
Algorithms for Large-Scale Network Analysis
and the NetworKit Toolkit

Eugenio Angriman1(B), Alexander van der Grinten1 , Michael Hamann2,
Henning Meyerhenke1 , and Manuel Penschuck3

1 Humboldt-Universität zu Berlin, Berlin, Germany
{angrimae,avdgrinten,meyerhenke}@hu-berlin.de
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

michael.hamann@kit.edu
3 Goethe University Frankfurt, Frankfurt am Main, Germany

mpenschuck@ae.cs.uni-frankfurt.de

Abstract. The abundance of massive network data in a plethora of applica-
tions makes scalable analysis algorithms and software tools necessary to gen-
erate knowledge from such data in reasonable time. Addressing scalability as
well as other requirements such as good usability and a rich feature set, the open-
source software NETWORKIT has established itself as a popular tool for large-
scale network analysis. This chapter provides a brief overview of the contribu-
tions to NETWORKIT made by the SPP 1736. Algorithmic contributions in the
areas of centrality computations, community detection, and sparsification are in
the focus, but we also mention several other aspects – such as current software
engineering principles of the project and ways to visualize network data within a
NETWORKIT-based workflow.

Keywords: Network analysis · Algorithms · Software package

1 Introduction

Network phenomena surround us, be they social contact networks, organizational struc-
tures, or infrastructure networks such as the energy grid, roads or the (physical) inter-
net. Purely virtual networks such as the world wide web, online social networks, or
co-authorship networks can become particularly large and play an ever increasing role
in our daily lives [8,62]. Traditional data analysis has been and is very successful
in discovering knowledge from non-network (e.g., geometric or relational) data [50].
Yet, networks and their analysis are about “dependence, both between and within vari-
ables” [26]. To uncover implicit dependencies hidden in the data, it thus requires appro-
priate algorithmic techniques (some of which are also covered in Leskovec et al.’s text-
book on mining massive datasets [50]).

Massive networks, often with billions of vertices and edges, pose challenges to
many established analysis concepts and algorithms due to their prohibitive computa-
tional costs. This leads to the ongoing development of efficient and scalable algorithms.
The open-source software package NETWORKIT1 [75 SPP] aims to combine a broad

1 https://networkit.github.io/.

c© The Author(s) 2022
H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-21534-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21534-6_1&domain=pdf
http://orcid.org/0000-0002-9709-9478
http://orcid.org/0000-0002-7769-726X
http://orcid.org/0000-0003-2630-7548
https://networkit.github.io/
https://doi.org/10.1007/978-3-031-21534-6_1

4 E. Angriman et al.

range of such algorithms for the analysis of large networks and to make them accessi-
ble via consistent, easy to use, and well-documented frontends. For instance, it offers
a feature-rich Python API which integrates into the large Python ecosystem for data
analysis. Under the hood, the heavy lifting is carried out by performance-oriented algo-
rithms that are implemented in C++ and often use multicore parallelism. The package
is also well suited to develop and evaluate novel algorithmic approaches. As such, NET-
WORKIT received numerous unique scalable algorithms and implementations in recent
years, particularly designed to handle large inputs.

In this chapter, we present a high-level overview of NETWORKIT (Sect. 2) and por-
tray algorithmic research results derived with and for NETWORKIT – mostly those
obtained by projects of SPP 1736. We cover four main topics: centrality algorithms
(Sect. 3), community detection (Sect. 4), graph sparsification (Sect. 5) as well as graph
drawing and network visualization (Sect. 6). While these have been focus areas of NET-
WORKIT development during the lifetime of SPP 1736, the package has been used
in various other application contexts such as quantum chemistry [56 SPP] and digital
humanities [47].

2 NetworKit—An Overview

NETWORKIT is in development since 2013. The architecture of the current codebase
was released in 2014. At the time of writing, NETWORKIT has a regular release cycle
with two new major releases per year. Staudt et al. [75 SPP] describe the package’s state
at the end of 2015. In this section, we consequently focus on the many additions of new
functionality as well as improvements to the code quality that have been realized in the
meantime. This concerns new performance-oriented graph algorithms, engineering to
speed up existing algorithms, more software engineering guidelines and best practices,
as well as the modernization and extension of NETWORKIT’s integration with other
tools within a rich ecosystem (as detailed in Sect. 2.2).

2.1 Design Considerations

NETWORKIT consists of several Python modules wrapping an independently usable
core library that is written in C++. Both parts are connected using Cython and are tightly
integrated to offer consistent interfaces for most features. The package is organized
into multiple modules, each focusing on one (class of) network analytic problem(s).
Important modules deal with network centrality (centrality), community detection
(community and scd) as well as graph generation and perturbation (generators
and randomization). Some novel algorithms in the centrality, community, and
sparsificationmodules that were developed within SPP 1736 are described in more
detail in Sects. 3 to 5. Other important modules that are not covered here include mod-
ules for graph algorithms in the language of linear algebra (algebraic, following
the philosophy of GraphBLAS [45 SPP]), decomposition of graphs into components
(components), distance computations (distance), reading and writing graphs (io),
link prediction (linkprediction), graph coarsening (coarsening), and more.

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 5

As a graph data structure, NETWORKIT uses an adjacency array using dynamic
arrays (std::vector) to store vertices and their neighborhoods. It also supports edge
weights and edge IDs. This data structure was chosen over static ones such as CSR
matrices since it allows for efficient dynamic updates. The design is complemented by
several non-trivial algorithms that can efficiently update their results if the underlying
graph changes (i.e., after adding and/or deleting edges).

Many of NETWORKIT’s algorithms use OPENMP for shared-memory paral-
lelism. In fact, several algorithms in NETWORKIT exhibit best-in-class parallel per-
formance [36 SPP]. Based on an empirical comparison [46 SPP] between NETWORKIT

and several distributed frameworks for data and network analysis, NETWORKIT’s speed
advantage usually remains true in comparison to distributed systems with eight-fold
resource consumption. Ref. [46 SPP] finds that a shared-memory machine is sufficient
to solve many network analytic problems on real-world instances and concludes that
shared-memory parallelism should be preferred to distributed graph algorithms as long
as the input graph fits into main memory.

2.2 Ecosystem

In recent years, NETWORKIT matured into an actively maintained open-source project
with more than 140 000 lines of code and a steadily growing number of users and
contributors. By now, the software package exceeds a critical size that warrants efforts
beyond the development of new algorithmic features.

To ease contributions and uphold the code quality, NETWORKIT offers detailed
guidelines and implements a thorough review process. We also make heavy use of unit-
tests, static code analysis and automated code-formatting as part of our continuous inte-
gration pipeline, which targets the three major operating systems. As many new tests
improve the coding standards, we continuously modernize the codebase. Still, back-
wards compatibility is a major concern and manifests itself, for instance, in long-term
compiler support and in as few changes breaking the API as possible (preceded by a
deprecation period of at least one major version release).

Users benefit from a welcoming community, ever-improving documentation, inter-
active examples showcasing most features, a regular release schedule, and growing sup-
port for package managers (currently brew, Conda, pip, and Spack). NETWORKIT nat-
urally interacts with external projects such as GEPHI (see Sect. 6), SIMEXPAL [4 SPP],
and NETWORKX as well as graph repositories and formats including KONECT, SNAP,
and METIS; recent changes make it now even possible to develop standalone NET-
WORKIT Python modules.

Graph data can not only be imported but also be synthesized. To this end,
NETWORKIT offers versatile graph generators in the modules generators and
randomization. Among others, they are designed to generate and supplement datasets
for applications ranging from rapid prototyping to experimental campaigns. Here, we
only mention the supported network models since Chap. 2 surveys novel generation
algorithms obtained during SPP 1736. We include here citations to models or genera-
tors developed for/with NETWORKIT.

– Focus on community structure: Clustered-Random-Graph, LFR, PubWeb, R-MAT,
Stochastic Block Model, Watts-Strogatz

6 E. Angriman et al.

– Prescribed degrees: Havel-Hakimi, Chung-Lu, Curveball and Global-Curveball
[28 SPP], Edge-Switching

– Preferential attachment processes: Barabási-Albert, Dorogovtsev-Mendes
– Geometrically embedded: Hyperbolic Random Graph [52 SPP,53 SPP,54 SPP,
55 SPP,19 SPP], Geometric Inhomogenous Random Graph [19 SPP], Mocnik [59,
60]

– Basic models: G(n, p), Lattice.

Several generators have dynamic variants simulating the evolution of graphs over time.

3 Centrality Algorithms

One of the most popular concepts used for the analysis of a graph G = (V,E) is cen-
trality. Centrality measures assign a score to each vertex2 (or group of vertices) based
on its structural position or importance; these scores allow a corresponding vertex
ranking [21]. As an example, the well-known PageRank [27] is a centrality measure
originally devised for web page (and eventually search query) ranking. It is impor-
tant to match the underlying research question with the appropriate centrality mea-
sure [77 SPP] and no single measure is universal. Thus, dozens of measures have been
proposed in the literature [21].

As described in more detail below, the centrality research within NETWORKIT

revolves not only around faster algorithms for computing individual scores and top-k
rankings. Another emphasis is placed on two families of centrality-driven optimization
problems (centrality improvement and group centrality) and how to scale approxima-
tion algorithms or heuristics for their solution to much larger input sizes. For a broader
overview, also with a scalability focus, the reader is referred to Ref. [35 SPP].

It should also be noted that fast centrality algorithms can be useful in different
(but related) contexts as well; e.g., scores of several centrality measures are used as
shortcuts for more expensive influence maximization calculations [70 SPP]. Also, using
score distributions for graph fingerprinting (putting graphs into classes where all mem-
bers have similar distributions) is a conceivable use case with the need for numerous
measures that can be computed quickly.

3.1 Individual Centrality Scores

We first discuss centrality measures for individual vertices, i.e., measures that assign
a centrality score to each v ∈ V . During SPP 1736, our focus has been on two
classes of centrality measures: centralities that make use of shortest path computa-
tions (i.e., (harmonic) closeness and betweenness) and algebraic centrality measures
that consider more than just shortest paths (like Katz centrality and electrical closeness).
Figure 1 depicts the distribution of these centralities for a single network, including the
ED Walk centrality that we propose in Ref. [3 SPP].

2 Edge centrality measures are ignored here in the interest of space.

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 7

Fig. 1. Histograms of the distribution of vertex centrality measures of the JAZZ network, which
models the collaboration of Jazz musicians [34].

Betweenness. Betweenness centrality is based on the fraction of shortest paths a ver-
tex participates in. NETWORKIT implements the well-known Brandes algorithm [23]
for exact betweenness and several algorithms for betweenness approximation. For static
graphs, it has an implementation of the KADABRA algorithm [22]; additionally, NET-
WORKIT can approximate betweenness in dynamic graphs [15 SPP]. Both of these
algorithms employ a sampling technique that was originally introduced by Riondato
and Kornaropoulos [66]. More precisely, the algorithms sample pairs (s, t) of source
and target vertices uniformly at random. For each (s, t), a single shortest path is sam-
pled uniformly at random out of all shortest s-t paths. The algorithms count the number
of occurrences of vertices on these paths; they differ in their stopping conditions. The
multi-threaded implementation of the static KADABRA algorithm additionally exploits
a fast data structure for asynchronous synchronization barriers [36 SPP]. To the best of
our knowledge, NETWORKIT’s implementation of KADABRA is the fastest between-
ness approximation code that is available for multi-threaded machines.

In Ref. [39 SPP], this algorithm was extended to work with replicated graphs in
distributed memory. The resulting algorithm obtains good parallel speedups and per-
forms well even on multi-socket shared memory machines due to the fact that it can
avoid NUMA bottlenecks. Since distributed memory algorithms are outside the scope
of NETWORKIT, this implementation is available externally.

Closeness. Closeness centrality also uses the notion of shortest paths: it quantifies
the importance of a vertex v ∈ V depending on how close v is to all the other ver-
tices of the graph [11]. It is defined as c(v) := (n− 1)/(∑w∈V d(v,w)) and computing
it for a single vertex requires to run a single-source shortest path (SSSP) algorithm.
The textbook algorithm to identify the top-k vertices with highest closeness centrality
computes c(v) for each vertex of the graph by running n SSSPs, which is impracti-
cal for large-scale networks. NETWORKIT improves on this by providing an algorithm
which finds the top-k vertices with highest closeness centrality along with their exact
value of c(·) [12 SPP]. Even though the worst-case running time of the algorithm is also

8 E. Angriman et al.

Ω(|V ||E|), experimental evaluation on real-world data shows that, for small values of k,
the algorithm is in practice much more efficient than the textbook algorithm and other
state-of-the-art strategies.

NETWORKIT additionally implements a batch-dynamic version of this algo-
rithm [18 SPP,2 SPP], which also addresses harmonic centrality [21,67] – an alter-
native definition of closeness centrality introducing support for disconnected graphs.
Experiments on both real-world and synthetic instances demonstrate that, for mod-
erately large batches of edge updates, the dynamic algorithm is up to four orders of
magnitude faster than a static recomputation from scratch.

Electrical Closeness. Electrical resistance is a distance function on graphs that is con-
structed by interpreting the graph as a network of electrical resistors and by measuring
the effective resistance between vertices in this network. If the usual distance function
(based on shortest-path distances) in the definition of closeness is replaced by effective
resistance, one obtains the definition of electrical closeness. This centrality measure has
been gaining attention due to the fact that it considers paths of any length. NETWORKIT

has an efficient approximation algorithm to compute electrical closeness [6 SPP]. This
algorithm exploits a well-known connection between electrical networks and uniform
spanning trees to approximate electrical closeness faster than previous numerical algo-
rithms (including the numerical algorithm from Ref. [17 SPP]) and can handle graphs
with hundreds of millions of edges.

As part of our work on electrical closeness, NETWORKIT gained support for vari-
ous numerical algorithms. These are typically either used as subprocedures of our algo-
rithms or for performance and/or quality comparisons; however, they can also be called
as standalone numerical solvers. Experiments with an (in terms of theoretical analysis)
fast Laplacian solver revealed severe limitations in practice [43 SPP] – which is why it
was discarded. Instead, we included a fast implementation [17 SPP] of the lean alge-
braic multigrid algorithm (LAMG) [51], which is particularly well-suited to solve series
of Laplacian linear systems with identical system matrices.

Katz Centrality. NETWORKIT also implements an approximation algorithm for Katz
centrality that can handle graphs with billions of edges within a few minutes [38 SPP].
The algorithm utilizes lower and upper bounds on the centrality score of each vertex
and improves these bounds until the Katz centrality ranking is computed with sufficient
precision. In comparison to earlier combinatorial algorithms for Katz centrality, our
algorithm is the first to obtain a provable approximation bound and/or the correctness
of the ranking. It is also at least 50% faster than numerical methods. NETWORKIT pro-
vides a parallel implementation of this algorithm that can also handle dynamic graphs.
In Ref. [38 SPP], we additionally provide a GPU-based implementation which is not
part of NETWORKIT.

3.2 Improving One’s Own Centrality

One possible way to improve one’s ranking position in a web search is to attract links
from influential web pages. For some time, this led to so-called link farming [49] for

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 9

search engine optimization. More generally, beyond web search, one wants to increase
the centrality of a vertex by adding a specified number of new edges incident to it.
Crescenzi et al. [30] addressed this problem for closeness centrality. As a follow-up
to that work, Ref. [13 SPP] considered two betweenness centrality improvement prob-
lems: maximizing the betweenness score of a given vertex (MBI) and maximizing the
ranking position of a given vertex (MRI). The paper proves that both problems are
hard to approximate. Unless P = NP , MBI cannot be approximated within a factor
greater than 1− 1

2e and for MRI there is no α-approximation algorithm for any constant
α ≤ 1. The paper also proposes a simple greedy algorithm for MBI that performs well in
practice and provides a (1−1/e)-approximation. This way, MBI can be approximated
for (most) networks with up to 105 edges in a matter of seconds or a few minutes. The
greedy algorithm’s implementation builds, among others, upon a dynamic algorithm for
betweenness centrality [16 SPP] that can update the betweenness scores of all vertices
much faster after small graph changes (such as the insertion of one or few edges).

3.3 Group Centrality Optimization

Group centralities are network-analytic measures that quantify the importance of vertex
groups [31]. In contrast to centrality measures that apply to individual vertices, the goal
of these measures is to determine how well the entire group jointly “covers” the graph;
i.e., the group centrality score is not determined by the scores of individual vertices.

NETWORKIT includes various group centrality algorithms to approximate sets of
vertices that maximize the group centrality score. Most of the algorithms are based on
submodular optimization. For example, NETWORKIT implements a greedy algorithm
to approximate group degree and the group betweenness maximization algorithm by
Mahmoody et al. [57]. New algorithms developed as part of SPP 1736 are the GED-
Walk approximation algorithms from Ref. [3 SPP] and various group closeness algo-
rithms; these algorithms are described below. A very recent addition to NETWORKIT is
an approximation algorithm for group forest closeness centrality; for details we refer to
Ref. [37 SPP].

Group Closeness. Group closeness measures the importance of a group of vertices S⊂
V as the reciprocal of the sum of the distances from S to the vertices in V \S, where the
distance from S to a vertex v ∈V is defined by the minimum d(S,v) :=minu∈S d(u,v).
Finding the group S� with highest group closeness is known to be an NP-hard opti-
mization problem [29,1 SPP]. Thus, in practice, the problem is addressed on large-scale
networks either with heuristics or approximation algorithms. NETWORKIT provides a
greedy heuristic [14 SPP] that computes a set of vertices with high group centrality. On
small enough instances where it is feasible to compute the optimum, it has been shown
that the algorithm yields solutions with nearly optimal quality.

An alternative heuristic, which allows to trade quality for speed, is based on
local search. NETWORKIT implements a family of local search heuristics for group
closeness maximization that achieve different trade-offs between quality and running
time [5 SPP]. In general, they are one to three orders of magnitude faster than the greedy
algorithm. At the same time, our algorithms retain 80%—and, in numerous cases, even

10 E. Angriman et al.

more than 99%—of the greedy algorithm’s solution quality. NETWORKIT also includes
the first approximation algorithm for group closeness maximization [1 SPP] (for undi-
rected graphs) which yields solutions with higher quality than the greedy algorithm at
the cost of additional running time.

A major limitation of group closeness is that it can only handle (strongly) connected
graphs – the distance between unreachable vertices is either undefined or infinite, and
an infinite denominator results in group closeness score of zero. Another group central-
ity measure that also handles disconnected graphs is group harmonic centrality, which
is defined as GH(S) := ∑u∈V\S d(S,u)−1. Maximizing GH has been shown to be an
NP-hard problem [1 SPP] as well and two approximation algorithms for group har-
monic maximization have been introduced in Ref. [1 SPP]; both of them are available
in NETWORKIT.

GED-Walk. GED-Walk (GED = group exponentially decaying) is an algebraic group
centrality measure that was introduced in Ref. [3 SPP]. Similarly to Katz centrality
(which only applies to individual vertices), GED-Walk counts the number of walks
(and not paths) in the graph. Unlike Katz centrality, it counts walks that cross the group
of vertices (instead of counting walks that start (or end) at certain vertices). Computing
GED scores can essentially be done via sparse matrix-vector multiplication; hence, the
measure can be computed faster than centrality measures that involve the computation
of shortest paths. In Ref. [3 SPP], we propose a greedy algorithm that computes a group
with approximately maximal GED-Walk centrality. The algorithmic approach is based
on techniques derived from our Katz algorithm [38 SPP] and iteratively refines bounds
on the group centrality score. In experiments, GED-Walk maximization turns out to
be at least one order of magnitude faster than the corresponding greedy algorithms for
group betweenness and group closeness. When applied within semi-supervised vertex
classification, GED-Walk improves the accuracy compared to various existing mea-
sures.

4 Community Detection

Community detection aims to detect subgraphs that are internally densely and exter-
nally sparsely connected. From this fuzzy idea, many formalizations and algorithms
have been developed [32]. A division of the graph into disjoint communities is the most
frequently studied setting. The most popular quality measure for this setting is modular-
ity [63]. As it is NP-hard to find the (clustering with) optimal modularity score [24],
heuristics are used in practice. A very popular one is the Louvain algorithm [20]. While
it is already quite fast, it is purely sequential in its original formulation and thus does
not exploit the many cores available in modern processors. Already the earliest work in
NETWORKIT includes the development of a parallel variant of the Louvain algorithm
named PLM [72]. This first work also includes a fast parallel label propagation algo-
rithm named PLP and an ensemble algorithm that combines several runs of PLP with a
final step where PLM is used. Later improvements to PLM, including the parallelization
of additional steps, made PLM so fast that it outperformed the ensemble approach both
in terms of speed and quality [74 SPP]. Further, a refinement round similar to Ref. [68]

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 11

has been introduced that further increases the quality at the expense of a slightly longer
running time. PLM was later used in a case study on correspondences between clus-
terings [33 SPP]. With such correspondences one can reveal how one clustering differs
from another one, e.g., when computed with different algorithms or after minor graph
changes.

If only a community around a specific vertex or a set of vertices (so-called seed
vertices) is desired, we do not need to detect communities that cover the whole graph.
Many such algorithms greedily add new vertices until a local minimum of a certain
quality function is reached. A first study on such local community detection algo-
rithms [71 SPP] based on NETWORKIT has shown that they are quite slow and impre-
cise in comparison to PLM. A more recent study [41 SPP] shows that many local com-
munity algorithms detect a community in which the seed is not strongly connected.
Only algorithms that employ further guidance, e.g., using edge scores based on trian-
gles, are able to correctly identify a community the seed vertex is embedded in. The
study further shows that the results of all local community detection algorithms can be
improved by starting with the largest clique in the subgraph induced by the neighbors
of the seed vertex. For this, the possibility to combine two local community detection
algorithms has been added to NETWORKIT – a first one that detects the clique and then
a second one that expands this clique into a community [41 SPP]. This allows changing
both the seeding strategy and the latter expansion step.

For the experimental evaluation of community detection algorithms, suitable input
instances are required [7]. Ideally, instances from applications of community detec-
tion with known ground truth communities should be used for this. However, they are
frequently either quite small, unavailable due to privacy concerns or commercial inter-
ests, or the available ground truth data cannot be recovered from the graph’s struc-
ture [32,65]. For this reason, synthetically generated benchmark graphs with generated
ground truth communities are frequently used. The most popular one is the LFR bench-
mark graph generator [48], of which NETWORKIT also provides an implementation
for the case of unweighted, undirected graphs with disjoint communities [73 SPP] (see
also Chap. 2). Due to a partial parallelization and more efficient data structures, exper-
iments show a speedup compared to the original implementation of 18 to 70 using 16
cores [73 SPP]. When the similarity between a detected and a (possible) ground truth
community is low, it is often not clear if such a similarity could also be achieved by
chance. Therefore, Hamann et al. [41 SPP] also introduced a simple baseline algorithm
using a BFS that stops when the same number of vertices as contained in the ground
truth community have been visited and returns them as community. Together with addi-
tional methods for the evaluation of the found communities, NETWORKIT thus provides
a comprehensive framework for the development, evaluation, and application of local
community detection algorithms.

Nastos and Gao [61] suggest quasi-threshold graphs, i.e., graphs that do not contain
a path or cycle of four vertices as vertex-induced subgraph, as a model for communities
in social networks. As a given graph is usually not a quasi-threshold graph, they suggest
to insert and delete as few edges as possible to transform a graph into a quasi-threshold
graph. The connected components are then considered as communities. The first scal-

12 E. Angriman et al.

able heuristic for this problem [25 SPP] has been implemented in NETWORKIT, for
details we refer to Chap. 7.

5 Graph Sparsification

Centrality measures suggest that certain vertices or edges are more important than oth-
ers. In graph sparsification, the idea is to exploit this fact to obtain a subset of the
vertices and/or edges that preserve key properties of the graph, i.e., to select vertices
and edges that are important for these properties. Properties of the graph can be pre-
served either directly or in a scaled version. For example, the degree distribution cannot
be exactly preserved when we remove edges, but we can preserve the general shape
of the degree distribution. Graph sparsification can provide insights into the structure
of a graph, as it provides insights on how much redundancy there is and which edges
are important for certain properties. An application of these insights is speeding up
other network analysis tasks or making them possible in the first place by reducing the
graph’s size such that the running time and memory requirements are reduced [69]. Fur-
ther, some of these sparsification techniques can also remove noise from the graph such
that, e.g., more informative drawings can be generated [64 SPP]. In NETWORKIT, we
provide a set of edge sparsification algorithms [40 SPP]. Given a graphG= (V,E), they
identify subsets E ′ ⊂ E of the edges such that G′ = (V,E ′) preserves certain properties
of G. We currently do not consider vertex sparsification, i.e., filtering vertices while
maintaining properties of the graph – since in many network analysis tasks (like ver-
tex centralities or community detection), we are interested in a result for every vertex.
If some vertices were no longer part of the graph, we would need to extrapolate their
results, requiring an additional post-processing step for every network analysis task.

With its diverse set of network analysis algorithms, NETWORKIT provides the ideal
testbed for sparsification algorithms. A study [40 SPP] compares a set of six existing
and one novel sparsification algorithm as well as five novel variants of the existing
algorithms using NETWORKIT. The study shows that these sparsification algorithms
can be classified into three groups: those that primarily preserve edges within densely
connected areas, those that primarily preserve connectivity between different areas, and
those that are almost or completely random. The algorithms in the first group strengthen
the formation of communities and either keep or increase the average local clustering
coefficient as already suggested by previous work [69,64 SPP]. The novel local degree
technique, on the other hand, keeps distances in the graph and thus the diameter small,
see Fig. 2 for an example. As the results show, it is also good at preserving vertex
centralities. Completely random filtering also works surprisingly well at preserving a
wide range of network properties. The study shows that all methods perform better for
most measures if, instead of directly filtering edges globally, a vertex of degree d keeps
its top de neighbors for some exponent e< 1. This local filtering step has been proposed
before [69] for a single sparsification algorithm and the study suggests to apply it to all
considered algorithms. In particular, this preserves connectivity of the graph quite well
and in general leads to a more even distribution of the preserved edges.

All of these sparsification algorithms can be decomposed into two steps: A first
step that assigns each edge a score and a second step that only keeps a certain frac-
tion of the highest-rated edges. Even the local filtering step can be implemented as a

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 13

Fig. 2. Drawing using GEPHI [9] of the JAZZ network [34] (left) and a sparsified version con-
taining 15% of the edges (right) using the novel local degree algorithm. Vertex size and color is
proportional to degree. (Color figure online)

transformation of edge scores. This makes it possible to easily combine existing and
new algorithms. Further, the resulting scores can be considered as edge centrality mea-
sures that permit a ranking of the edges. With the help of visualization software like
GEPHI [9] (Sect. 6), the scores can also be visualized or used for interactive filtering of
edges.

6 Graph Drawing and Network Data Visualization

In exploratory network analysis, one needs to evaluate several properties of the network,
which requires writing code to run algorithms and plot their results. To speed up this
process, NETWORKIT provides a dedicated profiling module that allows non-expert
users to run several network analysis algorithms as a single program and visualize their
results in a graphical report that can be rendered in a Jupyter Notebook or exported as an
HTML or a LATEX document. As thoroughly explained in Ref. [75 SPP], first the report
lists global properties of the networks such as the size and the density. Then it provides
an overview of the distribution of several centrality networks as histograms (as shown
in Fig. 1, Sect. 3), followed by a more detailed statistical analysis. Finally, the report
includes a matrix with the Spearman correlation coefficients between the rankings of
the vertices according to the considered centrality measures; an example for the JAZZ

network is shown in Fig. 3.
When dealing with large graphs, statistical overviews as the ones mentioned are

indispensable, since the well-known vertex-edge diagrams do not even scale to graphs
of medium size (without further adjustments). For small graphs, however, visualizations
such as those diagrams can be very valuable. In general, the goal of graph visualiza-
tion [10] is to represent graphs in a form that is meaningful to the human eye. Popular

14 E. Angriman et al.

Fig. 3. Spearman’s correlation coefficients between vertex rankings obtained with different cen-
trality measures for the JAZZ network. Darker [lighter] block shades indicate higher [smaller]
correlation values.

Fig. 4. Visualization example with GEPHI of the KARATE graph. Red vertices have the highest
harmonic centrality, blue vertices the lowest. (Color figure online)

application areas for graph visualization are biology (e.g., genetic maps), chemistry
(e.g., protein functions) [42], social network analysis [47], and many more. GEPHI [9]
is a popular Java-based GUI application to explore and visualize graphs. NETWORKIT’s
gephi module [40 SPP] allows to use GEPHI to visualize graphs along with addi-
tional vertex- or edge attributes with minimal effort. Figure 4 shows the visualization in
GEPHI of the popular KARATE graph obtained by the ForceAtlas2 graph drawing algo-
rithm [44] and by coloring the vertices according to their harmonic centrality score.

Graph drawing actually precedes visualization in most cases. It is the process of
computing meaningful coordinates for the graph vertices where such information is not
supplied with the graph. NETWORKIT’s approach for the most part is to use the graph
drawing capability in GEPHI. It has, however, also an implementation of an algorithm
for the maxent-stress objective function, following Ref. [58 SPP]. Here, the main inten-
tion is to solve an optimization problem that computes the three-dimensional structure
of biomolecules, given distance information between some atom pairs. To this end, the
original algorithm received several application-specific adaptations [76 SPP], e.g., to
be able to handle noisy data appropriately. As a result, the new algorithm by far out-
performs its competitors in terms of speed and flexibility, and often even produces a
superior solution quality.

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 15

7 Conclusions

The main design goals of NETWORKIT (speed, rich feature set, usability, and integra-
tion into an ecosystem) prove to be very useful for users, but they can also be challeng-
ing for the developers. One lesson learned to keep an academic open-source project of
this size manageable and alive, is to combine best practices in both software engineering
and algorithm engineering [4 SPP]. For example, a proper modularization allows easier
reuse and combination of components, leading to a better extensibility and maintainabil-
ity. These keywords are well-known in software engineering, but they also have their
effect in algorithm design and implementation – in particular a simplified exploration
of the design space in experimental algorithmics. NETWORKIT has already proved to
be very useful in this respect for developers.

We have seen that approximation and parallelism can bring us a long way regarding
scalability. They are the obvious, but certainly not the only choices for acceleration:
exploiting the structure of the data, e.g., small vs. large diameter [12 SPP], can yield
significant speedups on real-world data—even in the context of exact computations and
potentially on top of parallelism.

NETWORKIT is constantly improved and extended – according to the resources
available to the project. There are numerous ideas for larger updates from various angles
– of which we mention only two representative ones: inherent support for attributes
within (some of) the algorithms and further/improved integration with other tools. The
latter is particularly geared towards a closer connection with machine learning, both on
an algorithmic and a software tool level. Given the current interest in machine learning
for data analysis, complete workflows within one seamless toolchain including NET-
WORKIT and tools such as SCIKIT-LEARN can be expected to be very attractive for
users from many domains.

References

1 SPP. Angriman, E., Becker, R., D’Angelo, G., Gilbert, H., van der Grinten, A., Meyerhenke,
H.: Group-harmonic and group-closeness maximization - approximation and engineer-
ing. In: ALENEX. SIAM (2021)

2 SPP. Angriman, E., Bisenius, P., Bergamini, E., Meyerhenke, H.: Computing top-k closeness
centrality in fully-dynamic graphs. Taylor & Francis (2021). Currently in review

3 SPP. Angriman, E., van der Grinten, A., Bojchevski, A., Zügner, D., Günnemann, S., Mey-
erhenke, H.: Group centrality maximization for large-scale graphs. In: ALENEX, pp.
56–69. SIAM (2020). https://doi.org/10.1137/1.9781611976007.5

4 SPP. Angriman, E., et al.: Guidelines for experimental algorithmics: a case study in network
analysis. Algorithms 12(7), 127 (2019). https://doi.org/10.3390/a12070127

5 SPP. Angriman, E., van der Grinten, A., Meyerhenke, H.: Local search for group closeness
maximization on big graphs. In: BigData, pp. 711–720. IEEE (2019). https://doi.org/10.
1109/BigData47090.2019.9006206

6 SPP. Angriman, E., Predari, M., van der Grinten, A., Meyerhenke, H.: Approximation of the
diagonal of a Laplacian’s pseudoinverse for complex network analysis. In: ESA, pp.
6:1–6:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.ESA.2020.6

https://doi.org/10.1137/1.9781611976007.5
https://doi.org/10.3390/a12070127
https://doi.org/10.1109/BigData47090.2019.9006206
https://doi.org/10.1109/BigData47090.2019.9006206
https://doi.org/10.4230/LIPIcs.ESA.2020.6
https://doi.org/10.4230/LIPIcs.ESA.2020.6

16 E. Angriman et al.

7. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Bench-
marking for graph clustering and partitioning. In: Alhajj, R., Rokne, J. (eds.) Encyclo-
pedia of Social Network Analysis and Mining, pp. 73–82. Springer, New York (2014).
https://doi.org/10.1007/978-1-4614-6170-8_23

8. Barabási, A.L., Pósfai, M.: Network Science. Cambridge University Press, Cambridge
(2016)

9. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring
and manipulating networks. In: ICWSM. The AAAI Press (2009)

10. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, Hoboken (1999)

11. Bavelas, A.: A mathematical model for group structures. Hum. Organ. 7(3), 16–30
(1948)

12 SPP. Bergamini, E., Borassi, M., Crescenzi, P., Marino, A., Meyerhenke, H.: Computing top-
k closeness centrality faster in unweighted graphs. ACM Trans. Knowl. Discov. Data
13(5), 53:1–53:40 (2019). https://doi.org/10.1145/3344719

13 SPP. Bergamini, E., Crescenzi, P., D’Angelo, G., Meyerhenke, H., Severini, L., Velaj, Y.:
Improving the betweenness centrality of a node by adding links. ACM J. Exp. Algorith-
mics 23, 1–32 (2018). https://doi.org/10.1145/3166071

14 SPP. Bergamini, E., Gonser, T., Meyerhenke, H.: Scaling up group closeness maximization.
In: ALENEX, pp. 209–222. SIAM (2018). https://doi.org/10.1137/1.9781611975055.18

15 SPP. Bergamini, E., Meyerhenke, H.: Approximating betweenness centrality in fully dynamic
networks. Internet Math. 12(5), 281–314 (2016). https://doi.org/10.1080/15427951.
2016.1177802

16 SPP. Bergamini, E., Meyerhenke, H., Ortmann, M., Slobbe, A.: Faster betweenness centrality
updates in evolving networks. In: SEA, pp. 23:1–23:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.23

17 SPP. Bergamini, E., Wegner, M., Lukarski, D., Meyerhenke, H.: Estimating current-flow
closeness centrality with a multigrid Laplacian solver. In: CSC, pp. 1–12. SIAM (2016).
https://doi.org/10.1137/1.9781611974690.ch1

18 SPP. Bisenius, P., Bergamini, E., Angriman, E., Meyerhenke, H.: Computing top-k closeness
centrality in fully-dynamic graphs. In: ALENEX, pp. 21–35. SIAM (2018). https://doi.
org/10.1137/1.9781611975055.3

19 SPP. Bläsius, T., Friedrich, T., Katzmann, M., Meyer, U., Penschuck, M., Weyand, C.: Effi-
ciently generating geometric inhomogeneous and hyperbolic random graphs. In: ESA,
pp. 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.
org/10.4230/LIPIcs.ESA.2019.21

20. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communi-
ties in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008). https://doi.
org/10.1088/1742-5468/2008/10/p10008

21. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014).
https://doi.org/10.1080/15427951.2013.865686

22. Borassi, M., Natale, E.: KADABRA is an adaptive algorithm for betweenness via ran-
dom approximation. ACM J. Exp. Algorithmics 24(1), 1.2:1–1.2:35 (2019). https://doi.
org/10.1145/3284359

23. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–
177 (2001). https://doi.org/10.1080/0022250X.2001.9990249

24. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2),
172–188 (2008). https://doi.org/10.1109/TKDE.2007.190689

25 SPP. Brandes, U., Hamann, M., Strasser, B., Wagner, D.: Fast quasi-threshold editing. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 251–262. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48350-3_22

https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1145/3344719
https://doi.org/10.1145/3166071
https://doi.org/10.1137/1.9781611975055.18
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.4230/LIPIcs.SEA.2017.23
https://doi.org/10.1137/1.9781611974690.ch1
https://doi.org/10.1137/1.9781611975055.3
https://doi.org/10.1137/1.9781611975055.3
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1145/3284359
https://doi.org/10.1145/3284359
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1007/978-3-662-48350-3_22

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 17

26. Brandes, U., Robins, G., McCranie, A., Wasserman, S.: What is network science? Netw.
Sci. 1(1), 1–15 (2013). https://doi.org/10.1017/nws.2013.2

27. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search
engine. Comput. Netw. 56(18), 3825–3833 (2012). https://doi.org/10.1016/j.comnet.
2012.10.007

28 SPP. Carstens, C.J., Hamann, M., Meyer, U., Penschuck, M., Tran, H., Wagner, D.: Paral-
lel and I/O-efficient randomisation of massive networks using global curveball trades.
In: ESA, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ESA.2018.11

29. Chen, C., Wang, W., Wang, X.: Efficient maximum closeness centrality group identifi-
cation. In: Cheema, M.A., Zhang, W., Chang, L. (eds.) ADC 2016. LNCS, vol. 9877,
pp. 43–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46922-5_4

30. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own close-
ness centrality in a network. ACM Trans. Knowl. Discov. Data 11(1), 9:1–9:32 (2016).
https://doi.org/10.1145/2953882

31. Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol. 23(3),
181–201 (1999). https://doi.org/10.1080/0022250X.1999.9990219

32. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659,
1–44 (2016). https://doi.org/10.1016/j.physrep.2016.09.002

33 SPP. Glantz, R., Meyerhenke, H.: Many-to-many correspondences between partitions: intro-
ducing a cut-based approach. In: SDM, pp. 1–9. SIAM (2018). https://doi.org/10.1137/
1.9781611975321.1

34. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(4), 565–
574 (2003). https://doi.org/10.1142/S0219525903001067

35 SPP. van der Grinten, A., Angriman, E., Meyerhenke, H.: Scaling up network centrality com-
putations - a brief overview. IT - Inf. Technol. 62(3–4), 189–204 (2020). https://doi.org/
10.1515/itit-2019-0032

36 SPP. Grinten, A., Angriman, E., Meyerhenke, H.: Parallel adaptive sampling with almost no
synchronization. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 434–
447. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7_31

37 SPP. van der Grinten, A., Angriman, E., Predari, M., Meyerhenke, H.: New approximation
algorithms for forest closeness centrality - for individual vertices and vertex groups. In:
SDM, pp. 136–144. SIAM (2021)

38 SPP. van der Grinten, A., Bergamini, E., Green, O., Bader, D.A., Meyerhenke, H.: Scal-
able Katz ranking computation in large static and dynamic graphs. In: ESA, pp. 42:1–
42:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.
4230/LIPIcs.ESA.2018.42

39 SPP. van der Grinten, A., Meyerhenke, H.: Scaling betweenness approximation to billions of
edges by MPI-based adaptive sampling. In: IPDPS, pp. 527–535. IEEE (2020). https://
doi.org/10.1109/IPDPS47924.2020.00061

40 SPP. Hamann, M., Lindner, G., Meyerhenke, H., Staudt, C.L., Wagner, D.: Structure-
preserving sparsification methods for social networks. Soc. Netw. Anal. Min. 6(1), 22:1–
22:22 (2016). https://doi.org/10.1007/s13278-016-0332-2

41 SPP. Hamann, M., Röhrs, E., Wagner, D.: Local community detection based on small cliques.
Algorithms 10(3), 90 (2017). https://doi.org/10.3390/a10030090

42. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in infor-
mation visualization: a survey. IEEE Trans. Vis. Comput. Graph. 6(1), 24–43 (2000).
https://doi.org/10.1109/2945.841119

43 SPP. Hoske, D., Lukarski, D., Meyerhenke, H., Wegner, M.: Engineering a combinatorial
Laplacian solver: lessons learned. Algorithms 9(4), 72 (2016). https://doi.org/10.3390/
a9040072

https://doi.org/10.1017/nws.2013.2
https://doi.org/10.1016/j.comnet.2012.10.007
https://doi.org/10.1016/j.comnet.2012.10.007
https://doi.org/10.4230/LIPIcs.ESA.2018.11
https://doi.org/10.1007/978-3-319-46922-5_4
https://doi.org/10.1145/2953882
https://doi.org/10.1080/0022250X.1999.9990219
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1137/1.9781611975321.1
https://doi.org/10.1137/1.9781611975321.1
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1515/itit-2019-0032
https://doi.org/10.1515/itit-2019-0032
https://doi.org/10.1007/978-3-030-29400-7_31
https://doi.org/10.4230/LIPIcs.ESA.2018.42
https://doi.org/10.4230/LIPIcs.ESA.2018.42
https://doi.org/10.1109/IPDPS47924.2020.00061
https://doi.org/10.1109/IPDPS47924.2020.00061
https://doi.org/10.1007/s13278-016-0332-2
https://doi.org/10.3390/a10030090
https://doi.org/10.1109/2945.841119
https://doi.org/10.3390/a9040072
https://doi.org/10.3390/a9040072

18 E. Angriman et al.

44. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous graph
layout algorithm for handy network visualization designed for the Gephi software. PLoS
ONE 9(6), e98679 (2014)

45 SPP. Kepner, J., et al.: Mathematical foundations of the GraphBLAS. In: HPEC, pp. 1–9.
IEEE (2016). https://doi.org/10.1109/HPEC.2016.7761646

46 SPP. Koch, J., Staudt, C.L., Vogel, M., Meyerhenke, H.: An empirical comparison of big
graph frameworks in the context of network analysis. Soc. Netw. Anal. Min. 6(1), 84:1–
84:20 (2016). https://doi.org/10.1007/s13278-016-0394-1

47. Kreutel, J.: Augmenting network analysis with linked data for humanities research. In:
Kremers, H. (ed.) Digital Cultural Heritage, pp. 1–14. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-15200-0_1

48. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing commu-
nity detection algorithms. Phys. Rev. E 78, 046110 (2008). https://doi.org/10.1103/
PhysRevE.78.046110

49. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond - The Science of Search
Engine Rankings. Princeton University Press, Princeton (2006)

50. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd edn. Cam-
bridge University Press, Cambridge (2014)

51. Livne, O.E., Brandt, A.: Lean algebraic multigrid (LAMG): fast graph Laplacian lin-
ear solver. SIAM J. Sci. Comput. 34(4), B499–B522 (2012). https://doi.org/10.1137/
110843563

52 SPP. von Looz, M., Meyerhenke, H.: Querying probabilistic neighborhoods in spatial data
sets efficiently. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS,
vol. 9843, pp. 449–460. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44543-4_35

53 SPP. von Looz, M., Meyerhenke, H.: Updating dynamic random hyperbolic graphs in sublin-
ear time. ACM J. Exp. Algorithmics 23, 1–30 (2018). https://doi.org/10.1145/3195635

54 SPP. von Looz, M., Meyerhenke, H., Prutkin, R.: Generating random hyperbolic graphs in
subquadratic time. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472,
pp. 467–478. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-
0_40

55 SPP. von Looz, M., Özdayi, M.S., Laue, S., Meyerhenke, H.: Generating massive complex
networks with hyperbolic geometry faster in practice. In: HPEC, pp. 1–6. IEEE (2016).
https://doi.org/10.1109/HPEC.2016.7761644

56 SPP. von Looz, M., Wolter, M., Jacob, C.R., Meyerhenke, H.: Better partitions of protein
graphs for subsystem quantum chemistry. In: Goldberg, A.V., Kulikov, A.S. (eds.) SEA
2016. LNCS, vol. 9685, pp. 353–368. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-38851-9_24

57. Mahmoody, A., Tsourakakis, C.E., Upfal, E.: Scalable betweenness centrality maxi-
mization via sampling. In: KDD, pp. 1765–1773. ACM (2016). https://doi.org/10.1145/
2939672.2939869

58 SPP. Meyerhenke, H., Nöllenburg, M., Schulz, C.: Drawing large graphs by multilevel
maxent-stress optimization. IEEE Trans. Vis. Comput. Graph. 24(5), 1814–1827 (2018).
https://doi.org/10.1109/TVCG.2017.2689016

59. Mocnik, F.B.: The polynomial volume law of complex networks in the context of local
and global optimization. Sci. Rep. 8(1), 1–10 (2018). https://doi.org/10.1038/s41598-
018-29131-0

60. Mocnik, F.-B., Frank, A.U.: Modelling spatial structures. In: Fabrikant, S.I., Raubal,
M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol.
9368, pp. 44–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23374-1_3

https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1007/s13278-016-0394-1
https://doi.org/10.1007/978-3-030-15200-0_1
https://doi.org/10.1007/978-3-030-15200-0_1
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1137/110843563
https://doi.org/10.1137/110843563
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1145/3195635
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1109/HPEC.2016.7761644
https://doi.org/10.1007/978-3-319-38851-9_24
https://doi.org/10.1007/978-3-319-38851-9_24
https://doi.org/10.1145/2939672.2939869
https://doi.org/10.1145/2939672.2939869
https://doi.org/10.1109/TVCG.2017.2689016
https://doi.org/10.1038/s41598-018-29131-0
https://doi.org/10.1038/s41598-018-29131-0
https://doi.org/10.1007/978-3-319-23374-1_3

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 19

61. Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450
(2013). https://doi.org/10.1016/j.socnet.2013.05.001

62. Newman, M.: Networks, 2nd edn. Oxford University Press, Oxford (2018)
63. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.

Phys. Rev. E 69, 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113
64 SPP. Nocaj, A., Ortmann, M., Brandes, U.: Untangling the hairballs of multi-centered, small-

world online social media networks. J. Graph Algorithms Appl. 19(2), 595–618 (2015).
https://doi.org/10.7155/jgaa.00370

65. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and community
detection in networks. Sci. Adv. 3(5), e1602548 (2017). https://doi.org/10.1126/sciadv.
1602548

66. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality
through sampling. In: WSDM, pp. 413–422. ACM (2014). https://doi.org/10.1145/
2556195.2556224

67. Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic central-
ity index. In: ASNA, Applications of Social Network Analysis (2009)

68. Rotta, R., Noack, A.: Multilevel local search algorithms for modularity clustering. ACM
J. Exp. Algorithmics 16, 27 (2011). https://doi.org/10.1145/1963190.1970376

69. Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable clus-
tering. In: SIGMOD Conference, pp. 721–732. ACM (2011). https://doi.org/10.1145/
1989323.1989399

70 SPP. Şimşek, M., Meyerhenke, H.: Combined centrality measures for an improved character-
ization of influence spread in social networks. J. Complex Netw. 8(1), cnz048 (2020).
https://doi.org/10.1093/comnet/cnz048

71 SPP. Staudt, C., Marrakchi, Y., Meyerhenke, H.: Detecting communities around seed nodes
in complex networks. In: BigData, pp. 62–69. IEEE Computer Society (2014). https://
doi.org/10.1109/BigData.2014.7004373

72. Staudt, C., Meyerhenke, H.: Engineering high-performance community detection
heuristics for massive graphs. In: ICPP, pp. 180–189. IEEE Computer Society (2013).
https://doi.org/10.1109/ICPP.2013.27

73 SPP. Staudt, C.L., Hamann, M., Gutfraind, A., Safro, I., Meyerhenke, H.: Generating real-
istic scaled complex networks. Appl. Netw. Sci. 2, 36 (2017). https://doi.org/10.1007/
s41109-017-0054-z

74 SPP. Staudt, C.L., Meyerhenke, H.: Engineering parallel algorithms for community detection
in massive networks. IEEE Trans. Parallel Distrib. Syst. 27(1), 171–184 (2016). https://
doi.org/10.1109/TPDS.2015.2390633

75 SPP. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: a tool suite for large-scale com-
plex network analysis. Netw. Sci. 4(4), 508–530 (2016). https://doi.org/10.1017/nws.
2016.20

76 SPP. Wegner, M., Taubert, O., Schug, A., Meyerhenke, H.: Maxent-stress optimization of 3D
biomolecular models. In: ESA, pp. 70:1–70:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.70

77 SPP. Zweig, K.A.: Network Analysis Literacy - A Practical Approach to the Analysis of
Networks. Lecture Notes in Social Networks. Springer, Vienna (2016). https://doi.org/
10.1007/978-3-7091-0741-6

https://doi.org/10.1016/j.socnet.2013.05.001
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.7155/jgaa.00370
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1145/2556195.2556224
https://doi.org/10.1145/2556195.2556224
https://doi.org/10.1145/1963190.1970376
https://doi.org/10.1145/1989323.1989399
https://doi.org/10.1145/1989323.1989399
https://doi.org/10.1093/comnet/cnz048
https://doi.org/10.1109/BigData.2014.7004373
https://doi.org/10.1109/BigData.2014.7004373
https://doi.org/10.1109/ICPP.2013.27
https://doi.org/10.1007/s41109-017-0054-z
https://doi.org/10.1007/s41109-017-0054-z
https://doi.org/10.1109/TPDS.2015.2390633
https://doi.org/10.1109/TPDS.2015.2390633
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.4230/LIPIcs.ESA.2017.70
https://doi.org/10.1007/978-3-7091-0741-6
https://doi.org/10.1007/978-3-7091-0741-6

20 E. Angriman et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit
	1 Introduction
	2 NetworKit—An Overview
	2.1 Design Considerations
	2.2 Ecosystem

	3 Centrality Algorithms
	3.1 Individual Centrality Scores
	3.2 Improving One's Own Centrality
	3.3 Group Centrality Optimization

	4 Community Detection
	5 Graph Sparsification
	6 Graph Drawing and Network Data Visualization
	7 Conclusions
	References

