
Chapter 7
Stress–Strain and Fluid Flow

7.1 Coupling to Stress and Strain

In this last lecture, before we change gears to the “quantum-phase-field” model,
we want to (almost) complete the picture of the effects to be considered in real
materials. “Almost,” because we discuss only elasticity and fluid flow; we only
touch on plasticity, and we neglect electric charges, magnetic coupling, and others.
As stated in Chap. 1, a wide range of applications of phase-field modelling and
simulations lies in this field. The models applied there, however, are complementary
in concept with what we will discuss now: coupling of phase evolution with elastic
distortion.

It is reported that Armen Khachaturyan developed his branch of phase fields,
the so-called “time-dependent Ginsburg–Landau theory,” to predict the equilibrium
shape of a martensite needle in parent austenite. The problem relates to the old
Eshelby problem of an inclusion in a matrix with finite transformation strain [9].
We may also include deviatoric strain if the crystal lattice changes from BCC to
FCC. This was used to find the solution to the problem of the equilibrium shape of a
crystal in its melt using the anisotropy of the interface energy in Chap. 3. Practically
speaking, and this is often reported in the literature (to which I give no reference
here), you cut out a piece of material from a crystal, transform it to a different phase
with volumetric and deviatoric distortion with respect to the original crystal, and put
it back. Continuity demands that both the parent and child crystal have to deform
elastically to form a common body (see Fig. 7.1).

In the phase-field approach, this is an easy exercise: you simply have to add the
elastic bulk free energy of the individual phases to our previous models and decide
on a good way to handle the elastic contribution within the interface. The elastic
bulk free energy .f elast is (and all phase-field models agree with classical models
from continuum mechanics on this point):

© The Author(s) 2023
I. Steinbach, H. Salama, Lectures on Phase Field,
https://doi.org/10.1007/978-3-031-21171-3_7

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21171-3protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7
https://doi.org/10.1007/978-3-031-21171-3_7


70 7 Stress–Strain and Fluid Flow

Fig. 7.1 Scheme of the
elastic equilibrium between
a transformed inclusion and
the matrix
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where .ε
ij
α is the total strain in phase .α, .ε∗ij

α is the eigenstrain (or transformation

free strain), and .C
ijkl
α is the elasticity matrix. We use the sum convention for double

indices.
In general, .ε∗ij

α and .C
ijkl
α are concentration- and temperature-dependent quanti-

ties, which gives rise to intriguing effects of chemo-mechanical coupling (see [16]
and references therein). We leave this for further reading. The ansatz (7.1) is a direct
extension of the original multi-phase model for diffusive phase transformations, as
the total elastic energy is a linear summation of the elastic energies of the individual
phases weighted by the phase densities .φα . It is mostly assumed that the equilibrium
is instantaneous. One derives the mechanical equilibrium equation, as we do with
all relevant transport equations, as a functional derivative from the free-energy
functional

.�0 = ∇σ = ∇ δ

δε
F (7.2)

in vector notation, where the stress .σ and strain .ε are rank-two tensors. The difficulty
now is to define these tensors within the interface, because the definition of the
elastic free energy density (7.1) uses different strains .εα . In all bulk phases, the
stress is of course .σ = εC, but also the elasticity C is only defined for each
phase. This is a classical problem in solid mechanics: to define an effective material
from a mixture of materials, so-called mathematical homogenization. To be able to
solve the mechanical equilibrium equation (7.2), one first has to define the effective
mechanical properties of the interface, the effective elasticity matrix C, and also
the effective transformation strain .ε∗. The latter is commonly taken as a weighted
average .ε∗ = ∑

α φαε∗
α . In the phase-field literature, the most-used homogenization
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for the total strain tensor .ε is the so-called Voigt–Taylor model, which assumes
homogeneous strain in all phases .ε = εα = εβ . Then, however, the stress has to
be discontinuous in general. The opposite, the Reuss–Sachs model, takes the stress
as continuous between the phases. Since the stress is the equivalent to a chemical
potential in a mechanical system, one may take this assumption as an analogue to
equal chemical potential in the interface (see also the discussion in [20]).

A combination of both models, taking the strain as continuous in the tangential
direction and the stress as continuous in the normal direction to the interface, is
proposed in [8]. The most advanced model is the so-called rank-one convexification
applying a jump condition (see [15, 17]). We leave this topic to further reading. Only
one important consequence shall be detailed here: the elastic driving force for phase
transformations .�gelast for a phase-transformation under mechanical load, either
external or by internal stresses. For the Voigt–Taylor model, we find for the dual
.α–.β interface (the general form is defined as a superposition between dual driving
forces in the multi-phase-field approach):

.�gelast
αβ =

(
δ

δφα

− δ

δφβ

)

F

= (ε∗
α − ε∗

β)(ε − ε∗)C + 1

2
(ε − ε∗)2(Cα − Cβ). (7.3)

For Reuss–Sachs, we have:
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(7.4)
We see in both cases, that the elastic driving force for phase transformations

vanishes for a homogeneous material if .ε∗
α = ε∗

β AND .Cα = Cβ . Also in both cases
we have two contributions: one related to the difference in the eigenstrains, the other
related to the difference in the elasticity matrices. And of course, the elastic driving
force vanishes if the total strain matches the eigenstrains, i.e., there is no stress in the
interface region. Higher-order schemes considering a jump condition between stress
and displacement at the interface [8, 15, 17] are more involved, but they follow the
same principles.

Another remark relates to the solution of the mechanical equilibrium equation
(7.2). This can be achieved by any appropriate numerical approach using a finite-
element scheme in real space. In phase-field models, the Fourier method is very
popular because its solution for homogeneous systems, i.e., .C = Cα = Cβ , is com-
putationally very cheap. If the material cannot be approximated by homogeneous
elasticity, one first solves a homogeneous problem and then corrects the solution
for the inhomogeneity in an iterative scheme. The difference between the elasticity
coefficients is called “contrast.” In the case of a low contrast, i.e., if the elasticity in
all phases is similar, these schemes are quite effective. For high contrast, e.g., a pore
filled with gas or liquid in a solid metal, one needs more elaborate schemes [12].
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One also has to consider that the Fourier transformation relies on periodic boundary
conditions. In any case, however, one should not confuse the theoretical setup of
the phase-field model with a special solution procedure, as important as this is for
application.

The final comment regards plasticity. There may be an outer load that exceeds
the yield point of the material. Then, elastic strain is limited, and plastic strain sets
in. This is associated with dislocation activity and the generation of another contri-
bution to the free energy of the system: stored plastic energy related to dislocations.
Such stored plastic energy may lead to phenomena such as “recrystallization.” This
can be treated similarly to a phase transformation, and it is driven by the reduction
of plastic energy. This is “easy” from a phase-field perspective, but it is difficult in
terms of handling plastic energy at the continuum scale. It is even more difficult
to design a model accounting for how moving interfaces interact with dislocations.
Some applications are suggested for further reading. Additionally, internal stresses,
which are caused by transformation strain between different phases, may exceed the
yield point of the material, in particular at elevated temperatures. The stress state
of the interface, and thus the driving force for phase transformation, is then limited
by plastic relaxation. Therefore, plasticity will generate new driving forces on the
one hand, and it will reduce driving forces on the other hand. This is a wide area
for future research, but it is associated with special challenges regarding (i) model
formulation and (ii) numerical solution.

Example—Martensitic Transformation
A body-centered-tetragonal martensite structure is formed by rapidly quench-
ing from the face-centered-cubic austenite phase. When a material undergoes
a martensitic transformation, the crystalline unit cell undergoes a shape
change. The final microstructure of martensite is strongly influenced by elastic
energy generated during the change of the crystal structure. Accommodation
of the elastic energy is often achieved by forming a multi-variant domain.
In addition, plastic deformation occurs in the austenite matrix and the grow-
ing martensite phase, and these are called self-accommodation and plastic
accommodation, respectively [5, 23]. Thus, both elastic and plastic effects
play important roles in martensitic transformations.

The Simulation
A 3D multi-phase-field model was used to model martensite microstructure
formation in low-carbon steel. In this example (Fig. 7.2), an elasto-plastic
approach is employed with a full set of 24 Kurdjumov–Sachs symmetry
variants of martensite with real transformation strains [13]. A finite strain

(continued)
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Fig. 7.2 Lath martensite microstructures: (a) electron backscatter diffraction map of martensite
in a sample containing 0.1 wt.% carbon [18]; and (b) simulated martensite microstructure in low-
carbon steel consisting of 24 Kurdjumov–Sachs symmetry variants, indicated by color coding

framework is applied in connection to a phenomenological crystal-plasticity
model. Both methods are fully coupled within the OpenPhase library.

7.2 Coupling to Fluid Flow

In previous lectures, we have discussed the coupling of the phase field with
temperature, solute, and elastic distortion. In all these cases, the driving force

for a phase transformation .�gαβ =
(

δ
δφα

− δ
δφβ

)
F is directly dependent on

temperature, composition, or stress. We consider this coupling as “strong.” In
the present subsection, we consider fluid flow, or melt flow when considering
a solidification process. The coupling to phase evolution may be considered as
“weak,” since the direct effect of flow on a phase transformation, the Clausius–
Clapeyron effect, is generally very weak. The Clausius–Clapeyron effect describes
the boiling temperature of a liquid dependent on the pressure in the system: the
boiling temperature of water is significantly reduced on high mountains. The
melting temperature of a metal, however, is hardly affected by the pressure of a
streaming melt, and we therefore simply neglect it. There is, however, a strong effect
of melt flow on dendrite morphologies in solidification. This is because on the one
hand, melt flow significantly affects the transport of solute and heat in the melt;
on the other hand, solidification significantly affects the viscosity of the material.
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Fig. 7.3 Schematic of channel flow in which the width of the channel and the width of the interface
are of the same order of magnitude

A solid dendrite can be seen as a rigid body. If it is attached to the mold of the
casting, it forms a rigid barrier for flow; if it is transported with the melt as an
equiaxed crystal, it will affect the effective viscosity of the two-phase system (solid
and melt). If the solid fraction is low, a metallic melt has a viscosity like that of
water; if the solid fraction exceeds .30%, it will behave like honey with precipitated
sugar crystals; above .50%, any melt flow will stop.

This mutual interaction leads to intriguing phenomena, which we will leave
for further reading. Here, we will elaborate on one effect that is crucial for the
interaction of a fluid with a solid when the interface between liquid and solid is
diffuse at a mesoscopic scale. At the microscopic scale, we definitely accept a
so-called “no-slip” condition: the flow velocity decays to 0 monotonously in the
direction normal to the interface. Figure 7.3 schematically shows the condition of
a channel flow in which the width of the channel and the width of the interface
are of the same order of magnitude. One side of the channel is treated as a “wall,”
i.e., a sharp interface with a well-defined no-slip condition; the other side is treated
as diffuse in the context of phase-field theory. How do we realize an analogue to
the no-slip condition within a diffuse boundary? As in the first part of this lecture,
we treat the interface as an effective material, and in the present case as a porous
medium: the flow will penetrate the interface, but the permeability of the interface
will be a function of the phase field.

The corresponding fluid-flow equation for the fluid velocity .�u in a mixed
domain—solid and liquid—is readily written down (for simplicity, without moving
solids, i.e., the solid velocity is set to 0; .φ = φliquid, density .ρ set to 1):

.
∂

∂t
φ�u + �∇φ�u�u = −φ �∇P + �∇ (ν∇φ�u) − h∗Xl. (7.5)
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The important part here is the last term: friction within the diffuse interface .Xl .
This has been worked out for the planar interface with a friction coefficient .h∗.1

Its numerical value is given as .h∗ = 2.757 [6]. Other models defining the no-slip
condition as a function of the phase field have been investigated [3, 4, 21] and may be
investigated in the future. A consistent investigation for curved interfaces (concave
or convex) is still missing. In any case, we will require the “sharp-interface solution”
to be met outside of the interface, i.e., that we meet the sharp-interface model in the
bulk. In the case of the channel flow, the sharp-interface model predicts a parabolic
velocity profile in the channel: Hagen–Poiseuille law. The maximum velocity is
a sensitive indicator of whether the diffuse interface correctly emulates the sharp
interface; it is a kind of “thin-interface limit,” i.e., we match a sharp-interface
solution in the bulk liquid but deviate systematically within the thin interface.

7.3 Exercises

Exercise
Derive the expressions for the elastic driving forces (7.3) and (7.4) for the
Voigt–Taylor and Reuss–Sachs limit, respectively.

Example: Dendritic Solidification Interacting with Shear Flow of the
Melt
The setup (Fig. 7.4) represents a thin Mg-Al melt channel between two rigid
walls. We see nucleation and growth of α-Mg dendrites. At the same time,
shear flow is introduced to the melt via the motion of the rigid walls. Full
integration of the inertial and friction forces acting on the solid dendrites and
the melt results in the dendrites moving with the melt. In this example, the
fluid-flow problem is solved using the lattice Boltzmann method, while the
system morphology and its evolution is described by the phase-field method.
Both methods are fully coupled within the OpenPhase library, allowing the
study of arbitrarily complex geometries. See [14, 22].

1 .h∗ is named the “Hermann-Joseph” constant. Hermann-Joseph Diepers was one of my early
collaborators. He passed away from cancer before finishing his PhD. His memory lasts.
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Fig. 7.4 Flow simulation of Mg–Al alloy solidification

Further Reading

• Chemo-mechanical coupling [10, 16].
• Hadamard jump [15, 17].
• Recrystallization and rafting under high-temperature creep [1, 2, 7, 11].
• Dendritic growth with buoyancy [19, 22].
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