
A Custom Hardware Architecture
for the Link Assessment Problem

André Chinazzo(B), Christian De Schryver, Katharina Zweig,
and Norbert Wehn

TU Kaiserslautern, Kaiserslautern, Germany
{chinazzo,schryver,wehn}@eit.uni-kl.de, zweig@cs.uni-kl.de

Abstract. Heterogeneous accelerator enhanced computing architectures
are a common solution in embedded computing, mainly due to the con-
straints in energy and power efficiency. Such accelerator enhanced systems
dispatch data- and computing-intensive tasks to specialized, optimized
and thus efficient hardware units, leaving most control flow tasks for the
more generic but less efficient central processing units (CPUs). Nowadays,
also high-performance computing (HPC) systems are becoming more het-
erogeneous by incorporating accelerators into the computing nodes.

In this chapter, we introduce the concept of heterogeneous comput-
ing and present the design of a hardware accelerator for solving the
Link Assessment (LA) problem, in introduced Chapter 3. The hardware
accelerator integrates its main dedicated processing units with a cus-
tomized cache design and light-weight data path. We provide detailed
area, energy, and timing results for a 28 nm application specific integrated
circuit (ASIC) process and DDR3 memory devices. Compared to an CPU-
based cluster, our proposed solution uses 38x less memory and is 1030x
more energy efficient for processing a users-movies dataset with half a mil-
lion edges.

Keywords: Link assessment · Application specific · Custom
hardware · DRAM

1 Introduction

Nowadays, we live in the era of the so-called data deluge, i.e., the increase in pro-
duced data supersedes the progress in the available compute performance. This
poses heavy challenges on data-centric (statistical) methods, algorithms, and com-
pute systems [18]. Among others, selecting the appropriate data structures, het-
erogeneity, and parallelization schemes are crucial for achieving high comput-
ing performances with low energy demands. For example central processing unit
(CPU)-based systems can only access data stored in memory as complete words
(cache lines) and work with fixed data types. In contrast, dedicated hardware
accelerators allow custom bit widths and data types. This can not only save energy
due to avoiding unnecessary data transfers and operations but also allowing direct
bit-wise operations like, e.g., accessing one-bit-column entries in a matrix.
c© The Author(s) 2022
H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 57–75, 2022.
https://doi.org/10.1007/978-3-031-21534-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21534-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-21534-6_4


58 A. Chinazzo et al.

In general, standard computing architectures based on CPUs and graph-
ics processor units (GPUs) are moving data around heavily. However, in mod-
ern technologies, data transfers and storage in general consume much more
power than the actual computing [5]. In particular, accessing (off-chip) dynamic
random-access memory (DRAM) is a very time- and energy-consuming task.
This leads to the concept of the so-called data-driven or dataflow computing,
e.g., employed in the Google TensorFlow architecture [5]. Such architectures
focus on the data stream and manipulate data on-the-fly, avoiding unnecessary
storage and data transfers.

In addition, in data centers, servers alone only consume around one-third of
the total power, while the rest is required for cooling, communication, storage,
and building supply [8]. Seen from a different perspective, the maximum available
power budget of a system (or a data center) is a hard limit for the available
computing power. The latter can only be increased by installing compute systems
with a higher power efficiency (e.g., incorporating special hardware accelerators,
for instance with a dataflow architecture). Thus, reducing the power demand
of the compute servers in combination with the smart reduction of inter-server
communication can lead to a total of 2-3x power savings in the data center itself.

Modern system on chips (SoCs) in the mobile, embedded, and Internet-of-
Things (IoT) domain are heavily heterogeneous systems with plenty of custom
components for dedicated purposes such as audio decoding, video en- and decod-
ing, radio transmission, or sensor data pre-processing in a mobile phone. In par-
ticular for mobile devices, there are hard limits for both energy (battery capac-
ity) and power (maximum heat dissipation). However, over the last decades we
see more and more heterogeneity also in the data centers [1,5]. Examples are
general purpose graphics processor units (GPGPUs), the Intel Xeon Phi acceler-
ator cards, or the field programmable gate array (FPGA)-based Amazon EC2 F1
instances released in 20171. One of the major reason is the so-called Dark Silicon
phenomenon: In modern chip technologies, only a small amount of transistors
can be active at a time in order to avoid overheating (and thus destruction)
of the device [7]. This also poses a heavy challenge for the classical multi-core
approach - more cores of the same type do not provide more computation power
if they cannot be powered up all at the same time.

Nevertheless, end-users are not at all interested in the underlying technology
of the services they use. Nowadays, most services are distributed over an infor-
mation technology (IT)-infrastructure from IoT nodes, mobiles, edge servers, and
data centers [13]. Thus, the overall application is partitioned and disseminated
on various parts of the IT-infrastructure, all with probably different computing
architectures and characteristics. As an example, consider a real-time navigation
service from Google or Apple: The Global Positioning System (GPS) coordinates
collected by (maybe external) GPS receivers are sent to the SoC of the mobile
that acts as a human-machine interface (HMI), displaying the route. However,
the route itself is calculated in a data center of the service provider. In addition,
GPS data from other service users is employed for estimating traveling times
and traffic jams, and incorporated in the route calculation.
1 See https://aws.amazon.com/ec2/instance-types/f1/. Last accessed on 24/11/2022.

https://aws.amazon.com/ec2/instance-types/f1/


A Custom Hardware Architecture for the Link Assessment Problem 59

In this chapter, we give an overview of hardware-assisted compute systems
for applications based on the Link Assessment (LA) algorithm. The LA algo-
rithm can be used to clean up large network data sets with noisy data. It assesses
the structural similarities between the nodes, and thus differentiates meaning-
ful relationships between nodes from noisy ones [19 SPP]. The LA algorithm
as presented in Chapter 3 can be employed on a large scale of applications,
e.g., recommendation systems, protein-protein interaction analyses in biology,
or business analytics and marketing [3 SPP].

In Sect. 2 we give a short overview about the fundamentals of hardware (HW)
and hardware/software (HW/SW) design both for custom application specific
integrated circuit (ASIC) and FPGA architectures. Section 3 provides detailed
insights in our proposed HW architecture for the Link Assessment (LA) algo-
rithm. Performance data and comparisons are given in Sect. 4. Section 5 con-
cludes this chapter.

2 Basics of Hardware and Systems Design

Custom, dedicated hardware compute architectures are substantially different
from standard programmable architectures such as CPUs or GPUs. They are
tailored for a specific task, avoiding all unnecessary overhead in storing/moving
data, for control architectures, and over-precision data types. This increases both
compute performance and power/energy efficiency, at the cost of low to zero
flexibility after design. In contrast to a program written for CPUs, hardware
architectures, in general, do not receive and execute instructions. Instead, their
behavior is encoded in the circuit itself.

Hardware accelerators are electrical (abstracted: digital) circuits that focus
on data manipulation. They can be realized in three ways:

– As circuits with various discrete components on a printed circuit board
(PCB),

– As a fixed geometry on silicon (a so-called application specific integrated cir-
cuit (ASIC))), or

– On an underlying configurable hardware architecture such as a programmable
logic device (PLD), in particular an field programmable gate array (FPGA).

Nowadays, most systems are realized on a so-called system on chip (SoC). In
contrast to discrete circuits realized on PCBs, a SoC combines most components
on a single piece of silicon. For that purpose, various processing elements (PEs)
are attached to a communication infrastructure (a bus or a network on chip
(NoC)). In addition, external input/output (I/O) interfaces are provided for
receiving from and sending data to the outside world. An example for such a
SoC structure is given in Fig. 1.

In general, not all PEs are developed by the system designer (team) on their
own. Instead, many component architectures are available for purchasing as so-
called intellectual property (IP), i.e., as hardware geometry or as design data
given in a hardware description language (HDL) or a logical netlist. They mostly



60 A. Chinazzo et al.

ship with an equivalent software model that can be used for behavioral analysis,
testing, and debugging purposes. IP cores can somehow be compared to software
libraries in programming since they offer predefined functionalities that can be
incorporated into the overall systems. However, most IP cores are closed-source
and only available on a commercial basis. In contrast to software projects, open-
source hardware platforms such as opencores.org are very limited, both from
their available contents and their technology.

Fig. 1. Example for a SoC with processing elements, interconnect, and interfaces
(By en:User:Cburnett - Own work in Inkscape based on en:Image:ARMSoCBlock
Diagram.gif, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=286
6881)

https://commons.wikimedia.org/w/index.php?curid=2866881
https://commons.wikimedia.org/w/index.php?curid=2866881


A Custom Hardware Architecture for the Link Assessment Problem 61

2.1 Hardware/Software System Design Flow

The generic (classic) design flow2 for custom computing systems is shown in
Fig. 2. It is much more complex than a pure software development flow. The
flow starts with a so-called hardware-software-partitioning that determines which
parts of the overall behavior will be realized in hardware or software. While
considering available hardware and software IP in conjunction with functional
and non-functional requirements such as throughput, energy/power limitations,
or quality aspects, the system (architecture) platform is determined. After a
preliminary simulation, the actual implementation of the hardware and software
components starts. Finally, the system components, their interaction, and the
final system behavior are validated.

Since we expect software development flows to be well-known by the readers
of this chapter, we will focus on the hardware development part in the following.

2.2 FPGA Basics

Hardware architectures realized in an application specific integrated circuit
(ASIC) can no longer be changed after production (they are fixed geometries in
silicon). In contrast, a programmable logic device (PLD) is shipped as a device
with plenty of available hardware units that can be connected after production.
This programming or configuration can be either one-time3 or multiple times. A
prominent example for the latter is a field programmable gate array (FPGA).

FPGAs are hardware devices that come with a large amount of flexible small
hardware units, so-called lookup tables (LUTs). They are basically very small
random access memorys (RAMs) that are written during the boot process (“con-
figuration”) of the FPGA. Besides, FPGA provide a complex and flexible inter-
connect system that is configured together with the LUTs. Furthermore, special
components such as Block RAMs (BRAMs), fixed bitwidth multiply-accumulate
(MAC) units, multipliers, and I/O components are available.

FPGAs do not have a functional behavior before being initially configured.
Some types can even be (partially) re-configured during operation, i.e., chang-
ing (parts of) the circuit while the rest of the system continues running. Thus,
systems equipped with FPGAs allow a very high level of flexibility and dynam-
ics (however, at the cost of an immensely complex design flow, see Fig. 2). In
addition, combined CPU/GPU-FPGA systems are available, both in the high-
performance computing (HPC)/data center and the embedded SoC domain.

The acquisition of the FPGA vendors Altera by Intel in 2015 and Xilinx
by AMD in 2020 shows the potential of this technology for the future of the
computing landscape.

2 A lot of different elaborate system design flows exist [2,11,17] that are omitted here
for the sake of clarity.

3 One-time programmable devices are physically modified during the programming,
e.g., by burning connections or melting so-called antifuses that create a conducting
connection afterwards.



62 A. Chinazzo et al.

The proposed hardware architecture for computing the Link Assessment
(LA) algorithm can be realized both on ASICs and FPGAs. In the following,
we present our architecture in detail and illustrate the differences compared to
classical CPU implementations.

Fig. 2. Generic design flow for a SoC (By Traced by User:Stannered - en:Image:So
CDesignFlow.gif, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=
1864027)

https://commons.wikimedia.org/w/index.php?curid=1864027
https://commons.wikimedia.org/w/index.php?curid=1864027


A Custom Hardware Architecture for the Link Assessment Problem 63

3 Hardware Architectures for the Link Assessment
Computation

Many applications in the big data context are based on fast and reliable identifi-
cation of so-called network motifs in large networks, i.e., those subgraphs whose
occurrence is significantly higher than expected in a random graph model [15].
This enables analyzing large-scale biological data in bioinformatics, connections
in social networks, incident detection, and general graph data cleaning proce-
dures by LA [22 SPP].

Network motif detection is actively investigated in current research, but
mainly from the algorithmic point of view. From the implementation side, nearly
all available work deals with mapping the motif detection problem on parallel
CPU and GPU based clusters [9,14].

For the Link Assessment (LA) algorithm, we consider a special variant
of motifs, the so-called co-occurrence (coocc) which is defined as the number
of common neighbors between two nodes of graph. Formally, coocc (u, v) =
|N(u) ∩ N(v)| for any pair of nodes u, v ∈ G, where N(u) is the neighbor-
hood of node u in graph G. Throughout this chapter, we use the shorthand
“coocc matrix of a network/graph” in place of “the set of all node-pairwise
cooccs of a network/graph,” or coocc(G) = {coocc(u, v) ∀u, v ∈ G}. For a
bipartite graph, G = G(Vl, Vr;E), with vertex partitions Vl and Vr and edges
E ⊂ (Vl × Vr), the coocc matrix can be defined for either partition, e.g.,
coocc(Vl) = {coocc(u, v)∀(u, v) ∈ (Vl ×Vl)}, in which case Vl is called the side of
interest. In this chapter, we focus on bipartite graphs.

The coocc(u, v) by itself is a way of quantifying the similarity of nodes u
and v. However, it is a strongly biased quantifier, e.g., w.r.t. the degree of the
nodes. The LA algorithm reduces such biases by comparing the observed coocc of
the real network with its expected value for a random graph model (null-model),
namely the fixed degree sequence model (FDSM) [22 SPP,19 SPP]. As the name
suggests, the FDSM is the set of all graphs configurations that share the same
degree sequence as the observed graph, and it has been shown to provide more
robust results than simpler null-models [22 SPP]. Since closed-form solutions for
the expected co-occurrences, cooccFDSM (u, v), are not known, these quantities
are estimated by a random sampling procedure, known as a Markov chain Monte
Carlo (MCMC) approach.

The MCMC approach is divided in two main steps: (1) the randomization
of the graph by repeatedly swapping its edges until an uncorrelated, and hence
unbiased sample of the FDSM is reached, and (2) the computation of the sample’s
cooccs. Of key importance are (a) the number of swap trials between samples
and (b) the number of samples drawn from the FDSM. For the interested reader,
Chapter 3 presents the LA in more detail, including an in depth analysis of the
effect of those parameters, (a) and (b), on the final quality of the results as well
as on the total runtime of the algorithm. In fact, MCMC sampling is the most
time consuming part of the LA algorithm.

Once enough samples have been created and evaluated, the node-pairwise
similarities are calculated as the probability of finding, in the FDSM, a



64 A. Chinazzo et al.

coocc(u, v) greater or equal than that of the original graph. The higher the
probability, the lower the similarity between (u, v). The probability is estimated
first by the p-value and ties are broken by the z-score (see Chapter 3).

In Sect. 3.2 we show that the LA performance is strongly bounded by the
speed of the random accesses to the main memory. Aiming to reduce the effects
of this unavoidable constraint, in 2015 we have presented the first dedicated
embedded hardware accelerator optimized for this task [4 SPP]. Precisely tailored
cache memories and computational units for the coocc calculation help reduc-
ing the number of random accesses by using a rather naive representation of the
graph, which is not optimal for CPUs. This work is the basis for a granted patent
[21 SPP].

In a follow-up work [3 SPP], we exploit the granularity of DRAM devices
to increase the efficiency of main memory accesses during the random graph
creation (the null model). We demonstrate the performance of our design with
the Netflix Prize data set4 and show that a single ASIC instance has a speedup
of 5.6x compared to a 10-node Intel cluster while requiring 38x less memory and
1030x less energy.

3.1 Data Structures

The Link Assessment (LA) requires two main pieces of information: The graph
and the co-occurrence and similarity measures matrices.

The graph is used by both compute kernels, i.e., the edge swapping (see
Chapter 2) and the coocc calculation. The edge swapping kernel consists of ran-
domly selecting two edges, (u,w) and (v, x) for u, v ∈ Vl and w, x ∈ Vr, and
swapping their connections, to get (u, x) and (v, w), if this does not modify the
degree sequences of Vl and Vr. For the edge swapping to have a constant com-
pute complexity, the data structures must provide direct access to existing edges
of the graph (random edge selection) and a constant time check for the existence of
the new, swapped edges (to preserve the degree sequences). While the adjacency
list representation of the graph solves the first task, its adjacency matrix solves
the second. Using only one of the data structures would drastically slow the edge
swapping procedure. Therefore, we make use of both graph representations, as
formalized next.

Given a bipartite graph G(Vl, Vr;E) consisting of the vertex partitions Vl and
Vr and the edges E ⊂ (Vl × Vr), an adjacency matrix A = (Vl × Vr) is stored.
An entry in the matrix is Au,w = 1 if (u,w) ∈ E, with nodes u ∈ Vl, w ∈ Vr. It
is sufficient to store A with one bit per entry and a total storage requirement of
|Vl| · |Vr| bits. The adjacency list representation is simply the list of all edges E,
requiring |E|(�log2 |Vl|� + �log2 |Vr|�) bits.

One coocc half-matrix is necessary for storing the real graph cooccs. It is
a half-matrix since coocc(u, v) = coocc(v, u), and each pair of nodes (u, v) ∈
(Vl × Vl) must be evaluated. A second and identical structure is necessary for

4 Available at https://www.kaggle.com/netflix-inc/netflix-prize-data. Last accessed
on 24/11/2022.

https://www.kaggle.com/netflix-inc/netflix-prize-data


A Custom Hardware Architecture for the Link Assessment Problem 65

storing the cooccs of each random graph sample. Instead of keeping as many
coocc half-matrices as the number of samples, the similarity measures, p-value
and z-score, are updated after each sample. For the p-values, a single half-matrix
is required. For updating the z-score, it is sufficient to keep the sum and the sum-
of-the-squares of the samples’ coocc.

A summary of the memory footprint of each data structure is shown in
Table 1.

Table 1. Memory footprint of the data structures for the LA

Variable Required bits

Adj. matrix |Vl| · |Vr|
Adj. list |E|(�log2 |Vl|� + �log2 |Vr|�)
cooccori(u, v) �log2(|Vr|)�
coocci(u, v) �log2(|Vr|)�
p-value count �log2(|samples|)�
∑

i coocci(u, v) �log2(|Vr| · |samples|)�
∑

i coocci(u, v)
2 �log2(|Vr|2 · |samples|)�

3.2 Memory Boundedness

In order to demonstrate the memory boundedness of the LA, we use the roofline
model [20] to profile a parallel, optimized CPU implementation of the algorithm.
The roofline model is a visualization tool intended to evaluate the efficiency of
computation kernels w.r.t. the underlying hardware. The maximum performance
of the hardware is bounded, of course, by its maximum number-crunching speed,
but also by the memory access bandwidth. These bounds are represented by the
black lines (the Rooflines) in Fig. 3. The performance of a computing kernel is
measured in operations per second, i.e., how busy the processor really is. Only
integer operations (INTOP) are considered because the LA does not use floating-
point numbers, and the G in GINTOP stands for Giga, i.e.„ billions of integer
operations. The arithmetic intensity is defined as ratio between the number of
operations over the total memory traffic, being measured in operations per byte.

The performance and arithmetic intensity of the edge swapping and the coocc
computation kernels were measured by Intel Advisor5. They are presented in
Fig. 3. We can see that the performance of the kernels are 1.3GINTOP/s for
edge swapping and 2.2GINTOP/s for the coocc calculation. This is far from
the attainable value by the CPU (109GINTOP/s). This is because of the low
arithmetic intensity of both kernels, as is expected from their tasks. The edge
swapping kernel, for example, needs to access multiple random memory locations
to only check for the existence of an edge, hence many bytes are accessed but

5 https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-
roofline.html.

https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html


66 A. Chinazzo et al.

very little processing happens. Most of the time, this kernel is simply waiting
for the data to be loaded, what we call a memory stall. During the stall, no
processing occurs.

The impact of the stalls on the total runtime are given per memory hierarchy
level. We can see that more that half of the total runtime is spend waiting for the
DRAM. Moreover, the DRAM stalls account for almost 80% of the edge swapping
runtime. This is expected from the intrinsically random memory access pattern
of the edge swapping, which means that the cached data is hardly ever used.

Fig. 3. Roofline analysis of the main compute kernels for the Link Assessment: Edge
swapping and co-occurrence computation. Both kernels are strongly memory bounded,
with 79% and 54% of the runtime spent in DRAM stalls for the edge swapping and
coocc kernels, respectively. Machine: Intel Xeon E5-2640 v3 (16 cores at 2.6 GHz) with
2 × 32 GB DRAM.

3.3 Co-occurrence Calculation

Calculating the node-pairwise coocc of a given graph is the most time consuming
part of the LA. Using the adjacency matrix, we iterate through each pair of rows
(nodes in Vl) and count the number of columns (nodes in Vr) where both elements
are 1, i.e., both edges exist. The computational complexity of this procedure is,
therefore, O(|Vl|2 · |Vr|).

Through the adjacency list, the complexity can be amortized to
O(

∑
Vr

deg(w)2), where deg(w) is the degree of node w ∈ Vr. This particu-
larly benefits networks whose degrees follow a power-law distribution, as is the
case of most real networks [22 SPP]. For a CPU implementation of the LA, the
adjacency list approach is preferred, even though the memory access pattern is
unstructured (see Sect. 3.2).



A Custom Hardware Architecture for the Link Assessment Problem 67

From a hardware architecture design perspective, however, the adjacency
matrix approach can be easily implemented with blocks of bit-wise ANDs fol-
lowed by an adder tree, what we call coocc module. Due to the small size of such
an operational block, it can be replicated multiple times, reaching a degree of
parallelism that is not feasible in CPUs. To make use of such high parallelism
without being constrained by the DRAM bandwidth requires a well-designed
cache layout.

Calculating the coocc between all pairs of vertices in Vl in a naive way requires
to load the same data many times. For example, calculating the coocc between
u, v ∈ Vl requires edges connected to u and v, or in other words the two rows u
and v of the matrix A. When the coocc is later calculated between u and w, the
same row Au needs to be loaded. This leaves huge potential for an optimized
memory hierarchy and algorithms to minimizing data transfer.

We presented an appropriate solution for this issue in 2015 [4 SPP]: The key
idea was to add a row-cache to the coocc module. The row-cache must be able
to store one complete row of the adjacency matrix.

Having k parallel coocc units, we use their caches to store a consecutive block
of k rows Au, .., Au+k−1. Then we stream one by one all following rows through
the coocc modules, starting with Au+k. With each new row Av the modules
can calculate the coocc of all pairs of the cached rows (u, v), .., (u + k − 1, v).
Algorithm 1 formalizes this scheme.

Algorithm 1: Implementation of the coocc computation step for K coocc mod-
ules
Data: Graph G((Vl, Vr);E) stored as adjacency matrix A = (Vl × Vr), Vl being

the side of interest
Result: coocc for all pairs of vertices (u, v) ∈ (Vl × Vl)

1 for u := 1 to |Vl| step K do
2 k := 0
3 for v := u to |Vl| do
4 Stream row Av from DRAM
5 if k ≥ 1 then
6 Compare the streamed row with all previously cached rows 1 to k

and calculate the coocc for the pairs: (u, v), .., (u+ k − 1, v)

7 if k < K then
8 k := k + 1
9 Store the streamed row in cache k

The main advantage of this scheme is solving the scaling problem. While
adding m times more modules reduces the runtime by a factor of m, it does
not increase the requirements for external bandwidth since only one row has to
be streamed through all the blocks at each given time. This allows us to place
hundreds, if not thousands, of coocc units next to each other, providing massive
speedups.



68 A. Chinazzo et al.

Figure 4(a) shows the data path tailored to this task, consisting of an adder
tree and accumulator. Each edge cache has a capacity of 64 kB, targeting a
frequency of 400MHz. For a 64 bit double data rate (DDR) channel at 800MHz,
we get 256 edges per cycle when running the coocc units at 400MHz. That means
the adder tree has a width of 128 adders at the top and a depth of seven stages.
Four coocc modules are synthesized in a single cell and combined in a grid of 5
times 12, for a total of 240 coocc modules. To distribute the data to the caches
or to stream further rows of the matrix a tree-like replication network is used,

Fig. 4. The coocc and result module (b) works on one dataset after another, always
updating the same result. It loads one row of the graph into the caches (local memory
(LMEM)) and first calculates the coocc before calculating the similarity measures. The
coocc module (a) consists of an efficient adder tree operating on blocks of l edges per
cycle. While the similarity measures, lower half in (b), consists of several arithmetic
blocks and it is only called once per row, making it possible to share most of the
resources.

Fig. 5. ASIC layout in 28 nm technology. It consists of 240 coocc modules, three DRAM
controllers (green) and IO logic. The swap randomization block is not visible here due
to its small size .(Color figure online)



A Custom Hardware Architecture for the Link Assessment Problem 69

while for the results a shift register over the whole chip is used. That makes the
architecture perfectly scalable.

In total, this architecture accumulates the coocc from 240 × 256 = 61, 440
matrix columns per cycle, or ∼24.5×1012 columns per second. In a comparison
with the fastest CPU based population count [16] running at 3.4GHz, that
represents a speed up of ∼59×.

The rest of the design is occupied by memory controllers and IO, see Fig. 5.
For the memory controllers, we have estimated the numbers based on the corre-
sponding publications [6,10]. The whole ASIC has a size of 51.2mm2 and average
power consumption of 11.7W.

Partial-Line Cache Optimization. In a follow-up work [3 SPP], we further
increased the efficiency of the hardware architecture by introducing the concept
of partial line caches. Since the area of the coocc modules are dominated by
their cache, reducing the cache size enables much higher degrees of parallelism.
However, if the coocc modules cannot hold an entire row of the adjacency matrix,
the partial results must be temporarily stored, raising the question of the optimal
cache size for achieving the best performance.

As will be detailed in Sect. 3.4, higher granularity DRAM channels (shorter
word-sizes) can be used to accelerate the graph randomization step. However,
they increase the latency of accessing the adjacency matrix rows, therefore pre-
senting the worst-case for the coocc computation.

In Fig. 6 we have simulated the time it takes to process the adjacency matrix
with the time it takes to store the partial result on average for one line segment
when using a channel word-size of 8-bit (the smallest possible). Since those oper-
ations are pipelined, the optimal cache size is given by the Pareto front between
the two operations. The smallest latency is reached for a cache size of 8 kB.

Pareto Front

per co-occ module cache size (KB)

Partial Cooc ResultAdjacency Matrixlatency (us)

64 56 48 40 32 24 16 12 10 8 4 2
0.0
2.0
4.0
6.0
8.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Fig. 6. Latencies of accessing the input data stored in Adjacency Matrix rows in com-
parison with latency for storing partial coocc results, assuming the same channel width
for both memories involved in the design. The Pareto front is the maximum of each.
Numbers are for 8-bit channel DRAMs.



70 A. Chinazzo et al.

While in the first design 240 coocc modules with 64 kB caches have been
used, 8 kB caches allow us to increase the number of modules up to 1920 for the
same total cache size. This results in a similar total chip area, from 51.2mm2

to 57.3mm2, as the caches dominate the coocc module in both cases. With this
approach, we could further reduce the runtime of the coocc computation by a
factor of 8× when using the same 64-bit channels, or maintain the same speed
when using 8-bit channels.

3.4 Swap Randomization

With the accelerated coocc computation, the generation of each sample, i.e.,
the randomization of the graph becomes the bottleneck. Edge swapping is a
strictly sequential operation in that any swap can depend on the result of the last
swap, therefore its parallelization is not as straightforward as instantiating more
processing units. Nevertheless, we addressed this bottleneck by exploiting the
fine-grained access to DRAM [3 SPP], what is only possible when implementing
our own memory controller, as well as a collision-aware swap parallelization.

Fine Grained DRAM Access. Most modern CPU have a fixed size interface
of 64 bits with the DRAM. DRAM devices, however, can have higher granularity
interfaces of, e.g., 8 bits (×8), and they are physically combined into groups of 8
devices to build the 64 bits interface. A fixed burst length of 8 DRAM accesses
fills up one cache line of 512 bits, or 64 bytes. For any modern CPU, one cache
line, i.e., 512 bits, is the minimum amount of data that can be loaded from
DRAM.

Since the swap randomization operates only on single integers and single bits,
reducing the word length of the DRAM interface increases the “computations per
loaded bit” (the arithmetic intensity, see Fig. 3) immensely. Indirectly, of course,
it also increases the performance because the swap randomization is bounded by
the random memory access latency.

We have derived an alternative hardware architecture that slightly modifies
the memory controller in order to address each of the DRAM devices (with 8 bit
interfaces) independently [3 SPP]. Normally, the memory controller addresses all
8 DRAM devices of a memory channel as if it was a single device, i.e., it sends the
same commands and addresses to all devices. This allows the memory channel
to share the command and address lines for all devices, saving energy and area
at the cost of having a common address space. The data lines (8 or 64 per ×8 or
×64 device), on the other hand, cannot be shared, as the data in each DRAM
device must be transferred independently. By introducing a chip select signal
and interleaving the commands to each DRAM device, we can transform the
common address space into 8 independent ones. This works because, during the
DRAM latency (data request to data ready), the DRAM device ignores address
and command lines, as they get internally saved at the request moment. That
way, we can load only 8× 8 = 64 bits instead of 8× 64 = 512 bits in one DRAM
device access. This is a slight modification in the memory controller and channel,
but one that could not be accomplished without custom hardware design.



A Custom Hardware Architecture for the Link Assessment Problem 71

For that scheme to be the most efficient, it requires that the data stored
in each DRAM device to be independent. That is, each DRAM chip holds its
own copy of the graph, as shown in Fig. 7(b). With that we can read or write
8 random numbers in the same time with a ×8 channel compared to a single
with one ×64 channel, as shown in Fig. 7(c)(d). This scheme speeds up the swap
randomization by a factor of 4× up to 8×.

Figure 7(a) shows the alternative architecture using two ×64 memory chan-
nels. This design is more suitable whenever the coocc calculation is the bottleneck
of the algorithm, while the design in Fig. 7(b) provides faster graph randomiza-
tion. This trade-off is depicted in Sect. 4.

Fig. 7. Showing the ASIC for two memory configurations: ×64 (a) and ×8 (b) channels.
In the case (a) only two graphs are stored and one swap unit is active, while in case (b)
23 graphs are stored and 22 swap units are active. Architecture (a) is useful for small
number of swaps, while architecture (b) is useful for high number of swaps. Showing
how the different random reads are performed for a ×64 channel (c) and ×8 channels
(d). By interleaving the random accesses of 8 swap units with chip select over one
command and address channel, 8 reads can be performed for (d) in the same time as
one read for (c). This results in an 8× speedup.

Collision-Aware Swap Parallelization. Edge swapping is an inherently
sequential operation in that every step can depend on the previous ones. For



72 A. Chinazzo et al.

large graphs with millions of edges, we access the memory at random locations
for billions of chained swaps. Even then, we can divide the edge swapping chain
into chunks that can be processed in parallel, if we make sure that none of the
swaps depend on the previous ones in the same chunk. These chunks can be
reordered by the memory controller in order to ensure the minimum amount of
random accesses.

We have simulated the performance of the swap parallelization for different
chunk sizes with the DRAMSys tool [12]. For that, we created trace files that
describe the access pattern to the DRAM. The speedup saturates at 2.5× for
a chunk size of N = 12 parallel swaps. Since N is small, checking for collisions
between swaps is much faster than writing the swapped edges back to DRAM,
therefore it does not incur any time overhead.

Table 2. Cluster ASIC Comparison

Implementation Memory Runtime Power Energy
[GB] [hour] [W] [MJ]

Low number of swaps (|nodes| ln |nodes|):
ASIC (1920 modules, 64-bit channels)a 5.3 1.51 20.1 0.11
10 node Intel clusterb 202 8.5 (5.6x) 3700 114 (1030x)
ASIC (240 modules, 64-bit channels)c 4.6 9.0 (6.0x) 15.8 0.51 (4.6x)
High number of swaps (|edges| ln |edges|):
ASIC (1920 modules, 8-bit channels)a 30.9 11.1 13.3 0.53
10 node Intel clusterb 202 16 (1.4x) 3300 190 (360x)
ASIC (240 modules, 64-bit channels)c 4.6 483 (44x) 10.9 19 (36x)
anode including: ASIC with 1920 coocc modules, 28 nm; 48 GB DDR3 memory (×64
or ×8 channels); board (ethernet, clocks), power supply.
beach node: 2×Intel Xeon X5680 @ 12 × 3.33 GHz, 32 nm; 48 GB DDR3 memory
cnode including: ASIC with 240 coocc modules, 28 nm; 8 GB DDR3 memory (×64
channel); board (ethernet, clocks), power supply.

4 Performance Comparison

For demonstrating the performance of our design we have calculated the simi-
larity measures for the Netflix Prize data set6, specifically the good ratings (4
or 5 stars) from users to movies. The resulting graph has 17,769 movies, 478,615
users, and 56,919,190 edges. In this case, Vl are the the movies, Vr the users.

In practice, the number of swaps in the randomization process is chosen
between |nodes| ln |nodes| = 6,259,639 and |edges| ln |edges| = 1,016,414,121.
To demonstrate that our design qualifies for the full range, we compare it for
both of those extremes. The exact number in practice usually depends on the
6 Available at https://www.kaggle.com/netflix-inc/netflix-prize-data. Last accessed

on 24/11/2022.

https://www.kaggle.com/netflix-inc/netflix-prize-data


A Custom Hardware Architecture for the Link Assessment Problem 73

nature of the graph. A heuristic for determining the optimal number of swaps is
discussed in Chapter 3.

Table 2 compares our ASIC and our optimized cluster implementations of the
LA algorithm. The cluster implementation was developed specifically for this ref-
erence work and tested on two Intel Xeon X5680 @ 12 × 3.33 GHz, 32 nm server
nodes. Optimization involved the selection of an algorithm that minimizes com-
puting time for the given memory resources, removing locks by data partitioning,
and data access linearization [4 SPP,3 SPP].

Our first ASIC design (240 coocc modules) has a runtime performance com-
parable to the cluster implementation if a low number of swaps is necessary.
Notice, however, that it becomes almost useless (takes 20 days to complete) if
|edges| ln |edges| swaps are required. This is clear since in this first architecture
we only focused on accelerating the coocc calculation. Still, the total energy
consumption is 10x lower (notice that the total energy takes into account the
total runtime). This goes to show the amount of energy overhead for software
implementations, or how much energy can be saved by task specific ASICs. This
conclusion is interesting for both ends of the computing spectrum: The embed-
ded computing systems that are limited by battery capacity, size, and power
constraint, and the high performance computing, limited by energy expenses
and power dissipation issues.

Our second design shows how reconfigurability can address data-dependent
bottlenecks (i.e., the coocc or the edge swapping). By using smaller word-sizes
(×8 channels), we can accelerate both the coocc and edge swapping in such a way
that the Link Assessment becomes 45% faster than the cluster implementation
while consuming 360x less energy. When fewer swaps are necessary, the word-size
can be increased to ×64 channels, further reducing the coocc computation time
(the primary bottleneck), reaching a speed up of 5.6x compared to software.
The total energy economy, in this case, is even more impressive: From 114 MJ
in software to only 0.11 MJ in the custom design. This is partially due to the
large reduction of 38x in main memory footprint, from 202 GB to 5.3 GB.

5 Conclusion

Further increasing computational performance in modern technologies has
become a key challenge for the whole hardware and software industry. Phenom-
ena such as Dark Silicon force system designers to move to highly heterogeneous
systems, consisting of a large amount of highly dedicated hardware accelerators
in combination with classical programmable architectures such as CPUs and
GPUs. Since hardware accelerators focus on specific tasks, they can be much
more power/energy and compute efficiently than the latter ones.

In this chapter, we present a hardware architecture for the Link Assessment
(LA) algorithm, used for cleaning up noise data in large graphs. Processing and
analyzing large graphs will remain a key application in HPC for the next decades.
Since the current bottleneck for speeding up this task is fast random access
to memory, with standard DRAM architectures and controllers on commodity



74 A. Chinazzo et al.

HPC nodes we experience a hard performance limit, together with high energy
consumption.

Our proposed architecture uses custom data structures and exploits bit-wise
access to the data in order to overcome these limitations. On a 28 nm ASIC device
with a DDR3 controller it is 1030x more energy efficient compared to a standard
compute cluster, using 38x less memory in total. We show multiple optimization
techniques that are specific to custom hardware designs, such as a slight memory
controller modification that reduces the average random access latency; and a
tailored cache design that enables scalable parallelism w.r.t. memory bandwidth.
The architecture is fully flexible and can also be ported as an FPGA accelerator
solution. This clearly illustrates the potential of hardware accelerators for the
LA in particular and the graphs analysis domain in general.

Transferring the concepts to other algorithms such as Curveball (see Chapter
2) is the subject of ongoing work.

References

1. Asanovic, K., et al.: A view of the parallel computing landscape. Commun.
ACM 52(10), 56–67 (2009). https://doi.org/10.1145/1562764.1562783

2. Brugger, C.: A new approach to efficient heterogeneous computing = Ein
neuer Ansatz für effiziente, heterogene Datenverarbeitung. Ph.D. thesis, Uni-
versity of Kaiserslautern, Germany (2016)

3 SPP. Brugger, C., Grigorovici, V., Jung, M., de Schryver, C., Weis, C., Wehn, N.,
Zweig, K.A.: A memory centric architecture of the link assessment algorithm
in large graphs. IEEE Des. Test 35(1), 7–15 (2018). https://doi.org/10.1109/
MDAT.2017.2750900

4 SPP. Brugger, C., et al.: A custom computing system for finding similarties in
complex networks. In: ISVLSI, pp. 262–267. IEEE Computer Society (2015).
https://doi.org/10.1109/ISVLSI.2015.78

5. Duranton, M., et al.: Hipeac vision 2019. European Network of Excellence on
High Performance and Embedded Architecture and Compilation (HiPEAC)
(2019)

6. Dutoit, D., et al.: A 0.9 pJ/bit, 12.8 GByte/s WideIO memory interface in
a 3D-IC NoC-based MPSoC. In: Symposium, VLSIT, pp. C22–C23. IEEE
(2013)

7. Esmaeilzadeh, H., Blem, E.R., Amant, R.S., Sankaralingam, K., Burger, D.:
Dark silicon and the end of multicore scaling. IEEE Micro 32(3), 122–134
(2012). https://doi.org/10.1109/MM.2012.17

8. Garraghan, P., Al-Anii, Y., Summers, J., Thompson, H., Kapur, N., Djemame,
K.: A unified model for holistic power usage in cloud datacenter servers. In:
UCC, pp. 11–19. ACM (2016). https://doi.org/10.1145/2996890.2996896

9. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU
using CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K.
(eds.) HiPC 2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77220-0_21

10. Howard, J., et al.: A 48-core IA-32 message-passing processor with DVFS
in 45 nm CMOS. In: ISSCC, pp. 108–109. IEEE (2010). https://doi.org/10.
1109/ISSCC.2010.5434077

https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1109/MDAT.2017.2750900
https://doi.org/10.1109/MDAT.2017.2750900
https://doi.org/10.1109/ISVLSI.2015.78
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.1145/2996890.2996896
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1109/ISSCC.2010.5434077
https://doi.org/10.1109/ISSCC.2010.5434077


A Custom Hardware Architecture for the Link Assessment Problem 75

11. Jung, M.: System-level modeling, analysis and optimization of dram memo-
ries and controller architectures. Ph.D. thesis, University of Kaiserslautern,
Germany (2017)

12. Jung, M., Weis, C., Wehn, N.: Dramsys: a flexible DRAM subsystem design
space exploration framework. IPSJ Trans. Syst. LSI Des. Methodol. 8, 63–74
(2015). https://doi.org/10.2197/ipsjtsldm.8.63

13. Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Des. Test 31(3),
8–20 (2014). https://doi.org/10.1109/MDAT.2014.2314600

14. Miller, B.A., et al.: A scalable signal processing architecture for massive graph
analysis. In: ICASSP, pp. 5329–5332. IEEE (2012). https://doi.org/10.1109/
ICASSP.2012.6289124

15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon,
U.: Network motifs: simple building blocks of complex networks. Science
298(5594), 824–827 (2002). https://doi.org/10.1126/science.298.5594.824

16. Mula, W., Kurz, N., Lemire, D.: Faster population counts using AVX2 instruc-
tions. Comput. J. 61(1), 111–120 (2018). https://doi.org/10.1093/comjnl/
bxx046

17. de Schryver, C.: Design methodologies for hardware accelerated heteroge-
neous computing systems. Ph.D. thesis, University of Kaiserslautern, Ger-
many (2014)

18. Slavakis, K., Giannakis, G.B., Mateos, G.: Modeling and optimization for
big data analytics: (statistical) learning tools for our era of data deluge. IEEE
Signal Process. Mag. 31(5), 18–31 (2014). https://doi.org/10.1109/MSP.2014.
2327238

19 SPP. Spitz, A., Gimmler, A., Stoeck, T., Zweig, K.A., Horvát, E.: Assessing low-
intensity relationships in complex networks. PLoS ONE 11(4), 1–17 (2016).
https://doi.org/10.1371/journal.pone.0152536

20. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual per-
formance model for multicore architectures. Commun. ACM 52(4), 65–76
(2009). https://doi.org/10.1145/1498765.1498785

21 SPP. Zweig, K.A., Brugger, C., Grigorovici, V., De Schryver, C., Wehn, N.: Auto-
mated determination of network motifs (2015)

22 SPP. Zweig, K.A., Kaufmann, M.: A systematic approach to the one-mode pro-
jection of bipartite graphs. Soc. Netw. Analys. Min. 1(3), 187–218 (2011).
https://doi.org/10.1007/s13278-011-0021-0

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.2197/ipsjtsldm.8.63
https://doi.org/10.1109/MDAT.2014.2314600
https://doi.org/10.1109/ICASSP.2012.6289124
https://doi.org/10.1109/ICASSP.2012.6289124
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1093/comjnl/bxx046
https://doi.org/10.1093/comjnl/bxx046
https://doi.org/10.1109/MSP.2014.2327238
https://doi.org/10.1109/MSP.2014.2327238
https://doi.org/10.1371/journal.pone.0152536
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1007/s13278-011-0021-0
http://creativecommons.org/licenses/by/4.0/

	A Custom Hardware Architecture for the Link Assessment Problem
	1 Introduction
	2 Basics of Hardware and Systems Design
	2.1 Hardware/Software System Design Flow
	2.2 FPGA Basics

	3 Hardware Architectures for the Link Assessment Computation
	3.1 Data Structures
	3.2 Memory Boundedness 
	3.3 Co-occurrence Calculation
	3.4 Swap Randomization

	4 Performance Comparison
	5 Conclusion
	References




