Skip to main content

Disease Models in Viral Research

  • Chapter
  • First Online:
Infectious Diseases Drug Delivery Systems
  • 241 Accesses

Abstract

Viral diseases have become a constant threat to human population as the rise of exposure to viruses like Dengue, Measles, Chikungunya, Influenza, SARS-CoV-2, Zika, and Ebola increased. To tackle this emerging problem, it is important to investigate the pathogenesis and immune responses by implementing various animal models. Animal models are also utilized in identifying newer drug targets, evaluating efficacy and potential toxicity of new drug and vaccine candidates. Furthermore, no single animal model can mimic all clinical manifestations of the human disease; understanding the lacunas of available models helps in choosing the model for a particular experiment. In this chapter, we cover the animal models, which include nonhuman primates, rodents used for various viral diseases and shows the areas where there is gap in knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht P, Lorenz D, Klutch MJ, et al. Fatal measles infection in marmosets pathogenesis and prophylaxis. Infect Immun. 1980;27:969–78. https://doi.org/10.1128/IAI.27.3.969-978.1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Alwis R, Beltramello M, Messer WB, et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis. 2011;5:e1188. https://doi.org/10.1371/JOURNAL.PNTD.0001188.

    Article  PubMed  PubMed Central  Google Scholar 

  3. An J, Kimura-Kuroda J, Hirabayashi Y, Yasui K. Development of a novel mouse model for dengue virus infection. Virology. 1999;263:70–7. https://doi.org/10.1006/viro.1999.9887.

    Article  CAS  PubMed  Google Scholar 

  4. Banadyga L, Dolan MA, Ebihara H. Rodent-adapted filoviruses and the molecular basis of pathogenesis. J Mol Biol. 2016;428:3449–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583:830–3.

    Article  CAS  PubMed  Google Scholar 

  6. Belser JA, Katz JM, Tumpey TM. The ferret as a model organism to study influenza a virus infection. Dis Model Mech. 2011;4:575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beltramello M, Williams KL, Simmons CP, et al. The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 2010;8:271–83. https://doi.org/10.1016/j.chom.2010.08.007.

    Article  CAS  PubMed  Google Scholar 

  8. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouvier NM, Lowen AC. Animal models for influenza virus pathogenesis and transmission. Viruses. 2010;2:1530–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bray M, Hatfill S, Hensley L, Huggins JW. Haematological, biochemical and coagulation changes in mice, Guinea-pigs and monkeys infected with a mouse-adapted variant of Ebola Zaire virus. J Comp Pathol. 2001;125:243–53.

    Article  CAS  PubMed  Google Scholar 

  11. Caine EA, Jagger BW, Diamond MS. Animal models of Zika virus infection during pregnancy. Viruses. 2018;10:598. https://doi.org/10.3390/v10110598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Casel MAB, Rollon RG, Choi YK. Experimental animal models of coronavirus infections: strengths and limitations. Immune Netw. 2021;21:1–17. https://doi.org/10.4110/in.2021.21.e12.

    Article  Google Scholar 

  13. Chan JF-W, Zhang AJ, Yuan S, et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020;71:2428–46.

    Article  CAS  PubMed  Google Scholar 

  14. Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;80(369):812–7.

    Article  Google Scholar 

  15. Chen H-C, Hofman FM, Kung JT, et al. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol. 2007;81:5518–26. https://doi.org/10.1128/jvi.02575-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen HC, Lai SY, Sung JM, et al. Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus. J Med Virol. 2004;73:419–31. https://doi.org/10.1002/jmv.20108.

    Article  PubMed  Google Scholar 

  17. Cleary SJ, Pitchford SC, Amison RT, et al. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br J Pharmacol. 2020;177:4851–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Complications P. Zika Situation Report. 2016:1–6.

    Google Scholar 

  19. Couderc T, Chrétien F, Schilte C, et al. A mouse model for chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4:e29. https://doi.org/10.1371/journal.ppat.0040029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cox RM, Wolf JD, Plemper RK. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat Microbiol. 2021;6:11–8.

    Article  CAS  PubMed  Google Scholar 

  21. Cunha MS, Esposito DLA, Rocco IM, et al. First complete genome sequence of Zika virus (Flaviviridae, Flavivirus) from an autochthonous transmission in Brazil. Genome Announc. 2016;4:e00032–16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delpeut S, Sawatsky B, Wong X-X, et al. Nectin-4 interactions govern measles virus virulence in a new model of pathogenesis, the squirrel monkey (Saimiri sciureus). J Virol. 2017;91:e02490–16. https://doi.org/10.1128/jvi.02490-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dick GWA, Kitchen SF, Haddow AJ. Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20.

    Article  CAS  PubMed  Google Scholar 

  24. Djomkam ALZ, Ochieng’Olwal C, Sala TB, Paemka L. Commentary: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Front Oncologia. 2020;10:1448.

    Article  Google Scholar 

  25. Dushoff J, Plotkin JB, Viboud C, et al. Mortality due to influenza in the United States—an annualized regression approach using multiple-cause mortality data. Am J Epidemiol. 2006;163:181–7.

    Article  PubMed  Google Scholar 

  26. Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect Dis. 2005;5:718–25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. El Mubarak HS, Yüksel S, van Amerongen G, et al. Infection of cynomolgus macaques (Macaca fascicularis) and rhesus macaques (Macaca mulatta) with different wild-type measles viruses. J Gen Virol. 2007;88:2028–34. https://doi.org/10.1099/vir.0.82804-0.

    Article  CAS  PubMed  Google Scholar 

  28. Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology. 2015;479–480:259–70. https://doi.org/10.1016/j.virol.2015.03.017.

    Article  CAS  PubMed  Google Scholar 

  29. Feldmann H, Jones S, Klenk H-D, Schnittler H-J. Ebola virus: from discovery to vaccine. Nat Rev Immunol. 2003;3:677–85.

    Article  CAS  PubMed  Google Scholar 

  30. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;80(369):77–81.

    Article  Google Scholar 

  31. Gardner J, Anraku I, Le TT, et al. Chikungunya virus arthritis in adult wild-type mice. J Virol. 2010;84:8021–32. https://doi.org/10.1128/jvi.02603-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goncalvez AP, Engle RE, St. Claire M, et al. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A. 2007;104:9422–7. https://doi.org/10.1073/pnas.0703498104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorman MJ, Caine EA, Zaitsev K, et al. An immunocompetent mouse model of Zika virus infection. Cell Host Microbe. 2018;23:672–85. https://doi.org/10.1016/j.chom.2018.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Green AM, Beatty PR, Hadjilaou A, Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol. 2014;426:1148–60. https://doi.org/10.1016/j.jmb.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  35. Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet. 2000;355:827–35.

    Article  CAS  PubMed  Google Scholar 

  36. Guzman MG, Harris E. Dengue. Lancet. 2015;385:453–65. https://doi.org/10.1016/S0140-6736(14)60572-9.

    Article  PubMed  Google Scholar 

  37. Halstead SB, Shotwell H, Casals J. Studies on the pathogenesis of dengue infection in monkeys. I. Clinical laboratory responses to primary infection. J Infect Dis. 1973;128:7–14. https://doi.org/10.1093/infdis/128.1.7.

    Article  CAS  PubMed  Google Scholar 

  38. Hawman DW, Stoermer KA, Montgomery SA, et al. Chronic joint disease caused by persistent chikungunya virus infection is controlled by the adaptive immune response. J Virol. 2013;87:13878–88. https://doi.org/10.1128/jvi.02666-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holmes KV. SARS-Associated coronavirus. N Engl J Med. 2009;348:1948–51. https://doi.org/101056/NEJMp030078

    Article  Google Scholar 

  40. Hotta H, Murakami I, Miyasaki K, et al. Inoculation of dengue virus into nude mice. J Gen Virol. 1981;52:71–6. https://doi.org/10.1099/0022-1317-52-1-71.

    Article  CAS  PubMed  Google Scholar 

  41. Huang KJ, Li SYJ, Chen SC, et al. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol. 2000;81:2177–82. https://doi.org/10.1099/0022-1317-81-9-2177.

    Article  CAS  PubMed  Google Scholar 

  42. Hutchinson EB, Chatterjee M, Reyes L, Djankpa FT, Valiant WG, Dardzinski B, Mattapallil JJ, Pierpaoli C, Juliano SL. The effect of Zika virus infection in the ferret. J Comp Neurol. 2019;527(10):1706–1719. https://doi.org/10.1002/cne.24640. Epub 2019 Feb 15. PMID: 30680733; PMCID: PMC6593673.

  43. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jagger BW, Wise HM, Kash JC, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson AJ, Roehrig JT. New mouse model for dengue virus vaccine testing. J Virol. 1999;73:783–6. https://doi.org/10.1128/jvi.73.1.783-786.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koraka P, Benton S, van Amerongen G, et al. Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses. Microbes Infect. 2007;9:940–6. https://doi.org/10.1016/j.micinf.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  47. Kuhn JH, Bao Y, Bavari S, et al. Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol. 2013;158:1425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar M, Krause KK, Azouz F, et al. A guinea pig model of Zika virus infection. J Virol. 2017;14:75. https://doi.org/10.1186/s12985-017-0750-4

  49. Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest. 2010;120:894–906. https://doi.org/10.1172/JCI40104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lavinder CH, Francis E. The etiology of dengue. An attempt to produce the disease in the rhesus monkey by the inoculation of defibrinated blood. J Infect Dis. 1914;15:341–6. https://doi.org/10.1093/INFDIS/15.2.341.

    Article  Google Scholar 

  51. Lazear HM, Govero J, Smith AM, et al. Resource a mouse model of Zika virus pathogenesis. Cell Host Microbe. 2016;19:720–30. https://doi.org/10.1016/j.chom.2016.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee JC, Tseng CK, Wu YH, et al. Characterization of the activity of 2′-C-methylcytidine against dengue virus replication. Antivir Res. 2015;116:1–9. https://doi.org/10.1016/j.antiviral.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  53. Lee YR, Huang KJ, Lei HY, et al. Suckling mice were used to detect infectious dengue-2 viruses by intracerebral injection of the full-length RNA transcript. Intervirology. 2005;48:161–6. https://doi.org/10.1159/000081744.

    Article  CAS  PubMed  Google Scholar 

  54. Leffel EK, Reed DS. Marburg and Ebola viruses as aerosol threats. Biosecur Bioterror. 2004;2:186–91.

    Article  PubMed  Google Scholar 

  55. Levitt NH, Ramsburg HH, Hasty SE, et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine. 1986;4:157–62. https://doi.org/10.1016/0264-410X(86)90003-4.

    Article  CAS  PubMed  Google Scholar 

  56. Lowen AC, Mubareka S, Tumpey TM, et al. The Guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci U S A. 2006a;103:9988–92. https://doi.org/10.1073/pnas.0604157103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lowen AC, Mubareka S, Tumpey TM, et al. The Guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci. 2006b;103:9988–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lum F-M, Teo T-H, Lee WWL, et al. An essential role of antibodies in the control of chikungunya virus infection. J Immunol. 2013;190:6295–302. https://doi.org/10.4049/jimmunol.1300304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lycett SJ, Duchatel F, Digard P. A brief history of bird flu. Philos Trans R Soc B. 2019;374:20180257.

    Article  Google Scholar 

  60. Marano G, Pupella S, Vaglio S, et al. Zika virus and the never-ending story of emerging pathogens and transfusion medicine. Blood Transfus. 2016;14:95.

    PubMed  PubMed Central  Google Scholar 

  61. Marchette NJ, Halstead SB, Falkler WA, et al. Studies on the pathogenesis of dengue infection in monkeys. III. Sequential distribution of virus in primary and heterologous infections. J Infect Dis. 1973;128:23–30. https://doi.org/10.1093/infdis/128.1.23.

    Article  CAS  PubMed  Google Scholar 

  62. Marchette NJ, O’Rourke T, Halstead SB. Studies on dengue 2 virus infection in cyclophosphamide-treated rhesus monkeys. Med Microbiol Immunol. 1980;168:35–47. https://doi.org/10.1007/BF02121650.

    Article  CAS  PubMed  Google Scholar 

  63. Martina BEE, Haagmans BL, Kuiken T, et al. SARS virus infection of cats and ferrets. Nature. 2003;425:915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsuoka Y, Lamirande EW, Subbarao K. The mouse model for influenza. Curr Protoc Microbiol. 2009;13:1–30. https://doi.org/10.1002/9780471729259.mc15g03s13.

    Article  Google Scholar 

  65. McChesney MB, Miller CJ, Rota PA, et al. Experimental measles: I. pathogenesis in the normal and the immunized host. Virology. 1997;233:74–84. https://doi.org/10.1006/viro.1997.8576.

    Article  CAS  PubMed  Google Scholar 

  66. McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81:813–21.

    Article  CAS  PubMed  Google Scholar 

  67. Mehedi M, Groseth A, Feldmann H, Ebihara H. Clinical aspects of Marburg hemorrhagic fever. Future Virol. 2011;6:1091–106.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Messaoudi I, Vomaske J, Totonchy T, et al. Chikungunya virus infection results in higher and persistent viral replication in aged rhesus macaques due to defects in anti-viral immunity. PLoS Negl Trop Dis. 2013;7:e2343. https://doi.org/10.1371/JOURNAL.PNTD.0002343.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Miller ML, Andringa A, Rafales L, Vinegar A. Effect of exposure to 500 ppm sulfur dioxide on the lungs of the ferret. Respiration. 1985;48:346–54. https://doi.org/10.1159/000194849.

    Article  CAS  PubMed  Google Scholar 

  70. Mongkolsapaya J, Dejnirattisai W, Xu XN, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003;9:921–7. https://doi.org/10.1038/nm887.

    Article  CAS  PubMed  Google Scholar 

  71. Morrison TE, Diamond MS. Crossm animal models of Zika virus infection. 2015.

    Google Scholar 

  72. Muhammad Azami NA, Takasaki T, Kurane I, Moi ML. Non-human primate models of dengue virus infection: a comparison of viremia levels and antibody responses during primary and secondary infection among old world and new world monkeys. Pathog (Basel, Switzerland). 2020;9:247. https://doi.org/10.3390/pathogens9040247.

    Article  CAS  Google Scholar 

  73. Nakayama E, Saijo M. Animal models for Ebola and Marburg virus infections. Front Microbiol. 2013;4:1–20. https://doi.org/10.3389/fmicb.2013.00267.

    Article  Google Scholar 

  74. Nambulli S, Sharp CR, Acciardo AS, et al. Mapping the evolutionary trajectories of morbilliviruses: what, where and whither. Curr Opin Virol. 2016;16:95–105. https://doi.org/10.1016/j.coviro.2016.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Niewiesk S. Current animal models: Cotton rat animal model – Cotton rat. Curr Top Microbiol Immunol. 2009;330:89–110. https://doi.org/10.1007/978-3-540-70617-5_5.

    Article  CAS  PubMed  Google Scholar 

  76. Omatsu T, Moi ML, Hirayama T, et al. Common marmoset (Callithrix jacchus) as a primate model of dengue virus infection: development of high levels of viraemia and demonstration of protective immunity. J Gen Virol. 2011;92:2272–80. https://doi.org/10.1099/VIR.0.031229-0.

    Article  CAS  PubMed  Google Scholar 

  77. Onlamoon N, Noisakran S, Hsiao HM, et al. Dengue virus – induced hemorrhage in a nonhuman primate model. Blood. 2010;115:1823–34. https://doi.org/10.1182/blood-2009-09-242990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Organization WH. Summary table of SARS cases by country, 1 November 2002-7 August 2003. Wkly Epidemiol Rec Relev épidémiologique Hebd. 2003;78:310–1.

    Google Scholar 

  79. Organization WH. Coronavirus disease 2019 (COVID-19): situation report. 2020;73.

    Google Scholar 

  80. Orozco S, Schmid MA, Parameswaran P, et al. Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J Gen Virol. 2012;93:2152–7. https://doi.org/10.1099/vir.0.045088-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Osterrieder N, Bertzbach LD, Dietert K, et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses. 2020;12:779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Osuna CE, Lim S-Y, Deleage C, et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med. 2016;22:1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Padilla-Carlin DJ, McMurray DN, Hickey AJ. The guinea pig asa model of infectious diseases. Comp Med. 2008;58(4):324–40. PMID: 18724774; PMCID: PMC2706043.

    Google Scholar 

  84. Pal P, Dowd KA, Brien JD, et al. Development of a highly protective combination monoclonal antibody therapy against chikungunya virus. PLoS Pathog. 2013;9:e1003312. https://doi.org/10.1371/JOURNAL.PPAT.1003312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pal P, Fox JM, Hawman DW, et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J Virol. 2014;88:8213–26. https://doi.org/10.1128/jvi.01032-14.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Perry ST, Buck MD, Lada SM, et al. STAT2 mediates innate immunity to dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog. 2011;7:e1001297. https://doi.org/10.1371/journal.ppat.1001297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Phair JP, Kauffman CA, Jennings R, Potter CW. Influenza virus infection of the Guinea pig: immune response and resistance. Med Microbiol Immunol. 1979;165:241–54.

    Article  CAS  PubMed  Google Scholar 

  88. Prestwood TR, Prigozhin DM, Sharar KL, et al. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol. 2008;82:8411–21. https://doi.org/10.1128/jvi.00611-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Prevention C for DC and Key facts about avian influenza (bird flu) and avian influenza A (H5N1) virus. 2005. Internet site www.cdc.gov/flu/avian/gen-info/facts.htm (Accessed May 15, 2006).

  90. Radigan KA, Misharin AV, Chi M, Budinger GRS. Modeling human influenza infection in the laboratory. Infect Drug Resist. 2015;8:311–20. https://doi.org/10.2147/IDR.S58551.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Richard M, Kok A, de Meulder D, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11:1–6.

    Article  Google Scholar 

  92. Rima B, Balkema-Buschmann A, Dundon WG, et al. ICTV virus taxonomy profile: paramyxoviridae. J Gen Virol. 2019;100:1593–4. https://doi.org/10.1099/jgv.0.001328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ross RW. The newala epidemic: III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond). 1956;54:177–91. https://doi.org/10.1017/S0022172400044442.

    Article  CAS  PubMed  Google Scholar 

  95. Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11:532–43. https://doi.org/10.1038/nri3014.

    Article  CAS  PubMed  Google Scholar 

  96. Ruiz SI, Zumbrun EE, Nalca A. Animal models of human viral diseases. 2020.

    Google Scholar 

  97. Russell K, Hills SL, Oster AM, et al. Male-to-female sexual transmission of Zika virus—United States, January–April 2016. Clin Infect Dis. 2017;64:211–3.

    Article  PubMed  Google Scholar 

  98. Schilte C, Buckwalter MR, Laird ME, et al. Cutting edge: independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to chikungunya infection. J Immunol. 2012;188:2967–71. https://doi.org/10.4049/jimmunol.1103185.

    Article  CAS  PubMed  Google Scholar 

  99. Schul W, Liu W, Xu HY, et al. A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J Infect Dis. 2007;195:665–74. https://doi.org/10.1086/511310.

    Article  CAS  PubMed  Google Scholar 

  100. Seymour RL, Adams AP, Leal G, et al. A rodent model of chikungunya virus infection in RAG1 −/− mice, with features of persistence, for vaccine safety evaluation. PLoS Negl Trop Dis. 2015;9:e0003800. https://doi.org/10.1371/journal.pntd.0003800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shresta S, Kyle JL, Snider HM, et al. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol. 2004;78:2701–10. https://doi.org/10.1128/jvi.78.6.2701-2710.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shresta S, Sharar KL, Prigozhin DM, et al. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol. 2006;80:10208–17. https://doi.org/10.1128/jvi.00062-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11:1–13.

    Article  Google Scholar 

  104. Smith W, Andrewes CH, Laidlaw PP. A virus obtained from influenza patients. Lancet. 1933:66–8.

    Google Scholar 

  105. St Claire MC, Ragland DR, Bollinger L, Jahrling PB. Animal models of ebolavirus infection. Comp Med. 2017;67:253–62.

    CAS  PubMed  Google Scholar 

  106. St John AL, Rathore APS, Raghavan B, et al. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. elife. 2013;2:e00481. https://doi.org/10.7554/eLife.00481.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Subbotina E, Dadaeva A, Kachko A, Chepurnov A. Genetic factors of Ebola virus virulence in Guinea pigs. Virus Res. 2010;153:121–33.

    Article  CAS  PubMed  Google Scholar 

  108. Tan GK, Ng JKW, Trasti SL, et al. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice. PLoS Negl Trop Dis. 2010;4:e672. https://doi.org/10.1371/journal.pntd.0000672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Van Hoeven N, Belser JA, Szretter KJ, et al. Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a Guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol. 2009;83:2851–61.

    Article  PubMed  PubMed Central  Google Scholar 

  110. von Messling V, Springfeld C, Devaux P, Cattaneo R. A ferret model of canine distemper virus virulence and immunosuppression. J Virol. 2003;77:12579–91. https://doi.org/10.1128/jvi.77.23.12579-12591.2003.

    Article  Google Scholar 

  111. Wahl-Jensen V, Bollinger L, Safronetz D, et al. Use of the Syrian hamster as a new model of ebola virus disease and other viral hemorrhagic fevers. Viruses. 2012;4:3754–84.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Waldorf KMA, Stencel-Baerenwald JE, Kapur RP, et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med. 2016;22:1256–9.

    Article  Google Scholar 

  113. Weinstein RA, Bridges CB, Kuehnert MJ, Hall CB. Transmission of influenza: implications for control in health care settings. Clin Infect Dis. 2003;37:1094–101.

    Article  Google Scholar 

  114. Weinstock DM, Gubareva LV, Zuccotti G. Prolonged shedding of multidrug-resistant influenza A virus in an immunocompromised patient. N Engl J Med. 2003;348:867–8.

    Article  PubMed  Google Scholar 

  115. Wu SJL, Hayes CG, Dubois DR, et al. Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am J Trop Med Hyg. 1995;52:468–76. https://doi.org/10.4269/ajtmh.1995.52.468.

    Article  CAS  PubMed  Google Scholar 

  116. Yamanaka A, Konishi E. A simple method for evaluating dengue vaccine effectiveness in mice based on levels of viremia caused by intraperitoneal injection of infected culture cells. Vaccine. 2009;27:3735–43. https://doi.org/10.1016/J.VACCINE.2009.03.083.

    Article  CAS  PubMed  Google Scholar 

  117. Yauch LE, Shresta S. Mouse models of dengue virus infection and disease. Antivir Res. 2008;80:87. https://doi.org/10.1016/J.ANTIVIRAL.2008.06.010.

    Article  CAS  PubMed  Google Scholar 

  118. Yauch LE, Zellweger RM, Kotturi MF, et al. A protective role for dengue virus-specific CD8 + T cells. J Immunol. 2009;182:4865–73. https://doi.org/10.4049/jimmunol.0801974.

    Article  CAS  PubMed  Google Scholar 

  119. Yun NE, Linde NS, Zacks MA, et al. Injectable peramivir mitigates disease and promotes survival in ferrets and mice infected with the highly virulent influenza virus, A/Vietnam/1203/04 (H5N1). Virology. 2008;374:198–209.

    Article  CAS  PubMed  Google Scholar 

  120. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. https://doi.org/10.1056/NEJMOA2001017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zumbrun EE, Bloomfield HA, Dye JM, et al. A characterization of aerosolized Sudan virus infection in African green monkeys, cynomolgus macaques, and rhesus macaques. Viruses. 2012;4:2115–36.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zust R, Toh Y-X, Valdes I, et al. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines. J Virol. 2014;88:7276–85. https://doi.org/10.1128/jvi.03827-13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, T.K., Dasgupta, S., Roy, A., Mazumder, B. (2023). Disease Models in Viral Research. In: Shegokar, R., Pathak, Y. (eds) Infectious Diseases Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-20521-7_10

Download citation

Publish with us

Policies and ethics