
Generating Synthetic Graph Data from Random
Network Models

Ulrich Meyer and Manuel Penschuck(B)

Goethe University Frankfurt, Frankfurt, Germany
{umeyer,mpenschuck}@ae.cs.uni-frankfurt.de

Abstract. Network models are developed and used in various fields of science
as their design and analysis can improve the understanding of the numerous com-
plex systems we can observe on an everyday basis. From an algorithmics point of
view, structural insights into networks can guide the engineering of tailor-made
graph algorithms required to face the big data challenge.

By design, network models describe graph classes and therefore can often
provide meaningful synthetic instances whose applications include experimental
case studies. While there exist public network libraries with numerous datasets,
the available instances do not fully satisfy the needs of experimenters, especially
pertaining to size and diversity. As several SPP 1736 projects engineered prac-
tical graph algorithms, multiple sampling algorithms for various graph models
were designed and implemented to supplement experimental campaigns. In this
chapter, we survey the results obtained for these so-called graph generators. This
chapter is partially based on [43 SPP].

Keywords: Random graphs · Graph generator · Sampling · Parallel ·
Distributed · External memory

1 Motivation

Networks are the very fabric that makes societies [5,40]. As such, humanity is seeking
to understand their structures, rules, and implications for centuries (see also Chapter 1).
The practical importance of networks, however, only sky-rocketed with the advent of
the information age. Nowadays, modern computers offer sufficient storage and process-
ing capacity to map out most aspects of human life and the world we inhabit. They are
fed by billions of interconnected sensors and computerized personal devices that pro-
duce enormous volumes of network data to be exploited.

Computer science provides the means to face this big data challenge. However, a
formal grammar capturing the inner structure of the data expected to be processed is
required to provide tailor-made solutions. Network models are just that: a mathematical
tool to describe and analyze realistic graphs. Research into and applications of these
models are deeply intertwined with various fields of science.

Networks are commonly modeled by so-called random graphs and, therefore, rep-
resent probability distributions over the set of graphs [8]. These distributions are almost
always parametrized (e.g., for the graph size or density) and typically follow implicitly
c© The Author(s) 2022

H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 21–38, 2022.
https://doi.org/10.1007/978-3-031-21534-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21534-6_2&domain=pdf
http://orcid.org/0000-0002-1197-3153
http://orcid.org/0000-0003-2630-7548
https://doi.org/10.1007/978-3-031-21534-6_2

22 U. Meyer and M. Penschuck

from some randomized construction algorithm. Popular models are designed such that
we1 can expect certain topological properties from a randomly drawn instance: a par-
ticularly interesting goal is to reproduce the loosely defined class of complex networks
which, among others, encompasses most social networks.

By expressing network models as random graphs, we inherit a rich set of tools
from combinatorics, stochastics, and graph theory. In algorithmics we may, for instance,
assume that meaningful inputs are random instances of a suitable network model. Then
we can derive realistic formal performance predictions using average-case analysis,
smoothed complexity, et cetera. In practice, such results tend to be more relevant than
worst-case analysis based on pathologic structures that are implausible in applications.

Network models also enable or supplement experimental campaigns as a versa-
tile source of synthetic data with controllable independent variables. Synthetic bench-
marks are especially useful in the context of large instances where real data is typically
unavailable in sufficient size, quantity, or variety. Even if the data exists, procuring and
archiving it may be difficult for legal or technical reasons; this threatens the independent
reproducibility of results and thus infringes on one of science’s cornerstones [45].

1.1 Structure

In Sects. 1.2 and 1.3, we introduce the definitions and notation used in this chapter.
The main part of the chapter is then organized by the network model type. Section 2
discusses the notation of random graphs in detail and introduces sampling algorithms
for the G (n, p) and G (n,m) models.

Sections 3 to 5 deal with random graph classes that focus on the distribution of
degrees. Preferential attachment models, and especially the BA model by Barabási
and Albert, explain the emergence of powerlaw degree distributions in growing net-
works; we discuss suitable sampling algorithms, so-called (graph) generators, in Sect. 3.
The R-MAT, also capable of producing powerlaw degree distributions, is presented in
Sect. 4. In Sect. 5, we consider several solutions for the following problem: given a list
of degrees, produce a uniform sample from the set of all simple graphs that satisfy
these degrees. Section 6 discusses geometrically embedded random graphs including
the popular Random Hyperbolic Graphs.

Finally, in Sect. 7, we introduce network analysis and generator software supported
by the SPP 1736.

1.2 Notation

A graph G = (V,E) models a set of objects (nodes) V = {v1, . . . ,vn} and their con-
nections E (edges). Throughout this chapter, we will denote the numbers of nodes
and edges as n = |V |, and m = |E| respectively. A graph class is called sparse if
m=O(npolylogn) and dense if m=Θ(n2).

Edges can encode a direction (i.e., E ⊆ V × V) or be undirected (i.e., E ⊆
{{u,v}|u,v ∈V}). If not stated differently, we assume undirected graphs. An edge that

1 In the interest of readability, “we” is used quite casually in this chapter. Please note that it also
appears regularly in the context of work of others.

Generating Synthetic Graph Data from Random Network Models 23

exists multiple times is called multi-edge and part of a multi-graph. A graph without
multi-edges or self-loops (edges between one node) is called simple.

Two nodes u and v connected by an edge e are neighbors or said to be adjacent; the
nodes u and v, in turn, are incident to the edge e. The number of neighbors of a given
node u ∈ V is called its degree deg(u). A sequence (deg(v1), . . . ,deg(vn)) is called a
degree sequence. The related concept of a degree distribution refers to the probability
distribution of the degree of a randomly sampled node (possibly in a randomly sam-
pled graph). Many observed networks exhibit a powerlaw degree distribution where the
probability of degree k is proportional to k−γ for some 2 < γ (and often γ < 3). A prop-
erty applies with high probability (w.h.p.) if it holds with probability of at least 1−x−α

for α ≥ 1 where x depends on the context and is often the problem size n or m.

1.3 Models of Computation

The design of an algorithm is heavily influenced by the assumed model of computation.
If not state differently we suppose the unit-cost RAM in which operations for control-
flow, data access, and basic arithmetic are handled in constant time. For shared-memory
parallel algorithms, its parallel variant PRAM is used. In a parallel context, we use
the term processing unit (PU) to refer to an abstract machine executing a sequential
algorithm (e.g., a core in a CPU or an individual processor in a distributed computer
cluster). A problem is said to be pleasingly parallel if it consists of sufficiently many
subproblems that can trivially be computed independently.

To model the cost of data transfer, the external memory model by Aggarwal and Vit-
ter [1] assumes a two-level memory hierarchy. It consists of an internal memory of size
M and an unbounded external disk which holds the algorithm’s input and output. Com-
putation is free, but is only possible on data in internal memory and therefore has to be
move to and fro. Data access is block-oriented and transfers B data items per I/O. Read-
ing and writing N contiguous items is referred to as scanning and requires scan(N) =
Θ(N/B) I/Os. Sorting such items triggers sort(N) =Θ((N/B) logM/B(N/B)) I/Os and
constitutes a lower-bound for most intuitively hard problems.

Analogously, the cost of communication is often a bottleneck for distributed
machines consisting of interconnected processors. Communication-agnostic algorithms
are an extreme case of communication avoidance. Each PU is only aware of its rank, the
total number of PUs, and some input configuration. However, exchange of any further
information during the execution of the algorithm is prohibited.

2 Random Graphs and the G(n, p) and G(n,m)Models

A random graph is a probability distribution P : G → [0,1] where G is the set of all
graphs. Virtually all random graph models2 are parameterized and thus form families of
probability distributions. The underlying distributions are typically specified implicitly,
and often have a finite support defined by some combinatorial constraints.

2 In the literature the terms random graph and random graph model are commonly used inter-
changeably, and may even refer to a random instance sampled from a model. We adopt the
former simplification for the sake of readability.

24 U. Meyer and M. Penschuck

As an example, consider the popular G (n, p) model introduced by E. Gilbert [20] in
1959. In its original formulation, the model’s support consists of all 2n(n+1)/2 undirected
graphs with exactly n nodes. The probability distribution is given indirectly via the
following sampling algorithm:

“Pick one of these graphs by the following random process. For all pairs of points
[nodes] make random choices, independent of each other, whether or not to join
the points of the pair by a line [edge]. Let the common probability of joining be
p.” [20]

In other words, in a random instance of G (n, p) any edge e exists independently with
probability p. Observe that G(n,1/2) hence implies the uniform distribution of all
graphs with n nodes. It is therefore a so-called maximum entropy model and sometimes
even referred to as the random graph [5].

Erdős and Rényi [17] propose the related and well-known G (n,m) model as the
uniform distribution over all undirected graphs with n nodes and m edges. The models
G (n, p) and G (n,m) with m=

(n
2

)
p are equivalent in the limit of n → ∞.

Neither G (n, p) nor G (n,m) explain the non-trivial structural properties of observed
networks. Since all edges are chosen (mostly) independently with identical probabili-
ties, we do not expect the formation of any complex features. Several ways to formalize
this intuition are discussed in [44 SPP]. Still, the models are commonly used to generate
synthetic data, e.g., as a null-model.

2.1 Sampling from G (n, p) and G (n,m)

Gilbert’s sampling algorithm is designed to communicate the model’s spirit to a human
reader and, as such, is not optimized for performance. The generator thus requires
Ω(n2) work independently of the linking probability p which is suboptimal for non-
dense graphs.

Batagelj and SPP 1736 PI Brandes [6] describe an optimal sequential generator
requiring work linear in the number m of edges produced. The algorithm fixes a conve-
nient order of all possible edges (i.e., a bijection π : [

(n
2

)
] → {{u,v}|u,v ∈V ∧u �= v})

and considers them in this sequence. Since each edge in a G (n, p) graph is the result of
an independent Bernoulli trial, the number of “non-edges” between any two successful
trials follows a geometric distribution. The generator therefore draws a random geomet-
ric variate, jumps over that many non-edges, writes out the next edge, and repeats until
all possible edges have been considered.

Since all edges are drawn independently, the generator can be parallelized by parti-
tioning the sequence of possible edges into independent sub-problems of roughly equal
size. Later, Bringmann and Friedrich [9] give an exact variant of the algorithm that does
not require real-valued arithmetic to sample the skip distances.

Sampling from G (n,m) is more challenging than G (n, p) since faithful G (n,m)
generators can not assume independent trials. This is due to the fact that partially sam-
pled edges and non-edges affect the probability distribution of the remaining candi-
dates. While Batagelj and Brandes remark that their G (n, p) generator can be extended
to G (n,m) by modifying the skip distance distribution accordingly, they continue to
develop a more efficient alternative requiring work linear in the number of edges pro-
duced [6].

Generating Synthetic Graph Data from Random Network Models 25

In the following, we however focus on a parallel approach by Funke et al. [18 SPP]
and showcase general divide-and-conquer techniques used to yield communication-
agnostic generators. The resulting generator is a variant of a parallel sampling algo-
rithm [47 SPP] for the related problem of randomly selecting m distinct elements from
a finite universe (i.e., sampling without replacement).

For simplicity’s sake, we only consider the directed variant of G (n,m).3 In order to
parallelize, we partition the set of nodes V into disjoint subsets V1, . . . ,Vp of roughly
equal size. Then, processing unit i is tasked to produce the mi out-going edges of nodes
in Vi. By definition of G (n,m), we require that ∑i mi = m. Observe that this is the
only dependency between subproblems. Thus, if mi is known a priori, PU i can work
independently.

Consequently, we need to find a communication-agnostic way to agree on a con-
sistent and randomly chosen m = (m1, . . . ,mP) where each PU only needs to know its
own value mi. The vector m follows a multinomial hypergeometric distribution where
the number of “positive instances” for the i-th entry are given by the number n · |Vi|
of potential edges processed by PU i. Under the assumption that the number P of PUs
satisfies P = O(n/ logn) the values of mi are sufficiently concentrated to bound the
complexity of the previous local sampling to O((n+m)/P) w.h.p..

A traditional distributed generator may sample m on a central PU and then broadcast
the values—this is, however, not possible in a communication-agnostic setting since
it incurs a communication volume Ω(P). Alternatively, each PU can independently
sample m with pseudo-random number generators that use a common seed value. This
approach requires expected time Θ(P) and, thus, dominates the total runtime for P =
ω(

√
m).

Thus, we rather follow a divide-and-conquer approach which works for various
distributions and is also used in Sect. 6.3. Roughly speaking, each mi corresponds to a
leaf in a binary tree of depth O(logP). At each inner node, we draw a random variate x
from an appropriately parametrized hypergeometric distribution and interpret x as the
number of edges to be produced in the left subtree. Each PU follows its unique path
from the root to the i-th leaf to sample its own value of mi. To achieve consistent values,
the sampling at each inner node is carried out using a pseudo-random number generator
whose seed is deterministically derived from a unique node index.

The authors show that combining these ideas yields a communication-agnostic gen-
erator with a runtime complexity of O((n+m)/P+ logP) w.h.p..

3 Preferential Attachment

Barabási and Albert [4] propose a simple stochastic process to explain the emergence of
scale-free networks and show that two ingredients, namely growth and selection bias,
suffice to yield networks with powerlaw degree distributions.4

3 The undirected [18 SPP] variant only differs in the partitioning of the parallel subproblems.
4 Earlier, Price [50] proposed a similar process inspired by Pólya urns [16]. The author applies it

to citation networks with a known powerlaw in-degree distribution [46]. The more widespread
BA model is sometimes interpreted as a special case of Price’s model.

26 U. Meyer and M. Penschuck

At its core, their BA model relies on preferential attachment, a positive feedback
loop in dynamic systems where selecting an item at one point in time increases the
probability of selecting it again in the future. It is proverbially summarized as “the rich
get richer”.

Based on this idea, the authors describe the following random graph. Starting with
an arbitrary seed graph G0 with n0 vertices and m0 edges, we iteratively add n− n0

nodes—one node at a time. For each new node, we choose d neighbors at random
where the probability to select node v is proportional to the degree of v at that time.

The main algorithmic challenge of BA lies in this dynamic weighted sampling.
Depending on the assumed model of computation, quite different solutions are avail-
able. Batagelj and Brandes [6] observe that each node with degree k appears exactly
k-times in the edge list produced so far. Therefore, the underlying dynamic weighted
sampling problem can be reduced to uniformly selecting entries from the edge list,
leading to the linear-time generator BB-BA.

As BB-BA requires unstructured I/Os, it cannot efficiently produce graphs that do
not fit into main memory. Meyer and Penschuck [36 SPP] introduce TFP-BA and MP-
BA, the first two I/O-efficient sampling approaches for random graph models based on
preferential attachment. The authors initially focus on BA graphs to demonstrate the
techniques and subsequently discuss additional features such as seed graphs exceeding
main memory, nodes with inhomogenous initial degrees, the inclusion of uniform node
sampling, directed graphs, and edges between two randomly chosen nodes.

– TFP-BA is a simple and easily generalizable sequential generator inspired by BB-
BA. Rather than reading from random positions in the edge list, TFP-BA first pre-
computes all necessary read operations and sorts them by the memory address they
read from. As the algorithm produces the edge list monotonously moving from
beginning to end, it scans through the sorted read request and forwards the still
cached values to the target positions using an I/O-efficient priority queue. This app-
roach requires O(scan(m0)+ sort(m)) I/Os, where m0 is the number of edges in the
seed graph and m is the number of edges produced.

– MP-BA is a parallel generator that offloads a number of subtasks onto a general-
purpose graphics processor. The algorithm implements dynamic weighted sampling
using a binary tree T partially stored in external memory. Each node u of the gen-
erated graph corresponds to a leaf in T labeled with the degree of u; any inner node
stores the total weight of all leaves contained in its left subtree.
In order to select a neighbor, MP-BA first has to sample a leaf according to the cur-
rent degree distribution and then increment the leaf’s weight to account for the newly
gained edge. The key insight is that we can do both in a single top-down traversal
from the root to the sampled leaf. This allows us to combine the queries for sampling
and updating into a single operation and, in turn, to coalesce queries into batches.
MP-BA requires O(sort(n0 +m)) I/Os, where n0 is the number of nodes in the seed
graph and m is the number of edges produced.
The algorithm uses two forms of parallelism: firstly, T is cut at a certain depth to pro-
cess the subtrees rooted there pleasingly parallel. In order to handle the high volume
of requests near T ’s root, a dedicated PRAM algorithm processes multiple requests

Generating Synthetic Graph Data from Random Network Models 27

to the same tree node in parallel. MP-BA’s implementation executes the latter part
on a GPU for maximal throughput.

Sanders and Schulz [48 SPP] describe CA-BA, a communication-agnostic generator
for distributed-memory parallelism. Their algorithm builds on top of BB-BA and uses
pseudo-randomization to avoid all lookups to edges generated. By doing so, several PUs
can work on the problem without exchanging information other than an initial broadcast
of the seed graph and a few parameters. In contrast to the original algorithm, CA-BA
does not maintain an edge list to sample from explicitly. To simplify the description, we
still presume its existence as a concept for addressing.

In order to add an edge, the generator needs to place the indices of the two incident
nodes into the edge list. Recall that each generated edge consists of a newly introduced
node and a randomly selected neighbor. By convention, we store the former at even
positions of the edge list, and the latter at odd positions. Since by definition of the BA
model, each newly introduced node is initially incident to exactly d edges, all entries at
even positions follow from a simple index transformation.

Sampling random neighbors involves a shared random hash function h(·) with the
property that h(i)< i. Then, in order to choose the node index of the random neighbor to
be written to the edge list’s i-th position, we conceptually copy the value from position
j = h(i). To do so, we distinguish three cases:

1. If j < 2m0, we need to retrieve a value from the seed graph which is a simple read
access to the input data. It is the only case where an actual memory access needs to
be carried out.

2. If j ≥ 2m0 and j is even, we can compute the value stored there using the aforemen-
tioned index transformation.

3. If j ≥ 2m0 and j is odd, we retrace the sampling carried out. To do so, we recurse
on j′ = h(j) = h(h(i)).

The first two cases imply constant work on a unit-cost RAM. Since we assume h(·) to be
a random function, the first two cases are chosen with probability of at least 1/2. Thus,
the recursion of the last case has an expected depth of at most 2 and is O(logm) with
high probability. Assuming h(·) can be evaluated in constant time, CA-BA therefore
requires expected linear work.

4 R-MAT

R-MAT [15] graphs are a well-accepted network model which is especially known for
its use in the Graph500 benchmark [38]. The model is defined for graphs on 2k nodes
and m edges. To sample an edge, we recursively subdivide the adjacency matrix into
four quadrants, assign them probabilities pa + pb + pc + pd = 1 provided as model
parameters, and randomly select one. We repeat this k times until we reach a matrix
of size 1 × 1 which corresponds to the edge. Depending on the model, we either allow
multi-edges, or reject and resample to avoid duplicates. Undirected graphs are possible
and typically imply additional symmetry constraints on the quadrant probabilities. For
certain sets of parameters, the model exhibits similarities to observed networks such a
powerlaw degree distribution [34].

28 U. Meyer and M. Penschuck

Following the recursive definition, there exists a bijection between each possible
edge and the set of words Σ k over Σ = {a,b,c,d} where each x ∈ Σ represents the
quadrant chosen. A naive R-MAT generator explicitly samples the k characters, one
after another, and thus requires Ω(logn) work per edge.

Hübschle-Schneider and Sanders [27 SPP] propose a communication-agnostic
scheme that instead samples edges in constant time under the reasonable assumption
that m= Ω(n). The algorithms performs a preprocessing step to construct an urn which
contains nα path fragments (for some α < 1) weighted by their probabilities in time
O(n), e.g., by considering all words Σ � of fixed length � = log2

√
n= k/2.

To draw an edge we sample
k/�� = O(1) fragments. We then concatenate them
using bit-parallel shifting and masking operations available in virtually all modern com-
puters. Both steps require only constant time per edge.

5 Simple Graphs from Prescribed Degree Sequence

The sampling of random graphs matching a prescribed degree sequence is a common
task in network analysis. Its various applications range from to the construction of null-
models (e.g., Chapter 3) to use-cases as building blocks in graph generators. Instances
of the latter are the popular LFR benchmark [28] or the derived ReCon [51 SPP] model
to generate scaled-replicas of an input graph.

The computational cost of this approach heavily depends on the exact formulation
of the model. Two models with linear work sampling algorithms are the Chung-Lu
(CL) model and the Configuration Model (CM). The CL model produces the pre-
scribed degree sequence only in expectation (see [44 SPP] for details). The CM, on the
other hand, exactly matches the prescribed degree sequence but permits self-loops and
multi-edges. These parallel edges affect the uniformity of the model [39, p. 436] and
are inappropriate for certain applications; however, erasing them may lead to significant
changes in topology [49 SPP]. In the following, we focus on simple graphs (i.e., with-
out self-loops or multi-edges) matching a prescribed degree sequence exactly. Several
generators and models for such graphs were considered within the SPP 1736.

5.1 The Edge Switching Markov Chain Model

The Fixed-Degree-Sequence-Model (FDSM) is a common solution to obtain simple
graphs from a prescribed degree sequence. It first manifests a biased deterministic graph
(e.g., using the HAVEL-HAKIMI algorithm [23,26]) and then uses an Edge Switching
(ES) Markov chain process [21] to perturb the graph. In each step, the process selects
two edges uniformly at random and exchanges their incident nodes—by doing so the
degrees of all nodes involved do not change. If a step were to result in a self-loop or
multi-edge, it is rejected without replacement. Despite intensive research, it remains an
open problem to find practical upper bounds on the Markov chain’s mixing time; i.e.,
the number of steps required to obtain a uniform sample. In practice, a small multiple
of the number of edges typically suffices (cf. Chapter 3).

The main issue when implementing ES is the large number of unstructured accesses
to memory; for each switch it is necessary to identify the involved nodes, check whether
the updated edges already exist, and finally to write out the updates.

Generating Synthetic Graph Data from Random Network Models 29

Hamann et al. [25 SPP] describe EM-LFR, an I/O-efficient pipeline to sample large
instances from the LFR model. From an algorithmic point of view, two central parts
of the pipeline are EM-HH and EM-ES which together implement FDSM. EM-HH
is designed to avoid memory accesses as best as possible especially for graphs with
powerlaw distributions. EM-ES, on the other hand, batches Θ(m) individual swaps and
processes them out-of-order without changing the outcome; due to the large number of
swaps in each batch, we can amortize the I/O volume and stream through the whole
graph a constant number of times rather than executing Θ(m) more expensive unstruc-
tured accesses.

Later, [24 SPP] propose a modification of the FDSM model and provide empirical
evidence of faster mixing. The previous combination of EM-HH followed by EM-ES
starts with a highly biased simple graph. The novel EM-CM/ES takes another route: It
starts with a random but non-simple graph and switches edges until a simple random
graph is obtained. It uses an I/O-efficient generator for the Configuration Model and a
variant of EM-ES which accepts non-simple inputs without increasing its I/O complex-
ity. The modified algorithm executes all switches that neither increase the multiplicity
of a given edge nor introduce self-loops. Non-simple edges are also switched more fre-
quently than legal edges to accelerate the repair phase. Observe, however, that it does
not suffice to rewire non-simple edges using the presented variant of ES as it produces
a biased sample [2,3]. Instead, additional ES steps are necessary.

Brugger et al. [12 SPP] implement ES in hardware (see Chapter 4 for details). Their
design maintains the graph in a hybrid data structure combining an adjacency list to
efficiently sample edges and an adjacency matrix for fast edge existence queries. Then,
the authors investigate two cases:

– First they perturb several independent graphs pleasingly parallel where each graph
is stored in a dedicate physical region (DRAM channel) of common memory chips.
In this setting, the authors optimize the memory controller to address channels inde-
pendently and interleave these requests.

– In a second step, parallelism within a single ES run is exposed using the following
observation: If the graph is sufficiently large, the probability that a short run of mul-
tiple switches target a common edge is small (cf. birthday problem). The authors
therefore describe a hardware design that checks whether 12 contiguous switches
are collision-free and if so, execute them in parallel.

5.2 Curveball

Curveball (CB) [52] is a more recent process but structurally similar to ES; instead of
selecting random edges, CB selects two random nodes u �= v, and trades their neighbor-
hoods as follows. CB begins by freezing all edges that either connect u and v themselves
or link to neighbors which u and v have in common. Then, the remaining neighbors are
randomly shuffled while maintaining the degrees of u and v. A single CB trade can
therefore inflict “more change” to a graph than a single edge switch; depending on the
processed graph, a state in CB’s Markov chain may have up to 2Θ(n) neighbors while
the degrees in ES’s chain are bounded by O(n4) [13]. Empirical data suggests that
fewer trades are necessary to mix a graph (though each trade may require more work).

30 U. Meyer and M. Penschuck

CB exposes more data locality than ES since all information required to carry out
a trade is contained in the two neighborhoods. This is in contrast to ES, which requires
additional unstructured reads to prevent a switch from introducing multi-edges. Note,
however, that an undirected edge is classically stored twice—once for each endpoint.
In this scenario, frequent unstructured updates are necessary and negate the previously
mentioned locality benefits.

The I/O-efficient EM-CB algorithm [14 SPP] thus relies on a dynamic data struc-
ture and assigns each edge only to the endpoint that is traded next. EM-CB uses the
external-memory technique Time Forward Processing (TFP, see [35]) to ensure that
the complete neighborhood of a node is available when needed.

The algorithm works in batches. At the beginning of each batch, it samples the
node pairs to be traded within the batch and organizes them in dedicated indices. These
auxiliary data structures are used to address the TFP messages and to determine which
endpoint of an edge will be traded first. EM-CB requires O(r[sort(n)+ sort(m)]) I/Os
to carry out r global trades (see below).

Carstens et al. [14 SPP] generalize Global Curveball (G-CB) to undirected graphs.
An undirected global trade is a sequence of �n/2 single trades such that the neigh-
borhood of each node is traded at most once. They show that the process converges
to a uniform distribution over the set of all graphs and give empirical evidence of its
superior performance compared to CB.

Since each node participates once5 in a global trade, we can interpret a global trade
as a random permutation of nodes where we trade pairwise adjacent nodes. The authors
then propose an algorithm that eliminates the auxiliary data structures by maintaining
the permutation implicitly using a collision-free (on the relevant domain) and invertible
hash function, and finally give a parallel version of it.

6 Geometrically Embedded Random Graphs

Random Hyperbolic Graphs (RHGs) are a popular network model which naturally
exhibits many features commonly observed in complex networks. RHG assigns each
node a position on a two-dimensional hyperbolic disk of radius R. These positions are
conveniently expressed in polar coordinates where each point is located in terms of its
distance r (radius) to the disk’s center and an angular coordinate θ .

In the so-called Threshold RHG [22], we connect all pairs of points (ri,θi) and
(r j,θ j) with i �= j whose hyperbolic distance d(pi, p j) is smaller than R, where

cosh(d(pi, p j)) = cosh(ri)cosh(r j)− sinh(ri)sinh(r j)cos(θi −θ j). (1)

Thus, the hyperbolic distance is a function of the relative and absolute positions of both
points; the closer a point is to the disk’s center, the more neighbors it is expected to have.
We obtain a powerlaw degree distribution with a controllable exponent by choosing an
appropriate radial density for the randomly placed points.

5 For simplicity, we assume here that n is even.

Generating Synthetic Graph Data from Random Network Models 31

Binomial RHG extends Threshold RHG by adding a positive temperature parame-
ter T that affects the local cohesion. In the binomial variant, each pair of nodes pi �= p j is
independently connected by an edge with probability pT (d(pi, p j)) defined as follows:

pT (d) =
[

exp

(
d−R

2T

)
+1

]−1

(2)

Binomial RHG contains Threshold RHG as pT becomes a step function for T → 0.
Looz and Meyerhenke [31 SPP] propose an extension of the RHG model to generate
dynamic graph data sets: their model adds movement of nodes which in turn translates
to a stream of edge insertions and deletions.

6.1 Efficient Generators Based on Geometric Data Structures

A naive RHG generator that checks each node pair for an edge requires Ω(n2) work
and little parallel depth6. All efficient generators we are aware of reduce the computa-
tional complexity in a two step process: they cheaply identify a set of edge candidates
(i.e., a super-set of the true result), and then filter the candidates more carefully. The
identification typically exploits geometrical or stochastic arguments, while the filtering
process tends to involve costly per edge distances computations.

All geometric generators discussed in the remainder of this chapter use one of two
geometric partitioning schemes, namely a quad-tree or a band structure.

– Looz et al. [32 SPP] describe NKQUAD, the first sub-quadratic work RHG gen-
erator. NKQUAD is based on a polar quad-tree which recursively subdivides the
space into four quadrants each (i.e., each inner tree-node introduces two cuts, one
in the angular and one in radial dimension, respectively). The generator then iter-
ates over all nodes and computes for each v ∈ V the neighbor candidates Cv. The
set Cv consists of all nodes in quad-tree leaf cells which intersect the hyperbolic cir-
cle of radius R around v. The identification of such leafs is simplified by working
in the Poincare projection which translates hyperbolic circles into (radially shifted)
Euclidean circles. The authors show that such a query examines O(

√
n+ |Cv|) leafs

w.h.p., leading to total work of O((n3/2 +m) logn) w.h.p..
Later, Looz and Meyerhenke [30 SPP] generalize the data structure and extend the
generator to Binomial RHG while maintaining the asymptotic complexity. The effi-
cient sampling of low-probability edges is implemented by bounding the probability
to connect to any edge within a leaf from above. These bounds are used to carry
out geometric jumps (cf. Sect. 2) followed by rejection sampling to account for the
over-estimation.

– Looz et al. [33 SPP] improve NKQUAD by proposing NKBAND featuring a novel
partitioning scheme. NKBAND covers the hyperbolic disk with Θ(logn) disjoint
concentrical bands where each band is maintained as an array of points sorted by
their angles. To find the neighbor candidates of a node v in band bi, the algorithms
considers bi and all bands containing larger radii. For each such band b j, the smallest
and largest angular coordinate of a potential neighbor of v in b j is computed; then

6 Dependencies may arise from the output format, e.g., from a need for compaction.

32 U. Meyer and M. Penschuck

two binary search yield the left- and right-most candidates in the sorted array. By
doing so, the authors effectively over-estimate the upper half of the hyperbolic circle
around node v by a discrete stack of shrinking band-segments. The generator has
an empirical runtime of O(n logn+m). Later, Looz [29 SPP] extends NKBAND to
Binomial RHG using ideas similarly to the generalization described for NKQUAD.

6.2 A Fast and Memory-Efficient Streaming Generator for RHG

As the geometric data structures discussed for NKQUAD, NKBAND, and HYPERGIRGS

have a large memory footprint that can render them unsuitable for accelerator hardware
with a small dedicated memory, [42 SPP] presents HYPERGEN, a streaming genera-
tor for Threshold RHGs which instead samples the points on demand. The genera-
tor requires O([n1−α d̄α + logn] logn) words of memory w.h.p.. For realistic average
degrees d̄ = o(n/ log1/α(n)) this is a significant asymptotic reduction over classical
approaches.

HYPERGEN executes a sweep-line algorithm and stores the set of nodes that may
still find neighbors in its sweep-line state; we refer to them as candidates. Roughly
speaking, the algorithm randomly samples points with non-decreasing angular coordi-
nates.7 For each new point, the algorithm identifies all sufficiently close candidates and
emits edges to them. The generator then marks the point a candidate itself and advances
the sweep-line. HYPERGEN stops the sweep-line at additional points, e.g., to prune can-
didates whose distances to the sweep-line are so large that they cannot find neighbors
anymore.

To manage the computational cost of maintaining the sweep state, HYPERGEN

includes conservative approximations that do not infringe on the generator’s faithful
reproduction of RHGs. They exploit the distribution of points as well as properties of
the hyperbolic distance function. The majority of points can be quickly pruned from
the algorithm’s state. In contrast, the few points that have small radii stay candidates
for a significantly longer period of time. To accommodate the different requirements,
HYPERGEN partitions the hyperbolic disk into Θ(logn) concentrical bands. Each band
has its own sweep-line and state which remain synchronized with the states of its adja-
cent bands.

Observe that, due to the angular periodicity of the hyperbolic disk, points sampled
late (i.e., with angles near 2π) can be adjacent to points discovered and pruned much
earlier. HYPERGEN accounts for this by restarting the sampling process until all candi-
dates of the first phase are processed. It exploits pseudorandomness to obtain consistent
point coordinates in both phases.

Parallelization is possible by splitting the disk into segments of equal size. Some
care has to be taken to manage the dependencies near the segments’ borders. HYPER-
GEN also significantly accelerates the frequent distance computations by preparing aux-
iliary values per point. This removes all transcendental functions (here sinh, cosh, and
cos) from Eq. (1). Refined versions of these techniques carry over to Sects. 6.3 and 6.4.

The implementation of HYPERGEN is designed with SIMD (Single-Instruction-
Multiple-Data) in mind and is explicitly vectorized. It uses SIMD instructions to com-

7 This is an over-simplification of the sweep-line’s behavior (cf. [42 SPP]).

Generating Synthetic Graph Data from Random Network Models 33

pute eight hyperbolic distances simultaneously (which is only possible because we first
removed the aforementioned transcendental functions).

6.3 Communication-Agnostic Generators for RHG

Funke et al. [19 SPP] present RHG, a communication-agnostic generator for Threshold
RHG. The generators RHG and HYPERGEN were developed independently at roughly
the same time, and share ideas to sample specific subsections of the hyperbolic disk
using pseudorandomization. While HYPERGEN uses a monotonous sweep-like motion
optimized for memory usage, RHG uses less structured queries. These “random” queries
are answered using a fine-grained partitioning of the hyperbolic space which inge-
niously allows random access to any cell (the geometry is similar to the one discussed
in Sect. 6.1).

For huge graph instance, the number of nodes may be too large to sample —let
alone store— all nodes on every distributed machine. Fortunately, a key property of
relevant RHG graphs is that most nodes only have a very local neighborhood, i.e., a
hyperbolic circle around each node suffices to compute all its links. Observe that many
of these subsets overlap due to common edges. In general, there is no balanced mapping
of nodes to processing units without overlaps. Thus, any two PUs with overlapping
subsets have to have a consistent view of the underlying region of hyperbolic space.

We achieve this by partitioning the hyperbolic space into k cells. Then, the fol-
lowing process reproducibly samples points within a cell. First, a hash function f is
used to seed a pseudorandom number generator with the value f (i). For each cell i, we
seed a pseudorandom generator with a value deterministically derived from the cell’s
index i and, subsequently, use the generator to sample the ni points contained within the
cell. By construction, this process yields consistent results even if executed by multiple
independent processing units.

The only information missing is the number ni of points in cell i. The vector
N= (n1, . . . ,nk) follows a multinomial hypergeometric distribution due to the side con-
dition that exactly n points need to be scattered in total, i.e., ∑i ni = n. All PUs obtain
consistent values for N using common seeds for their pseudorandom generators analo-
gously to the divide-and-conquer approach in Sect. 2.1.

In [18 SPP], this techniques is combined with HYPERGEN (see Sect. 6.2) yield-
ing the communication-agnostic sweep-line generator SRHG which consistently outper-
forms RHG. We demonstrate its scalability to up to 32 768 cores and produce a graph
with n= 239 nodes in less than a minute.

6.4 GIRG-Based Generator

Bringmann et al. propose Geometric Inhomogenous Random Graphs as a flexible and
simple model, that asymptotically contains RHG [11]. Roughly speaking, the model
embeds a graph into an d-dimensional torus and uses node weights to control the degree
sequence similarly to the Chung-Lu model. The authors also give an expected linear
time sampling algorithm for GIRGs [10] which we engineer adapt8 it to Binomial RHGs

8 Bringmann et al. already discuss the applicability to RHG. The models are however not iden-
tical [7 SPP], and HYPERGIRGS closes this gap.

34 U. Meyer and M. Penschuck

in [7 SPP]. We refer to our algorithms as GIRGS and HYPERGIRGS, respectively. To the
best of our knowledge, GIRGS is the first practically efficient generator for the GIRG
model. Here, we focus on RHGs since the algorithmic treatment of both models is very
similar.

HYPERGIRGS first samples all points and builds a data structure that can be inter-
preted as a polar quad-tree. While the structure is similar to the previous state-of-the-art
generator NKQUAD (see Sect. 6.1), differences in details result in a polynomial gap in
their running times. In the following, we refer to nodes of the quad-tree as tree-nodes
(to distinguish them from the hyperbolic nodes contained).

Bringmann et al. propose the following neighborhood search which is adapted by
HYPERGIRGS. For simplicity, we initially restrict ourselves to Threshold RHGs. The
generator enumerates all pairs of tree-nodes that may contain point pairs sufficiently
close to imply an edge. This is done in a pessimistic and oblivious fashion, i.e., without
considering the actual points represented by the tree-nodes. HYPERGIRGS then emits
edges by testing all point pairs contained in each previously enumerated pair of tree-
nodes. To avoid asymptotically significant overheads, the algorithm pairs tree-nodes as
high up in the quad-tree as possible without adding unintended distance computations.

The quad-tree needs to support efficient random access to all points contained within
any tree-node at any depth. Similarly to [10], HYPERGIRGS achieves this using z-order
space-filling curves [41] to map the tree to memory. This choice allows us to efficiently
build and query the quad-tree using Morton codes [37].

In case of Binomial RHGs with T > 0, any node pair has a positive (yet mostly
negligible) probability pT (d) to be connected. HYPERGIRGS therefore has to consider
all tree-node pairs—even those with a tiny connection probability. In the latter case,
the connection probability is bounded from below. Then, we use geometric jumps fol-
lowed by rejection sampling to prune the search space. The authors also engineer an
exact look-up table-based sampling scheme to reduce the evaluation of transcendental
functions during the computation of linking probabilities pT (d).

HYPERGIRGS processes the tree-node pairs pleasingly parallel. As a special feature,
its implementation guarantees reproducibility in the sense that two runs with the same
set of parameters and seed values output the same set of edges (though not necessarily
in the same order). At the time of writing, the implementation of HYPERGIRGS is the
fastest sequential RHG generator and competitive for shared-memory parallelism.

7 Software Packages

From a practical point of view, it is crucial that a generator interacts well with the soft-
ware used to analyze the emitted graphs. A common choice is to write the produced
graph into a file which then can be processed by a tool of choice. There are, however,
notable drawbacks of this approach; for one, there are a plethora of file formats which
may be incompatible. Also reading and writing files can have surprisingly high over-
heads (e.g., [42 SPP]).

The network analysis framework NetworKit (partially supported by the SPP 1736)
includes generators for all network models that are discussed in depth in this chapter.
As detailed in Chapter 1, this software package combines various types of graph algo-
rithms efficiently implemented in C++ with an easy to use Python interface. The tight

Generating Synthetic Graph Data from Random Network Models 35

interaction between network generation and analysis promises a fast and convenient
processing pipelines.

KaGen is a graph generator suite for distributed computing and contains a num-
ber of communication-agnostic generators [18 SPP]. The suite includes generators for
the following models accessible via a common interface G (n, p), G (n,m), Kronecker
Graph , Random Geometric Graph , Random Delaunay Triangulation, Barabási-Albert ,
and Threshold RHG.

Acknowledgements. The authors thank Mario Holldack and Hung Tran for valueable discus-
sions and their insightful comments.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
Commun. ACM 31(9), 1116–1127 (1988). https://doi.org/10.1145/48529.48535

2. Allendorf, D.: Implementation and evaluation of a uniform graph sampling algorithm for
prescribed power-law degree sequences. Master’s thesis. Goethe University Frankfurt,
Germany (2020)

3. Arman, A., Gao, P., Wormald, N.C.: Fast uniform generation of random graphs with
given degree sequences. In: FOCS, pp. 1371–1379. IEEE Computer Society (2019).
https://doi.org/10.1109/FOCS.2019.00084

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

5. Barabási, A.L., et al.: Network Science. Cambridge University Press, Cambridge (2016)
6. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E

71(3), 036113 (2005). https://doi.org/10.1103/physreve.71.036113
7 SPP. Bläsius, T., Friedrich, T., Katzmann, M., Meyer, U., Penschuck, M., Weyand, C.: Effi-

ciently generating geometric inhomogeneous and hyperbolic random graphs. In: ESA,
pp. 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.
org/10.4230/LIPIcs.ESA.2019.21

8. Bollobás, B.: Random Graphs, 2nd edn. Cambridge Studies in Advanced Mathemat-
ics, vol. 73. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/
CBO9780511814068

9. Bringmann, K., Friedrich, T.: Exact and efficient generation of geometric random vari-
ates and random graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013. LNCS, vol. 7965, pp. 267–278. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39206-1_23

10. Bringmann, K., Keusch, R., Lengler, J.: Sampling geometric inhomogeneous random
graphs in linear time. In: ESA, pp. 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.20

11. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs.
Theor. Comput. Sci. 760, 35–54 (2019). https://doi.org/10.1016/j.tcs.2018.08.014

12 SPP. Brugger, C., et al.: A memory centric architecture of the link assessment algorithm in
large graphs. IEEE Des. Test 35(1), 7–15 (2018). https://doi.org/10.1109/MDAT.2017.
2750900

13. Carstens, C.J., Berger, A., Strona, G.: Curveball: a new generation of sampling algo-
rithms for graphs with fixed degree sequence. CoRR abs/1609.05137 (2016)

https://doi.org/10.1145/48529.48535
https://doi.org/10.1109/FOCS.2019.00084
https://doi.org/10.1103/physreve.71.036113
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1007/978-3-642-39206-1_23
https://doi.org/10.1007/978-3-642-39206-1_23
https://doi.org/10.4230/LIPIcs.ESA.2017.20
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1109/MDAT.2017.2750900
https://doi.org/10.1109/MDAT.2017.2750900

36 U. Meyer and M. Penschuck

14 SPP. Carstens, C.J., Hamann, M., Meyer, U., Penschuck, M., Tran, H., Wagner, D.: Paral-
lel and I/O-efficient randomisation of massive networks using global curveball trades.
In: ESA, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ESA.2018.11

15. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining.
In: SDM, pp. 442–446. SIAM (2004). https://doi.org/10.1137/1.9781611972740.43

16. Eggenberger, F., Pólya, G.: Über die Statistik verketteter Vorgänge. ZAMM-J. Appl.
Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 3(4), 279–289
(1923)

17. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen (1959)
18 SPP. Funke, D., et al.: Communication-free massively distributed graph generation. J. Parallel

Distrib. Comput. 131, 200–217 (2019). https://doi.org/10.1016/j.jpdc.2019.03.011
19 SPP. Funke, D., Lamm, S., Sanders, P., Schulz, C., Strash, D., von Looz, M.: Communication-

free massively distributed graph generation. In: IPDPS, pp. 336–347. IEEE Computer
Society (2018). https://doi.org/10.1109/IPDPS.2018.00043

20. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959). https://doi.
org/10.1214/aoms/1177706098

21. Gkantsidis, C., Mihail, M., Zegura, E.W.: The Markov Chain simulation method for gen-
erating connected power law random graphs. In: Workshop on Algorithm Engineering
and Experiments, pp. 16–25. Society for Industrial and App. Math. SIAM (2003)

22. Gugelmann, L., Panagiotou, K., Peter, U.: Random hyperbolic graphs: degree sequence
and clustering - (extended abstract). In: Czumaj, A., Mehlhorn, K., Pitts, A., Watten-
hofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 573–585. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31585-5_51

23. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a lin-
ear graph. I. J. Soc. Ind. App. Math. 10(3), 496–506 (1962). https://doi.org/10.1137/
0110037

24 SPP. Hamann, M., Meyer, U., Penschuck, M., Tran, H., Wagner, D.: I/O-efficient generation
of massive graphs following the LFR benchmark. ACM J. Exp. Algorithmics 23, 1-33
(2018). https://doi.org/10.1145/3230743

25 SPP. Hamann, M., Meyer, U., Penschuck, M., Wagner, D.: I/O-efficient generation of massive
graphs following the LFR benchmark. In: ALENEX, pp. 58–72. SIAM (2017). https://
doi.org/10.1137/1.9781611974768.5

26. Havel, V.: Poznámka o existenci konečných grafů. Časopis pro pěstování matematiky
080(4), 477–480 (1955)

27 SPP. Hübschle-Schneider, L., Sanders, P.: Linear work generation of R-MAT graphs. Netw.
Sci. 8(4), 543–550 (2020). https://doi.org/10.1017/nws.2020.21

28. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algo-
rithms on directed and weighted graphs with overlapping communities. Phys. Rev. E
80(1), 016118 (2009). https://doi.org/10.1103/physreve.80.016118

29 SPP. von Looz, M.: High-performance graph algorithms. Ph.D. thesis. KIT - Karlsruhe Insti-
tute of Technology (2018)

30 SPP. von Looz, M., Meyerhenke, H.: Querying probabilistic neighborhoods in spatial data
sets efficiently. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS,
vol. 9843, pp. 449–460. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44543-4_35

31 SPP. von Looz, M., Meyerhenke, H.: Updating dynamic random hyperbolic graphs in sublin-
ear time. ACM J. Exp. Algorithmics 23, 1–30 (2018). https://doi.org/10.1145/3195635

https://doi.org/10.4230/LIPIcs.ESA.2018.11
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1137/0110037
https://doi.org/10.1137/0110037
https://doi.org/10.1145/3230743
https://doi.org/10.1137/1.9781611974768.5
https://doi.org/10.1137/1.9781611974768.5
https://doi.org/10.1017/nws.2020.21
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1145/3195635

Generating Synthetic Graph Data from Random Network Models 37

32 SPP. von Looz, M., Meyerhenke, H., Prutkin, R.: Generating random hyperbolic graphs in
subquadratic time. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472,
pp. 467–478. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-
0_40

33 SPP. von Looz, M., Özdayi, M.S., Laue, S., Meyerhenke, H.: Generating massive complex
networks with hyperbolic geometry faster in practice. In: HPEC, pp. 1–6. IEEE (2016).
https://doi.org/10.1109/HPEC.2016.7761644

34. Mahdian, M., Xu, Y.: Stochastic kronecker graphs. In: Bonato, A., Chung, F.R.K. (eds.)
WAW 2007. LNCS, vol. 4863, pp. 179–186. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-77004-6_14

35. Maheshwari, A., Zeh, N.: A survey of techniques for designing I/O-efficient algo-
rithms. In: Meyer, U., Sanders, P., Sibeyn, J. (eds.) Algorithms for Memory Hierarchies.
LNCS, vol. 2625, pp. 36–61. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36574-5_3

36 SPP. Meyer, U., Penschuck, M.: Generating massive scale-free networks under resource
constraints. In: ALENEX, pp. 39–52. SIAM (2016). https://doi.org/10.1137/1.
9781611974317.4

37. Morton, G.M.: A comp. oriented geodetic data base and a new tech-
nique in file sequencing. Technical report. Int. Business Machines Com-
pany, New York (1966). https://domino.research.ibm.com/library/cyberdig.nsf/0/
0dabf9473b9c86d48525779800566a39?OpenDocument

38. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph 500. Cray
Users Group (CUG) 19, 45–74 (2010)

39. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010).
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001

40. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69(026113), 1–16 (2004). http://link.aps.org/abstract/PRE/v69/e026113

41. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In:
PODS, pp. 181–190. ACM (1984). https://doi.org/10.1145/588011.588037

42 SPP. Penschuck, M.: Generating practical random hyperbolic graphs in near-linear time and
with sub-linear memory. In: SEA, pp. 26:1–26:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.26

43 SPP. Penschuck, M.: Scalable generation of random graphs. Ph.D. thesis. Goethe University
Frankfurt (2020)

44 SPP. Penschuck, M., et al.: Recent advances in scalable network generation. CoRR
abs/2003.00736 (2020)

45. Popper, K.: The Logic of Scientific Discovery. Hutchinson, London (1959)
46. Price, D.J.D.S.: Networks of scientific papers. Science 149(3683), 510–515 (1965).

http://www.jstor.org/stable/1716232
47 SPP. Sanders, P., Lamm, S., Hübschle-Schneider, L., Schrade, E., Dachsbacher, C.: Efficient

parallel random sampling - vectorized, cache-efficient, and online. ACM Trans. Math.
Softw. 44(3), 29:1–29:14 (2018). https://doi.org/10.1145/3157734

48 SPP. Sanders, P., Schulz, C.: Scalable generation of scale-free graphs. Inf. Process. Lett.
116(7), 489–491 (2016). https://doi.org/10.1016/j.ipl.2016.02.004

49 SPP. Schlauch, W.E., Zweig, K.A.: Influence of the null-model on motif detection. In:
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining ASONAM, pp. 514–519. Association for Computing Machinery ACM (2015).
https://doi.org/10.1145/2808797.2809400

50. de Solla Price, D.J.: A general theory of bibliometric and other cumulative advan-
tage processes. J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976). https://doi.org/10.1002/
asi.4630270505

https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1109/HPEC.2016.7761644
https://doi.org/10.1007/978-3-540-77004-6_14
https://doi.org/10.1007/978-3-540-77004-6_14
https://doi.org/10.1007/3-540-36574-5_3
https://doi.org/10.1007/3-540-36574-5_3
https://doi.org/10.1137/1.9781611974317.4
https://doi.org/10.1137/1.9781611974317.4
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
http://link.aps.org/abstract/PRE/v69/e026113
https://doi.org/10.1145/588011.588037
https://doi.org/10.4230/LIPIcs.SEA.2017.26
http://www.jstor.org/stable/1716232
https://doi.org/10.1145/3157734
https://doi.org/10.1016/j.ipl.2016.02.004
https://doi.org/10.1145/2808797.2809400
https://doi.org/10.1002/asi.4630270505
https://doi.org/10.1002/asi.4630270505

38 U. Meyer and M. Penschuck

51 SPP. Staudt, C.L., Hamann, M., Gutfraind, A., Safro, I., Meyerhenke, H.: Generating realistic
scaled complex networks. Appl. Netw. Sci. 2(1), 1–29 (2017). https://doi.org/10.1007/
s41109-017-0054-z

52. Strona, G., Nappo, D., Boccacci, F., Fattorini, S., San-Miguel-Ayanz, J.: A fast and
unbiased procedure to randomize ecological binary matrices with fixed row and column
totals. Nat. Commun. 5(1), 1–9 (2014). https://doi.org/10.1038/ncomms5114

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/s41109-017-0054-z
https://doi.org/10.1007/s41109-017-0054-z
https://doi.org/10.1038/ncomms5114
http://creativecommons.org/licenses/by/4.0/

	Generating Synthetic Graph Data from Random Network Models
	1 Motivation
	1.1 Structure
	1.2 Notation
	1.3 Models of Computation

	2 Random Graphs and the G(n,p) and G(n,m) Models
	2.1 Sampling from G(n,p) and G(n,m)

	3 Preferential Attachment
	4 R-MAT
	5 Simple Graphs from Prescribed Degree Sequence
	5.1 The Edge Switching Markov Chain Model
	5.2 Curveball

	6 Geometrically Embedded Random Graphs
	6.1 Efficient Generators Based on Geometric Data Structures
	6.2 A Fast and Memory-Efficient Streaming Generator for RHG
	6.3 Communication-Agnostic Generators for RHG
	6.4 GIRG-Based Generator

	7 Software Packages
	References

