practical
implementations of these algorithms have been addressed recently by van Bevern and
Smirnov [163] where they were shown to be more efficient than the reduction procedure
ofWeihe [166] for small d (up to 5), but can result in more effective data reduction when
combined with the reduction rules of Weihe [166].

2.6 Steiner Trees

Given an undirected graph with non-negative edge weights as well as a subset of the
vertices (terminals), the Steiner tree problem is to find the lightest tree spanning the
terminals. There has been a wide range of implementations tackling the Steiner tree
problem. Data reductions have long been used for the problem, see, e.g., Polzin [141]
or Daneshmand [52]. Daneshmand [52] in particular has shown already in 2004 that
many Steiner tree problem instances can be solved by reduction- and heuristic-based
approaches.

Recently there have been two implementation challenges, the 11th DIMACS Imple-
mentation Challenge in 2014 and the 3rd PACE Challenge [28] in 2018. Here, we focus
on the most successful implementations of the 3rd PACE Challenge and the approaches
that have been published afterwards. The PACE Challenge had three tracks overall –
two exact tracks with one focusing on algorithms for problems with few terminals and
one focusing on problems with low treewidth, as well as one heuristic track.

The implementation of Iwata and Shigemura [96] won the track with problems
that have few terminals. Their algorithm is based on the dynamic programming for-
mulation of Erickson-Monma-Veinott [65] which has a theoretical running time of
O(3tn+2t(n logn+m)) with t being the number of terminals. Iwata and Shigemura
use a novel separator-based pruning technique to speed up their implementation (while
keeping the worst-case bound of Erickson-Monma-Veinott). This technique allows
them to prune a large number of entries in the dynamic programming table.

The track with problems that have low treewidth was won by SCIP-Jack [143,144]
due to Koch and Rehfeldt. This approach is based on the branch-and-cut principle and
was already very successful during the 11th DIMACS Implementation Challenge. For
the PACE Challenge, the authors use data reductions that typically reduce the number
of edges in the problems by more than 90%. Many instances can already be completely
solved by presolving. Moreover, on the remaining instances that can not be presolved,
the authors use heuristics to find strong upper and lower bounds quickly. The authors
find that in more than 90% of cases that the heuristic already finds the optimum solu-
tion on the instances that have not been presolved. Lastly, the branch-and-cut proce-
dure is used to compute lower bounds and prove optimality. Later, the approach was
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improved [152] to run in distributed memory and thus, by using up to 43 000 cores,
managed to solve additional previously unsolved instances or improved on the previ-
ously best known solution.

Open Problem 13. Are there new reductions that have not yet been tried in practice
that could help to solve more instances to optimality in practice?

Open Problem 14. Can existing reductions for the standard Steiner tree problem be
transferred to the more general multi-level Steiner tree problem?

2.7 Minimum Fill-In

The minimum fill-in problem is a critical problem that accelerates Gaussian elimination
when solving sparse linear systems [147]. Given a matrix A representing the sparse
linear system Ax = b, the goal is to find a permutation matrix P that minimizes the
number of non-zeros introduced when factorizing A = PAPT . Equivalently, treating A
as the adjacency matrix of a graph G = (V,E), we wish to minimize the number of
edges introduced in an elimination ordering, defined as follows. An elimination step
removes a vertex v ∈ V and its incident edges, and adds edges between non-adjacent
vertices in NG(v), producing an elimination graph Gv. An elimination ordering of G is a
permutation v1v2..vn of all the vertices in G, and the fill-in of the ordering is the number
of edges introduced by eliminating vertices v1,v2, . . . ,vn in this order. The minimum fill-
in is the smallest fill-in given by any elimination ordering. We are often interested in
not just computing the minimum fill-in, but an elimination ordering that has minimum
fill-in.

Not only is the minimum fill-in NP-hard to compute [171], no polynomial time
approximation scheme exists for the problem unless P =NP [39]. However, the problem
is fixed-parameter tractable [103], when the input parameter k is the minimum fill-
in. The fastest known fixed-parameter algorithm for the problem is due to Fomin and
Villanger [71], with running time 2O(

√
k logk) +O(k2nm), where the additive O(k2nm)

term is the time to compute a kernel of O(k3) vertices [102]. Note that this algorithm
is subexponential in the minimum fill-in k and, moreover, is nearly optimal: Cao and

Sandeep [39] showed that no algorithm with running time 2O(k1/2−δ ) · nO(1) exists for
any positive constant δ , assuming the exponential time hypothesis holds. The smallest
known kernel for the problem is due to Natanzon et al. [132] has 2k2 + 4k vertices.
The reductions all have the same flavor and are derived for the equivalent problem of
chordal completion: finding the minimum number of edges to add to the graph so that
it is chordal. Kernelization is done by partitioning the vertices into two sets A and B
where B induces a chordal graph and A contains vertices from every chordless cycle
in G. The set A is formed by repeatedly finding chordless cycles in G[B] via the MCS
algorithm [157,158] and moving a subset of their vertices to A until G[B] is chordal.
Then essential edges are added to the chordless cycles induced by A, which is the kernel.

In practice, the minimum fill-in problem is extremely hard to solve exactly. Indeed,
in the 2nd PACE Challenge in 2017, the winning solver for the minimum fill-in problem
only solved 54 out of 100 instances [55], when each instance is given a 30-min time
limit. The top three submissions all used kernelization [102] together with dynamic
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programming over potential maximal cliques [29,156]. The first place submission by
Kobayashi and Tamaki used generalized variants of the data reduction rules of Bodlaen-
der et al. [24], and the third place submission performed preprocessing adapted from
the safe separator technique for treewidth [26] in addition to kernelization [102].

However, heuristics, including nested dissection [78] and minimum-degree order-
ing [159], work quite well in practice for real-world (typically sparse) graphs. Early
researchers noted that indistinguishable vertices may be eliminated together, and there-
fore may be collapsed into a representative vertex while ordering [9,57]. This reduc-
tion speeds up the minimum degree algorithm by more than a factor two in experi-
ments [79]. Ost et al. [137 SPP] recently introduced new data reduction rules based
on twins, simplicial vertices, and path compression, and experiments show that they are
highly effective in practice when applied before running nested dissection. For road net-
works, when used as a preprocessing step with other inexact reductions, their techniques
give speedups of between 1.79 and 6.37 over nested dissection while simultaneously
reducing the fill-in. On social networks, their reductions yield speedups of between
1.72 and 3.92 on 19 out of 21 social networks tested, and the fill-in was reduced on all
but one instance.

Open Problem 15. How effective are the reductions by Ost et al. [137 SPP] when com-
bined with other reductions [132]?

Open Problem 16. Is branch-and-reduce feasible for the minimum fill-in problem?

2.8 Vertex Coloring

Given an unweighted, undirected simple graph G= (V,E), the q-coloring problem asks
if there exists an assignment of at most q colors to all vertices in V such that no two
adjacent vertices have the same color (i.e., a proper coloring). The problem of finding
the minimum number χ(G) of colors for which a proper coloring of G exists is known
as the chromatic number problem.

These problems have received considerable attention by the parameterized algo-
rithms community; however, somewhat surprisingly, there is a wide divide between
theory and practice. In theory, a kernel parameterized on only the number of col-
ors is unlikely: since graph coloring is NP-hard for q = 3 colors [74], this would
give a constant-sized kernel, implying P=NP. Therefore, research has focused
on other parameters.

When considering the treewidth tw(G) of the graph G, if G is given together with a
tree decomposition of width k ≥ tw(G), dynamic programming over the tree decom-
position gives an algorithm solving q-coloring in time qkkO(1)n [49, Theorem 7.9].
Assuming the Strong Exponential Time Hypothesis (SETH) no algorithm of running
time O(q− ε)tw(G) exists [122] for any ε > 0. Using the same technique, the chromatic
number can be computed in time kO(k)n [49, Theorem 7.10]. Since these algorithms
are fixed-parameter algorithms, the result due to Cai et al. [32] implies kernels of size
qkkO(1) and kO(k) exist for q-coloring and chromatic number, respectively. Treewidth is
often small for sparse graphs in practice; however, as far as we know, these techniques
have not been tried in practice, leading to the following open problem.
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Open Problem 17. How effective is dynamic programming over a tree decomposition
for q-coloring (or chromatic number) on sparse graphs in practice?

Another parameter of interest is size of a minimum vertex cover. Recently, Jansen
and Pieterse [99] gave a kernel parameterized on the number q ≥ 3 of colors and the
size k of a minimum vertex cover, having size O(kq−1 logk) bits, which is optimal up
to a factor of kO(1) [97]. Their result also applies for a tighter parameter, when k is
the size of the twin cover. Their technique uses constraint satisfaction with low-degree
polynomials. However, in practice, sparse graphs often have a minimum vertex cover
size that is linear in the number of vertices. Thus, to be useful in practice, the actual
kernel would need to have significantly smaller size. However, to date no one has tested
their method in practice, leading to our next open problem for q-coloring.

Open Problem 18. How effective are the reductions of Jansen and Pieterse [99] in
practice?

The data reductions that have been implemented in practice are simple and without
theoretical guarantees on the size of the reduced graph; however, they are also very
effective on large sparse graphs. In particular, in experiments for a branch-and-cut algo-
rithm, Mendéz-Díaz and Zabala [126] first preprocess the input graph by computing a
large maximal clique K of k vertices, which is a lower bound on the chromatic number.
They then iteratively remove each vertex v of degree at most k−1 (resulting in a k-core),
which is possible since χ(G) = χ(G−{v}). They further give a rule to remove certain
vertices with non-neighbors in K. In experiments on 63 graphs of up to 5 231 vertices
from the second DIMACS Implementation Challenge1, their data reductions reduced
all graphs between 1–93%, working best on sparse instances. 36 of the 63 instances
were reduced by at least 25%, and 21 instances were reduced by at least 50%. The
largest percentage reduction was 93% for the homer instance, reducing from 561 to 38
vertices.

Verma et al. [164] extend this technique. They first compute lower and upper bounds
for the chromatic number, and then iteratively apply the k-core reduction to heuristi-
cally color graphs for decreasing values of k. Their key contribution is beginning with
an exact coloring of the k-core, which gives a better bound than an initial clique. With
this technique they are able to exactly find the chromatic number for very large sparse
graphs with up to millions of vertices, with running time varying from seconds to hours.
In total they solve 33 of 53 instances from SNAP2 and the tenth DIMACS Implemen-
tation Challenge3. Lin et al. [121] extended the low degree reduction to remove entire
independent sets of vertices with low degree, which in some cases is orders of magni-
tude faster than the algorithm of Verma et al. [164]. However, they are not able to solve
any additional instances.

We finally note that a crown reduction exists for the dual coloring problem, which
asks if the graph has an (n − k)-coloring [70]. Crown reductions are particularly
effective in practice for other problems, specifically the minimum vertex cover prob-
lem. In theory, for dual coloring, the crown reduction produces a kernel of size at

1 http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/.
2 http://snap.stanford.edu/data.
3 http://www.cc.gatech.edu/dimacs10/.

http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
http://snap.stanford.edu/data
http://www.cc.gatech.edu/dimacs10/
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most 3k− 3 [70, Theorem 4.9]. As far as we are aware, no one has performed experi-
ments with this reduction, leading to our final open problem for graph coloring.

Open Problem 19. How effective is the crown reduction [70, Theorem 4.9] for graph
coloring in practice?

2.9 Cluster Editing

The cluster editing problem is as follows: given a graph G = (V,E), transform it into
a vertex-disjoint union of cliques by inserting and deleting a minimum number of
edges,i.e., by making a minimum number of editions in the graph. The problem is also
known as correlation clustering and has many applications, especially in computational
biology [17]. The parameterized complexity of the cluster editing problem using the
number of edits k as a parameter is well-studied. The currently best known algorithm
in theory is due to Böcker [16] and has running time O(1.62k+n+m), where m is the
number of edges.

There has been a wide range of methods applying fixed-parameter techniques in the
area. Dehne et al. [53] presented the first practical implementation of a fixed-parameter
based method for cluster editing. Their algorithm is exact and implements the kernel-
ization routines of [82] and adds ideas to bound the search space for the parameter k
via linear programming. Gramm et al. contributed three reduction rules. For example,
if two vertices u and v have more than k common neighbors then the edge {u,v} has to
be in the solution and is added if it is not present. Moreover, if u and v have more than k
non-common neighbors, i.e., vertices that are either neighbors of u but not v or vice
versa, then the edge {u,v} does not belong to the solution. Lastly, if u and v have more
than k common and more than k non-common neighbors, then the given instance has
no solution. Overall, their method performs best using a refined branching method with
re-kernelization. Interestingly, the experimental analysis of their algorithm shows that
binary search may not be the best way to implement a fixed-parameter based approach
for cluster editing.

Guo [83] later gave parameter-independent data reductions based on critical cliques,
obtaining a linear kernel of 4k vertices, which was improved by Chen and Meng [45]
to 2k. Böcker et al. [20] introduced additional parameter-independent data reductions
and find that preprocessing is possible if the number of edge modifications is signifi-
cantly smaller than the number of vertices in the graph. In addition to the parameter-
independent rules they combine their technique with the parameter-dependent reduc-
tions from above with lower and upper bounds. Böcker et al. find that they can effec-
tively reduce graphs that satisfy k ≤ 25|V |, whereas the reductions due to Guo [83] are
only effective for k ≤ |V |/2. Their experiments show that computing exact solutions
for cluster editing is no longer limited to small or almost transitive graphs. Afterwards,
Böcker et al. [18,19] extended their results to the weighted version of the problem in
which the weight of an edge yields the cost of deleting or inserting it, and the goal is to
apply a set of edge modifications with minimum total weight. To this end, they include
non-trivial extensions of the data reduction rules of the unweighted case. Addition-
ally, they present a technique to merge vertices which drastically improves the running
time of their algorithm. Recently, Bastos et al. [135] combine exact methods with local
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search heuristics. More precisely, the authors propose a GRASP and an ILS metaheuris-
tic with different neighborhoods as well as a new reduction rule for the problem. They
show that the used data reduction rules can speed up linear programming for some
instances up to 95% decreased runtime after using reduction rules and 41% decreased
runtime on average on the instances that the solver could solve to optimality.

Open Problem 20. Is it possible to compute small kernels in practice if the parame-
ter k is larger than 25|V |? Are there any specific data reduction rules for that case?
If an instance in practice does not reduce well, does that help to obtain bounds on the
parameter k?

Since the parameter k is often large compared to the number of vertices, fixed-parameter
algorithms may not always be practical. There has been several attempts to use other
parameters such as the number of missing edges per cluster as well as the number of
edges between clusters [85], the total number of edge modifications per vertex [3,110].
Abu-Khzam [3], using local parameters that bound the amount of (either or both) edge
addition and deletion per vertex resulted in a number of reduction rules, showed how to
solve much larger problem instances and apply the problem effectively in data analysis
[11,12].

2.10 Multiterminal Cut

The multiterminal cut problem with k terminals is defined as follows: Its input is an
undirected edge-weighted graph G = (V,E,w) with edge weights w : E �→ N>0 and its
goal is to divide its set of vertices into b blocks such that each block contains exactly
one terminal and the weight sum of the edges running between the blocks is minimized.
It is a fundamental combinatorial optimization problem that was first formulated by
Dahlhaus et al. [50] and Cunningham [48]. It is NP-hard for all b≥ 3 [50], even on pla-
nar graphs, and reduces to the minimum s-t-cut problem, which is in P, for b = 2. The
minimum s-t-cut problem aims to find the minimum cut in which the vertices s and t
are in different blocks. Most algorithms for the multiterminal cut problem use minimum
s-t-cuts as a subroutine. Dahlhaus et al. [50] give a 2(1−1/b) approximation algorithm
with polynomial running time. Their approximation algorithm uses the notion of iso-
lating cuts, i.e., a minimum cut separating a terminal from all other terminals. They
prove that the union of the b−1 smallest isolating cuts yields a valid multiterminal cut
with the desired approximation ratio. The currently best known approximation algo-
rithm by Buchbinder et al. [31] uses linear program relaxation to achieve an approxi-
mation ratio of 1.323.

Marx [123] proves that the multiterminal cut problem is fixed-parameter tractable
when parameterized by multiterminal cut weight W (G). Chen et al. [44] give the first
fixed-parameter tractable algorithm with running time of 4W (G) · nO(1), later improved
by Xiao [167] to 2W (G) ·nO(1) and by Cao et al. [38] to 1.84W (G) ·nO(1).

Recently, Henzinger et al. [88] engineer an algorithm that combines the branch-
and-bound formulation of Xiao [167] with existing and new data reduction rules for
the problem and present a shared-memory parallel branch-and-reduce algorithm for the
multiterminal cut problem. Experiments indicate that this is orders of magnitude faster
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than previous ILP formulations for the problem that have been employed by prac-
titioners. Later, reduction rules were combined with local search algorithms for the
problem [87 SPP]. The algorithm uses a wide variety of reduction rules with vary-
ing computational complexity; using vertex neighborhoods, edge connectivities, artic-
ulation points, maximum flows and more criteria to reduce the problem size; Hen-
zinger et al. [87 SPP] report size reductions of up to multiple orders of magnitude in
some instances, which make large instances solvable in practice. Additionally, they give
an inexact algorithm that aggressively prunes subproblems which likely do not yield an
improved solution.

Open Problem 21. Is there an efficient way to find semi-isolated small clusters that
can be contracted (either exact or inexact contraction)?

Open Problem 22. The algorithm by Henzinger et al. [88] uses only reductions that
guarantee that the optimal solution remains in the graph. Are there reductions that do
not guarantee optimality but give good performance in practice?

3 Recent Advances for Problems in P

3.1 Minimum Cut

Given an undirected graph with non-negative edge weights, the minimum cut problem
is to partition the vertices into two sets so that the sum of edge weights between the
two sets is minimized. The size of a minimum cut is often also referred to as the edge
connectivity of a graph [91,130]. Gomory and Hu [81] observed that a (global) mini-
mum cut can be computed with n−1 minimum s-t-cut computations. For the following
decades, this result by Gomory and Hu was used to find better algorithms for global
minimum cut using improved maximum flow algorithms [105]. Hao and Orlin [84]
adapt the push-relabel algorithm to pass information to future flow computations. When
a push-relabel iteration is finished, they implicitly merge the source and sink to form a
new sink and find a new source. Vertex heights are maintained over multiple iterations of
push-relabel. With these techniques, they achieve a total running time of O(mn log n2

m )
for a graph with n vertices and m edges, which is asymptotically equal to a single run
of the push-relabel algorithm.

However, for minimum cut algorithms to be viable for applications they must be
fast on small data sets and scale to large data sets. Thus, an algorithm should have either
linear or near-linear running time, or have an efficient parallelization. All existing exact
algorithms have non-linear running time [84,91,105], the fastest of which is the deter-
ministic algorithm of Henzinger et al. [91] with running time O(m log2 n log log2 n).
Although this is arguably near-linear theoretical running time, it is not known how
the algorithm performs in practice. Even the randomized algorithm of Karger and
Stein [105], which finds a minimum cut only with high probability, has O(n2 log3 n)
running time, although this was later improved by Karger [104] to O(m log3 n) and
recently improved further by Gawrychowski et al. [76] to O(m log2 n). The algorithm
of Karger and Stein can be seen as probabilistic data reduction algorithms as they con-
tract random edges to reduce the problem size, and give the correct answer with a certain
probability.
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Padberg and Rinaldi [138] give a set of heuristics for edge contraction. Chekuri
et al. [43] give an implementation of these heuristics that can be performed in time lin-
ear in the graph size. Using these heuristics it is possible to sparsify a graph while pre-
serving at least one minimum cut in the graph. If their algorithm does not find an edge
to contract, it performs a maximum flow computation, giving the algorithm worst case
running time O(n4). However, the heuristics can also be used to improve the expected
running time of other algorithms by applying them on interim graphs [43].

Open Problem 23. Some reductions of Padberg and Rinaldi [138] potentially check
each triangle in a graph. Can pruning be used to efficiently identify which subset needs
to be checked?

Nagamochi et al. [130,131] give a minimum cut algorithm that does not use any flow
computations. Instead, their algorithm uses maximum spanning forests to find a non-
empty set of contractible edges. The intuition behind the algorithm is as follows: sup-
pose you have an unweighted graph with minimum cut value exactly one. Then any
spanning tree must contain at least one edge of each of the minimum cuts. Hence,
after computing a spanning tree, every remaining edge can be contracted without losing
the minimum cut. Nagamochi, Ono and Ibaraki extend this idea to the case where the
graph can have edges with positive weight as well as the case in which the minimum
cut is bounded by λ̂ and show how edges are identified using one modified breadth
first search. This contraction algorithm is run until the graph is contracted into a single
vertex. The algorithm has a running time of O(mn+n2 logn). Stoer and Wagner [154]
give a simpler variant of the algorithm of Nagamochi, Ono and Ibaraki [131], which
has a the same asymptotic time complexity. The performance of this algorithm on real-
world instances, however, is significantly worse than the performance of the algorithms
of Nagamochi, Ono and Ibaraki or Hao and Orlin, as shown in experiments conducted
by Jünger et al. [101]. Both the algorithms of Hao and Orlin, and Nagamochi, Ono and
Ibaraki achieve close to linear running time on most benchmark instances [43,101].

Based on the algorithm of Nagamochi, Ono and Ibaraki, Matula [124] gives a
(2+ ε)-approximation algorithm for the minimum cut problem. The algorithm con-
tracts more edges than the algorithm of Nagamochi, Ono and Ibaraki to guarantee a
linear time complexity while still guaranteeing a (2+ε)-approximation factor. Inspired
by random contractions, Henzinger et al. [89,150 SPP] first gave an shared-memory
parallel algorithm without guarantees on the cut size. The algorithm is randomized, and
has running time O(n+m) when run sequentially. It repeatedly reduces of the input
graph size with both heuristic and exact techniques, and then solve the smallest remain-
ing problem with exact methods. The core idea of the inexact algorithm is that edges
in densely connected regions (i.e., inside a cluster of a clustering) are unlikely to be
in a minimum cut. The algorithm further uses exact reduction rules from Padberg and
Rinaldi [138]. For example, given a bound λ̂ on the minimum cut, one can obviously
contract each edge having weight larger than λ̂ , without losing optimality. Experimen-
tal results indicate that the algorithm finds optimal cuts on almost all instances. At the
same time, even when run sequentially, the algorithm is significantly faster (up to a
factor of 4.85) than other state-of-the-art algorithms.

Later, Henzinger et al. [86,150 SPP] engineered the fastest known exact minimum
cut algorithm for the problem. To do so, the authors incorporate the proposed inexact
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method, use better-suited data structures and other optimizations as well as paralleliza-
tion of exact methods. More precisely, the exact algorithm uses the inexact minimum
cut algorithm from above [89,150 SPP] to obtain a better approximate bound λ̂ for the
problem (recall that the algorithm almost always gave the correct result). As known
reduction techniques depend on this bound, the better bound enables us to apply more
reductions and to reduce the size of the graph much faster. For example, edges whose
incident vertices have a connectivity of at least λ̂ , can be contracted without the contrac-
tion affecting the minimum cut. The new exact algorithm outperforms the state-of-the-
art by a factor of up to 2.5 already sequentially, and when run in parallel by a factor of
up to 12.9. Similar reduction rules were later used by Henzinger et al. [90 SPP,150 SPP]
to find all minimum cuts in graphs.

3.2 Matching

A matching M of a graph G = (V,E) is a subset of edges such that no two elements
of M have a common endpoint. Many applications require the computation of match-
ings with certain properties, like being maximal (no edge can be added to M without
violating the matching property), having maximum cardinality, or having maximum
total weight ∑e∈Mw(e), where w is a positive weight function that assigns weights to
edges. Although these problems can be solved optimally in polynomial time, optimal
algorithms are not fast enough for many applications involving large graphs where we
need near linear time algorithms. For example, the most efficient algorithms for graph
partitioning rely on repeatedly contracting maximal matchings, often trying to maxi-
mize some edge rating function w. We refer to Holtgrewe et al. [94] for details and
examples. For the maximum cardinality matching problem, already in the 1980s data
reduction rules were proposed by Karp and Sipser [107]. The rules are able to deal with
vertices that have degree smaller than two. For example, it is quite easy to see that a
vertex having degree zero can be removed from the graph, or if a vertex has degree one,
then there is always a maximum matching that has this edge matched.

Möhring and Müller-Hannemann [128] were among the first to use the rules to
speed up heuristic algorithms for the general maximum cardinality problem. As exact
algorithms for the matching problems typically search for augmenting paths, they can
be sped up by using a good initial matching. Hence, later Langguth et al. [117] analyzed
the effects of various initializations on the total running time of several exact algorithms
for the bipartite maximum cardinality problem and are able to achieve significant speed-
ups.

Korenwein et al. [111] implement (near-)linear time data reduction rules for the
unweighted case as well as the positive-integer-weight case. Applied reductions include
Karp-Sipser rules, as well as rules due toMertizios et al. [127] who have also shown that
the maximum cardinality matching problem admits a kernel with at most 12k vertices
and 13k edges where k is the feedback edge number. Moreover, Koana et al. [111]
transfer results from vertex cover to the matching problem, e.g.,crown and LP-based
data reductions. Experiments indicate that using data reduction rules can speed up state-
of-the-art solvers by a factor of 4.7 for the unweighted case and 12.72 on average in the
weighted case.
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Open Problem 24. Can the reduction rules due to Koana et al. [111] be exhaustively
applied in linear time? Are there more rules that can be transferred from vertex cover
to the matching problem that can be applied in near-linear time?

Kaya et al. [108] also use Karp-Sipser-based kernels for bipartite graph matching.
In particular, the authors describe an efficient implementation as well as modifica-
tions to reduce time complexity on worst-case instances. Their implementation is
about a factor 2 faster then the general purpose implementation of Koana et al. [111].
Recently, Panagiotas and Uçar [139] engineer fast almost optimal algorithms for bipar-
tite graph matching. To this end, the authors investigate two randomized algorithms by
Karp et al. [106] and Goel et al. [80] and convert them to efficient heuristics for bipar-
tite graphs. In particular, the algorithm by Karp [106] incorporates Karp-Sipser rules.
Both of their heuristics run in near linear time and obtain matchings whose cardinality
is more than 99% of the maximum.

Open Problem 25. Is it possible to implement the degree-2 vertex Karp-Sipser rule in
linear time?

4 Engineering Techniques

Engineering techniques are necessary to make data reduction algorithms scale in prac-
tice. We give a short overview of techniques that are currently used in practice.
The techniques we reference here include dependency checking, reduction tracking,
plateau/increasing data transformations, limiting to simple and fast reductions, reduce
and peeling, limited reductions, on-the-fly reductions and lastly parallelization.

Dependency checking allows pruning of reductions when they will provably not
succeed, therefore significantly reducing the number of failed reductions. To compute a
kernel, algorithms typically apply their reductions r1, . . . ,r j by iterating over all reduc-
tions and trying to apply the current reduction ri to all vertices. If ri reduces at least one
vertex, they restart with reduction r1. When reduction r j is executed, but does not reduce
any vertex, all reductions have been applied exhaustively, and a kernel is found. Trying
to apply every reduction to all vertices can be expensive in later stages of the algorithm
where few reductions succeed. The algorithm may repeatedly attempt to apply the same
reduction to a vertex even though the graph has not changed sufficiently to allow the
reduction to succeed. Checking dependencies between reductions [93], allows to avoid
applying certain local reductions when they will provably not succeed, e.g.,if their rel-
evant neighborhood did not change since the reduction was last checked. Therefore
dependency checking keeps a setD of viable candidate vertices: vertices whose relevant
neighborhood has changed and vertices that have never been considered for reductions.
Then reductions are only applied to candidates that are in the set D. This avoids a lot of
work and can speed up data reduction significantly.

Reduction Tracking. The algorithm by Hespe et al. [93] stops local reductions when
they are not effectively reducing the global graph sizes. It is not always ideal to apply
reductions exhaustively—for example, if only few reductions will succeed and they
are costly. During later stages of a data reduction algorithm, local reductions may lead
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to very few graph changes. Therefore, it may be better to stop local reductions early
instead of performing them exhaustively and switch to global, more expensive reduc-
tions that may change the graph more significantly. Although the resulting graph is
kernel-like, it may be possible to reduce it further. Such a graph is called a quasi ker-
nel. Note, however, that this is a trade-off between size of the reduced graph and data
reduction speed.

Plateau/Increasing Transformations. The general scheme in data reduction is to apply
reductions exhaustively until non of the available reductions can be applied anymore.
Gellner et al. [77] engineer new generalized data reduction and transformation rules
for the weighted independent set problem. A key feature of this work are some trans-
formation rules that can increase the size of the input. Surprisingly, these so-called
increasing transformations can simplify the problem and also open up the reduction
space to yield even smaller irreducible graphs later throughout the algorithm. Overall,
for the weighted independent set problem, this yields significant speed ups and enables
the authors to solve more instances to optimality than previously possible.

Simple Reductions. Often the smallest kernels (or seemingly equivalently, the most
varied reductions) give the best chance at finding solutions. For instance, the reduc-
tions used by Akiba and Iwata [5] for the maximum independent set problem are the
only ones known to compute an exact solution on certain large-scale graphs, and these
reductions are further successful in computing exact solutions in an evolutionary app-
roach [114]. However it is not always beneficial to compute the smallest kernel possible.
Fast and simple reductions can compute kernels that are “small enough” for local search
to quickly find high-quality, and even exact, solutions much faster than the reductions
used to find the smallest kernels [42,51]. Fast and simple reductions can even be used
to solve many large-scale instances exactly [155] just as quickly as the algorithm by
Akiba and Iwata [5].

Reduce and Peel. Lamm et al. [114] showed that including reductions in a branch-and-
reduce inspired evolutionary algorithm for the independent set problem enables finding
exact solutions much faster than provably exact algorithms. To this end, reductions
are applied exhaustively. Once a reduced graph is computed, vertices that are unlikely
to be in the solution, e.g.,vertices having a very large degree, are removed from the
graph and hence excluded from the solution. The algorithm then proceeds recursively.
Chang et al. [42] improved on this result by implementing reduction rules to reduce
the lead time for kernelization for local search. They introduce “reducing–peeling” to
find a large initial solution for local search. This technique can be viewed as computing
one path through the search space of a branch-and-reduce algorithm: they repeatedly
exclude high-degree vertices and reduce the graph until it is empty, then they take the
solution found as an initial solution for local search.

Limited Reductions. Sometimes reductions can be very expensive, for example if their
running time depends on the number of edges in the neighborhood of a certain vertex.
However, as mentioned above it is often not necessary to compute the smallest possible
kernel in practice. Hence, a common technique in practice is to exclude such reductions,
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for example, if the degree of a vertex is too large. An application of this technique is
due to Ost et al. [137 SPP] for the vertex ordering problem, where the simplicial vertex
reduction rule is limited to vertices of degree at most 18.

On-the-Fly Reductions. Data reduction can be used as a preprocessing step to exact
algorithms. However, reductions are also used to reduce the size of the search space
of local search algorithms without losing solution quality. Dahlum et al. [51] apply a
set of simple reductions on the fly for the independent set problem. For this algorithm,
they use simple reductions that do not require changing the neighborhoods of vertices.
Instead, vertices are marked as removed, e.g.,simplicial vertices. This speeds up local
search significantly.

Parallelization. A general technique to speed up algorithms is parallelization. Also in
data reduction parallelization is used to speed up preprocessing times. For example,
“local” reduction rules have been parallelized by using graph partitioning techniques,
i.e., each process works on a subgraph and applied reductions only in his subgraph [93].
At the same time, there are also attempts [93] to parallelize more expensive “global”
reductions, e.g., reductions that need to access the whole input instance.

Targeted Branching. Branch-and-reduce algorithms often make use of vertex selection
strategies that are carried over from existing branch-and-bound approaches. However,
these selection strategies often do not take into account that removing certain vertices
from the graph might result in an increase of the reduction space, which in turn might
lead to smaller search trees. Gao et al. [72] thus present a dynamic vertex selection
strategy that also takes into account one of their reduction rules and uses a degree-
based selection as a fallback. Their experiments indicate that this strategy is able to
provide better results when compared to a purely degree-based selection rule.

Data-Driven Reductions. Eblen et al. [60] show the benefits of using application-
specific reduction rules that exploit prior knowledge of the input space. In particular,
they use a reduction rule that is based on the empirical evaluation of large transcrip-
tomic graphs and is able to drastically reduce the running time of their algorithm on
similar instances. However, this comes at the drawback of a decrease in performance
for random graphs.

5 Open Problems and Future Work

We already discussed problem-specific open problems throughout this article. Here,
we list some general open questions that apply to a range of problems touched in this
survey. For example, in a branch-and-reduce algorithm can we branch to specifically
get graphs that reduce better using the available portfolio of reductions? As a concrete
example, as stated above, it may be helpful to end up with a lot of independent con-
nected components and to achieve this one may be able to branch on a small vertex
separator first. For most problems, what makes an instance hard to reduce is currently
unknown, e.g., when does which data reduction rule work well in practice and why?
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From the theory perspective of a practitioner, it would be better to have an analysis of
the expected kernel size, rather than the worst case so as to get more realistic results
in practice. One does not always need a single optimal solution, but a diverse set of
high-quality solutions. Theoretical approaches for this have been proposed [13], how-
ever, they remain untested in practice. Probabilistic reductions have not yet been tried
in practice. On the other hand, most of the dynamic techniques that maintain a problem
kernel have also not yet been implemented. A problem that needs careful investigation
is the order in which reduction rules are applied, e.g., when is it good to apply which
reduction rule first? Lastly, consider an instance for a problem on which you already
applied all data reduction rules at hand exhaustively. Moreover, assume that you already
have an optimal solution on the reduced instance. Is it possible to discover new rules by
applying machine learning techniques on such instances?
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