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Abstract Plants encounter various nanomaterials (NMs) as pesticides and fertil-
izers. It is also possible that nanomaterials reach plants as waste from consumer prod-
ucts and industry. The effects of such NMs on plants have been widely studied, and 
both positive and negative effects of NMs on plant growth and development have been 
reported. Recent metabolomics studies suggest that nanoparticles affect the concen-
tration of secondary metabolites in plants by modulating reactive nitrogen/oxygen 
species, gene expression, and signaling pathways. Secondary metabolites are plant 
compounds that accumulate in plants through their secondary metabolism. To date, 
more than 200,000 defined structures of secondary metabolites have been identi-
fied, among which many of them possess antibacterial, antifungal, antiviral, anti-
inflammatory, hepatoprotective, antidepressant, antioxidant, neuroprotective, and 
anticancer properties. The application of elicitors is a simple strategy to increase the 
production of secondary metabolites in plant cell and tissues. The ability of nano-
materials to induce plant secondary metabolism has recently been exploited in the 
elicitation of pharmaceutically important compounds from various plant species. The 
ability of different NMs to induce the accumulation of different classes of compounds 
in the same plant species has also been accomplished. The molecular mechanisms 
behind the effects of NMs on plant secondary metabolism revealed the putative 
genes involved in NM-mediated elicitation of various plant compounds in several 
reports. This chapter reviews the current understanding of the effects of nanoparticles 
on plant secondary metabolism and the elicitation of pharmacologically important 
compounds from plant species.
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6.1 Introduction 

In this era of nanotechnology, nanomaterials (NMs) are finding applications 
in various fields, including science, industry, medicine, and agriculture. Several 
consumer products, medicines, fertilizers, pesticides, cosmetics, food packings, 
paints and electronics containing NMs are already on the market. 

Plants are exposed to NMs through various pathways. NMs can move to plants 
as NM-containing wastes that are released into the environment by industries and 
consumer products in water and soil. The predicted concentration of some nanopar-
ticles (NPs) in soil is: silver (Ag): 0.91–1.8 ng/kg; titanium oxide (TiO2): 0.09– 
0.24 μg/kg; zinc oxide (ZnO): 0.01–0.03 μg/kg (Sun et al. 2014). On the other 
hand, recent advances in agriculture use formulations containing NMs such as fertil-
izers, fungicides and pesticides. The concentration-dependent response to NPs varies 
greatly among different plant species, which has been reported, for example, for NPs 
from ZnO: 40–1200 ppm, (Mosquera-Sánchez et al. 2020; Sadak and Bakry 2020) 
cerium oxide (CeO2): 125–500 ppm, (Rico et al. 2014) copper oxide (CuO): 200– 
400 ppm, (Wang et al. 2019) and gold (Au): 5 ppm (Kang et al. 2016) to show the 
effect of nanofertilizers and pesticides. Effective concentrations for plant protection 
applications range from 2 to 2000 ppm for Ag NPs alone across plant species and 
pathogens (Elmer and White 2018). Thus, while the application of nanotechnology 
is expected to revolutionize agriculture, NMs that enter the environment directly 
as agrochemicals or indirectly as industrial or household wastes are proving to be 
pollutants with unknown consequences for plants. 

Previous studies on various model plant species and crops have shown that NMs 
affect plant growth and development both positively and negatively depending on 
their concentration. However, it is known that the biologically relevant concentra-
tion of NMs strongly depends on their metallic core, physicochemical properties, 
substrate and plant species. NMs are known to interfere with metabolic processes 
and lead to the formation of reactive oxygen species (ROS)/reactive nitrogen species 
(RNS), damage the structure and function of cell membranes, and reduce enzyme 
activities and DNA synthesis. Recent literature also suggests that plant secondary 
metabolism is also affected by NMs. 

Secondary metabolism is crucial for plants as they play an indispensable role in 
plant survival: as protection against herbivores and pathogenic microbes, as signals 
for symbiotic interactions of plants with beneficial microorganisms, as allelopathic 
agents in natural habitats for protection against competitors, as physical and chemical 
barriers against abiotic stressors such as UV radiation, and as endogenous regulators 
of plant growth regulators. 

The small molecular products that are biosynthesized in plants through their 
secondary metabolic pathways are called plant secondary metabolites. These
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compounds are generally classified as terpenes, steroids, phenols, flavonoids and 
alkaloids and are derived from primary metabolites or as an intermediate in the 
primary metabolic pathway (Chandran et al. 2020; Pang et al. 2021). Plant secondary 
metabolites play an important role in plant defense mechanisms against biotic and 
abiotic stresses (Khare et al. 2020; Mahajan et al. 2020). In particular, phenyl-
propanoids are involved in the regulation of oxidative stress, free ion chelation, 
cell wall lignification, and plant defense (Agati et al. 2012). In addition, secondary 
metabolites are also known to be involved in pest defense (Barlow et al. 2017; 
Stevenson 2020), signal transduction in plant–microbe symbiosis (Adedeji and 
Babalola 2020) and plant innate immunity (Piasecka et al. 2015). 

Apart from their beneficial effects in plants, many secondary metabolites are 
economically important as medicines, flavors and fragrances, dyes and pigments, 
pesticides and food additives. Useful remedies from herbal medicine are due to the 
presence of various secondary metabolites (Chandran et al. 2020). For example, 
a recent study showed that 12 pure compounds from Clerodendranthus spicatus 
(Thunb.) C. Y. Wu ex H. W. Li, an herb widely used in traditional Chinese medicine 
for the treatment of kidney inflammation, gout, and dysuria, promoted the excretion of 
uric acid (Chen et al. 2020). More than 500 secondary metabolites have been reported 
from 46 species of the genus Lycopodium, and these secondary metabolites have been 
shown to have several medically important bioactivities, including neuroprotective, 
anti-inflammatory, anti-cancer, antiviral, and antimicrobial activities (Wang et al. 
2021). 

The quantity of secondary metabolites produced by natural biosynthesis in plants 
is limited to meet the growing demand of the pharmaceutical industry. Thus, develop-
ment of alternative biotechnological approaches is necessary to boost production of 
secondary metabolites (Thakur et al. 2019). Elicitation is one of the most commonly 
used techniques to enhance the biosynthesis of secondary metabolites (Thakur et al. 
2019; Yazdanian et al. 2021). 

In recent years, NMs have emerged as novel triggers for inducing biosynthesis 
of bioactive compounds in plants (Shakya et al. 2019; Rivero-Montejo et al. 2021). 
Ag NP treatment increased artemisinin content by 3.9-fold in 20-day-old hairy root 
cultures of Artemisia annua L. (Zhang et al. 2013). Hydroponically grown Bacopa 
monnieri L. treated with copper-based NPs (Cu) improved antioxidant capacity 
and showed hormetic increase in the content of saponins, alkaloids, flavonoids 
and phenols (Lala 2020). Celastrol, a therapeutically important phytochemical, was 
increased in adventitious and hairy root cultures of Celastrus paniculatus Willd. 
after treatment with Ag NP (Moola et al. 2021). The elicitation of various classes of 
bioactive secondary metabolites in Hypericum perforatum L. cell suspension cultures 
treated with various metal (Ag, Au, Cu, Pd) and metal oxide (CeO2, CuO, TiO2, ZnO)  
NPs has been recently reported (Kruszka et al. 2022). 

In this chapter, we discuss the effects of NMs on secondary metabolism in plants, 
focusing on signaling events and key medicinal agents that are enhanced by NPs.
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6.2 Plant’s Response to Nanomaterials 

Exposure to NMs has been found to induce changes in various physiological, morpho-
logical and developmental processes of plants. In general, plant metabolism can be 
divided into primary (associated with energy and biosynthesis of building blocks) and 
secondary (more specialized molecules) metabolism (Erb and Kliebenstein 2020). 
Primary metabolites consist of the products of photosynthesis, glycolysis, the tricar-
boxylic acid cycle (TCA cycle), biosynthesis of amino acids, lipids, and some natural 
polymers. Cu NPs minimized the negative effects of drought stress on photosyn-
thetic pigments and promoted plant growth, development and grain yield in Zea 
mays L. (Van Nguyen et al. 2021). Foliar application of silica (SiO2) and ZnO 
NPs in Cucumis sativus L. significantly increased chlorophyll content and various 
amino acids and modulated carbon metabolic processes in leaves (Li et al. 2021a). In 
contrast to primary metabolism, secondary metabolism yields structurally diverse and 
specialized metabolites, such as phenylpropanoids (polyphenols, flavonoids, antho-
cyanins, xanthones, stilbenes), terpenes, polyketides, prenylated phloroglucinols, 
alkaloids, and organosulfur compounds (glucosinolates, thioesters). These metabo-
lites play a role as phytoalexins, phytoanticides and phytoncides (defense systems 
against many biotic stresses), antioxidants (control ROS), chelators (scavenging free 
metal ions), UV protectants, growth regulators, and factors against abiotic stresses 
(Feng et al. 2021b; Nobahar et al. 2021). Various NPs including iron (Fe), cerium 
(Ce), and SiO2, altered secondary metabolite content in lettuce and pepper seedlings 
(Kalisz et al. 2021). 

6.2.1 Impact of NPs on Precursors of Secondary Metabolism 

The effects of different types of NMs on precursors of secondary metabolites have 
been analyzed in detail in algal, monocotyledonous, and dicotyledonous plant models 
(Table 6.1). Many studies have captured the effects of NMs on the pentose phos-
phate pathway, glycolysis, and the TCA cycle, and have linked carbohydrates and 
organic acids to these processes. The upregulation of these metabolic pathways and 
compounds is related to defense mechanisms and their additional roles as chelators 
and osmoprotectors (Li et al. 2019; Nobahar et al. 2021). Moreover, Ag (Chavez Soria 
et al. 2017), CuO (Zhao et al. 2017a), Cu(OH)2 (Zhao et al. 2018a), CdO (Večeřová 
et al. 2016), CeO2 (Salehi et al. 2018), graphene-based (Hu and Zhou 2015; Ouyang 
et al. 2015; Chen et al. 2021), WS2 (Yuan et al. 2018) and fullerols (Zhao et al. 
2019) affected the fatty acids and lipid compositions of various plant species such 
as Arabidopsis thaliana (L.) Heynh., C. sativus, Z. mays, Hordeum vulgare L. and 
Phaseolus vulgaris L.

Amino acid metabolism is an important bridge between primary and secondary 
metabolites. Many amino acids are important precursors in the biosynthesis of alka-
loids (e.g., arginine, lysine, ornithine, phenylalanine, proline, tryptophan, tyrosine),
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Table 6.1 Alteration of plant primary metabolites due to NP treatment/exposure 

Plant species Treatment 
(NPs, variants, size, 
concentration) 

Omic 
approach 

Changes in metabolism Reference 

Arabidopsis 
thaliana (L.) 
Heynh 

Citrate-Ag 1–10 nm, 
PVP-Ag 1–10 nm, 
Ag+ (AgNO3), 1 mg/L 

M ↑N-acylethanolamines, 
↑ phytosphingosine 
(d20:3, d20:2), 
↓ purine nucleoside 
(PVP-Ag), ↓fatty 
acids, ↓ lyso-PG, ↓ 
lyso-PE, ↓ lyso-PC 

Chavez 
Soria et al. 
(2017) 

Ag 10 nm, 
Ag+ (AgNO3), 
12.5 mg/L 

M ↑TCA cycle, 
↑ carbohydrates, 
↑ threonine, ↓ amino 
acids (Val, Ser and 
Asp, melatonin) 

Ke et al. 
(2018) 

PVP-AgNPs 32 nm, 
30 mg/L 

T Trp metabolism, 
2-oxocarboxylic acid 
metabolism, 
α-linolenic acid, Gly, 
Ser and Thr 
metabolism 

Zhang 
et al. 
(2019a) 

CuO > 50 nm, 10 mg/L M ↑ amino acids 
(N-acetylornithine, 
Phe) 

Chavez 
Soria et al. 
(2019) 

ZnO 20 nm, 
0.16, 0.8, 4, 20, 100 mg/L 

T pyruvate 
decarboxylase-2, 
glutathione transferase, 
fructan exohydrolase, 

Landa 
et al. 
(2015) 

Cucumis sativus L C60 Fullerols 
1, 2, 5 mg/plant 

M ↓ fatty acids (linolenic 
acid) 

Zhao et al. 
(2019) 

P ↑chloroplast proteins 
(PSII, CAB, Mg-PPIX, 
Cyt b6f), ↑ glycolysis 
proteins, ↑ antioxidant 
proteins (ferritin, 
cystatins, tocopherol 
cyclase), ↓ TCA-cycle 
proteins, ↓ GST, 

Ag 20 nm, 4, 40 mg, 
Ag+ (AgNO3), 0.04, 
0.4 mg 

M ↑ TCA-cycle, 
↑carbohydrates and 
polyols, ↑aminoacids, 
↓ N-metabolism, 

Zhang 
et al. 
(2018)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

CuO 40 nm, 200, 400, 
800 mg/kg 

M amino acids (↑ Gly, ↑ 
Pro, ↓Asp, ↓Cit, ↓Met, 
↓Pip, ↓ox-Pro, ↓Orn), 
carbohydrates (↑ 
xylose, ↑ fructose), 
organic acids 
(↑ glutaric, ↑ lactic 
acid, ↓citric, ↓xylonic 
acid), fatty acids (↑ 
caprylic, ↑ linolenic, ↑ 
pelargonic acid, 
↓capric acid), polyols 
(↓myo-inosytol) 

Zhao et al. 
(2017a) 

CuO 40 nm, 10, 20 mg/L M ↑amino acids, ↓ 
organic acids 

Zhao et al. 
(2016a) 

Cu2+ (CuSO4), 
0.21, 2.1, 10 mg 

M ↑ aromatic amino 
acids, ↓ TCA-cycle, 

Zhao et al. 
(2018b) 

Cucumis sativus L Cu(OH)2, 50–1000 nm, 
2.5, 25 mg 

M ↑ polyols, ↑ saturated 
fatty acids, 
↓ carbohydrates 
(pentose), 
↓ unsaturated fatty 
acids, 

Zhao et al. 
(2018a) 

Zea mays L ↑ glycolysis, ↑ 
TCA-cycle, ↑ 
carbohydrates, ↑ 
saturated fatty acids, ↑ 
amino acids and ↑ 
N-metabolism, 
↓unsaturated fatty 
acids 

Oryza sativa L TiO2 20 nm, 
100, 250, 500 mg/L 

M ↑ glycolysis, ↑ pentose 
phosphate metabolism, 
↑ TCA-cycle, ↓ 
glyoxylate and 
↓dicarboxylate 
metabolism 

Wu et al. 
(2017) 

ZnO 30 nm, 
0–100 mg/L 

M Ala, Asp, Glu 
metabolism, taurine 
and hypotaurine 
metabolism 

Li et al. 
(2021b)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

GO 0.5–5 μm × 2.0 nm, 
0.01–1.0 mg/L 

M ↓ galactose 
metabolism, 
↓ glyoxylate and ↓ 
dicarboxylate 
metabolism, ↓ 
TCA-cycle, ↓ amino 
acids metabolism (Iso, 
Leu, Val, Gly, Ser, Thr) 

Li et al. 
(2018a) 

P ↓ galactose 
metabolism, ↓pentose 
phosphate pathway, ↓ 
starch and sucrose 
metabolism, ↓ sulfur 
metabolism, ↓ 
glycolysis, ↓ amino 
sugar and ↓ nucleotide 

Hordeum vulgare 
L 

CdO 7–60 nm, 2.03 × 
105 particles/cm3 

M ↑ biosynthesis of 
aromatic amino acids, 
↑ fatty acids, 
↓ carbohydrates, ↓ 
TCA-cycle, 

Večeřová 
et al. 
(2016) 

Spinacia oleracea 
L 

CeO2 10–30 nm, 0.3, 
3 mg  

M ↑ amino acids, ↓ 
carbohydrates, 
↓ organic acids 

Zhang 
et al. 
(2019b) 

Phaseolus vulgaris 
L 

CeO2 10–30 nm, 
250, 500, 1000, 
2000 mg/L 

M ↓ lipids, ↓ polyols, ↓ 
carotenoids, 

Salehi 
et al. 
(2018)P ↑ glutamine 

synthetase, ↑ 
lipoxygenase, ↑ 
lipid-transfer protein, ↓ 
alpha-galactosidase, ↓ 
inositol 
monophosphatase 

Lactuca sativa L Cu(OH)2 50 nm, 8.75, 
12.9, 17.5 mg/pot 

M ↑ amino acids, ↓ 
TCA-cycle 

Zhao et al. 
(2016b) 

Solanum 
lycopersicum L 

MWCT 
50 mg/L 

M ↓ cysteine and 
methionine and carbon 
metabolism 

McGehee 
et al. 
(2017)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

Chlorella vulgaris 
Beijerinck 

GOQDs 10–40 nm, 
0.1–10 mg/L 

T Exposure: ↑ nitrogen 
metabolism, ↑ Arg and 
Pro metabolism, 
↑ porphyrin and 
chlorophyll 
metabolism, Recovery: 
↑ carbon fixation, ↑ 
glyoxylate and 
↑ dicarboxylate 
metabolism, ↑ 
propanoate 
metabolism, ↑ Val, Leu 
and Ile degradation, 
↓ photosynthesis, 

Kang et al. 
(2019) 

M Exposure: ↑galactose 
metabolism, ↑ Lys 
biosynthesis, 
↓aminoacyl-tRNA 
biosynthesis, Phe 
metabolism, Gly, Ser 
and Thr metabolism, ↓ 
Tyr metabolism, ↓ Ala, 
Asp, Glu metabolism 
Recovery: ↑ galactose 
metabolism, ↑ Gly, Ser 
and Thr metabolism, ↑ 
Phe metabolism, ↑ 
starch and sucrose 
metabolism, Recovery: 
↓ methane metabolism 

GO 0.8 − 1.0 nm, 
GOQD 4.8 − 5.2 nm, 
0.01–10.0 mg/L 

M Amino acids (↑ Ala, ↑ 
Iso, ↑ Val, ↑ Glu, ↓ 
Asp, ↓ Ser, ↓ Thr), ↑ 
fatty acids, 

Ouyang 
et al. 
(2015) 

Metal-WS2 (nanosheets), 
0.1, 1, 10 mg/L 

M ↑ Ala, Asp and Glu 
metabolism, ↑ Arg and 
Pro metabolism, ↑ 
GSH metabolism, ↑ 
Gly, Ser and Thr 
metabolism, ↓ 
glycerolipid 
metabolism, ↓ starch 
and sucrose 
metabolism 

Yuan et al. 
(2018)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

Triticum aestivum 
L 

G, GO, 0.4–2.0 μm × 
0.8 nm, 
200 mg/L 

M ↑carbohydrate, ↑ 
amino acid, ↑ fatty 
acid, ↓ glycolysis, ↓ 
BCCA 

Hu and 
Zhou 
(2015) 

GO, rGO 1 - 5 μm × 
0.8–1.2 nm, GOQD 
10–50 nm × 2.1–2.5 nm, 

M ↑ soluble sugar Li et al. 
(2018b) 

Withania 
somnifera (L.) 
Dunal 

Zn:AgO, 20–50 nm, 
MWNT, 
20 mg/L 

M ↑ Calvin cycle, ↑ 
carbohydrate 
metabolism 

Singh 
et al. 
(2019) 

Medicago sativa L G 20–70 nm, 1–2% T ↑ biosynthesis of 
amino acids, ↑ linoleic 
acid metabolism 

Chen et al. 
(2021) 

Abbreviations: G-graphene, GO-graphene oxide, GOQD-graphene oxide quantum dots, MWNT-
multiwalled carbon nanotubes, M-metabolomics, P-proteomics, T-transcriptomics, direction: ↑ up-
regulation/increasing, ↓ down-regulation/decreasing

glucosinolates (e.g. methionine, leucine, isoleucine, phenylalanine, tryptophan), and 
phenylpropanoids (e.g., phenylalanine and tyrosine) (Barros and Dixon 2020; Jan  
et al. 2021). Ag, CuO, Cu(OH)2 NPs and Ag+, Cu2+ ions stimulated accumulation of 
aromatic amino acids in C. sativus tissues, Z. mays (Zhao et al. 2016a, 2018b, 2018a; 
Zhang et al. 2018), A. thaliana (Chavez Soria et al. 2019) and Triticum aestivum L. 
(Feng et al. 2021a). The biosynthesis of other amino acids was up regulated by, ZnO 
(Li et al. 2021b), C60 fullerols (Zhao et al. 2019) and graphene NPs (Chen et al. 2021; 
Hu and Zhou 2015). 

6.2.2 Impact of NPs on Secondary Metabolism 

A number of studies reported the effects of NPs on plant secondary metabolism 
(Table 6.2). Accumulation of shikimate and phenylpropanoid pathway products was 
observed in cucumber and maize after foliar application of Cu(OH)2 (Zhao et al. 
2018a) in wheat exposed to Ag (Feng et al. 2021a), in pepper exposed to SiO2 or 
Fe2O3 (Kalisz et al. 2021) and in A.thaliana exposed to CuO (Chavez Soria et al. 
2019) NPs. On the other hand, the amount of phenylpropanoids in lettuce, spinach, 
cucumber, and barley were decreased by Cu(OH)2 (Zhao et al. 2016b, 2017b), CeO2 

(Zhang et al. 2019b), soil application of CuO (Huang et al. 2019), and CdO (Večeřová 
et al. 2016). Relatively low doses of CeO2 NPs induced metabolic reprogramming 
by affecting flavonoids and phenolic compounds in roots and leaves of P. vulgaris 
(Salehi et al. 2020).
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Table 6.2 Alteration of plant secondary metabolites due to NPs treatment/exposure 

Plant species Treatment 
NPs, variants, size, 
concentration) 

Omic 
approach 

Changes and direction Reference 

Arabidopsis 
thaliana (L.) 
Heynh 

Ag 10 nm, 
Ag+ (AgNO3), 
12.5 mg/L 

M ↓ shikimate-phenylpropanoid 
(gallic acid, benzoic, 
scopoletin) 

Ke et al. 
(2018) 

Ag 10, 40, 100 nm, 
Ag+ (AgNO3), 
0.5, 1, 5 mg/L 

M ↑ indole phytoalexins 
(camalexins derivatives) 

Kruszka 
et al. 
(2020) 

PVP-AgNPs 
32 nm, 30 mg/L 

T glucosinolate biosynthesis 
tropane, piperidine and 
pyridine alkaloid biosynthesis 

Zhang 
et al. 
(2019a) 

CuO > 50 nm, 
10 mg/L 

M ↑ phenylpropanoids 
(p-coumaroylagmatine, 
scopoletin), ↓ isothiocyanates 

Chavez 
Soria et al. 
(2019) 

Cucumis sativus 
L. 

C60 Fullerols 
1, 2, 5 mg/plant 

M ↑ shikimate-phenylpropanoids 
(quinic acid, 3-hydroxyflavon, 
4-vinylphenol, 
1,2,4-benzenetriol, methyl 
trans-cinnamate), 

Zhao et al. 
(2019) 

Ag 20 nm, 4, 
40 mg, 

M ↑ shikimate-phenylpropanoids Zhang 
et al. 
(2018)Ag+ (AgNO3), 

0.04, 0.4 mg 
↑ shikimate-phenylpropanoids 

CuO 40 nm, 400, 
800 mg/kg 

M ↑ benzoates (gallic acid, 
benzoic acid), ↓ 
phenylpropanoids (o-, 
p-coumaric, caffeic, ferulic, 
chlorogenic acid), vanillic 
acid, dehydroascorbic acid, 
gluthatione, curcumin, 
α-tocopherol 

Huang 
et al. 
(2019) 

CuO 40 nm, 200, 
400, 800 mg/kg 

M ↑ benzoic acid Zhao et al. 
(2017a) 

CuO 40 nm, 10, 
20 mg/L 

M ↑ shikimate-phenylpropanoids Zhao et al. 
(2016a) 

Cu2+ (CuSO4), 
0.21, 2.1, 10 mg 

M ↑ phenylpropanoids, ↑ 
anthocyanins, ↓ flavonoids, ↓ 
ascorbate 

Zhao et al. 
(2018b) 

Cucumis sativus 
L. 

Cu(OH)2, 
50–1000 nm, 2.5, 
25 mg 

M ↑ shikimate-phenylpropanoids Zhao et al. 
(2018a) 

Zea mays L. ↑ shikimate-phenylpropanoids

(continued)
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Table 6.2 (continued)

Plant species Treatment
NPs, variants, size,
concentration)

Omic
approach

Changes and direction Reference

Oryza sativa L. TiO2 20 nm, 
100, 250, 
500 mg/L 

M ↑ shikimate metabolism Wu et al. 
(2017) 

ZnO 30 nm, 
0–100 mg/L 

M phenylpropanoid biosynthesis Li et al. 
(2021b) 

GO 0.5 – 5 μm × 
2.0 nm, 
0.01–1.0 mg/L 

P ↓ phenylpropanoids 
metabolism 

Li et al. 
(2018a) 

Hordeum 
vulgare L. 

CdO 7–60 nm, 
2.03 × 105 
particles/cm3 

M ↓ phenolic compounds Večeřová 
et al. 
(2016) 

Hpericum 
perforatum L. 

Ag 15 nm, Au 
14 nm, Cu 25 nm, 
Pd 15 nm 
25 mg/L 

M ↑ xanthones, benzophenones, 
benzoates, anthraquinones 
↓ flavonoids, hydroxycynamic 
acid derivatives 

Kruszka 
et al. 
(2022) 

CeO2 10 nm, CuO 
25–55 nm, TiO2 
5–15 nm, ZnO 
30–40 nm 
25 mg/L 

↑ flavonoids, xanthones 

Spinacia 
oleracea L. 

CeO2 10–30 nm M ↓ phenolics Zhang 
et al. 
(2019b) 

Cu(OH)2 50 nm, 
1.8, 18 mg/L, 
Cu2+ (CuSO4), 
0.15, 1.5 mg/L 

M ↓shikimate-phenylpropanoids 
(ferulic acid), ↓ antioxidants 
(ascorbic acid, threonic acid, 
tocopherol) 

Zhao et al. 
(2017b) 

Phaseolus 
vulgaris L. 

CeO2 10–30 nm, 
0, 250, 500, 1000, 
2000 mg/L 

M ↑shikimate-phenylpropanoids 
(cinnamyl acetate, salicin, 
lignin), ↑ flavonoids and 
isoflavonoids, ↑↓terpenes, ↑↓ 
alkaloids 

Salehi et al. 
(2018) 

Lactuca sativa 
L. 

Cu(OH)2 50 nm, 
8.75, 12.9, 
17.5 mg/pot 

M ↓ shikimate-phenylpropanoids 
(caffeic acid, chlorogenic acid, 
3,4-dihydroxycinnamic acid), 

Zhao et al. 
(2016b) 

Lactuca sativa 
L. 

CeO2 4 nm,  Fe2O3 
6 nm,  and SiO2 
10 nm, 
1.5% suspension 

M ↓ 3,4-diOH-benzaldehyde, ↓ 
ferulic acid, ↓ p-coumaric 
acid, ↓ salicylic acid, 
↓vanillin, ↑ gallic acid, ↑ 
vanillic acid 

Kalisz 
et al. 
(2021) 

Capsicum 
annuum L. 

M ↑ chlorogenic acid, ↑ 
neochlorogenic acid, ↑ ferulic 
acid, ↑protocatechuic acid

(continued)
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Table 6.2 (continued)

Plant species Treatment
NPs, variants, size,
concentration)

Omic
approach

Changes and direction Reference

Solanum 
lycopersicum L. 

MWCT 
50 mg/L 

M ↑ anthocyanins, ↑ carotenoids, 
↑ diterpenoids↓ isoquinoline 
alkaloid biosynthesis, 
↓flavone and flavanol 
biosynthesis 

McGehee 
et al. 
(2017) 

Triticum 
aestivum L. 

G, GO, 400–2000 
× 0.8 nm, 
200 mg/L 

M ↑shikimate Hu and 
Zhou 
(2015) 

Ag T ↑ phenylpropanoid 
biosynthesis 

Feng et al. 
(2021a) 

Withania 
somnifera (L.) 
Dunal 

Zn:AgO, 
20–50 nm, 
MWNT, 
20 mg/L 

M ↑ anthocyanins, ↑ terpenoid 
(withanolide) biosynthesis 

Singh et al. 
(2019) 

Medicago sativa 
L. 

G 20–70 nm, 1–2% T ↑ isoflavonoid biosynthesis, ↑ 
phenylpropanoid biosynthesis 

Chen et al. 
(2021) 

Abbreviations: G-graphene, GO-graphene oxide,MWNT- multiwalled carbon nanotubes, 
M-metabolomics, P-proteomics, T-transcriptomics, ↑ up-regulation/increasing, ↓ down-
regulation/decreasing 

The concentration of benzoic acid and gallic acid was increased, while the content 
of hydroxycinnamic acid derivatives was reduced in C. sativus when exposed to CuO 
NPs (Huang et al. 2019). In Solanum lycopersicum L., more anthocyanins and fewer 
flavonoids were formed after treatment with MWCT (McGehee et al. 2017). 

Metal and metal oxide NPs have got impact on the biosynthesis of phenyl-
propanoids in the Hypericum perforatum L. cells (Kruszka et al. 2022). Metal 
nanoparticles (Ag, Au, Cu and Pd) increased accumulation of xanthones, prenylated 
xanthones and beznophenones and reduced levels of flavonoids and hydroxycinnamic 
acid derivatives in cells. In contrast to this, the level of flavonoids was increased in 
biomass by the CuO nanoparticles treatment. 

NMs have altered the metabolism of alkaloids, a group of compounds that 
possesses high biological value as defense metabolites (Erb and Kliebenstein 2020). 
Salehi et al. (2018) reported that the concentration of (s)-corytuberine, laudano-
sine, and precursors of naphthylisoquinoline alkaloids decreased, while the content 
of demecolcine, β-caconine, and tropionone increased in P. vulgaris after foliar 
application of CeO2 NPs. Accumulation of taxane and tropane alkaloids was 
reported after Ag NPs treatment (Shakeran et al. 2015; Jamshidi and Ghanati 
2017) and hyoscyamine and scopolamine after exposure to ZnO NPs (Asl et al. 
2019). Metabolome and transcriptome analyses have shown that the biosynthesis of 
isoquinoline alkaloids was downregulated by MWCT in S. lycopersicum (McGehee
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et al. 2017) and GOQD (graphene oxide quantum dots) in Chlorella vulgaris 
Beijerinck (Kang et al. 2019). 

Camalexin is a major indole phytoalexin produced by A. thaliana in response to 
biotic and abiotic stresses. Application of Ag NPs induced the accumulation of this 
compound (Kruszka et al. 2020). Transcriptomic analysis showed that metabolism of 
tryptophan (camalexin precursor) is upregulated by exposure of A. thaliana to PVP-
Ag NPs (Zhang et al. 2019a). The same research shows that exposure upregulates the 
biosynthesis of glucosinolates—precursors of isothiocyanates (biologically active 
form). 

6.3 Molecular Mechanisms of Nanomaterials-Induced 
Secondary Metabolic Changes 

Secondary metabolite profiles in plants are dynamic and can change under biotic 
(pathogen and insect attack) and abiotic (UV radiation, drought, temperature, salinity 
and heavy metals.) stress conditions. In particular, the interaction between NMs and 
plants leads to overproduction of ROS, oxidative stress, membrane structure impair-
ment, alteration of antioxidant activities, altered secondary metabolism, hormone 
pathways, and signal transduction (Fu et al. 2014; Hossain et al. 2015). For example, 
secondary metabolic changes were associated with increased levels of ROS, pheny-
lalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) in A. thaliana exposed 
to 250 and 1000 mg/L CeO2 and indium oxide (In2O3) NPs, respectively (Ma et al. 
2016). Moreover, they also alter the expression of genes related to cell division, 
cell organization, electron transport, and biotic and abiotic stress pathways (Landa 
et al. 2012; Van Aken 2015). The molecular mechanisms associated with changes of 
secondary metabolites triggered by NMs are summarized in Fig. 6.1.

6.3.1 Reactive Oxygen Species 

ROS is the most rapid response of plants to all stresses and plays a dual role in both 
triggering the defense system and enhancing cell damage or disruption of signal 
transduction (Dat et al. 2000). NMs are known to induce ROS in plants (Marslin 
et al. 2017; Ranjan et al. 2021). The induction of ROS has been observed in both 
apoplast and chloroplast, preceded by intracellular calcium and MAPK signaling 
mechanisms (Marslin et al. 2017). Moreover, the molecular aspects of NPs-induced 
ROS on cell wall-related processes and secondary metabolism have been studied 
in detail for all stimulatory and inhibitory effects in plants (Berni et al. 2019). It 
was found that the effect of NPs on the plant system is concentration dependent. 
Higher concentrations were found to be toxic while lower concentrations resulted in 
beneficial effects (Jalil and Ansari 2019).
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Fig. 6.1 Schematic diagram showing various cellular responses in response to NMs. NMs cause 
oxidative stress through overproduction of ROS, activation of the antioxidant defense system, 
lipid peroxidation, membrane damage, calcium bursts, activation of MAPK signaling pathways, 
and altered secondary metabolism in plants. Upward pointing arrows indicate increased abun-
dance and downward pointing arrows indicate decreased abundance in the plant cell. Abbrevia-
tions: SOD, superoxide dismutase; APX, ascorbate peroxidase; GST, glutathione transferase; GR, 
glutathione reductase; DHAR, dehydroascorbate reductase; PAL, phenylalanine ammonia lyase; 
PPO, polyphenol oxidase. (Figure constructed by G. Franklin and P. Shakya)

The ROS mechanism triggered by NPs to induce oxidative stress has been studied 
in different plant systems. In A. thaliana, the accumulation of ROS was induced 
by exogenous application of 100–5000 mg/L Ag NPs. These Ag NPs activate Ca2+ 

and ROS signals by inducing a transient increase in Ca2+ and direct oxidation of 
the major plant antioxidant, L-ascorbic acid (Sosan et al. 2016). In Allium cepa 
L. treatment with 0–80 mg/L Ag NPs led to the formation of ROS, resulting in 
DNA structural damage and eventual cell death (Panda et al. 2011). Treatment 
with Ag NPs altered proteins involved in redox regulation and sulfur metabolism in 
Eruca sativa Mill. roots (Vannini et al. 2013). Moreover, the formation of ROS was
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observed in Spirodela polyrhiza L. by inhibiting ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco) activity and photoprotective capacity of PSII in the pres-
ence of Ag NPs (Jiang et al. 2017). Another study demonstrated the role of NiO NPs 
in H. vulgare by reporting that the overproduction of ROS led to oxidative stress and 
increased lipid peroxidation. However, simultaneous treatment of SiO2 NP with NiO 
resulted in an antioxidant response with decreased lipid peroxidation, highlighting 
the protective role of nano-SiO2 (Soares et al. 2018). Another study shows that the 
phytotoxic potential of cobalt oxide (Co3O4) NPs reduces seed germination, root 
growth, DNA and mitochondrial damage, oxidative stress and cell death in eggplant, 
while it increases ROS, membrane potential and nitric oxide (NO) (Faisal et al. 2016). 
Besides generating ROS, Ag and Ag+ NPs coated with polyvinylpyrrolidone (PVP) 
promote gene expression of stress-related genes in A. thaliana (Kaveh et al. 2013). 

6.3.2 Calcium Ion Signaling 

During various stresses, Ca2+ ions act as second messengers and provide Ca2+ ion 
channels for plant adaptation to adverse conditions (Tuteja and Mahajan 2007). 
The interaction of fullerene C60 nanocrystals (nano-C60) suspended in water with 
Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been shown to modulate 
Ca2+ signal transduction function (Miao et al. 2014). In addition, Ag NPs bind to 
calcium receptors, Ca2+ ion channels, and calcium-sodium ATP pumps, thereby regu-
lating cell metabolism. Ag NPs in Oryza sativa L. have been found to be involved in 
Ca2+ ion regulation and signaling, protein degradation, cell wall synthesis, transcrip-
tion, oxidative stress tolerance, cell division, and apoptosis (Mirzajani et al. 2014). 
Proteomic studies also revealed the abundance of superoxide dismutase (SOD), L-
ascorbate peroxidase (APX) and glutathione transferase (GST) in detoxification or 
oxidative reaction pathway (Mirzajani et al. 2014). Reports showed the role of NO 
in increasing cytosolic Ca2+ ions using Nicotiana plumbaginifolia L. cells and it also 
stimulates the activity of protein kinases during physiological processes (Lamotte 
et al. 2006). 

6.3.3 Phytohormone Signaling 

Plant metabolism is highly influenced by hormone regulation during plant growth, 
which mediates numerous responses to plant stresses (Santner et al. 2009). Several 
reports have shown the significant influence of NPs on plant hormones. For example, 
Fe2O3 NP uptake had a significant effect on IAA and ABA content in roots of 
transgenic and non-transgenic rice (Gui et al. 2015). Similarly, CeO2 NPs have a 
differential effect on indole-3-acetic acid (IAA), abscisic acid (ABA) and gibberellic 
acid (GA) in leaves and roots of transgenic and conventional Bt cotton compared to 
the control group (Nhan et al. 2015). Thin-walled carbon nanotubes (CNTs) treatment



148 R. K. Selvakesavan et al.

reduced the growth of O. sativa seedlings by decreasing the content of endogenous 
plant hormones such as IAA, GA, IPA, JA, BR and ABA (Hao et al. 2016). In A. 
thaliana, the response to ZnO NPs is associated with a decrease in growth, cytokinins 
and auxins in apices. Moreover, a higher dose led to an increase in the levels of ABA 
and SA, while it suppressed the levels of JA (Vankova et al. 2017). Similarly, Ag 
NPs were found to inhibit ethylene perception (ET) by hindering ET biosynthesis in 
A. thaliana (Syu et al. 2014). 

6.3.4 Nitric Oxide (NO) Signaling 

NO is a universal signaling molecule that plays an important role in nanomaterial-
triggered changes in plant secondary metabolism. For example, NO burst leads to the 
accumulation of saponins and artemisinin during fungal attack (Zhang et al. 2012). 
In Pisum sativum L., NO showed protection against Ag NP induced phytotoxicity 
through increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) 
activity and reduced glutathione reductase (GR) and dehydroascorbate reductase 
(DHAR) activities (Tripathi et al. 2017). On the other hand, CdO NPs showed a 
significant effect on primary metabolism of barley plants with an increase in total 
amino acids in roots and leaves and a decrease in saccharides in roots, but had no 
effect on secondary metabolites (Večeřová et al. 2016). 

6.4 Applications of Nanomaterial-Induced Secondary 
Metabolic Changes 

6.4.1 NPs as Biostimulants 

Plant biostimulation is a process that leads to changes in plant metabolism in order to 
use available environmental resources more efficiently, increase tolerance to environ-
mental stresses, and increase yield (Juárez-Maldonado et al. 2019). NPs are used as 
novel biostimulants to promote plant growth under stress conditions. Stimulation of 
secondary metabolites such as alkaloids, terpenoids, phenolic compounds, glucosi-
nolates and flavonoids reduces the deleterious effects of environmental stress in plants 
(Rajput et al. 2021). For example, increased melatonin synthesis by application of 
ZnO NPs helped in controlling drought-induced damage in Z. mays (Sun et al. 2020). 
Melatonin is a secondary metabolite and is known to improve stress tolerance in plants 
by stimulating antioxidant activities (Marioni et al. 2008; Debnath et al. 2020). The 
quality, visual attractiveness and nutritional properties of Punica granatum L. sap 
have been found to be affected by the reduction of bioactive compounds such as 
anthocyanins and punicalagin under drought stress (Mena et al. 2013). Spraying
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leaves with selenium NPs increased phenolic content and improved the quality of 
drought-affected fruits of P. granatum (Zahedi et al. 2021). 

6.4.2 NPs as Elicitors of Phytopharmaceuticals 

Controlled elicitation is a strategy to increase the production of important secondary 
metabolites. As described in the previous sections, plants recognize different types 
of NMs and induce their secondary metabolism, which opens a new opportunity 
to improve the production of pharmaceutically important compounds in medicinal 
plants (Marslin et al. 2017; Shakya et al. 2019; Kruszka et al. 2020; Rivero-Montejo 
et al. 2021). Elicitation of several classes of secondary metabolites such as glucosino-
lates, terpenes and alkaloids have been reported to be obtained using NPs. The chem-
ical structure of some pharmaceutically important secondary metabolites elicited 
using NMs is shown in Fig. 6.2.

6.4.2.1 Flavonoids 

Flavonoids are natural bioactive compounds found predominantly in various parts of 
plants and have been attributed to various pharmacological and therapeutic properties 
(Panche et al. 2016). In Momordica charantia L., an increase in flavonoid concen-
tration induced by 5 mg/L Ag NPs was observed (Chung et al. 2018c). Stimulation 
of Thymus daenensis Celak. plant cells with SWNT increased the total flavonoid 
content (Samadi et al. 2021). Quercetin is an important and abundant flavonoid 
from plants with rich pharmaceutical properties such as antitumor, anti-infective, 
anti-inflammatory and antioxidant activities (Qi et al. 2020). Increased quercetin 
content was observed in shoots and roots of Nigella arvensis L. treated with 50 mg/L 
NiO NPs (Modarresi et al. 2020). The level of several flavonoid aglycones like 
apigenin, kaempferol and quercetin was increased upon treatment with the Ag, Au, 
Cu and Pd NPs treatment, whereas flavonoid glucosides like quercetin 3-O-hexoside 
or quercetin 3-O-malonylhexoside was elicited by CuO NPs treatment in H. perfo-
ratum L. cell suspension cultures, (Kruszka et al. 2022). Anthocyanins are another 
subgroup of flavonoids and play an important role in the nutraceutical, pharmaceu-
tical and food industries. After the application of ZnO NPs in the shooting culture 
of Lilium ledebourii (Baker) Boiss., an increase in anthocyanin concentration was 
observed, and the effect of polyphenol induction was dose-dependent (Chamani et al. 
2015). Similarly, stimulation with SiO2 NPs increased the concentration of the anti-
cancer flavonoids xanthomicrol, isocaempferide, and cirsimaritin in the hairy roots of 
Dracocephalum kotschyi Boiss. (Nourozi et al. 2019b). Treatment of D. kotschyi cell 
suspension cultures with Fe3O4 magnetite NPs increased the content of rosmarinic 
acid, naringin, carvacrol, rutin, quercetin, apigenin and thymol (Taghizadeh et al. 
2021).
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Fig. 6.2 Some of the pharmaceutically important secondary metabolites elicited from medicinal 
plants using NMs; (1) naringenin, (2) apigenin (R1 = H, R2 = OH, R3 = H, R4 = OH, R5 = H, 
R6 = H), (3) cirsimaritin (R1 = H, R2 = OMe, R3 = OMe, R4 = OH, R5 = H, R6 = H), (4) 
xanthomicrol (R1 = OMe, R2 = OMe, R3 = OMe, R4 = OH, R5 = H, R6 = H), (5) kaempferol 
(R1 = H, R2 = OH, R3 = H, R4 = OH, R5 = OH, R6 = H), (6) isokaempferide (R1 = H, R2 

= OH, R3 = H, R4 = OH, R5 = OMe, R6 = H), (7) quercetin (R1 = H, R2 = OH, R3 = H, R4 

= OH, R5 = OH, R6 = OH), (8) catechin, (9) chlorogenic acid, (10) cichoric acid, (11) atropin, 
(12) hyoscyamine, (13) scopolamine, (14) artemisinin, (15) carnosic acid, (16) tanshinone, (17) 
γ-mangostin, (18) garcinone B, (19) emodin, (20) fusaroskyrin. (Figure constructed by D. Kruszka)
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6.4.2.2 Phenolic Acids 

Phenolic acids are an important group of plant secondary metabolites with a 
wide range of bioactivities, including anticancer, anti-inflammatory, neuroprotective, 
antioxidant, and antimicrobial activities (Kiokias et al. 2020). The phenolic acids, 
such as chlorogenic acid, coumaric acid, gallic acid, and tannic acid, were accumu-
lated after the callus of Prunella vulgaris L. was exposed to Ag, Au, and Ag/Au 
NPs (Fazal et al. 2016). Moreover, Ag NPs induced the biosynthesis of phenolic 
acids more strongly than AgNO3 in the hairy root culture of Cucumis anguria L. 
(Chung et al. 2018b). Ag and Cu NPs stimulated the secretion of hydroxycinnamic 
acid and hydroxybenzoic acid derivatives from H. perforatum cells into media of 
cell suspension cultures (Kruszka et al. 2022). 

6.4.2.3 Glucosinolates 

Glucosinolates are a group of Sulphur-containing hydrophilic secondary metabolites 
found primarily in members of the Brassicaceae and related families (Poveda et al. 
2020; Wu et al.  2021). Glucosinolates exhibit some pharmacological bioactivities 
such as anti-inflammatory, antimicrobial, cholinesterase inhibitory, antioxidant and 
anticancer properties (Maina et al. 2020). Ag NPs induced biosynthesis of glucosino-
lates, a group of compounds responsible for response to pathogen attack, in addition 
to phenolic compounds in seedlings of Brassica rapa L. (Thiruvengadam et al. 2015). 
Treatment of hairy roots of Chinese cabbage with CuO NPs increased the accumu-
lation of glucosinolates (Chung et al. 2018c). Moreover, the extracts of hairy roots 
released showed higher antimicrobial activity compared to the control. 

6.4.2.4 Terpenoids 

Terpenes and terpenoids are biogenic volatile organic compounds of plant secondary 
metabolites with high biological activity against various human diseases (Kim et al. 
2020). The production of monoterpenes (linalool and linalyl acetate) in shoot cultures 
of Mentha longifolia L. grown under the influence of Co (0.8 mg/L) and Cu (0.5 mg/L) 
NPs (Talankova-Sereda et al. 2016). They reported that the higher production of 
essential oils corresponded with the growth index (Talankova-Sereda et al. 2016). 
Artemisinin, one of the important pharmaceutical compounds used as antimalarials, 
was induced by 2.5 and 5 mg/L Co NPs in A. annua cell culture (Ghasemi et al. 2015). 
Similar results were obtained after stimulation of A. annua hairy root culture by Ag-
SiO2 core–shell nanostructures (Zhang et al. 2013). A stimulatory effect of 8–21 nm 
Ag NPs on the increased production of diosgenin was observed in Trigonella foenum-
graecum L. seedlings (Jasim et al. 2017). ZnO NPs (0.1–10 mg/L) increased the 
biosynthesis of rebaudioside-A and stevioside in shoot cultures of Stevia rebaudiana 
(Bert.), in addition to the induction of oxidative stress (Javed et al. 2017). Similarly, 
chitosan nanofibers and cellulose nanofibers increased the production of betulinic
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acid and betulin in cell suspension cultures of Betula pendula Roth (Vahide et al. 
2021). 

6.4.2.5 Alkaloids 

Alkaloids are a large group of plant secondary metabolites with nitrogen atom(s) 
in their structure that exhibit a wide range of medicinally important bioactivities 
(Eguchi et al. 2019). Ag NPs induced the biosynthesis of atropine alkaloid in hair 
root culture of Datura metel L. and the highest level of atropine was detected after 
48 h of treatment (Shakeran et al. 2015). This NP -based elicitor was better than 
AgNO3 and two other biotic elicitors (Staphylococcus aureus F. J. Rosenbach and 
Bacillus cereus Frankland & Frankland). Hyoscyamine and scopolamine levels were 
significantly increased 24 h after application of 450–1800 mg/L Fe2O3 NPs in the 
hairy root culture of Hyoscyamus reticulatus L. (Moharrami et al. 2017). SiO2 NPs 
triggered the production of tropane alkaloids (hyoscyamine and scopolamine) in hair 
root cultures of two Hyoscyamus species namely, H. reticulatus and H. pusillus L. 
(Hedayati et al. 2020). Cell suspension cultures of Corylus avellane produced more 
taxol and baccatin III after treatment with 5 mg/L Ag NPs (Jamshidi and Ghanati 
2017). Available examples of the elicitation of pharmaceutically important secondary 
metabolites using NPs are summarized in Table 6.3.

6.4.2.6 Xanthones 

Xanthones are bioactive secondary metabolites that possess antibacterial, antifungal 
activities, and could inhibit acetylcholinesterase, butyrylcholinesterase and tyrosi-
nase (Badiali et al. 2018; Tusevski et al.  2018). Xanthones also possess neuroprotec-
tive activities (Xu et al. 2016; Velingkar et al. 2017). Ag, Au, Cu, Pd and CuO NPs 
stimulated accumulation of prenylated derivatives of xanthones (γ-mangostin, garci-
none B and hyperxanthone C), whereas glycosylated xanthones (eg.: mangiferin, 
homomangiferin, neomangiferin) content was increased after Au, Cu and Pd NPs 
treatment in cell suspension system of H. perforatum L. (Kruszka et al. 2022). 

6.4.2.7 Anthraquinones 

Antidepressant activities of H. perforatum L. extracts are attributed to naphthodi-
anthrones/ anthraquinones such as hypericin or pseudohypericin (Velingkar et al. 
2017). Hypericin content was increased by TiO2-perlite nanocomposite treatment 
in H. perforatum L. shoot cultures (Ebadollahi et al. 2019). Emodin and emodin 
anthrone contents were respectively increased by Pd and CeO2 NPs treatment in H. 
perforatum L. cell suspension cultures (Kruszka et al. 2022). In the above study, a 
98.6-fold increase of fusaroskyrin after Ag NP treatment was also reported.



6 Impact of Nanomaterials on Plant Secondary Metabolism 153

Ta
bl
e 
6.
3 

N
an
o-
el
ic
ita

tio
n 
of
 p
ha
rm

ac
eu
tic

al
ly
 im

po
rt
an
t p

la
nt
 s
ec
on

da
ry
 m

et
ab
ol
ite

s 
in
 m

ed
ic
in
al
 p
la
nt
s 

C
om

po
un
d

A
pp

lic
at
io
n/
us
es

Pl
an
t s
pe
ci
es

N
Ps

C
on

ce
nt
ra
tio

n 
(m

g/
L
) 

R
ef
er
en
ce
 

A
rt
em

is
in
in

A
nt
im

al
ar
ia
l

A
rt
em

is
ia
 a
nn
ua
 L
.

A
g-
Si
O
2

10
0–
20
00

Z
ha
ng

 e
t a
l. 
(2
01
3)
) 

C
o

0.
25
–5

G
ha
se
m
i e
t a
l. 
(2
01
5)
 

A
tr
op
in
e

A
nt
is
pa
sm

od
ic
, a
nt
i-
Pa
rk
in
so
n 
an
d 

cy
cl
op
le
gi
c 
dr
ug
 

D
at
ur
a 
m
et
el
 L
.

A
g

20
Sh

ak
er
an
 e
t a
l. 
(2
01
5)
 

B
ac
os
id
e 
A

N
oo
tr
op
ic

B
ac
op
a 
m
on
ni
er
i 
L
.

Z
nO

1
B
ha
rd
w
aj
 e
t a
l. 

( 2
01
8)
 

C
ar
no

si
c 
ac
id

A
nt
io
xi
da
tiv

e 
an
d 
an
tim

ic
ro
bi
al

R
os
m
ar
in
us
 o
ffi
ci
na
li
s 
L
.

A
g

20
0

H
ad
i S

ol
ta
na
ba
d 

et
 a
l.(
20
20
) 

C
at
ec
hi
n,

Ir
on
-c
he
la
tin

g,
 a
nt
i-
ox
id
an
t, 

an
ti-
in
fla

m
m
at
or
y 
an
d 
an
tic

an
ce
r 

C
uc
um

is
 a
ng
ur
ia
 L
.

A
g

0.
5–
2

C
hu
ng
 e
t a
l. 
(2
01
8b
) 

C
hl
or
og

en
ic
 a
ci
d

A
nt
io
xi
da
nt
, a
nt
ib
ac
te
ri
al
, 

he
pa
to
pr
ot
ec
tiv

e,
 c
ar
di
op

ro
te
ct
iv
e,
 

an
ti-
in
fla

m
m
at
or
y,
 a
nt
ip
yr
et
ic
, 

ne
ur
op

ro
te
ct
iv
e,
 a
nt
i-
ob

es
ity
, 

an
tiv

ir
al
, a
nt
i-
m
ic
ro
bi
al
, 

an
ti-
hy
pe
rt
en
si
on
 

D
ra
co
ce
ph
al
um

 m
ol
da
vi
ca
 

L
. 

T
iO

2
30

K
am

al
iz
ad
eh
 e
t a
l. 

( 2
01
9)
 

C
ic
ho

ri
c 
ac
id

A
nt
i-
ca
nc
er
, a
nt
i-
ob

es
ity
, a
nt
iv
ir
al
, 

an
d 
an
ti-
di
ab
et
ic
 

E
ch
in
ac
ea
 p
ur
pu
re
a 
L
.

A
g

2
R
am

ez
an
ne
zh
ad
 e
t a
l. 

( 2
01
9)

(c
on
tin

ue
d)



154 R. K. Selvakesavan et al.

Ta
bl
e
6.
3

(c
on
tin

ue
d)

C
om

po
un
d

A
pp

lic
at
io
n/
us
es

Pl
an
ts
pe
ci
es

N
Ps

C
on

ce
nt
ra
tio

n
(m

g/
L
)

R
ef
er
en
ce

O
ci
m
um

 b
as
il
ic
um

 L
.

C
uO

10
N
az
ir
 e
t a
l. 
(2
02
1)
 

C
ir
si
m
ar
iti
n

A
nt
ic
an
ce
r

D
ra
co
ce
ph
al
um

 k
ot
sc
hy
i 

B
oi
ss
 

Fe
75

N
ou
ro
zi
 e
t a
l. 
(2
01
9a
) 

D
io
sg
en
in

U
se
d 
in
 th

e 
tr
ea
tm

en
t o

f 
ca
nc
er
s,
 

hy
pe
rl
ip
id
em

ia
, i
nfl

am
m
at
io
n,
 a
nd

 
in
fe
ct
io
ns
 

Tr
ig
on
el
la
 fo

en
um

-g
ra
ec
um

 
L
. 

A
g

0.
2

Ja
si
m
 e
t a
l. 
(2
01
7)
 

G
la
uc
in
e

A
nt
ih
yp

er
lip

id
em

ic
, a
nt
id
ia
be
tic

, 
an
tio

xi
da
nt
, a
nt
io
be
si
ty
, a
nt
itu

ss
iv
e 

an
d 
an
tiv

ir
us
 

N
ig
el
la
 a
rv
en
si
s 
L
.

N
iO

10
00

M
od
ar
re
si
 e
t a
l. 

( 2
02
0)
 

G
lu
co
si
no

la
te

A
nt
io
xi
da
nt
, a
nt
i-
in
fla
m
m
at
or
y 

an
d 
an
tim

ic
ro
bi
al
 

B
ra
ss
ic
a 
ra
pa
 L
.

A
g

1
-1
0

T
hi
ru
ve
ng
ad
am

 e
t a
l. 

( 2
01
5)
 

C
uO

10
0

C
hu
ng
 e
t a
l. 
(2
01
8a
) 

G
ly
cy
rr
hi
zi
n

A
nt
i-
in
fla

m
m
at
or
y

G
ly
cy
rr
hi
za
 g
la
br
a 
L
.

C
uO

0.
79

O
lo
um

i e
t a
l. 
(2
01
5)
 

G
ym

ne
m
ic
 a
ci
d

A
nt
id
ia
be
tic

, a
nt
is
w
ee
te
ne
r 
an
d 

an
ti-
in
fla

m
m
at
or
y 

G
ym

ne
m
a 
sy
lv
es
tr
e 
(R
.B
r)

C
uO

3
C
hu
ng
 e
t a
l. 
(2
01
9)
 

H
yd
ro
xy
be
nz
oi
c 
ac
id

A
nt
im

ic
ro
bi
al
, a
nt
if
un

ga
l, 

an
tis
ic
kl
in
g,
 a
nd

 e
st
ro
ge
ni
c 

M
om

or
di
ca
 c
ha
ra
nt
ia
 L
.

A
g

5
C
hu
ng
 e
t a
l. 
(2
01
8c
) 

H
yd
ro
xy
ci
nn
am

ic
 a
ci
d

A
nt
io
xi
da
nt
, a
nt
i-
co
lla

ge
na
se
, 

an
ti-
in
fla

m
m
at
or
y,
 a
nt
im

ic
ro
bi
al
 

an
d 
an
ti-
ty
ro
si
na
se
 

M
om

or
di
ca
 c
ha
ra
nt
ia
 L

A
g

5
C
hu
ng
 e
t a
l. 
(2
01
8c
)

(c
on
tin

ue
d)



6 Impact of Nanomaterials on Plant Secondary Metabolism 155

Ta
bl
e
6.
3

(c
on
tin

ue
d)

C
om

po
un
d

A
pp

lic
at
io
n/
us
es

Pl
an
ts
pe
ci
es

N
Ps

C
on

ce
nt
ra
tio

n
(m

g/
L
)

R
ef
er
en
ce

H
yo
sc
ya
m
in
e

M
yd

ri
at
ic
, a
nt
is
pa
sm

od
ic
, 

an
tic

ho
lin

er
gi
c,
 a
na
lg
es
ic
 a
nd

 
se
da
tiv

e 

H
yo
sc
ya
m
us
 n
ig
er
 L
.

T
iO

2
40

G
ho
rb
an
po
ur
 e
t a
l. 

( 2
01
5)
 

H
yo
sc
ya
m
us
 r
et
ic
ul
at
us
 L
.

Fe
45
0–
90
0

M
oh
ar
ra
m
i e
t a
l. 

( 2
01
7)
 

Z
nO

10
0

A
sl
et
al
. (
20
19
) 

H
yp
er
ic
in

A
nt
id
ep
re
ss
an
t, 
an
tin

eo
pl
as
tic

, 
an
tiv

ir
al
 a
nd

 a
nt
im

ic
ro
bi
al
 

H
yp
er
ic
um

 
Pe
rf
or
at
um

 L
. 

T
iO

2
/p
er
lit
e

25
–2
00

E
ba
do

lla
hi
 e
t a
l. 

( 2
01
9)
 

Is
ok
ae
m
pf
er
id
e

H
ep
at
op

ro
te
ct
iv
e,
 a
nt
im

ic
ro
bi
al
 

an
d 
an
tip

ro
lif
er
at
iv
e 

D
ra
co
ce
ph
al
um

 k
ot
sc
hy
i 

B
oi
ss
 

Fe
75

N
ou
ro
zi
 e
t a
l. 
(2
01
9a
) 

K
ae
m
pf
er
ol

A
nt
io
xi
da
nt
, a
nt
i-
in
fla
m
m
at
or
y 

an
d 
an
tic

an
ce
r 

A
m
ar
an
th
us
 c
au
da
tu
s 
L
.

A
g

50
A
ze
ez
 e
t a
l. 
(2
01
7)
 

K
hu
si
m
ol

A
nt
ib
ac
te
ri
al

Ve
ti
ve
ri
a 
zi
za
ni
oi
de
s 
L
.

T
iO

2
90

Sh
ab
bi
r 
et
 a
l. 
(2
01
9)
 

L
ig
na
n

A
nt
i-
in
fla
m
m
at
or
y,
 a
nt
io
xi
da
nt
 a
nd
 

an
tit
um

or
 

L
in
um

 u
si
ta
ti
ss
im
um

 L
.

T
iO

2
15
0

K
ar
im

za
de
h 
et
 a
l. 

( 2
01
9)
 

Z
nO

10
0

A
bb

as
i e
t a
l. 
(2
01
9)
 

A
g

0.
03

Z
ah
ir
 e
t a
l. 
(2
01
9)
 

L
in
al
oo
l

A
nt
i-
in
fla

m
m
at
or
y,
 a
nt
ic
an
ce
r, 

an
tih

yp
er
lip

id
em

ic
, a
nt
im

ic
ro
bi
al
, 

an
tin

oc
ep
tiv

e,
 a
na
lg
es
ic
, 

an
xi
ol
yt
ic
, a
nt
id
ep
re
ss
an
t a
nd
 

ne
ur
op
ro
te
ct
iv
e 

M
en
th
a 
lo
ng

if
ol
ia
 L
.

C
o,
 C
u

0.
5-

0.
8

Ta
la
nk
ov
a-
Se
re
da
 

et
 a
l. 
( 2
01
6) (c

on
tin

ue
d)



156 R. K. Selvakesavan et al.

Ta
bl
e
6.
3

(c
on
tin

ue
d)

C
om

po
un
d

A
pp

lic
at
io
n/
us
es

Pl
an
ts
pe
ci
es

N
Ps

C
on

ce
nt
ra
tio

n
(m

g/
L
)

R
ef
er
en
ce

Ly
co
pe
ne

A
nt
io
xi
da
nt

So
la
nu
m
 ly
co
pe
rs
ic
um

 L
.

C
u

25
0

L
óp

ez
-V
ar
ga
s 
et
 a
l. 

( 2
01
8)
 

M
en
th
ol

A
na
lg
es
ic
, a
nt
is
ep
tic

, a
nt
ib
ac
te
ri
al
 

an
d 
an
tif
un
ga
l 

M
en
th
a 
pi
pe
ri
ta
 L
.

C
u

10
00

L
af
m
ej
an
i e
t a
l. 

( 2
01
8)
 

T
iO

2
15
0

A
hm

ad
 e
t a
l. 
(2
01
8)
 

M
yr
ic
et
in
,

M
yr
ic
et
in
, i
ro
n-
ch
el
at
in
g,
 

an
ti-
ox

id
an
t, 
an
ti-
in
fla

m
m
at
or
y 

an
d 
an
tic

an
ce
r 

C
uc
um

is
 a
ng
ur
ia
 L
.

A
g

0.
5–
2

C
hu
ng
 e
t a
l. 
(2
01
8b
) 

N
ar
in
ge
ni
n

A
nt
i-
dy

sl
ip
id
em

ic
, a
nt
i-
ob

es
ity
, 

an
ti-
di
ab
et
ic
 a
nd

 a
nt
ifi
br
ot
ic
 

C
uc
um

is
 a
ng
ur
ia
 L
.

A
g

0.
5–
2

C
hu
ng
 e
t a
l. 
(2
01
8b
) 

Q
ue
rc
et
in

A
nt
i-
ca
rc
in
og

en
ic
, 

an
ti-
in
fla

m
m
at
or
y,
 a
nt
iv
ir
al
, 

an
tio

xi
da
nt
, a
nd
 p
sy
ch
os
tim

ul
an
t 

C
uc
um

is
 a
ng
ur
ia
 L
.

A
g

0.
5–
2

C
hu
ng
 e
t a
l. 
(2
01
8b
) 

A
m
ar
an
th
us
 c
au
da
tu
s 
L
.

A
g

50
A
ze
ez
 e
t a
l. 
(2
01
7)
 

Sa
lv
ia
 te
be
sa
na
 B
un
ge

T
iO

2
60

Sh
oj
a 
et
 a
l. 
(2
02
2)
 

R
os
m
ar
in
ic
 a
ci
d

H
ep
at
op

ro
te
ct
iv
e,
 

an
ti-
in
fla

m
m
at
or
y,
 n
eu
ro
pr
ot
ec
tiv

e 
an
d 
an
tio

xi
da
nt
 

D
ra
co
ce
ph
al
um

 m
ol
da
vi
ca
 

L
. 

T
iO

2
30

K
am

al
iz
ad
eh
 e
t a
l. 

( 2
01
9)
 

Sa
po
na
ri
a 
of
fic
in
al
is
 L
.

T
iO

2
10
0

H
ed
ay
at
i e
t a
l. 
(2
02
2)
 

Sa
po
ni
n

D
ec
re
as
e 
bl
oo

d 
lip

id
s,
 lo

w
er
 

ca
nc
er
 r
is
ks
, a
nd
 lo

w
er
 b
lo
od
 

gl
uc
os
e 
re
sp
on
se
 

C
al
en
du
la
 

of
fic
in
al
is
 L
 

A
g

43
G
ha
na
ti 
an
d 

B
ak
ht
ia
ri
an
 (
20
14
)

(c
on
tin

ue
d)



6 Impact of Nanomaterials on Plant Secondary Metabolism 157

Ta
bl
e
6.
3

(c
on
tin

ue
d)

C
om

po
un
d

A
pp

lic
at
io
n/
us
es

Pl
an
ts
pe
ci
es

N
Ps

C
on

ce
nt
ra
tio

n
(m

g/
L
)

R
ef
er
en
ce

Sa
po
ni
n

A
nt
i-
in
fla

m
m
at
or
y,
an
tib

ac
te
ri
al
, 

an
tif
un

ga
l, 
an
tiv

ir
al
,in

se
ct
ic
id
al
, 

an
tic

an
ce
r, 
cy
to
to
xi
c 
an
d 

m
ol
lu
sc
ic
id
al
 

B
ac
op
a 
m
on
ni
er
i L

.
C
u

30
L
al
a 
(2
02
0)
 

Sc
op
ol
am

in
e

M
yd

ri
at
ic
, a
nt
is
pa
sm

od
ic
, 

an
tic

ho
lin

er
gi
c,
 a
na
lg
es
ic
 a
nd

 
se
da
tiv

e 

H
yo
sc
ya
m
us
 n
ig
er
 L
.

T
iO

2
40

G
ho
rb
an
po
ur
 e
t a
l. 

( 2
01
5)
 

H
yo
sc
ya
m
us
 r
et
ic
ul
at
us
 L
.

Fe
45
0–
90
0

M
oh
ar
ra
m
i e
t a
l. 

( 2
01
7)
 

Z
nO

10
0

A
sl
et
al
. (
20
19
) 

Si
ly
m
ar
in

U
se
d 
in
 th

e 
tr
ea
tm

en
t o

f 
he
pa
tic

 
di
so
rd
er
s,
 a
nt
i-
ca
rc
in
og
en
ic
 

Si
ly
bu
m
 m
ar
ia
nu
m
 L
.

Z
nO

0.
15

Sh
eh
za
d 
et
 a
l. 
(2
02
1)
 

St
ev
io
l g

ly
co
si
de
s

A
nt
io
xi
da
nt

St
ev
ia
 r
eb
au
di
an
a 
(B

er
t.)

C
uO

20
A
hm

ad
 e
t a
l. 
(2
02
0)
 

St
ev
io
l g

ly
co
si
de
s

St
ev
ia
 r
eb
au
di
an
a 
(B

er
t.)

Z
nO

1
Ja
ve
d 
et
 a
l. 
(2
01
7)
 

St
ev
io
si
de

A
nt
i-
hy
pe
rg
ly
ce
m
ic
, 

an
ti-
hy
pe
rt
en
si
ve
, 

an
ti-
in
fla

m
m
at
or
y,
 a
nt
i-
tu
m
or
, 

an
ti-
di
ar
rh
ea
l, 
di
ur
et
ic
, a
nd

 
im

m
un
om

od
ul
at
or
y 

St
ev
ia
 r
eb
au
di
an
a 
(B

er
t.)

A
g

45
G
ol
ka
r 
et
 a
l. 
(2
01
9)
 

Sy
ri
ng

ic
 a
ci
d

A
nt
i-
ox

id
an
t, 
an
tim

ic
ro
bi
al
, 

an
ti-
in
fla

m
m
at
or
y 
an
d 

an
tie
nd
ot
ox
ic
 

C
uc
um

is
 a
ng
ur
ia
 L
.

A
g

0.
5–
2

C
hu
ng
 e
t a
l. 
(2
01
8b
) 

Ta
ns
hi
no
ne

A
nt
io
xi
da
nt
 a
ct
iv
ity
, 

an
ti-
in
fla

m
m
at
or
y 
ac
tiv

ity
, 

ca
rd
io
va
sc
ul
ar
 e
ff
ec
ts
, a
nd

 
an
tit
um

or
 a
ct
iv
ity

 

Sa
lv
ia
 m
il
ti
or
rh
iz
a 
B
un
ge

A
g

30
M
a 
et
 a
l. 
(2
02
0)

(c
on
tin

ue
d)



158 R. K. Selvakesavan et al.

Ta
bl
e
6.
3

(c
on
tin

ue
d)

C
om

po
un
d

A
pp

lic
at
io
n/
us
es

Pl
an
ts
pe
ci
es

N
Ps

C
on

ce
nt
ra
tio

n
(m

g/
L
)

R
ef
er
en
ce

Ta
xa
ne
s

A
nt
in
eo
pl
as
tic

C
or
yl
us
 a
ve
ll
an

a 
L
.

A
g

2–
10

Ja
m
sh
id
i a
nd
 G
ha
na
ti 

( 2
01
7)
 

T
hy
m
oq
ui
no
ne

H
ep
at
op

ro
te
ct
iv
e,
 

an
ti-
in
fla

m
m
at
or
y,
 a
nt
io
xi
da
nt
, 

cy
to
to
xi
c 
an
d 
an
ti-
ca
nc
er
 c
he
m
ic
al
 

N
ig
el
la
 s
at
iv
a 
L
.

T
iO

2
10
0

K
ah
ila

 e
t a
l. 
(2
01
8)
 

T
ry
pt
an
th
ri
n

A
nt
i-
in
fla

m
m
at
or
y,
 a
nt
ib
ac
te
ri
al
 

an
d 
an
tic

an
ce
r 

Is
at
is
 

C
on

st
ri
ct
a 
P.
H
.D
av
is
 

A
g

2
K
ar
ak
aş
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6.5 Conclusion and Prospects 

Plant secondary metabolites play an important role in plant’s fitness and adapta-
tion. Therefore, alteration of secondary metabolism by NPs could affect crop quality 
and agricultural productivity. The pharmacological properties of several medicinal 
plants are attributed to the crude extracts or decoctions and not to the individual 
compounds. Therefore, any alteration in the secondary metabolism of medicinal 
plants would affect their pharmacological potential and market value. Among the 
numerous compounds accumulated in plants, many of them possess antibacterial, 
antifungal, antiviral, anti-inflammatory, hepatoprotective, antidepressant, antioxi-
dant, neuroprotective and anticancer properties. A better understanding of the effects 
of NPs on plant secondary metabolism would allow us to develop strategies to help 
plants cope with the increasing presence of NPs in the environment and to develop 
new molecular pharmaceutical tools (Fig. 6.3). 

Fig. 6.3 The potential effects of secondary metabolic changes caused by NMs on other associated 
plant parameters. NMs can enter plants in both intentional and unintentional ways. Although changes 
in secondary metabolism could affect plants’ ability to protect themselves against pathogens, herbi-
vores, and adverse environmental conditions, as well as their ability to communicate with beneficial 
microbes, more research is needed to understand the exact consequences (Figure constructed by G. 
Franklin)
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