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Abstract. Complex graphs are at the heart of today’s big data challenges like
recommendation systems, customer behavior modeling, or incident detection sys-
tems. One reoccurring task in these fields is the extraction of network motifs,
which are subgraphs that are reoccurring and statistically significant. To assess
the statistical significance of their occurrence, the observed values in the real net-
work need to be compared to their expected value in a random graph model.

In this chapter, we focus on the so-called Link Assessment (LA) problem,
in particular for bipartite networks. Lacking closed-form solutions, we require
stochastic Monte Carlo approaches that raise the challenge of finding appropriate
metrics for quantifying the quality of results (QoR) together with suitable heuris-
tics that stop the computation process if no further increase in quality is expected.
We provide investigation results for three quality metrics and show that observing
the right metrics reveals so-called phase transitions that can be used as a reliable
basis for such heuristics. Finally, we propose a heuristic that has been evaluated
with real-word datasets, providing a speedup of 15.4× over previous approaches.
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1 Introduction

The data deluge phenomenon is ever more present. We, as a society, generate and store
far more data than what we can make use of right now [7]. Among the reasons for
that are: 1. new approaches to acquire data, ranging from internet traffic recordings to
high throughput DNA sequencing; and 2. the reduction in price per bit of data storage
technologies, which motivates companies and researchers to be less selective about
what data to be stored. These are by no means disadvantages over past methodologies,
instead, they open new possibilities for data analysis that require methods that are more
efficient and more robust against noise.

Complex network analysis is a tool-set of methods commonly used to extract infor-
mation from large amounts of data, as long as the data can be meaningfully represented
as a network. One popular method is the so-called Link Assessment (LA), whose goal is
to refine the data based on the principle of structural similarity (or homophily), i.e., enti-
ties that are alike tend to share a large proportion of their neighbors. Although the
assumption of homophily is most common in social network analysis, mainly unipar-
tite networks, it has been shown useful in a large range of contexts, including bipartite
networks (such as a user rating / movie network) [24 SPP].
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For unipartite networks, such as a protein-protein interaction database [12] or social
networks [24 SPP], the LA may serve as a data-cleansing method, evaluating whether
each existing link is likely to be a true positive and whether each non-existing link
is likely to be a true-negative. This should not be confused with the link prediction
problem, which is already well-researched [17], but poses a slightly different question:
Given a snapshot of a network at time t, which of the yet unconnected node pairs are
predicted to be connected at t+1?

For bipartite networks, such as genes that are associated with diseases [11] or prod-
ucts that are bought by costumers [10], the LA is a systematic way of projecting such
networks to one of their sides [27]. This so-called one-mode projection transforms a
bipartite network into a unipartite one by connecting the nodes on one of the sides
based on their connections to the other side, while the nodes of the other side are
discarded (see Sect. 2). Since most methods and tools for network analysis focus on
general graphs, the one-mode projection of bipartite networks is a particularly useful
pre-processing step to their analysis [27]. In this chapter, therefore, we focus on the LA
for bipartite networks.

The LA is closely related to a vast body of research that includes the link prediction
[17,20], recommendation systems [2], and node similarity in complex network analy-
sis [16,18]. Known approaches for such problems can be divided into supervised and
unsupervised learning. Supervised learning approaches require a ground truth, i.e., a
subset of the network whose links or labels are known to be correct. In general, these
ground truths, or training sets, are manually annotated and therefore are often the bot-
tleneck in the data-mining pipeline [26]. Moreover, the ground truths are often split into
a training set and a test set, where the test set is used to estimate the quality of results
(QoR). Unsupervised learning methods, on the other hand, require no ground truth,
instead, they rely only on the structure (or other properties) of the data itself. Thus, in
many cases, the QoR cannot be directly estimated. In conclusion, these methods should
only be applied to specific types of data set for which their robustness has already been
validated.

As stated earlier, the LA is an unsupervised method that assumes the relationships
in the network to adhere to the notion of homophily, where alike nodes tend to have
a larger common neighborhoods than one would expected from merely their degrees
in a randomly constructed graph. In practice, the LA is based on Markov chain Monte
Carlo (MCMC) methods that generate a large set of such random graphs. These MCMC
methods are known to eventually converge, but their parameters are unknown. When-
ever a ground truth is available, the QoR is assessed by, for e.g., the ratio of correctly
identified pairs of alike nodes over the total number of pairs listed in the ground truth,
i.e., the PPVk (see Sect. 2.1). Else, one must ensure that the MCMC has converged.

In this chapter we summarize specific aspects for creating an LA problem solver,
give insights into available metrics for measuring the QoR, and propose an appropriate
heuristic that can speed up the run time by a factor of 15.4× compared to a conservative
approach.
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2 Link Assessment Based on z*

Several node similarity measures have been proposed by different scientific communi-
ties, such as the Jaccard index, the Pearson correlation coefficient, or the hypergeom
[12]. In [24 SPP], we have introduced a new similarity measure, the z* that has shown
to be the most robust one across a range of datasets from protein-protein interactions to
movie ratings to social network.

Given a bipartite graph G((Vl ,Vr),E) with verticesVl andVr and edges E, we define
coocc(u,v) as the number of co-occurring neighbors of nodes u and v. Most node simi-
larity measures inherently depend on this quantity, but differ in how they are normalized
based on the structure of the network. The similarity scores between nodes of the side-
of-interest, sayVl , are the basis for the one-mode projectionG((Vl ,Vr),E)⇒G′(Vl ,E ′),
where E ′ are edges between nodes in Vl . Some similarity measures use a simple factor
based on properties of the two nodes, u and v (e.g., Jaccard index), while others are the
result of a comparison to the expected value from a null-model (e.g., hypergeom).

The z* falls in the second category, as a combination of the p-value and the z-score
statistics of the node-pairwise co-occurrences. Node pairs are ranked more similar if
their p-value is smaller and ties are broken by their z-score [24 SPP]. Of key impor-
tance is the null-model used–the fixed degree sequence model (FDSM). The FDSM
is a random graph model that preserves the degree sequence of the original network
while randomizing its nodes’ interconnections, or edges. While it has been shown that
the FDSM is a superior null-model than simpler graph models [13,14,27], closed-form
expressions for the expected co-occurrences, cooccFDSM(u,v), are not known. These
quantities are instead estimated by a random sampling procedure, known as a Markov
chain Monte Carlo (MCMC) approach. Algorithm 1 describes the complete calculation
of the z*.

2.1 Ground Truth and PPVk

Throughout this chapter, we discuss a variety of results for the Link Assessment (LA)
using as an example the Netflix Prize dataset1. By setting a threshold, the data are
represented as a bipartite graph between users and movies, where an edge (u,v) means
that user u liked (4 or 5 stars in the 1–5 scale) movie v. By finding significant co-
occurrences between any two movies (v,w), a one-mode projection can be obtained
[27]. The projection to the movies side was preferred because the users are anonymized,
therefore it would be impossible to generate a ground truth of known similar users.

We quantify the quality of the LA by the positive predictive value (PPVk) based on a
ground truth dataset that contains only pairs of known non-random association, namely
movie sequels like Star Wars and James Bond. The PPVk is the fraction of correctly
identified pairs from the ground truth in the set of the k highest ranked pairs of movies,
where k is the number of pairs in the ground truth (see [3 SPP] for an example).

Building a ground truth for real datasets requires orthogonal information about the
data (information that is not available for the LA method being tested) as well as an

1 Available at https://www.kaggle.com/netflix-inc/netflix-prize-data.

https://www.kaggle.com/netflix-inc/netflix-prize-data
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Algorithm 1: The complete Link Assessment algorithm, calculating the similarity
measure z*
Data: Graph G((Vl ,Vr);E) with vertices Vl and Vr and edges E, Vl being the vertices of

interest;
Result: A z*-score (p-value and z-score) for all pairs of vertices (u,v) ∈ (Vl ×Vl);

1 Calculate coocc(u,v) ∀ (u,v) ∈ (Vl ×Vl); G0 := G;
2 for i := 1 to |samples| do
3 Gi := Gi−1;

4 Graph randomization:
5 for |swaps| do
6 Choose two edges at random in Gi and swap them, if no duplicate edge arises

from the swap;

7 Coocc computation:
8 Calculate coocci(u,v) ∀ (u,v) ∈ (Vl ×Vl);

9 Calculate p-value and z-score, i.e., the z*:
10 p-value(u,v) := (|{i : coocci(u,v)> coocc(u,v) ∀ i ∈ 1..|samples|)}| ∀ (u,v) ∈ (Vl ×Vl);
11 cooccFDSM(u,v) := {coocci(u,v) ∀ i ∈ 1..|samples|} ∀ (u,v) ∈ (Vl ×Vl);

12 z-score(u,v) := mean(cooccFDSM(u,v))−coocc(u,v)
stddev(cooccFDSM(u,v))

∀ (u,v) ∈ (Vl ×Vl);

reliable method, such as assuming that movies within a sequel are non-randomly sim-
ilar. Therefore, reliable ground truths are rare, limiting the range of input datasets for
which the PPVk can be measured.

Recently, however, we have discovered a systematic way of generating synthetic
graphs for which the ground truth can be directly extracted, based on the benchmarks
proposed in [14]. With that, we are able to conduct experiments for reliably compar-
ing the efficiency and QoR of several LA approaches over an arbitrary range of input
datasets. However, this work is still ongoing.

2.2 Random Graph Models

Network mofits are subgraphs whose occurrence in the observed data is statistically sig-
nificant when compared to a random graph model (a null-model). The choice of such
a null-model must be well-suited to test the investigator’s hypothesis, and an inappro-
priate null-model can result in misinterpretation of the observed data [8]. The fixed
degree sequence model (FDSM) is considered most appropriate for the identification
of motifs, and in many cases, only simple graphs should be considered, i.e., no self-
loops nor multi-edges. Unfortunately, closed-form expressions for the expected motif
frequency over all possible simple graphs with a prescribed degree sequence are not yet
known. Therefore, we commonly rely on a comparatively inefficient MCMC approach
based on sequential mixing of the sampled graph states.

In [23 SPP] and [22 SPP], we have looked at different null-models, which can be
more efficiently generated, as an approximation for the FDSM, as well as developed
equations with the same intention. While some 3-node subgraph frequencies can be
well approximated by simple equations, the case for the node-pairwise co-occurrences
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is more complex. For very regular degree sequences, i.e., all nodes have similar degrees,
an equation based on the simple independence model is sufficient to estimate the
individual node pairs co-occurrences. As the degree sequence becomes more skewed,
the true values from the FDSM diverge from the approximation. Even a more intri-
cate approximation for the individual co-occurrences [19, p. 441], whose sum almost
matches the true value, becomes inaccurate for high-degree nodes. Since skewed degree
sequences are abundant in real networks, such approximations cannot be widely used.

2.3 Co-occurrence Gradient in the FDSM

In another attempt to avoid the costly MCMC sampling approach for estimating the
expected co-occurrences in the FDSM, we have analyzed the co-occurrence gradients
throughout the Markov chains–a so-called mean-field approach, borrowed from statis-
tical physics. In this approach, we first find the differential equation that describes the
expected change, i.e., gradient, in co-occurrence after one single step in the graph mix-
ing Markov chain. If the gradient is sufficient to describe the dynamics of the chain, a
closed-form solution for the expected co-occurrences could be derived (see [1] for an
example of a successful attempt), or at least an iterative, direct method that is not based
on sampling.

In order to fully describe the dynamics of the mixing chains, the co-occurrences gra-
dient, Δcoocc = Δcoocc(coocc), must be a function of only the co-occurrence matrix,
coocc. If additional parameters are needed, their dynamics must also be represented in
differential equations. As it turned out, however, the co-occurrences gradient can only
be found if the structure of the graph is taken into account, i.e., coocc is not sufficient.
Table 1 exemplifies such insufficiency by showing that a centrosymmetric coocc matrix
(middle) does not result in a equally centrosymmetric Δcoocc matrix (right).

Table 1. An example of a adjacency matrix (left) whose row-pairwise co-occurrence (coocc)
matrix (middle) is not sufficient to calculate the expected coocc gradient (right). For the sake of
clarity, the gradient values w.r.t. the edge switching chain (right) are shown without normalization
by the number of possible swaps trials per step, |E|2 = 112.

c1 c2 c3 c4 c5
r1 0 0 0 1 1

r2 0 0 1 0 1

r3 0 1 1 1 0

r4 1 0 0 1 0

r5 0 0 0 1 1

r1 r2 r3 r4 r5
r1 − 1 1 1 2

r2 1 − 1 0 1

r3 1 1 − 1 1

r4 1 0 1 − 1

r5 2 1 1 1 −

r1 r2 r3 r4 r5
r1 − −4 6 0 −16

r2 −4 − 2 12 −4

r3 6 2 − −2 6

r4 0 12 −2 − 0

r5 −16 −4 6 0 −

In fact, the expected change in co-occurrence, a node pairwise relation, can only be
given by the interaction between the neighborhoods of three nodes. This becomes clear
once we realize that coocc(i, j) can only be changed if the neighborhood of a third node
k is modified since the degree sequences are fixed. In turn, the dynamics of the node



44 A. Chinazzo et al.

3-wise relations can only be described by 4-wise relations, and so on. Therefore, we
conclude that a full description of the dynamics of the mixing chains w.r.t. the pairwise
co-occurrences is not feasible.

3 The Benchmarking Problem

In general, comparing different system implementations is a non-trivial task. The rea-
son is that plenty of parameters influence the final system behavior, such as the under-
lying system architecture, the selected algorithms, the chosen software implementation
language, compilers, or communication and memory infrastructures. Besides, the per-
formance of a system can heavily depend on the input data, in particular if adaptive
(“self-tuning”) methods are used. Thus, fairly comparing implementations requires an
in-depth analysis of the relevant factors and the target application domains first.

In this context, we distinguish between the application or problem (the actual task
to be carried out), the employed model or algorithm and its final implementation on
a specific architecture. The latter three make up the final system solution that we are
evaluating.

Let us look more closely at an example: We define the application or problem
as “recommend movies to a client who has already watched several other movies”, a
generic task, e.g., in a video streaming service. The choice of an appropriate algorithm
for this task is crucial for the overall system behavior: We can, e.g., select a graph-
based approach as discussed in this chapter, statistical analysis, or machine learning
based methods [15]. Each of those can be implemented in pure software on a generic
computer architecture, in hardware, or in a hybrid hardware/software setting that com-
bines programmable architectures such as central processing units (CPUs) with hard-
ware accelerators. The selection of an appropriate underlying system architecture is
strongly linked to the chosen algorithm, since there may be strong interactions between
those two. Some algorithms are more friendly for being implemented in hardware or
accelerators (in particular if they allow high parallel processing), while others may fit
more to programmable (i.e., in general sequential or control-driven) architectures. Thus,
fixing algorithm and architecture in the system design flow is an iterative and heavily
interdependent process that requires a deep understanding of both domains and the tar-
get application, since the latter may impose additional restrictions or constraints on the
other ones. In particular, low-level parameters such as selecting appropriate data struc-
tures for efficient memory accesses or custom data types with reduced-precision can
lead to strong increases in performance and energy efficiency, but may also impact the
QoR (see Chapter 4).

However, evaluating/comparing systems always requires well-defined metrics. In
order to allow comparisons over architectural borders, those metrics need to be inde-
pendent of the underlying system architecture and/or employed software. “Operations
per second” for example is still a widespread metric in the high-performance computing
(HPC) domain, but cannot be applied to systems that incorporate hardware accelera-
tors (mainly data-flow architectures with hard-wired circuits) in which no “operations”
exist. Thus, we propose application-level metrics that are not related to the selected
algorithms or architectures. Examples are “run-time for a specific task”, “consumed
energy for a run”, and “achieved QoR for a specific task”.
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In the above-mentioned example “recommend movies to a client who has already
watched several other movies”, we could, e.g., compare a software implementation run-
ning on a CPU-based cluster with a (hybrid) hardware-accelerated architecture. After
deciding that we are going to implement a graph-based approach over other available
options, we can still select the specific algorithm for the LA part (e.g., Edge Switch-
ing (ES) or Curveball (CB), see Sect. 4), the number of processing elements (PEs),
the amount of hardware acceleration (if any), the memory hierarchy, communication
infrastructure, the data structure (e.g., matrix vs. adjacency list), and the data types
(e.g., floating-point precision) that impact both storage demands and required compu-
tational effort. It is obvious that a large number of degrees of freedom leads to an over-
whelming amount of possible system solutions that all solve the same task, but with
different characteristics.

While “run-time for a specific task” and “consumed energy for a run” can be mea-
sured or estimated with rather straight-forward approaches, determining the “achieved
QoR for a specific task” is much harder to quantify. The reason is that in general mul-
tiple ways for measuring quality exist that must be investigated more specifically in
order to determine which metric provides the most meaningful insights for the speci-
fied application.

In addition, stochastic parts of the selected algorithm (e.g., based on former system
states, random numbers, or early stopping criteria/heuristics) may even lead to varia-
tions over different runs with the same input data. Thus, a robust quality metric not
only needs to provide a meaningful quantitative statement of the achieved QoR but
should also be determined in a way that minimizes stochastic impacts on the result. In
the LA part of our example (“recommendation system”), we could, e.g., use the PPVk
[24 SPP] as a direct measure of the results or autocorrelation [6 SPP] or perturbation
[25] as QoR measure for the mixing itself.

A generic approach for tackling these issues are benchmark sets that try to cover
specific application areas with typical data points. Most of them consist of so-called bat-
teries that combine multiple tests into larger task lists to minimize set up/initialization
and read-out overhead and to reduce stochastic effects.

In order to stop a stochastic process when a sufficient QoR is achieved, we employ
heuristics that perform online tracking of specific QoR measures together with desired
target values (so-called early stopping criteria). Once the target is achieved, the pro-
cessing is stopped. For the Link Assessment (LA) problem with the ES chain, we have
analyzed how the PPVk changes over the number of samples and swaps throughout the
processing [4 SPP]. We are using two data sets, the Netflix competition data set and a
medium-size MovieLens data set2. More detailed insights are given in Fig. 5.

Figure 4 and Fig. 5 clearly show that the PPVk saturates abruptly when a specific
number of samples or swaps is achieved (a so-called phase transition). From this
moment on, further processing does not increase the QoR any more. Thus, we can
stop when we detect the phase transition of the PPVk and use this as an early stopping
criterion for this task.

2 The 100k MovieLens data set, available from http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/


46 A. Chinazzo et al.

From this criterion, we can derive an appropriate heuristic that we incorporate into
the final implementation. One crucial aspect for such a heuristic is its stability, i.e., it
must be ensured that it works reliably for the allowed range of input data sets for a given
application and that it stops the processing at the earliest possible time when the desired
QoR is achieved. We present appropriate heuristics for the LA in Sect. 5.1.

4 Edge Switching vs. Curveball

Generating random samples from the fixed degree sequence model (FDSM) remains
the most accurate method for estimating the expected co-occurrences between nodes,
and therefore also for performing the Link Assessment (LA). Exact sampling schemes,
where random graph samples are generated from scratch and exactly uniformly at ran-
dom, were proposed but their computational complexity is O(n3) [9]. Most commonly,
the random graphs are generated by sequentially mixing the original graph’s edges,
specifically using the Edge Switching (ES) Markov chain. Strona et al. [25] proposed a
new algorithm, coined the Curveball (CB), which instead of switching a pair of edges,
randomly trades the neighborhoods of two nodes. The CB was quickly proven to con-
verge to the uniform distribution and adapted for different types of graphs [5] (see
Chapter 2 for more details about the Curveball algorithm).

The mixing time of a Markov chain refers to the number of steps in the chain
required to reach any possible state with equal probability3, i.e., to disassociate the
final, random state from the initial state [21]. While the true mixing time of neither
Markov chain, the ES or the CB, is known, first empirical results suggested that the
CB was a more efficient method of randomizing a graph [5,25]. These are based on
the perturbation score and discussed in terms of the number of steps in the respective
Markov chains. In practice, however, one CB step may take much longer than one ES
step, so an actual runtime comparison between implementations is more meaningful.

In this section, we show the runtime comparison between two versions of the CB
algorithm and an ES implementation. The Sorted-lists Curveball (SCB) iterates through
two randomly selected nodes’ neighborhoods (lists) in order to find, shuffle and re-
assign the disjoint set of neighbors. Although finding the disjoint set is facilitated by
keeping sorted lists, after the re-assignment they must be re-sorted in preparation for the
next trade, so the overall complexity is O(degmax × logdegmax) per trade, where degmax
is the maximum node degree of the network. The Hashed-lists Curveball avoids sorting
the lists by creating a temporary hash-map of each neighborhood. The complexity of
the HCB depends on the properties of the hash-map used, but in general is between
O(degmax) and O(deg2max) per trade. Finally, the ES uses two redundant data structures
to accomplish a complexity of O(1) per swap: the adjacency lists to randomly pick two
existing edges; and the adjacency matrix to check whether they can be swapped.

4.1 Perturbation Score

The perturbation score [25] is the number of different entries between the adjacency
matrices of the original graph and the random sample. Since each step in the edge

3 Within an arbitrary error margin.
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switching chain can only swap two edges, at most four entries of the adjacency matrix
are modified in each step. The perturbation score, although maybe not a true estimator
for the total mixing time, is a direct measure of the distance of the shortest path between
two states of the ES chain.

The first comparison between the randomization algorithms was conducted using
the Netflix Prize dataset. Figure 1 shows the relative perturbation4 vs. the runtime for
a curveball (the SCB) and the ES implementation (shown are averages of at least 10
repetitions). The bottom-most subplot refers to the complete dataset, while the first two
refer to random subsets of 10000 and 100000 users, respectively. Since the curveball
algorithm is sensitive to the number of adjacency lists (=number of columns in the adja-
cency matrix), both Movies x Users and Users x Movies representations are simulated.
In this analysis, irrespective of the amount of data and number of adjacency lists, the
ES implementation is at least 2× faster than SCB.

Fig. 1. Relative perturbation achieved by ES and SCB vs runtime for different subsets of the
Netflix Prize dataset. Machine: Intel(R) Xeon(R) E5 2640v3 @ 2.60 GHz.

Besides the surprising results showing that the ES implementation using both the
adjacency lists and matrix is faster than the CB based on sorted adjacency lists (fur-
ther discussed in Sect. 4.2), another interesting effect can be seen in Fig. 1: Mixing the

4 We define the relative perturbation as the perturbation score normalized by its maximum value
among all mixing chains and repetition runs.
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Users side of the bipartite network is always faster than mixing the Movies side, irre-
spective of the number of users and movies. An explanation for that may be in the
degree distribution of the two types of nodes, users and movies, do not show the same
shape. Figure 2 shows the degree distribution densities for users and movies nodes for a
subset of 100000 randomly selected users of the Netflix Prize dataset. While relatively
more movies have very low or very high degrees, user degrees concentrate in the mid-
dle, a trend that holds for any subset of randomly selected users (not shown). Given
that a curveball trade consists of shuffling the disjoint neighborhoods of two randomly
selected nodes, a higher mixing efficiency is expected when the two nodes have similar
degrees. Therefore, we conclude that, when mixing bipartite graphs using the curveball
Markov chain, it is advantageous to perform the trades between nodes from the least
skewed degree distribution side, at least with respect to the perturbation score vs. the
runtime. Note that the ratio between the number of nodes of the two sides does not play
a major role w.r.t. the runtime (see Fig. 1), contrary to the belief of the original curveball
algorithm inventors [25].

Fig. 2. The degree distribution densities of users and movies for a subset of the Netflix Prize
dataset containing good ratings from 100000 random users. Users’ degrees are more concentrated
in the middle while movies’ degrees have a more skewed distribution, with many very low and
many very high degree movies.

4.2 Runtime Comparison with NetworKit

In [6 SPP], an I/O-efficient implementation of the curveball trades for simple, unipar-
tite graphs is proposed. Its key feature is the introduction of a trade sequence that is
lexicographically sorted before the curveball trades are performed, resulting in a more
efficient memory access (see Chapter 2 or [6 SPP] for more details). In cooperation with
the Group of Algorithm Engineering from the Goethe University Frankfurt, we compare
our ES, SCB, and HCB implementations to a bipartite version of their curveball.

Figure 3 shows the runtime comparison results between our ES, SCB, and HCB
and the NetworKit CB [6 SPP] implementations. Each mixing chain executes 20 super
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Fig. 3. Runtime comparison of the ES and three curveball implementations. The numbers over
the colored bars indicate the average runtime in milliseconds for 10 super steps (see text). The
black, thin bars indicate the standard deviation of 10 runs. NetworKit CB is consistently faster (at
least 2x faster) and scales better than our ES, HCB, and SCB implementations. Machine: Intel(R)
Xeon(R) CPU E5-2630v3 @ 2.40 GHz. (Color figure online)

steps, i.e., 10×#Users for the curveball and 10×#Edges5 for the edge switching, which
considers, in expectation, 20 times the state of each edge, which is when both ES and
CB converge in quality according to the autocorrelation thinning factor [6 SPP].

Figure 3 shows that NetworKit CB is at least 2× faster than our CB implementa-
tions, as well as faster than the ES. From Fig. 1 we see that our ES is between 1.5× to
2.5× faster than the SCB, which in turn is between 2× and 3× slower than NetworKit
CB. Therefore it is safe to assume that there is a CB implementation that is at least
as fast as our ES even according to the perturbation6. Furthermore, it becomes evident
from Fig. 3 that the CB–both our SCB and NetworKit’s–scales consistently with the
size of the graph, while the ES appears to have higher factors.

With these results, we conclude that the Curveball algorithm can indeed be effi-
ciently implemented in software, and scales better than the ES. However, it also became
clear that there can be huge differences in results interpretation depending on the qual-
ity metric being regarded (perturbation or auto-correlation), and it is not clear which is
the most relevant.

5 Phase Transition and Heuristics

Instead of a steady increase in the quality of the LA with the underlying MCMC param-
eters, mainly the mixing length and number of samples, we actually see a flat low

5 Notice the factor 0.5× between the super step definition in [6 SPP] and here. This is due to the
representation of unipartite, undirected graphs [6 SPP] requiring duplicated edges, one in each
direction, while bipartite graphs do not.

6 Unfortunately, a direct comparison w.r.t. the perturbation turned out to be difficult because of
incompatibilities between the structures of the source codes.
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quality followed by a sudden and steep increase. This phase transition-like behavior
was first reported in [4 SPP], further discussed in [3 SPP], and is shown in Fig. 4. The
LA quality, measured by the PPVk, is plotted against the number of samples, the main
parameter w.r.t. the total runtime of the method.

Fig. 4. Link assessment quality (PPVV ) over number of samples. For a wide variety of data sets,
narrow phase transitions are present. Similar phase transitions are also seen for the number of
edge swaps (see Fig. 7 in [3 SPP]). (Color figure online)

Fig. 5. Quality over number of swaps. For a wide variety of data sets, narrow phase transitions are
present, similarly to what can be observed varying the number of samples. (see Fig. 2 in [4 SPP]).
(Color figure online)

The complete Netflix dataset (blue), e.g., requires 384 samples to reach a PPVk
of 0.4206±0.0019, while 16,384 samples only increase this value to 0.4217±0.0012.
While, on one hand, it indicates that a low number of samples is required, the steep tran-
sition also cautions us against taking too few samples, since 64 samples instead of 384
would result in roughly half the quality (0.20±0.03) and 48 samples (0.001±0.001) is
no better than a random guess. Therefore, this is not mainly a trade-off problem, where
more resources (samples) bring better quality, but rather a threshold problem, at which
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the quality transitions steeply from its minimum to its maximum. Finding this threshold
can be done via online heuristics, as is discussed in Sect. 5.1.

5.1 Heuristics for MCMC Parameters

Continuing the sampling procedure after the maximum LA quality is reached results in
increased runtime for no benefit. Therefore, being able to reliably assess when max-
imum quality has been reached can represent great speedups for the complete link
assessment method. For example, compared to the commonly used 10,000 samples,
we see in Fig. 4 that, for the complete Netflix dataset, the LA reaches maximum quality
at around 384 samples, which would represent a speedup of > 25×.

Figure 4 also shows that the tipping point depends on the dataset. However, we
were not able to find correlations between the input dataset and the required number of
samples, and so an analytic formula could not be derived.

Even though the mechanism that causes the phase transitions is not yet completely
understood, we know that it must be related to the stability of the ranking of the most
significant pair of nodes. We have tested multiple methods to evaluate the stability of
the final result by comparing it with the previous one [4 SPP,3 SPP]. A good estimator
for the final quality should also present a phase transition-like behavior, as does the
quality itself. In [3 SPP] we described in detail our successive attempts to find a reliable
heuristic, going from the number of matching pairs at the very top of the ranking, to
more sophisticated correlations methods, and finally the internal PPVk method. The
internal PPVk method consists of creating an internal ground truth based on the top
ranked node pairs at each iteration and using it to calculate the PPVk after a new (group
of) sample(s) is drawn. This measure turned out to be stable and well correlated to the
observed phase transition of the actual quality, based on the real ground truth.

A rather similar heuristic, in the sense that it also presents a phase transition-like
behavior, was devised for assessing the required amount of mixing (w.r.t. the number of
edge swaps) necessary [3 SPP]. It is based on the fact that the average cooccFDSM(a,b)
of two nodes a, b only depends on their degrees. Therefore, we expect to see a con-
verging behavior of multiple node pairs that have the same degree pair if the amount of
mixing is sufficient (see Fig. 10 in [3 SPP]).

Table 2 summarizes the speedups achieved by applying each and the two heuris-
tics for the number of swaps and samples presented in [4 SPP,3 SPP]. In all cases, the
heuristics accelerate the overall LA (all overheads are accounted for) when compared
to the safe number of swaps (|E|× log |E|) and samples (10000) without any significant
degradation of its quality. The largest graph seems to benefit the most from either and
both heuristics. For the smallest graph, the Movielens data, the overhead of the swaps
heuristic becomes significant, shadowing the increased randomization speed during the
actual sampling. Also, it still requires around one-third of the 10000 samples for the
internal PPVk to converge.

Notice that we can clearly see an interdependence between the number of swaps and
the number of samples. For example, using a more conservative set of parameters for the
swaps heuristic results in 8×107 edge swaps and 454 samples for the complete Netflix
data, almost ten times more swaps but 4 times fewer samples as the less conservative
alternative. This is expected since the relevance (or entropy) of each new sample is
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Table 2. Runtime and quality comparisons of the LA with and without heuristics [3 SPP]. The
swaps heuristic has three parameters: the convergence threshold, θmin; the number of groups of
node pairs with the same degree pair, Ng; and the number of node pairs per group, Np. The
samples heuristic also takes three parameters: the internal PPVk threshold, α ; the size of the
internal ground truth, k′; and the number of samples between evaluations, samplesstep.

Data set Samples Edge swaps Runtimea PPV

State-of-the-art

Netflix, 487k users 10,000 109 20 h 0.422

Netflix, 100k users 10,000 2.6×108 5.5 h 0.425

MoviesLens 10,000 1.5×107 877 s 0.290

Swap heuristic:

Netflix, 478k usersc 10,000 6.3×106 (160x) 0.2 + 6.8 h (2.9x) 0.418 (−0.9%)

Netflix, 478k usersd 10,000 8.0×107 (13x) 0.8 + 9.6 h (1.9x) 0.424 (+0.1%)

Netflix, 100k usersb 10,000 6.8×107 (4x) 0.2 + 3.4 h (1.5x) 0.424 (−0.2%)

MovieLensb 10,000 1.5×106 (10x) 24 + 554 s (1.5x) 0.290 (0.0%)

Sample heuristice:

Netflix, 487k users 640 109 1.42 h (14x) 0.418 (−0.9%)

Netflix, 100k users 2,944 2.6×108 1.66 h (3.3x) 0.419 (−1.3%)

MovieLens 3,456 1.5×107 326 s (2.7x) 0.291 (+1.0%)

Combined heuristice:

Netflix, 487k usersc 1,664 6.3×106 0.2+1.3 h (13.3x) 0.420 (−0.5%)

Netflix, 487k usersd 454.4 8.0×107 0.8+0.5 h (15.4x) 0.419 (−0.7%)

Netflix, 100k usersb 3,072 6.8×107 0.2+1.2 h (3.9x) 0.420 (−1.1%)

MoviesLensb 3,949 1.5×106 24+252 s (3.2x) 0.290 (0.0%)
aWhen appropriate, reported as (Swap heuristic runtime) + (LA core runtime)
bSwap heuristic parameters: Np = 4; Ng = 24; θmin = 0.01
cSwap heuristic parameters: Np = 36; Ng = 36; θmin = 0.05
dSwap heuristic parameters: Np = 36; Ng = 36; θmin = 0.005
eSample heuristic parameters: samplesstep = 128; k′ = 0.2% |VR|2; α = 0.95.

directly related to the amount of mixing between samples - the more independent the
samples, the more information each of them adds to the poll. In this case, the more
conservative choice is slightly faster.

The trade-off between the amount of mixing between samples and the required total
number of samples provides an effective measure of the quality of each random sample.
As the quality measure is independent of the mixing chains, we have used it to com-
pare the effectiveness of different chains and their runtimes. An online heuristic that
optimizes this trade-off is also under investigation.

5.2 Phase Transitions as Mixing Quality Estimation

Earlier results from the implementation of heuristics to find appropriate parameters for
the MCMC sampling showed that there exists a trade-off between the amount of mixing
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Fig. 6. The phase transitions in the link assessment quality of the Netflix 10k dataset for increas-
ing mixing lengths of a) Edge Switching, b) Curveball in Movies, and c) Curveball in Users.
The vertical line-width represent the standard deviation of 10 independent simulations. Mixing
lengths are given in super steps, where 1 super step (Sect. 4.2) is a) |E|/2, b) |M|/2, and c) |U |/2.

and the number of samples required for convergence (Table 2). This insight led us to
investigate how the PPVk phase transitions behave when we vary the mixing length of
the chains.

Figure 6 shows the LA quality phase transitions w.r.t. the number of samples for
increasing mixing chain lengths and three different mixing chains. As expected, the
phase transitions are shifted to the right (more samples are required) as the mixing
length decreases. If the mixing length is sufficient, however, increasing it further may
not significantly change the result. This behavior can be explained by the correlation
(or level of independence) between consecutive samples, which is expected to decrease
exponentially with the amount of mixing. If enough mixing is performed, the sampling
procedure became virtually as efficient as it can be, as if each sample was drawn uni-
formly at random. If the correlation between each consecutive sample is measurable,
the sampling efficiency is degraded, therefore the phase transitions both start later and
become less steep.

Figure 6 also shows that there can be a great difference in the efficiency of the
Curveball algorithm whether we choose to mix (b) movies or (c) users, even if the mix-
ing lengths are normalized w.r.t. the adjacency matrix dimensions. Similar behavior was
already observed in Fig. 1, where mixing the users’ neighbors was faster in reaching the
maximum perturbation. Surprisingly, however, mixing the movies side instead of users
is more effective when the LA quality is regarded. To better expose this controversy, we
can find the number of samples required to reach a certain PPVk threshold, say 0.3 in
this case. If the perturbation was a good predictor of the sampling efficiency, we would
expect the number of samples to be the lowest only when the maximum perturbation is
reached.

Figure 7 shows the perturbation and the number of samples required to reach the
threshold PPVk of 0.3 versus the amount of mixing. For the edge switching (ES) and the
Curveball in users (CB_C), there seems to exist a strong (inverse) correlation between
the perturbation and the number of samples. When the Curveball mixes the movies
neighborhoods (CB_R), however, the perturbation is far too conservative. While the
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Fig. 7. The perturbation (left axis) and the number of samples until the PPVk reaches 0.3 (right
axis) vs the mixing length for the Netflix 10k dataset. The error bars represent the standard devi-
ation of 10 independent simulations. Mixing chains: Curveball in Users (CB_C); Curveball in
Movies (CB_R); Edge Switching (ES).

minimum number of samples of around 1200 is reached at 2.5 super steps, only at 150
super steps does the perturbation reaches its maximum value - an overdo of 60×.

6 Summary and Conclusion

In this chapter, we summarize strategies for increasing the sampling efficiency for the
Link Assessment (LA) problem. Although we provide specific results for the latter one,
our approach is generic and can be applied to related applications. Since in many cases
no closed-form solutions exist, stochastic Markov chain Monte Carlo (MCMC) need to
be employed. However, their main drawbacks are the high computational demand and
the lack of reproducibility of exact numerical results due to their stochastic components.
In addition, different algorithms may be used for generating the MCMC samples (edge
switching vs. curveball), and their performance on different compute architectures can
vary strongly. In many cases, it is not clear which algorithm is the best one for a specific
data set on a specific architecture with respect to performance or quality.

Thus, we highlight the importance of application-level benchmark sets together with
application-level, numerical measures for the quality of results (QoR) of specific runs.
Such benchmarks allow a fair and quantitative comparison of non-architecturally linked
metrics such as “energy per run”, “time per run”, or “quality of the results”. In addition,
for many real-world data sets, we do not have any kind of ground truth that could serve
as a test oracle when evaluating the achieved quality. In order to overcome this issue, we
propose to construct meaningful benchmark batteries (together with ground truths) for
specific application domains artificially that cover the main tasks and the corner cases
equally.

Furthermore, we consider the PPVk being a good quality measure for the LA prob-
lem. However, since it is strongly linked to the ground truth not available in many cases,
we have investigated alternative metrics such as autocorrelation or perturbation. Those
also allow the construction of unsupervised systems that are able to determine a “suf-
ficient” QoR on their own. We clearly observe correlations between the latter ones and
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the PPVk in Fig. 7, but a comprehensive analysis of any formal causalities between them
is currently ongoing.

Finally, we propose a working heuristic for an LA solver based on edge switching
that exploits observable phase transitions of the PPVk as an early stopping criterion
for the MCMC process. This heuristic provides speedups of up to 15.4× compared to
solvers that use conservative approaches.
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