Skip to main content

Synthetic Strategies for (Supported) Metal and Metal Oxide Catalysts: Case Studies

  • Chapter
  • First Online:
Sol-Gel Synthesis Strategies for Tailored Catalytic Materials

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

As outlined in previous chapters, the sol–gel method, which originated around the preparation of silica, has developed massively over time, generating a plethora of different methodologies and chemistries. This inexhaustible source of synthetic pathways has been a powerful tool at the research community's disposal to prepare increasingly advanced catalytic formulations. Nevertheless, by using more sophisticated chemistry compared to conventional synthesis methods, challenges can be encountered in obtaining the desired products. These can be overcome by adopting the appropriate strategies and selecting the most suitable route bearing in mind the final composition and required properties. The optimal way to understand how to approach this subject in order to design reliable and sustainable syntheses that allow the control of composition, structure and surface properties, is to exploit some case studies. The selected examples cover some of the main fields of application of metal and oxide supported catalysts in heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.I. Park, J.D. Kim, M. Nagai, Proton conductivity in sol-gel derived silicophosphate-PMA (PWA) glasses. J. Mater. Sci. Lett. 19, 2251–2253 (2000)

    Article  CAS  Google Scholar 

  2. C. Wang, M. Nogami, Y. Abe, Protonic conduction in P2O5-SiO2 glasses prepared by sol-gel method. J. Sol-Gel Sci. Technol. 14, 273–279 (1999)

    Article  CAS  Google Scholar 

  3. M. Nogami, C. Wang, Y. Abe, Fast proton conducting P2O5-SiO2 glasses, in Proceedings of XVIII Congress On Glass, ACS, San-Francisco, vol. D3 (1998), pp. 139–144

    Google Scholar 

  4. M. Nogami, R. Nagao, C. Wang, Y. Abe, Role of water on fast proton conduction in sol-gel glasses. J. Sol-Gel Sci. Technol. 13, 933–936 (1998)

    Article  CAS  Google Scholar 

  5. N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 1H NMR study, humidity sensitivity and protonic conduction of gel derived phosphosilicate glasses. J. Mater. Chem. 12, 3746–3753 (2002)

    Article  CAS  Google Scholar 

  6. N.J. Clayden, S. Esposito, A. Aronne. Chemical heterogeneity in phosphosilicate gels by NMR magnetisation exchange. J. Chem. Soc. Dalton Trans. 2003–2008 (2001)

    Google Scholar 

  7. S. Esposito, N.J. Clayden, S.P. Cottrell, Muon spin relaxation study of phosphosilicate gels. Solid State Ionics 348(115287) (2000)

    Google Scholar 

  8. A. Styskalik, D. Skoda, Z. Moravec, J.G. Abbott, C.E. Barnes, J. Pinkas, Synthesis of homogeneous silicophosphate xerogels by non-hydrolytic condensation reactions. Micropor. Mesopor. Mat. 197, 204–212 (2014)

    Article  CAS  Google Scholar 

  9. N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses. J. Mater. Chem. 11, 936–943 (2001)

    Article  CAS  Google Scholar 

  10. N.J. Clayden, A. Aronne, S. Esposito, P. Pernice, Solid state NMR study of phosphosilicate gels. J. Non-Cryst. Solids 345&346, 601–604 (2004)

    Article  CAS  Google Scholar 

  11. Y. Choi, D.S. Park, H.J. Yun, J. Baek, D. Yun, J. Yi, Mesoporous siliconiobium phosphate as a pure brønsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein. Chemsuschem 5, 2460–2468 (2012)

    Article  CAS  Google Scholar 

  12. G. Busca, Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 107, 5366–5410 (2007)

    Article  CAS  Google Scholar 

  13. N. Mansir, Y.H. Taufiq-Yap, U. Rashid, I.M. Lokman, Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers. Manag. 141, 171–182 (2017)

    Article  CAS  Google Scholar 

  14. K. Shimizua. A. Satsuma, Toward a rational control of solid acid catalysis for green synthesis and biomass conversion. Energy Environ. Sci. 4, 3140–3153 (2011)

    Google Scholar 

  15. S. Esposito, “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials (Basel) 12, 668 (2019)

    Article  CAS  Google Scholar 

  16. J. Livage, P. Barboux, M.T. Vandenborre, C. Schmutz, F. Taulelle, Sol-gel synthesis of phosphates. J. Non-Cryst. Solids 147–148, 18–23 (1992)

    Article  Google Scholar 

  17. J.C. Schrotter, A. Cardenas, M. Smaihi, N. Hovnanian, Silicon and phosphorus alkoxide mixture: sol-gel study by spectroscopy technics. J. Sol-Gel Sci. Technol. 4, 195–204 (1995)

    Article  CAS  Google Scholar 

  18. M. D’Apuzzo, A. Aronne, S. Esposito, P. Pernice, Sol-gel synthesis of humidity-sensitive P2O5–SiO2 amorphous films. J. Sol-Gel Sci. Technol. 17, 247–254 (2000)

    Article  Google Scholar 

  19. S.C. Santos, L.S. Barreto, E.A. dos Santos, Nanocrystalline apatite formation on bioactive glass in a sol–gel synthesis. J. Non-Cryst. Solids 439, 30–37 (2016)

    Article  CAS  Google Scholar 

  20. S.P. Szu, L.C. Klein, M. Greenblatt, Effect of precursors on the structure of posphosilicate gels: 29Si and 31P MAS-NMR study. J. Non-Cryst. Solids 143, 21–30 (1992)

    Article  CAS  Google Scholar 

  21. A. Matsuda, T. Kanzaki, Y. Kotani, M. Tatsumisago, T. Minami, Proton conductivity and structure of phosphosilicate gels derived from tetraethoxysilane and phosphoric acid or triethylphosphate. Solid State Ionics 139, 113–119 (2001)

    Article  CAS  Google Scholar 

  22. P. Malik, M. Awasthi, S. Sinha, Biomass-based gaseous fuel for hybrid renewable energy systems: an overview and future research opportunities. Int J Energy Res. 45, 3464–3494 (2021)

    Article  Google Scholar 

  23. W. Dessie, X. Luo, M. Wang, L. Feng, Y. Liao, Z. Wang, Z. Yong, Z. Qin, Current advances on waste biomass transformation into value-added products. Appl. Microbiol. Biotechnol. 104, 4757–4770 (2020)

    Article  CAS  Google Scholar 

  24. A. Hijazi, N. Khalaf, W. Kwapinski, J.J. Leahy, Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H2 donor: a critical review. RSC Adv. 12, 13673–13694 (2022)

    Article  CAS  Google Scholar 

  25. H.C. Genuino, H.H. van de Bovenkamp, E. Wilbers, J.G.M. Winkelman, A. Goryachev, J.P. Hofmann, E.J.M. Hensen, B.M. Weckhuysen, P.C.A. Bruijnincx, H.J. Heeres, Catalytic hydrogenation of renewable levulinic acid to γ-valerolactone: insights into the influence of feed impurities on catalyst performance in batch and flow reactors. ACS Sustain. Chem. Eng. 8(15), 5903–5919 (2020)

    Article  CAS  Google Scholar 

  26. F. Kerkel, M. Markiewicz, S. Stolte, E. Müllerca, Werner Kunz, The green platform molecule gamma-valerolactone – ecotoxicity, biodegradability, solvent properties, and potential applications. Green Chem. 23, 2962–2976 (2021)

    Article  CAS  Google Scholar 

  27. S. Esposito, B. Silvestri, C. Rossano, V. Vermile, C. Imparato, M. Manzoli, B. Bonelli, V. Russo, Eric M. Gaigneaux, A. Aronne, M. Di Serio, The role of metallic and acid sites of Ru-Nb-Si catalysts in the transformation of levulinic acid to γ-valerolactone. Appl. Catal. B Environ. 310, 121340 (2022)

    Google Scholar 

  28. A.M.R. Galletti, C. Antonetti, V. De Luise, M. Martinelli, A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem. 14, 688–694 (2012)

    Article  CAS  Google Scholar 

  29. L. Minieri, S. Esposito, V. Russo, B. Bonelli, M. Di Serio, B. Silvestri, A. Vergara, A. Aronne, A sol-gel ruthenium–niobium–silicon mixed-oxide bifunctional catalyst for the hydrogenation of levulinic acid in the aqueous phase. ChemCatChem 9, 1–12 (2017)

    Article  Google Scholar 

  30. P. Sun, X. Long, H. He, C. Xia, F. Li, Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. Chemsuschem 6, 2190–2197 (2013)

    Article  CAS  Google Scholar 

  31. R. Bechara, D. Balloy, J.Y. Dauphin, J. Grimblot, Influence of the characteristics of γ-aluminas on the dispersion and the reducibility of supported cobalt catalysts. Chem. Mater. 11(7), 1703–1711 (1999)

    Article  CAS  Google Scholar 

  32. B. Puértolas, A. Smith, I. Vázquez, A. Dejoz, A. Moragues, T. Garcia, B. Solsona, The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure. Chem. Eng. J. 229, 547–558 (2013)

    Article  Google Scholar 

  33. R. Montero-Montoya, R. López-Vargas, O. Arellano-Aguilar, Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann. Glob. Health 84(2), 225–238 (2018)

    Article  Google Scholar 

  34. L.F. Liotta, G. Di Carlo, G. Pantaleo, A.M. Venezia, G. Deganello, Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4–CeO2 interaction and catalytic activity. Appl. Catal. B 66, 217–227 (2006)

    Article  CAS  Google Scholar 

  35. T. García, B. Solsona, S.H. Taylor, Naphthalene total oxidation over metal oxide catalysts. Appl. Catal. B 66, 92–96 (2006)

    Article  Google Scholar 

  36. S. Iravani, R.S. Varma, Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chem. 22, 2643–2661 (2020)

    Article  CAS  Google Scholar 

  37. S. Esposito, B. Bonelli, M. Armandi, E. Garrone, G. Saracco, Nanoparticles of CoAPO-5: synthesis and comparison with microcrystalline samples. Phys. Chem. Chem. Phys. 17, 10774–10780 (2015)

    Article  CAS  Google Scholar 

  38. R.P. Wang, M.J. Huang, A. Hariki, J. Okamoto, H.Y. Huang, A. Singh, D.J. Huang, P. Nagel, S. Schuppler, T. Haarman, B. Liu, F.M.F. de Groot, Analyzing the local electronic structure of Co3O4 using 2p3d resonant inelastic X-ray scattering. J. Phys. Chem. C 126, 8752–8759 (2022)

    Article  CAS  Google Scholar 

  39. I. Rossetti, B. Bonelli, G. Ramis, E. Bahadori, R. Nasi, A. Aronne, S. Esposito, New insights into the role of the synthesis procedure on the performance of co-based catalysts for ethanol steam reforming. Top. Catal. 61, 1734–1745 (2018)

    Article  CAS  Google Scholar 

  40. D.A. Eurov, T.N. Rostovshchikova, M.I. Shilin, D.A. Kirilenko, M.V. Tomkovich, M.A. Yagovkina, O.V. Udalova, I.Y. Kaplin, I.A. Ivanin, D.A. Kurdyukov, Cobalt oxide decorated porous silica particles: structure and activity relationship in the catalytic oxidation of carbon monoxide. Appl. Surf. Sci. 579, 152121 (2022)

    Article  CAS  Google Scholar 

  41. A. Badruzzaman, A. Yuda, A. Ashok, A. Kumar, Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction. Inorg. Chim. Acta 511, 119854 (2020)

    Article  CAS  Google Scholar 

  42. H. Tüysüz, Y.J. Hwang, S.B. Khan, A.M. Asiri, P. Yang, Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 6(1), 47–54 (2013)

    Article  Google Scholar 

  43. G. Bagnasco, C. Cammarano, M. Turco, S. Esposito, A. Aronne, P. Pernice, TPR/TPO characterization of cobalt–silicon mixed oxide nanocomposites prepared by sol-gel. Thermochim. Acta 471, 51–54 (2008)

    Article  CAS  Google Scholar 

  44. A.Y. Khodakov, Fischer-Tropsch synthesis: relations between structure of cobalt catalysts and their catalytic performance. Catal. Today 144, 251–257 (2009)

    Article  CAS  Google Scholar 

  45. G. Olguin, C. Yacou, S. Smart, J.C.D. da Costa, Influence of surfactant alkyl length in functionalizing sol-gel derived microporous cobalt oxide silica. RSC Adv. 4, 40181–40187 (2014)

    Google Scholar 

  46. A. Blasi, G. Fiorenza, C. Freda, Steam reforming of biofuels for the production of hydrogen-rich gas. Membranes for Clean and Renewable Power Applications (Woodhead Publishing Limited, 2014), pp. 145–181. https://doi.org/10.1533/9780857098658.3.145

  47. S. Anil, S. Indraja, R. Singh, S. Appari, B. Roy, A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders. Int. J. Hydrogen Energy 47, 8177–8213 (2022)

    Article  CAS  Google Scholar 

  48. A.M. Ranjekar, G.D. Yadav, Steam reforming of methanol for hydrogen production: a critical analysis of catalysis, processes, and scope. Ind. Eng. Chem. Res. 60, 89–113 (2021)

    Article  CAS  Google Scholar 

  49. S. Sá, H. Silva, L. Brandão, J.M. Sousa, A. Mendes, Catalysts for methanol steam reforming—a review. Appl. Catal. B. 99, 43–57 (2010)

    Article  Google Scholar 

  50. S. Esposito, M. Turco, G. Bagnasco, C. Cammarano, P. Pernice, New insight into the preparation of copper/zirconia catalysts by sol-gel method. Appl. Catal. A 403, 128–135 (2011)

    Article  CAS  Google Scholar 

  51. S. Esposito, M. Turco, G. Bagnasco, C. Cammarano, P. Pernice, A. Aronne, Highly dispersed sol–gel synthesized Cu–ZrO2 materials as catalysts for oxidative steam reforming of methanol. Appl. Catal. A 372, 48–57 (2010)

    Article  CAS  Google Scholar 

  52. S. Algorabi, S. Akmaz, S.N. Koç, The investigation of hydrogenation behaviour of furfural over sol–gel prepared Cu/ZrO2 catalysts. J. Sol-Gel. Sci. Technol. 96, 47–55 (2020)

    Article  CAS  Google Scholar 

  53. Y. Shao, T. Wang, K. Sun, Z. Zhang, L. Zhang, Q. Li, S. Zhang, G. Hu, X. Hu, Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green Energy Environ. 6, 557–566 (2021)

    Article  Google Scholar 

  54. J. Livage, Sol–gel synthesis of inorganic materials, in Encyclopedia of Materials: Science and Technology, 2nd edn. (2001), pp. 4105–4107

    Google Scholar 

  55. I. Milošev, B. Kapun, P. Rodic, J. Iskra, Hybrid sol–gel coating agents based on zirconium (IV) propoxide and epoxysilane. J. Sol-Gel Sci. Technol. 74, 447–459 (2015)

    Article  Google Scholar 

  56. J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988)

    Article  CAS  Google Scholar 

  57. C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors. J. Non-Cryst. Solids 100, 65–76 (1988)

    Article  CAS  Google Scholar 

  58. M. Nabavi, S. Doeuff, C. Sanchez, J. Livage, Chemical modification of metal alkoxides by solvents: a way to control sol-gel chemistry. J. Non-Cryst. Solids 121, 31–34 (1990)

    Article  CAS  Google Scholar 

  59. U. Schubert, Organically modified transition metal alkoxides: chemical problems and structural issues on the way to materials syntheses. Acc. Chem. Res. 40, 730–737 (2007)

    Article  CAS  Google Scholar 

  60. J. Livage, C. Sanchez, Sol-gel chemistry. J. Non-Cryst. Solids 145, 11–19 (1992)

    Article  CAS  Google Scholar 

  61. H. Hayashi, H. Suzuki, S. Kaneko, Effect of chemical modification on hydrolysis and condensation reaction of zirconium alkoxide. J. Sol-Gel Sci. Technol. 12, 87–94 (1998)

    Article  CAS  Google Scholar 

  62. A. Majedi, A. Abbasi, F. Davar, Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. J. Sol-Gel. Sci. Technol. 77, 542–552 (2016)

    Article  CAS  Google Scholar 

  63. D. Robert, N. Keller, E. Selli, Environmental photocatalysis and photochemistry for a sustainable world: a big challenge. Environ. Sci. Pollut. Res. 24, 12503–12505 (2017)

    Article  Google Scholar 

  64. H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, X. Li, A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin. J. Catal. 43(2), 178–214 (2022)

    Article  CAS  Google Scholar 

  65. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1(1), 1–21 (2000)

    Article  CAS  Google Scholar 

  66. A. Mancuso, N. Morante, M. De Carluccio, O. Sacco, L. Rizzo, M. Fontana, S. Esposito, V. Vaiano, D. Sannino, Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chem. Eng. J. 450, 138107 (2022)

    Article  CAS  Google Scholar 

  67. A. Khlyustova, N. Sirotkin, T. Kusova, A. Kraev, V. Titov, A. Agafonov, Doped TiO2: the effect of doping elements on photocatalytic activity. Mater. Adv. 1, 1193–1201 (2020)

    Article  CAS  Google Scholar 

  68. B. Bonelli, O. Tammaro, F. Martinovic, R. Nasi, G. Dell’Agli, P. Rivolo, F. Giorgis, N. Ditaranto, F.A. Deorsola, S. Esposito, Reverse micelle strategy for the synthesis of MnOx−TiO2 active catalysts for NH3-selective catalytic reduction of NOx at both low temperature and low Mn content. ACS Omega 6, 24562–24574 (2021)

    Article  CAS  Google Scholar 

  69. A. Mancuso, O. Sacco, V. Vaiano, B. Bonelli, S. Esposito, F.S. Freyria, N. Blangetti, D. Sannino, Visible light-driven photocatalytic activity and kinetics of Fe-doped TiO2 prepared by a three-block copolymer templating approach materials. 14(11), 3105 (2021)

    Google Scholar 

  70. K.S. Varma, A.D. Shukla, R.J. Tayade, P.A. Joshi, A.K. Das, K.B. Modi, V.G. Gandhi, Photocatalytic performance and interaction mechanism of reverse micelle synthesized Cu-TiO2 nanomaterials towards levofloxacin under visible LED ligh. Photochem. Photobiol. Sci. 21, 77–89 (2022)

    Article  CAS  Google Scholar 

  71. E. Lewicka, K. Guzik, K. Galos, On the possibilities of critical raw materials production from the EU’s primary sources. Resources 10, 50 (2021)

    Article  Google Scholar 

  72. V. Uskokovic, M. Drofenic, Synthesis of materials with reverse micelles. Surf. Rev. Lett. 12, 239–277 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Esposito .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esposito, S. (2023). Synthetic Strategies for (Supported) Metal and Metal Oxide Catalysts: Case Studies. In: Sol-Gel Synthesis Strategies for Tailored Catalytic Materials. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-20723-5_6

Download citation

Publish with us

Policies and ethics