Skip to main content

Recent Developments in the Treatment of Bacterial Urinary Tract Infections

  • Chapter
  • First Online:
Infectious Diseases Drug Delivery Systems

Abstract

Urinary tract infections (UTIs) are one of the most common infectious diseases among humans and account for over one million hospitalizations and $1.6 billion in medical costs per year in the United States. Bacterial etiologies are the most common cause of UTI, with uropathogenic Escherichia coli (UPEC) accounting for over 80% of all infections. The development of UTIs can be influenced by urinary tract anatomy, congenital anomalies, and bacterial pathogenic proteins.

Cystitis, urethritis, and pyelonephritis represent common UTIs that remain prevalent globally with symptoms including dysuria, frequency, urgency, suprapubic or flank pain, hematuria, and fever. Events that must occur between the host and the microbes for bacteria to colonize include adhesion to host cells, colonization of tissues, cellular invasion, and intracellular multiplication and dissemination. Current antibiotic guidelines to treat these infections depend on various comorbidities or infection etiology.

Treatment of UTIs caused by E. coli with standard antibiotics is becoming increasingly difficult due to antibiotic resistance. Alternative therapies in the treatment of UTIs caused by UPEC include anti-adhesion agents to disrupt biofilms, phage therapy, phytochemicals, nanomedicine, and natural remedies such as cranberry juice and probiotics. Creation of a vaccine may have the largest potential for protection, and there are several in development and in clinical trials around the world. The abundance of antigens as targets for vaccines makes the hope for an effective vaccine in the future seem possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol. 2013;16(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  2. CDC. Suffering from a urinary tract infection? [Internet]. Centers for Disease Control and Prevention. 2022 [cited 2022 May 28]. Available from: https://www.cdc.gov/antibiotic-use/uti.html

  3. Iacovelli V, Gaziev G, Topazio L, Bove P, Vespasiani G, Finazzi AE. Nosocomial urinary tract infections: a review. Urologia. 2014;81(4):222–7.

    Article  PubMed  Google Scholar 

  4. Anatomy of the Urinary System | Johns Hopkins Medicine [Internet]. [cited 2022 May 28]. Available from: https://www.hopkinsmedicine.org/health/wellness-and-prevention/anatomy-of-the-urinary-system

  5. Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8(1):26–38.

    Article  CAS  PubMed  Google Scholar 

  6. Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol. 2014;65:337–72.

    Article  PubMed  Google Scholar 

  7. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 2009;5(5):e1000415.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. Integrin-mediated host cell invasion by type 1–piliated uropathogenic Escherichia coli. PLoS Pathog. 2007;3(7):e100.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dhakal BK, Mulvey MA. Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem. 2009;284(1):446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301(5629):105–7.

    Article  CAS  PubMed  Google Scholar 

  11. Wiles TJ, Dhakal BK, Eto DS, Mulvey MA. Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell. 2008;19(4):1427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lane MC, Simms AN, Mobley HLT. Complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli. J Bacteriol. 2007;189(15):5523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.

    Article  CAS  PubMed  Google Scholar 

  14. Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun. 2001;69(7):4572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foxman B, Brown P. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect Dis Clin N Am. 2003;17(2):227–41.

    Article  Google Scholar 

  16. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012;2012:681473.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tittel AP, Heuser C, Ohliger C, Knolle PA, Engel DR, Kurts C. Kidney dendritic cells induce innate immunity against bacterial pyelonephritis. J Am Soc Nephrol. 2011;22(8):1435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chassin C, Goujon JM, Darche S, du Merle L, Bens M, Cluzeaud F, et al. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J Immunol. 2006;177(7):4773–84.

    Article  CAS  PubMed  Google Scholar 

  19. Ingersoll MA, Kline KA, Nielsen HV, Hultgren SJ. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol. 2008;10(12):2568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samuelsson P, Hang L, Wullt B, Irjala H, Svanborg C. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun. 2004;72(6):3179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weisheit CK, Engel DR, Kurts C. Dendritic cells and macrophages: sentinels in the kidney. Clin J Am Soc Nephrol CJASN. 2015;10(10):1841–51.

    Article  CAS  PubMed  Google Scholar 

  22. Mobley HL, Island MD, Massad G. Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis. Kidney Int Suppl. 1994;47:S129–36.

    CAS  PubMed  Google Scholar 

  23. Uropathogenic Escherichia Coli – an overview | ScienceDirect Topics [Internet]. [cited 2022 May 26]. Available from: https://www.sciencedirect.com/topics/medicine-and-dentistry/uropathogenic-escherichia-coli.

  24. Choong FX, Antypas H, Richter-Dahlfors A. Integrated pathophysiology of pyelonephritis. Mulvey MA, Stapleton AE, Klumpp DJ, editors. Microbiol Spectr. 2015;3(5):3.5.09.

    Article  Google Scholar 

  25. Li X, Hassoun HT, Santora R, Rabb H. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15(6):481–7.

    Article  PubMed  Google Scholar 

  26. Boekel J, Källskog O, Rydén-Aulin M, Rhen M, Richter-Dahlfors A. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection. BMC Genomics. 2011;12:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson GG. Pathogenesis of renal infection. Arch Intern Med. 1957;100(5):692.

    Article  CAS  Google Scholar 

  28. Finer G, Landau D. Pathogenesis of urinary tract infections with normal female anatomy. Lancet Infect Dis. 2004;4(10):631–5.

    Article  PubMed  Google Scholar 

  29. Bent S, Nallamothu BK, Simel DL, Fihn SD, Saint S. Does this woman have an acute uncomplicated urinary tract infection? JAMA. 2002;287(20):2701–10.

    Article  PubMed  Google Scholar 

  30. Fall M, Baranowski AP, Elneil S, Engeler D, Hughes J, Messelink EJ, et al. EAU guidelines on chronic pelvic pain. Eur Urol. 2010;57(1):35–48.

    Article  PubMed  Google Scholar 

  31. Lovick TA. Central control of visceral pain and urinary tract function. Auton Neurosci Basic Clin. 2016;200:35–42.

    Article  Google Scholar 

  32. Kanter G, Komesu YM, Qaedan F, Jeppson PC, Dunivan GC, Cichowski SB, et al. Mindfulness-based stress reduction as a novel treatment for interstitial cystitis/bladder pain syndrome: a randomized controlled trial. Int Urogynecol J. 2016;27(11):1705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Charrua A, Pinto R, Taylor A, Canelas A, Ribeiro-da-Silva A, Cruz CD, et al. Can the adrenergic system be implicated in the pathophysiology of bladder pain syndrome/interstitial cystitis? A clinical and experimental study. Neurourol Urodyn. 2015;34(5):489–96.

    Article  CAS  PubMed  Google Scholar 

  34. Birder L, Andersson KE. Urothelial signaling. Physiol Rev. 2013;93(2):653–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T Peer-Rev J Formul Manag. 2015;40(4):277–83.

    Google Scholar 

  36. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20.

    Article  PubMed  Google Scholar 

  37. Huang ES, Stafford RS. National patterns in the treatment of urinary tract infections in women by ambulatory care physicians. Arch Intern Med. 2002;162(1):41–7.

    Article  PubMed  Google Scholar 

  38. Stamm W. Evaluating guidelines. Clin Infect Dis. 2007;44:775–6.

    PubMed  Google Scholar 

  39. Uncomplicated Cystitis and Pyelonephritis (UTI) [Internet]. [cited 2022 May 28]. Available from: https://www.idsociety.org/practice-guideline/uncomplicated-cystitis-and-pyelonephritis-uti/.

  40. Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician. 2011;84(7):771–6.

    PubMed  Google Scholar 

  41. den Heijer CDJ, Donker GA, Maes J, Stobberingh EE. Antibiotic susceptibility of unselected uropathogenic Escherichia coli from female Dutch general practice patients: a comparison of two surveys with a 5 year interval. J Antimicrob Chemother. 2010;65(10):2128–33.

    Article  Google Scholar 

  42. Sannes MR, Kuskowski MA, Johnson JR. Geographical distribution of antimicrobial resistance among Escherichia coli causing acute uncomplicated pyelonephritis in the United States. FEMS Immunol Med Microbiol. 2004;42(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  43. Harbarth S, Albrich W, Brun-Buisson C. Outpatient antibiotic use and prevalence of antibiotic-resistant pneumococci in France and Germany: a sociocultural perspective. Emerg Infect Dis. 2002;8(12):1460–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lob SH, Nicolle LE, Hoban DJ, Kazmierczak KM, Badal RE, Sahm DF. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010–2014. Diagn Microbiol Infect Dis. 2016;85(4):459–65.

    Article  PubMed  Google Scholar 

  45. Seifert H, Blondeau J, Dowzicky MJ. In vitro activity of tigecycline and comparators (2014–2016) among key WHO “priority pathogens” and longitudinal assessment (2004–2016) of antimicrobial resistance: a report from the T.E.S.T. study. Int J Antimicrob Agents. 2018;52(4):474–84.

    Article  CAS  PubMed  Google Scholar 

  46. Jean SS, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int J Antimicrob Agents. 2016;47(4):328–34.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon KT, Kim B, Yeol RS, Wie SH, Kim J, Uk JH, et al. Changes in clinical characteristics of community-acquired acute pyelonephritis and antimicrobial resistance of uropathogenic Escherichia coli in South Korea in the past decade. Antibiotics. 2020;9(9):617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155–64.

    Article  PubMed  Google Scholar 

  49. Ejrnæs K. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull. 2011;58(4):B4187.

    PubMed  Google Scholar 

  50. Walker E, Lyman A, Gupta K, Mahoney MV, Snyder GM, Hirsch EB. Clinical management of an increasing threat: outpatient urinary tract infections due to multidrug-resistant uropathogens. Clin Infect Dis. 2016;63(7):960–5.

    Article  CAS  PubMed  Google Scholar 

  51. Lee DS, Lee SJ, Choe HS. Community-acquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. Biomed Res Int. 2018;(2018):1–14.

    Google Scholar 

  52. Hayami H, Takahashi S, Ishikawa K, Yasuda M, Yamamoto S, Uehara S, et al. Nationwide surveillance of bacterial pathogens from patients with acute uncomplicated cystitis conducted by the Japanese surveillance committee during 2009 and 2010: antimicrobial susceptibility of Escherichia coli and Staphylococcus saprophyticus. J Infect Chemother. 2013;19(3):393–403.

    Article  CAS  PubMed  Google Scholar 

  53. Seo MR, Kim SJ, Kim Y, Kim J, Choi TY, Kang JO, et al. Susceptibility of Escherichia coli from community-acquired urinary tract infection to fosfomycin, nitrofurantoin, and temocillin in Korea. J Korean Med Sci. 2014;29(8):1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang B, Yang F, Wang S, Wang Q, Liu Z, Feng W, et al. Analysis of the spectrum and antibiotic resistance of uropathogens in outpatients at a tertiary hospital. J Chemother. 2018;30(3):145–9.

    Article  PubMed  Google Scholar 

  55. Treviño M, Losada I, Fernández-Pérez B, Coira A, Peña-Rodríguez MF, Hervada X, et al. [Surveillance of antimicrobial susceptibility of Escherichia coli producing urinary tract infections in Galicia (Spain)]. Rev Espanola Quimioter Publicacion Of Soc Espanola Quimioter. 2016;29(2):86–90.

    Google Scholar 

  56. Chervet D, Lortholary O, Zahar JR, Dufougeray A, Pilmis B, Partouche H. Antimicrobial resistance in community-acquired urinary tract infections in Paris in 2015. Médecine Mal Infect. 2018;48(3):188–92.

    Article  CAS  Google Scholar 

  57. Sanchez M. Short-term effectiveness of ceftriaxone single dose in the initial treatment of acute uncomplicated pyelonephritis in women. A randomised controlled trial. Emerg Med J. 2002;19(1):19–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yilmaz N, Agus N, Bayram A, Samlioglu P, Sirin MC, Karaca Derici Y, et al. Antimicrobial susceptibilities of Escherichia coli isolates as agents of community-acquired urinary tract infection (2008–2014). Türk Ürol Dergisi (Turkish J Urol). 2016;42(1):32–6.

    Article  Google Scholar 

  59. Lee YR, Yeo S. Cefiderocol, a new siderophore cephalosporin for the treatment of complicated urinary tract infections caused by multidrug-resistant pathogens: preclinical and clinical pharmacokinetics, pharmacodynamics, efficacy and safety. Clin Drug Investig. 2020;40(10):901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. El-Lababidi RM, Rizk JG. Cefiderocol: a siderophore cephalosporin. Ann Pharmacother. 2020;54(12):1215–31.

    Article  CAS  PubMed  Google Scholar 

  61. Wu JY, Srinivas P, Pogue JM. Cefiderocol: a novel agent for the management of multidrug-resistant gram-negative organisms. Infect Dis Ther. 2020;9(1):17–40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Birder LA. Pathophysiology of interstitial cystitis. Int J Urol. 2019;26(S1):12–5.

    Article  PubMed  Google Scholar 

  63. Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli. Mol Immunol. 2019;(108):56–67.

    Google Scholar 

  64. Dashti AA, West P, Paton R, Amyes SGB. Characterization of extended-spectrum β-lactamase (ESBL)-producing Kuwait and UK strains identified by the Vitek system, and subsequent comparison of the Vitek system with other commercial ESBL-testing systems using these strains. J Med Microbiol. 2006;55(4):417–21.

    Article  CAS  PubMed  Google Scholar 

  65. Hawkey PM, Munday CJ. Multiple resistance in Gram-negative bacteria. Rev Res Med Microbiol. 2004;15(2):51–61.

    Article  Google Scholar 

  66. Barguigua A, El Otmani F, Talmi M, Bourjilat F, Haouzane F, Zerouali K, et al. Characterization of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the community in Morocco. J Med Microbiol. 2011;60(9):1344–52.

    Article  CAS  PubMed  Google Scholar 

  67. Fusté E, López-Jiménez L, Segura C, Gainza E, Vinuesa T, Viñas M. Carbapenem-resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa. J Med Microbiol. 2013;62(9):1317–25.

    Article  PubMed  Google Scholar 

  68. Patel G, Bonomo R. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol [Internet]. 2013 [cited 2022 May 28];4. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2013.00048

  69. Strahilevitz J. Plasmid-mediated quinolone resistance: a multifaceted threat [Internet]. [cited 2022 May 28]. Available from: https://journals.asm.org/doi/epub/10.1128/CMR.00016-09

  70. Zurfluh K, Abgottspon H, Hächler H, Nüesch-Inderbinen M, Stephan R. Quinolone resistance mechanisms among Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. Khan AU, editor. PLoS ONE. 2014;9(4):e95864.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6(10):629–40.

    Article  CAS  PubMed  Google Scholar 

  72. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, et al. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol. 2016;121(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  73. Sturbelle RT, da C de Avila LF, Roos TB, Borchardt JL, de Cássia dos Santos da Conceição R, Dellagostin OA, et al. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet Microbiol. 2015;180(3):245–52.

    Article  CAS  PubMed  Google Scholar 

  74. Lo AWH, Van de Water K, Gane PJ, Chan AWE, Steadman D, Stevens K, et al. Suppression of type 1 pilus assembly in uropathogenic Escherichia coli by chemical inhibition of subunit polymerization. J Antimicrob Chemother. 2014;69(4):1017–26.

    Article  CAS  PubMed  Google Scholar 

  75. Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, et al. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem. 2010;53(12):4779–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, et al. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob Agents Chemother. 2012;56(9):4738–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pei R, Lamas-Samanamud GR. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80(17):5340–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, et al. Bacteriophages with the ability to degrade uropathogenic Escherichia Coli biofilms. Viruses. 2012;4(4):471–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coulter LB, McLean RJC, Rohde RE, Aron GM. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses. 2014;6(10):3778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Monte J, Abreu AC, Borges A, Simões LC, Simões M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens. 2014;3(2):473–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maisuria VB, Hosseinidoust Z, Tufenkji N. Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. Appl Environ Microbiol. 2015;81(11):3782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lellouche J, Kahana E, Elias S, Gedanken A, Banin E. Antibiofilm activity of nanosized magnesium fluoride. Biomaterials. 2009;30(30):5969–78.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson JR, Delavari P, Azar M. Activities of a nitrofurazone-containing urinary catheter and a silver hydrogel catheter against multidrug-resistant bacteria characteristic of catheter-associated urinary tract infection. Antimicrob Agents Chemother. 1999;43(12):2990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine. 2012;8(7):5611–24.

    Google Scholar 

  86. He W, Wang D, Ye Z, Qian W, Tao Y, Shi X, et al. Application of a nanotechnology antimicrobial spray to prevent lower urinary tract infection: a multicenter urology trial. J Transl Med. 2012;10(1):S14.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng. 2006;23(4):171–84.

    Article  CAS  PubMed  Google Scholar 

  88. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  PubMed  Google Scholar 

  89. Chang LC, Wu SC, Tsai JW, Yu TJ, Tsai TR. Optimization of epirubicin nanoparticles using experimental design for enhanced intravesical drug delivery. Int J Pharm. 2009;376(1):195–203.

    Article  CAS  PubMed  Google Scholar 

  90. Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents. 2014;43(6):485–96.

    Article  CAS  PubMed  Google Scholar 

  91. Das S. Natural therapeutics for urinary tract infections—a review. Future J Pharm Sci. 2020;6(1):64.

    Article  Google Scholar 

  92. González de Llano D, Moreno-Arribas MV, Bartolomé B. Cranberry polyphenols and prevention against urinary tract infections: relevant considerations. Molecules. 2020;25(15):3523.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mantzorou M. Cranberry consumption against urinary tract infections: clinical state of- the-art and future perspectives | Bentham Science. 2018 [cited 2022 May 28];19(13). Available from: http://www.eurekaselect.com/article/95063

  94. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B. Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol. 2001;30(1):49–52.

    Article  CAS  PubMed  Google Scholar 

  95. Inhibitory Effect of Lactic Acid Bacteria on Uropathogenic Escherichia coli-Induced Urinary Tract Infections [Internet]. [cited 2022 May 28]. Available from: https://www.longdom.org/open-access/inhibitory-effect-of-lactic-acid-bacteria-on-uropathogenic-escherichia-coliinduced-urinary-tract-infections-35463.html

  96. Montorsi F, Gandaglia G, Salonia A, Briganti A, Mirone V. Effectiveness of a combination of Cranberries, Lactobacillus rhamnosus, and vitamin C for the management of recurrent urinary tract infections in women: results of a pilot study. Eur Urol. 2016;70(6):912–5.

    Article  PubMed  Google Scholar 

  97. Nickel JC, Saz-Leal P, Doiron RC. Could sublingual vaccination be a viable option for the prevention of recurrent urinary tract infection in Canada? A systematic review of the current literature and plans for the future. Can Urol Assoc J. 2020;14(8):281–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Aziminia N, Hadjipavlou M, Philippou Y, Pandian SS, Malde S, Hammadeh MY. Vaccines for the prevention of recurrent urinary tract infections: a systematic review. BJU Int. 2019;123(5):753–68.

    Article  PubMed  Google Scholar 

  99. Garcia EC, Brumbaugh AR, Mobley HLT. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Payne SM, editor. Infect Immun. 2011;79(3):1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Habibi M, Asadi Karam MR, Bouzari S. Evaluation of prevalence, immunogenicity and efficacy of FyuA iron receptor in uropathogenic Escherichia coli isolates as a vaccine target against urinary tract infection. Microb Pathog. 2017;110:477–83.

    Article  CAS  PubMed  Google Scholar 

  101. Mike LA, Smith SN, Sumner CA, Eaton KA, Mobley HLT. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc Natl Acad Sci. 2016;113(47):13468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Starks CM, Miller MM, Broglie PM, Cubbison J, Martin SM, Eldridge GR. Optimization and qualification of an assay that demonstrates that a FimH vaccine induces functional antibody responses in women with histories of urinary tract infections. Hum Vaccines Immunother. 2021;17(1):283–92.

    Article  CAS  Google Scholar 

  103. Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infect Immun. 2007;75(4):1916–25.

    Article  CAS  PubMed  Google Scholar 

  104. Valle J, Mabbett AN, Ulett GC, Toledo-Arana A, Wecker K, Totsika M, et al. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol. 2008;190(12):4147–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HLT. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog. 2009;5(9):e1000586.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wieser A, Romann E, Magistro G, Hoffmann C, Nörenberg D, Weinert K, et al. A multiepitope subunit vaccine conveys protection against extraintestinal pathogenic Escherichia coli in mice. Infect Immun. 2010;78(8):3432–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Searle LJ, Méric G, Porcelli I, Sheppard SK, Lucchini S. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli. PLoS One. 2015;10(3):e0117906.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shields J, Maxwell AP. Acute pyelonephritis can have serious complications. Practitioner. 2010;254(1728):19. 21, 23–4, 2

    PubMed  Google Scholar 

  109. Ki M. The epidemiology of acute pyelonephritis in South Korea, 1997–1999. Am J Epidemiol. 2004;160(10):985–93.

    Article  PubMed  Google Scholar 

  110. Brogden RN, Ward A. Ceftriaxone. A reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference to once-daily administration. Drugs. 1988;35(6):604–45.

    Article  CAS  PubMed  Google Scholar 

  111. Rodman DP, McKnight JT, Anderson RL. A critical review of the new oral cephalosporins. Considerations and place in therapy. Arch Fam Med. 1994;3(11):975–80.

    Article  CAS  PubMed  Google Scholar 

  112. Hong MT, Seifert CF. Clinical impact of discordant prescribing of fluoroquinolones and alternative treatments in Escherichia coli pyelonephritis. J Pharm Pract. 2016;29(5):467–71.

    Article  PubMed  Google Scholar 

  113. Wells WG, Woods GL, Jiang Q, Gesser RM. Treatment of complicated urinary tract infection in adults: combined analysis of two randomized, double-blind, multicentre trials comparing ertapenem and ceftriaxone followed by appropriate oral therapy. J Antimicrob Chemother. 2004;53 Suppl 2:ii67–74.

    PubMed  Google Scholar 

  114. Sharara SL, Amoah J, Pana ZD, Simner PJ, Cosgrove SE, Tamma PD. Is piperacillin-tazobactam effective for the treatment of pyelonephritis caused by extended-spectrum β-lactamase–producing organisms? Clin Infect Dis. 2020;71(8):e331–7.

    Article  CAS  PubMed  Google Scholar 

  115. Jansåker F, Frimodt-Møller N, Benfield TL, Knudsen JD. Mecillinam for the treatment of acute pyelonephritis and bacteremia caused by Enterobacteriaceae: a literature review. Infect Drug Resist. 2018;(11):761–71.

    Google Scholar 

  116. Pedersen G, Schønheyder HC, Sørensen HT. Antibiotic therapy and outcome of monomicrobial gram-negative bacteraemia: a 3-year population-based study. Scand J Infect Dis. 1997;29(6):601–6.

    Article  CAS  PubMed  Google Scholar 

  117. Neu HC. Synergy of mecillinam, a beta-amidinopenicillanic acid derivative, combined with beta-lactam antibiotics. Antimicrob Agents Chemother. 1976;10(3):535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhanel GG, Chung P, Adam H, Zelenitsky S, Denisuik A, Schweizer F, et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs. 2014;74(1):31–51.

    Article  CAS  PubMed  Google Scholar 

  119. Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385(9981):1949–56.

    Article  CAS  PubMed  Google Scholar 

  120. Perrotta C, Aznar M, Mejia R, Albert X, Ng CW. Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Cochrane Database Syst Rev [Internet] 2008 [cited 2022 May 26];(2). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005131.pub2/abstract

  121. Kolman KB. Cystitis and pyelonephritis. Prim Care Clin. 2019;46(2):191–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kelmis, C., Stephan, K., Varadhan, A., Brown, J.B., Preuss, C. (2023). Recent Developments in the Treatment of Bacterial Urinary Tract Infections. In: Shegokar, R., Pathak, Y. (eds) Infectious Diseases Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-20521-7_17

Download citation

Publish with us

Policies and ethics