Skip to main content

Spherical Transformer on Cortical Surfaces

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13583))

Included in the following conference series:

Abstract

Motivated by the recent great success of attention modeling in computer vision, it is highly desired to extend the Transformer architecture from the conventional Euclidean space to non-Euclidean spaces. Given the intrinsic spherical topology of brain cortical surfaces in neuroimaging, in this study, we propose a novel Spherical Transformer, an effective general-purpose backbone using the self-attention mechanism for analysis of cortical surface data represented by triangular meshes. By mapping the cortical surface onto a sphere and splitting it uniformly into overlapping spherical surface patches, we encode the long-range dependency within each patch by the self-attention operation and formulate the cross-patch feature transmission via overlapping regions. By limiting the self-attention computation to local patches, our proposed Spherical Transformer preserves detailed contextual information and enjoys great efficiency with linear computational complexity with respect to the patch size. Moreover, to better process longitudinal cortical surfaces, which are increasingly popular in neuroimaging studies, we unprecedentedly propose the spatiotemporal self-attention operation to jointly extract the spatial context and dynamic developmental patterns within a single layer, thus further enlarging the expressive power of the generated representation. To comprehensively evaluate the performance of our Spherical Transformer, we validate it on a surface-level prediction task and a vertex-level dense prediction task, respectively, i.e., the cognition prediction and cortical thickness map development prediction, which are important in early brain development mapping. Both applications demonstrate the competitive performance of our Spherical Transformer in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  2. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  4. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  5. Gao, Y., Zhou, M., Metaxas, D.N.: Utnet: a hybrid transformer architecture for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 61–71. Springer (2021)

    Google Scholar 

  6. Girault, J.B., et al.: Cortical structure and cognition in infants and toddlers. Cereb. Cortex 30(2), 786–800 (2020)

    Article  Google Scholar 

  7. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al.: A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. (2022). https://doi.org/10.1109/TPAMI.2022.3152247

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  10. Ji, Y., Zhang, R., Wang, H., Li, Z., Wu, L., Zhang, S., et al.: Multi-compound transformer for accurate biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 326–336. Springer (2021)

    Google Scholar 

  11. Jiang, C., Huang, J., Kashinath, K., Marcus, P., Niessner, M., et al.: Spherical CNNs on unstructured grids. arXiv preprint arXiv:1901.02039 (2019)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  13. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  14. Li, G., et al.: Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage 90, 266–279 (2014)

    Article  Google Scholar 

  15. Li, G., Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D.: Construction of 4D high-definition cortical surface atlases of infants: methods and applications. Med. Image Anal. 25(1), 22–36 (2015)

    Article  Google Scholar 

  16. Li, G., et al.: Computational neuroanatomy of baby brains: a review. Neuroimage 185, 906–925 (2019)

    Article  Google Scholar 

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  18. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  19. Matsoukas, C., Haslum, J.F., Söderberg, M., Smith, K.: Is it time to replace cnns with transformers for medical images? arXiv preprint arXiv:2108.09038 (2021)

  20. Meng, Y., Li, G., Gao, Y., Lin, W., Shen, D.: Learning-based subject-specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies. Hum. Brain Mapp. 37(11), 4129–4147 (2016)

    Article  Google Scholar 

  21. Mullen, E.M., et al.: Mullen scales of early learning. AGS (ed.). Circle Pines, MN: American Guidance Service Inc. (1995)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  23. Sun, L., Zhang, D., Lian, C., Wang, L., Wu, Z., Shao, W., et al.: Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. Neuroimage. 198, 114–124 (2019)

    Google Scholar 

  24. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 36–46. Springer (2021)

    Google Scholar 

  25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  26. Wang, L., Li, G., Shi, F., Cao, X., Lian, C., Nie, D., et al.: Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 411–419. Springer (2018)

    Google Scholar 

  27. Wu, Z., Wang, L., Lin, W., Gilmore, J.H., Li, G., Shen, D.: Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation. Hum. Brain Mapp. 40(13), 3860–3880 (2019)

    Google Scholar 

  28. Zhao, F., Wu, Z., Li, G.: Deep learning in cortical surface-based neuroimage analysis: a systematic review. Intell. Med. (2022). https://doi.org/10.1016/j.imed.2022.06.002

  29. Zhao, F., et al.: Spherical deformable U-Net: application to cortical surface parcellation and development prediction. IEEE Trans. Med. Imaging 40(4), 1217–1228 (2021)

    Article  Google Scholar 

  30. Zhao, F., Xia, S., Wu, Z., Duan, D., Wang, L., Lin, W., et al.: Spherical U-Net on cortical surfaces: methods and applications. In: International Conference on Information Processing in Medical Imaging, pp. 855–866. Springer (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) under Grants MH116225, MH117943, and MH123202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J. et al. (2022). Spherical Transformer on Cortical Surfaces. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21014-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21013-6

  • Online ISBN: 978-3-031-21014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics