
Chapter 5
Advanced Topics

5.1 Ordinal Quantification

A special case of single-label classification is the ordinal one, in which the .m > 2
classes are arranged in a total order. In this case, classes define a discrete, typically
non-metric, qualitative scale. An example of this is the star rating model of product
reviews, which is a typical problem faced in sentiment analysis. The sentiment
scenario is one that highlights how quantification fits well with ordinal problems,
as the typical use of ordinal ratings is to observe how the aggregated evaluations
distribute among the various grades.

It is straightforward to observe that any quantification method for the SLQ case
(see Section 4) can be applied to the ordinal case, and also that this approach is likely
suboptimal as it does not take advantage of the total order among classes. Esuli and
Sebastiani (2010b) discussed the scenario of ordinal quantification, and proposed an
evaluation measure for it (see Section 3.2). The 2016 SemEval challenge proposed
an ordinal quantification task (Nakov et al., 2016) that collected ten submissions
from participants. Among them, only two submissions were based on methods
specifically designed for the ordinal quantification task.

The method proposed by Da San Martino et al. (2016a,b), winner of the
challenge, builds a binary tree from a set of binary classifiers trained on .(m −
1) split points of the ordinal scale. For example, when .m = 5, four binary
classifiers are trained: one that classifies elements in .{y1} from the elements in
.{y2, y3, y4, y5}, and three other for the .{y1, y2} vs .{y3, y4, y5}, .{y1, y2, y3} vs
.{y4, y5}, and .{y1, y2, y3, y4} vs .{y5} splits. All the binary classifiers are corrected
for quantification by applying PCC (see Section 4.2.2). The root node of the tree
structure is determined by selecting the binary classifiers that has the smallest quan-
tification error, measured via KLD. Subsequent nodes of the tree are determined
recursively on the subsets of classifiers selected by the split of the parent node,
until a split selects a single classifier. Quantification is performed by accumulating
posterior probabilities for each element in the set of unlabelled items with respect
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to each category. The posterior probability for an element with respect to a category
is defined by the product of the probabilities in the path of the binary tree the goes
from the root to the leaf associated with that category.

Esuli (2016) proposed a similar approach, in which a binary tree of classifiers is
built on split points of the ordinal scale. The difference with the previous approach
lies in the criterion used to define the tree, which in this work is based on selecting
for the root (and then recursively for any other subtree) the split point that produces
the most balanced training set, adopting the heuristic that quantificationmethodmay
perform better on balanced dataset rather than unbalanced ones. For example, for on
a ordinal scale that has labels .{y1, y2, y3, y4}, respectively with 40, 20, 10 and 10
training examples, the best split for the root of the tree is .{y1} vs .{y2, y3, y4}, as
it produces a 50-50% split of the examples. The method of Da San Martino et al.
(2016a), which is based on the actual evaluation of the quantification accuracy to
define the binary tree, experimentally proved superior to the one of Esuli (2016).

5.2 Regression Quantification

Aggregative approaches can provide useful results also in applications where regres-
sion (not classification) is the task at hand for single data points. In a foundational
work with little follow-up (Bella et al., 2014), the problem of quantification for
regression is outlined, aimed at estimating composite quantities such as sales,
quantities of consumed goods, or overall duration.

The authors provide a supporting sample application: “Consider a maternity
ward that has collected data about baby weight at birth (dependent variable) for
risk pregnancies, jointly with several features about the mother and her current
and previous pregnancies (input variables). With these (training) data, a regression
model has been trained in order to predict baby weight. In order to better plan the
resources needed and the number of expected complications, the hospital wants
to estimate the distribution of weight births for the following month, according
to a new group of pregnant women (unlabelled data) that the maternity ward is
monitoring for future deliveries.”

Let y denote the dependent variable, as customary in regression settings. As a
key aggregated value to quantify is the average of the dependent variable over a
sample U of unlabelled items is considered. A first trivial solution is proposed by
computing

.μ̂U = μL (5.1)

i.e., the regression counterpart of Maximum Likelihood Prevalence Estimation
(Section 4.1), dubbed Test to Train (TT). As usual, L represents the labelled
(training) set, and U the unlabelled (test) set.

Another solution which neglects dataset shift (Section 1.5) and performs simple
aggregation of individual estimates, is dubbed Regress and Sum (RSu), and corre-
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sponds to computing

.μ̂U =
∑|U |

i=1 ŷi

|U | (5.2)

where .ŷ represents the estimate provided by a regression model trained on L. This
estimate is clearly reminiscent of Classify and Count. RSu estimates are likely
to suffer from potential weakness of the underlying regression model, typically
trained via minimisation of mean square error onL. The authors argue that quadratic
loss functions discourage predictions far from the mean, thus bringing about more
packed predictions.

This may be acceptable if we are only interested in a single value or indicator
such as the mean .μ̂U , but becomesmore of an issue if we are interested in estimating
a full probability distribution for the output value y, a different and fully legitimate
task in the realm of quantification for regression. To exemplify, the counterpart of
RSu for this task can be computed as

.P̂U (y ≤ r) =
∑|U |

i=1 1(ŷi ≤ r)

|U | (5.3)

where .1(·) is the indicator function. This method is dubbed Regress and Splice
(RSp).

A further drawback of RSu is the inheritance of bias from its underlying
regression model, which can be non-zero even in the absence of dataset shift.
The authors propose three heuristics designed to reduce the impact of the above-
mentioned issues thus improving aggregate quantification:

• Adjustment is aimed at compensating for bias, as estimated on L. This leads to a
method dubbed Adjusted Regress and Sum (ARS), summarised by the formula

.μ̂ARS
U = μ̂RSu

U + αBRSu
L (5.4)

Here .BRSu
L is the bias of the RSu estimate computed on L, and .α represents a

modulating factor optimised empirically.
• Segmentation responds to the need for different adjustments across regions of the

input space. In other words, it is reasonable to expect that the bias of a regression
model will be region-dependent, bringing about systematic underestimation in
some areas, while overestimating elsewhere. A number of thresholds are suitably
defined for y, based on values taken by y in the training set L. Predictions .ŷ

issued on U are binned according to these thresholds, approximated with a value
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deemed representative of the respective bin, and adjusted in a bin-dependentway.
More in detail, the computation is the result of the following steps:

1. Thresholds are selected based on three alternative criteria, namely equal width
of intervals, equal frequency (i.e., in such a way that the resulting partition on
L determines sets of same cardinality), or k-means.

2. After partitioningL based on variable y, the values of the respective estimates
.ŷ from a single bin are averaged, in order to determine a prototypical value
.ŷm for said bin.

3. After performing regression on U , each data point is assigned to a bin via
comparison of .ŷ with bin thresholds. Each regression estimate is then replaced
by its prototype .ŷm.

4. Finally, adjustment is performed independently on each bin.

Individual predictions are thus corrected according to formula

.ŷ = ŷm
j + αBj (5.5)

where bin membership is denoted by subscript j . Finally, .μ̂U is computed as the
average of predictions over U .

• Spreading is aimed at counteracting the compression of predictions .ŷ, brought
about by regression models which have a tendency to produce packed outputs.
For this reason, estimates .ŷ are corrected via the Nadaraya-Watson kernel as
a first step. This kernel smoothing algorithm allows to artificially increase the
variance of predicted values to better match the variance of the real values y when
required. Spreading can be used in conjunction with all techniques described
above, including TT, RSu and ARS. It is deemed especially useful when the task
at hand requires an estimate of the whole probability density, less so when the
interest lies in the average value .μ̂U .

5.3 Cross-Lingual Quantification

Cross-Lingual Quantification (CLQ) is the task of performing quantification in
scenarios in which training documents in the target language for which quantifi-
cation needs to be performed do not exist (or are too few as to deploy a reliable
quantifier) but exist for a different source language. Additionally, large quantities
of unlabelled documents are assumed to be easily accessible for both domains.
Esuli et al. (2020) formally defined the task and proposed preliminary baselines
for binary sentiment classification. The key observation is that, when performed via
aggregative methods, cross-lingual quantification could be directly enabled via the
combination of cross-lingual classification and quantification correction. In Esuli
et al. (2020), Cross-lingual Structural Correspondence Learning (Prettenhofer and
Stein, 2011) and Distributional Correspondence Indexing (Moreo et al., 2016),
two methods capable of generating cross-lingual vectorial representations (i.e., in
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a language-agnostic vector space), were used to train (general purpose) classifiers
and tested in combination with CC, PCC, ACC, PACC, and QuaNet (discussed in
Section 4.2).

Note that CLQ is an instance of transfer learning (Pan and Yang, 2010),
the general learning framework dealing with differences in data distribution and
data representation between the source and the target domains. Other variants of
transfer learning (e.g., cross-domain text quantification) remain, to the best of our
knowledge, unexplored. We are likewise unaware of more general CLQ methods
tackling quantification by topic (instead of by sentiment), dealing with multi-class
problems (instead of binary), or adopting non-aggregative approaches (that is,
without relying on cross-lingual classification as an intermediate step).

5.4 Quantification for Networked Data

Networked data quantification is a special quantification setting where a network
structure connects the individual unlabelled items, as is the case e.g., with hyper-
linked web pages. In classification, the presence of hyperlinks allows the use of
supervised (“relational”) learning techniques that leverage both endogenous features
(e.g., textual content) and exogenous features (e.g., hyperlinks and/or the labels
of neighbouring items) (Chakrabarti et al., 1998; Macskassy and Provost, 2007).
The term “collective classification” (see also Section 6.4) is often used to denote
the fact that the classification of networked items is best tackled collectively, and
not for each item in isolation of the others, since the label to be assigned to one
item may influence the label to be assigned to another item. This is consistent
with homophily effects and preferential attachment often seen in networked data.
So, one obvious method of performing relational quantification is using a state-
of-the-art collective classification algorithm and correcting the resulting prevalence
estimates via method ACC (or Method Max, Method X, T50, MS, MM). Tang et al.
(2010) follow this route by using the wvRN algorithm of Macskassy and Provost
(2003) as the collective classification algorithm. However, they further propose a
non-aggregative method called Link-Based Quantification (LBQ), inspired by the
ACC method of Section 4.2.3. Let .p(�ik) denote the fraction of nodes in the network
that link to node i with .(k−1) levels of indirection (so that, e.g., .p(�i1) is the fraction
of nodes in the network that directly link to node i). From the law of total probability
it follows that

.p(�ik) = p(�ik|⊕) · pU(⊕) + p(�ik |�) · (1 − pU(⊕)) (5.6)

entailing

.pU(⊕) = p(�ik) − p(�ik|�)

p(�ik|⊕) − p(�ik|�)
(5.7)
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Equation 5.7 allows estimating .pU(⊕), since the value of .p(�ik) can be observed
directly in the network, while the values of .p(�ik|⊕) and .p(�ik|�) can be estimated
from a training set. A different estimate .p̂

(i,k)
U (⊕) of .pU(⊕) can be obtained for each

pair .(i, k) composed of a node i in the network and an integer value of k. In order to
obtain a robust estimate, the authors compute all estimates for .k ∈ [1, kmax] (for a
given .kmax), and use their median as the final estimate .p̂U (⊕). Quantification based
on homophily is further explored in Milli et al. (2015). A community detection
algorithm is run on the whole network graph (comprising elements from U and L).
Each node in U is subsequently assigned the most frequent label from nodes in
its community belonging to L. In case of community overlap, a prevailing one is
identified based on its density or on highest class prevalence within the community.
Alternatively, ego-networks are proposed as a way to define the community of a
given node. Given a node’s neighbourhood (nodes directly or k-hop-connected to
it), its missing label is determined as the majority one in the neighbourhood.

After label assignment is carried out, Classify and Count and Adjusted Classify
and Count are employed as strategies to aggregate the results. For the latter, false
positive rates and true positive rates are estimated on L with a leave-one-out
approach.

5.5 Cost Quantification

A specific flavour of quantification has been tackled by Forman (2006, 2008)
and dubbed cost quantification. For this application, each data point comes with
additional cost information associated to it. A key application is represented by
a business looking for insight into warranty costs for its products. Given a set of
customer support logs, comprising textual data about issues described by customers
and the cost of support (e.g., repairs), we are interested in quantifying how much
each type of issue is contributing to after-sales expenses. Classes are represented by
different issues or any atomic feature that might drive quality assurance decisions
for the business, e.g., CrackedScreen or SwollenBattery. This task is trivially
resolved by a quantifier if the average cost for a given issue is fixed and known
in advance. However, a further source of complexity is often introduced due to
variability of prices for components.

Classify and Total (CT), is the simplest algorithm considered. Being the counter-
part of Classify and Count, it is based on running a classifier on each sample from
U and adding up the cost .c(x) associated to each sample labelled as belonging to
the class of interest, which comes down to computing

.Sy =
∑

x∈U :h(x)=y

c(x) (5.8)

This approach has similar limitations to Classify and Count.
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Grossed-Up Total (GUT) mitigates this problem by pushing the CT estimate .Sy

upwards or downwards according to the ratio between the class prevalence estimate
by a proper quantifier .Mq and the one provided by the classifier employed, i.e.,

.S′
y = Sy × p̂

Mq

U (y)

1
|U |

∑
x∈U 1(h(x) = y)

(5.9)

which can be rewritten as

.S′
y = p̂

Mq

U (y)|U | × Sy
∑

x∈U 1(h(x) = y)
(5.10)

thus making two factors explicit. The first represents an estimate of cardinality for
class y within U given by quantifier .Mq , while the second one can be interpreted as
a best guess of average cost for class y provided by classifier .h(x), which, however,
is quite likely to be polluted by misclassified items.

Conservative Average * Quantifier (CAQ) is aimed at reducing pollution by
computing a cost average on a predefined amount of items from U , which we
deem very likely to belong to class y. These items are taken in decreasing order
of posterior probability .p(y|x).

Precision Corrected Average * Quantifier (PCAQ) takes the above idea a step
further by estimating the precision (or Positive Predictive Value – PPV) of classifier
.h(x) on the unlabelled set U . For ease of notation, in the binary case, let us shorten
the symbol for estimates of prevalence for class .⊕ within U provided by quantifier

.Mq to .q = p̂
Mq

U (⊕). Moreover, let .PPVh denote the precision of classifier .h(x) on
U . The values of .PPVh on U can be computed from estimates of class prevalence
q and estimates of true and false positive rates for .h(x) (.TPRh, .FPRh), obtained via
cross-validation on L, i.e.,

.PPVh = q · TPRh

q · TPRh + (1 − q) · FPRh

(5.11)

This value is then employed to compute the average cost of positive predicted
instances via

.Ch⊕ = PPVhC⊕ + (1 − PPVh)C� (5.12)

where .C⊕ is the average cost of items in class .⊕, which we need to estimate. A
further equation linking these quantities can be specified on the whole set U of
unlabelled items, i.e.,

.CU = pU(⊕)C⊕ + (1 − pU(⊕))C� (5.13)
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where .CU is the average cost of items in U . After solving for .C�, plugging into
Equation 5.12, and substituting .pU(⊕) with its estimate q , we obtain

.C⊕ = (1 − q)Ch⊕ − (1 − PPVh)CU

PPVh − q
(5.14)

which is then multiplied by estimated class cardinality .q · |U | to get the final cost
quantification. Note that both estimates of classifier precision .PPVh and average
cost .Ch⊕ depend on how the classifier’s threshold is selected.

Median Sweep of PCAQ applies the philosophy of Median Sweep from Sec-
tion 4.2.6 to PCAQ by considering several values for classifier threshold, getting a
different estimate .Cy for each of them via PCAQ, and regarding their median as a
final estimate.

Mixture Model Average * Quantifier applies a similar idea directly to Equa-
tion 5.12. By letting threshold t vary we obtain

.
Ct⊕
PPVt = C⊕ + C�

1 − PPVt

PPVt (5.15)

i.e., a system of equations, one for each threshold value, which can be solved for
.C⊕, .C� via linear regression.

Note that these methods approximate the values of .TPR and .FPR on the
unlabelled set U with estimates computed via cross-validation on L, which may be
a bad approximation unless .pL(x|y) = pU(x|y), i.e., unless L and U are connected
by prior probability shift.

5.6 Quantification in Data Streams

Yang and Zhou (2008) consider the problem of estimating the shift in prior
distribution while observing a sequence of objects from a stream. Their aim is to
improve the classification accuracy by using shift updated priors in the classification
model that is trained only once at the beginning of the process, i.e., without resorting
to active learning and retraining. The proposed method adapts the EM method of
Saerens et al. (2002) to work from a batch setup, i.e., estimating new priors for a
set of unlabelled objects, to an online setup, i.e., correcting priors every time a new
object appears in the stream. Differently from the method by Saerens et al. (2002),
the Online EM (OEM) method of Yang and Zhou (2008) applies the E and M steps
only once to each element that is sequentially generated by the stream. The initial
priors, as well as the likelihood function, are computed on a training set. The E step
computes the posteriors probabilities of the k-th element of the sequence .x1 . . . xn

of elements of the set U of unlabelled items using the likelihood function and the
priors for the k-th step, similarly to the method by Saerens et al. (2002). The M
step computes the corrected priors for the next .k + 1 element of the sequence using
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an exponential forget function that combines the priors of the k-th step with the
posteriors of the k-th element, i.e.,

.p̂k+1(y) = αp̂k(y|xk) + (1 − α)p̂k(y) (5.16)

The OEMmethod is thus an online quantificationmethod in the strict sense of online
processing, as each element of the sequence is observed and processed only once.

In experiments OEM performs better than the original EM at improving the
classification accuracy, yet the actual priors’ estimation are not very accurate. Zhang
and Zhou (2010) observed that this issue is likely related to a small-sample effect,
i.e., that priors update in Equation 5.16 is determined by a single element. They
propose to overcome this issue by means of a transfer estimation method, which
computes the M step using the posteriors from N previous elements in the stream,
i.e, Equation 5.16 is changed into

.p̂k+1(y) = α
1

N

N−1∑

i=0

p̂k(y|xk−i) + (1 − α)p̂k(y) (5.17)

Maletzke et al. (2018) explore the use of active learning on data streams as a device
to improve the quantification accuracy. They define data streams as generators
of instances across time. For quantification, they consider U to be composed
of a sequence of event windows .Ut across time. Quantification requests happen
whenever an event window is complete. The true label y is known for an initial batch
of instances that define the training set L. The true label for successive instances
may be available after a verification latency time .Tl , which may range from .Tl = 0
to .Tl = ∞. The first case means that, if requested, the true label for an instance is
immediately available. This is an unrealistic case for most real-world applications as
some time is inevitably required by the labelling oracle, typically a human annotator,
to produce the true labels. The latter case of .Tl = ∞ means that no true labels will
be ever available for instances outside the training set, which is an extreme scenario
in which no active learning strategy can be applied. Active learning can be exploited
in all the cases for which .Tl < ∞, exploring many possible strategies and trade-offs
between labelling cost and quantification accuracy improvement.

The methods proposed by Maletzke et al. (2017, 2018) are template methods
as they leverage a classification-based method to perform the actual quantification,
while they manipulate the training data (transforming or enriching it).

The StreamQuantification by Score Inspection (SQSI) algorithm (Maletzke et al.,
2017) leverages statistical tests to decide if a classifier trained on L can be reliably
used to perform classification and quantification on .Ut . The algorithm works as
follows:

1. It starts by training a classifier h on an initial training set L.
2. Given a set of items .Ut to quantify, h is used to get the classification scores on

all of them.
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3. The set of classification scores on .Ut is compared to the set of classification
scores on L (obtained with a leave-one-out cross validation). The comparison is
done with a Kolmogorov-Smirnov test, under the null hypothesis that the two
sets of scores come from the same distribution.

(a) If the null hypothesis is not rejected, a quantification method based on h is
used to estimate class prevalence on .Ut . The algorithm repeats from Step 2
for the successive set .Ut+1.

(b) Otherwise, the algorithm makes a first attempt at transforming L into a shift
adapted training set .L′ using the shift adaptation algorithm described in dos
Reis et al. (2016).

4. h is replaced with a new classifier trained on .L′.
5. The Kolmogorov-Smirnov test between .L′ and .Ut classification scores from

Step 3 is repeated.

(a) If the null hypothesis is not rejected, a quantification method based on .h′
is used to estimate class prevalence on .Ut . .L′ replaces L and the algorithm
repeats from Step 2 for the successive set .Ut+1.

(b) If the null hypothesis is rejected again then the true labels of .Ut are asked to
an oracle, defining a new training set L. The algorithm repeats from Step 1
for the successive set .Ut+1

Assuming a small shift between successive sets of items .Ut ,Ut+1 one can expect
that the oracle will seldom be consulted. In the experimental evaluation of Maletzke
et al. (2017), performed on fourteen datasets with a very low number of features
(only two features for 8 synthetic datasets, and less than 100 in the other cases), the
portion of items labelled by the oracle was below 10% in all but one case.

The SQSI algorithm can help the quantification process only when the observed
shift is within the range of correction of the shift adaptation method, otherwise it
fails, requiring a complete labelling of the set of items to be quantified by the oracle.
The SQSI-IS (where IS stands for Instance Selection) algorithm tries to reduce the
amount of labelling required by using instance selection and self-learning whenever
the shift adaptation method fails. Instead of requiring the oracle to label the whole
set U (Step 5b above), only a fraction of elements of U is selected for labelling
by the oracle, while the remaining part is labelled using an iterative process of
self-learning adding to L the element of .U \ L that is classified with the highest
confidence. The authors test several instance selection methods (random, clustering
based, farthest-first traversal), and find that a clustering-based approach performs
consistently better, with the best overall quantification performance observed for
SQSI-IS instantiated with clustering and the PCC quantification method.1 The
observed reduction in labelling requests from SQSI to SQSI-IS is 50% on average,
while achieving the same quantification performance.

1 Maletzke et al. (2018) tested CC, PCC and ACC as the base quantification methods.
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5.7 One-Class Quantification

A one-class classification problem assumes that the labelled examples are all
positive examples of a single class, and that no negative examples are available.
Performing quantification in the one-class case is challenging because it is not
possible to measure a real prevalence on the training set L. Moreover, for quantifi-
cation methods that rely on classification, also the one-class classification scenario
is obviously a harder problem than the traditional classification scenario in which
one has representative examples of both the positive and the negative classes.

Nonetheless, approaching a quantification problem as a one-class quantification
problem may be a more robust approach in cases in which the definition of the
negative cases is open. In a one-class setup the positive label will likely identify
a specific property while the negative label comprises the universe of data points
for which such property does not hold. In this case is it thus hard to have the
domain of negative examples properly represented in the training set. The domain
of negative examples may change considerably after training the quantification
model. For example, one may be interested in training a Sports news quantifier,
having as negative example only news about Health. The trained quantifier may be
then applied to datasets that include news about Economics and Politics. In this
scenario, a one-class quantifier, trained only on positive examples for Sports, may
be more robust to the variation of data composition between the training phase and
the deployment phase.

Moreira dos Reis et al. (2018a) propose two methods for one-class quantification,
the Passive Aggressive Threshold ACC (PAT-ACC) the One Distribution Inside
(ODIn) method, which draws inspiration from the MM approach (Forman, 2008,
see Section 4.2.8). Both methods are designed to work in combination with one-
class classifiers.

PAT-ACC extends ACC to work on one-class problems by observing that the
problem of estimating FPR can be circumvented by choosing a conservative
classification threshold, so that one can assume that .FPR ≈ 0. If the classification
threshold is set so that a quantile q of observations is classified as positive, then the
TPR can be estimated as .TPR = 1−q , allowing to perform quantification using the
ACC method (see Equation 4.5), i.e.,

.p̂PAT−ACC
U (⊕) = min

(

1,
pU (h(⊕))

(1 − q)

)

(5.18)

Moreira dos Reis et al. (2018a) claim that the PAT-ACC method is not sensitive to
the value of q and report that a value of .q = 0.25 is a generally good choice. They
also suggest that an approach similar to Median Sweep can be adopted to avoid
using a fixed q value.

The ODIn method compares the score distribution that is available only for
positive examples in the case of the training set L with the score distribution for U ,
which includes both negative and positive examples. Scores from the classification
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of L are used to define a variable-width histogram .HL in which each bin has the
same number of elements. The number of bins b is a parameter, which in Moreira
dos Reis et al. (2018a) is set to .b = 10. Scores from the classification of U define a
histogram .HU , which uses the bin definition of .HL. The overflow of .HL in .HU is
defined as

.OF(α,HU ,HL) =
b∑

i=1

max(0,HU
i − αHL

i ) (5.19)

The value .α scales the histogram .HL and OF measures how much the scaled
histogram still has higher valued bins than .HU . Intuitively ODIn searches for the
largest parameter .α that better fits .HL inside .HU , then producing the quantification
estimate by correcting it for its overflow, i.e.,

.p̂ODIn
U (⊕) =s − OF(s,HU ,HL) (5.20)

where

.s = sup
0≤α≤1

{α|OF(α,HU ,HL) ≤ αL}

where .L is a parameter of the method. In Moreira dos Reis et al. (2018a) the authors
set .L = μ̂OF + dσ̂OF, where the values .μ̂OF and .σ̂OF are the mean and standard
deviation of the OF function estimated on pairs of samples from L, and d is a new
parameter that replaces .L. The authors claim that the parameter d has a clearer
semantic than .L, i.e., d is the number of standard deviations of the expected average
overflow, and arbitrarily set to .d = 3 for all of their experiments.

The problem of class prior estimation in the one-class case is faced in du Plessis
and Sugiyama (2014). This work has the main goal of learning a classifier from
positive examples and unlabelled data, and quantification is not the subject of its
proposal. Yet, the proposed method, which they call PE, performs the estimation
of class priors, considering it a necessary step to learn a good classifier. Given that
the correct estimation of class priors is indeed quantification, we consider this work
relevant to our goals. They start from the input density formula

.q(x; �) = �p(x|�(x) = ⊕) + (1 − �)p(x|�(x) = �) (5.21)

observing that .q(x; �) = p(x) when .� = p(⊕), thus defining a full-matching
method for prior estimation. However, in the one-class case .p(x|�(x) = �)

is unknown. To overcome this issue the authors make the assumption that the
class-conditional densities .p(x|�(x) = ⊕) and .p(x|�(x) = �) are not strongly
overlapping and propose a partial-matching estimation method. Such method
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matches only .�p(x|�(x) = ⊕) to .p(x) using the Pearson Divergence (PD), i.e.,

.p̂PE
U (⊕) = argmin

�
PD(�) (5.22)

where PD is defined as

.PD(�) = 1

2

∫ (
�p(x|�(x) = ⊕)

p(x)
− 1

)2

p(x)dx (5.23)

The authors experimentally proved that the partial-matching method based on PD
has a lower error than the method based on Equation 5.21 for the one-class case. In
a subsequent work (du Plessis et al., 2017) the approach is further extended to other
divergence functions.

Zeiberg et al. (2020) proposed the DistCurve algorithm that estimates the
prevalence of a sample .σ by leveraging of the concept of distance curve. A distance
curve is computed starting from a sample .σ and a labelled set L that contains
only positive elements. Points of the curve are determined by sampling, with
replacement, a random element from L, and measuring its distance from the closest
element in .σ , that element is removed from .σ . The procedure continues until .σ is
empty. The idea is that the distance curve should show a steep increase in distance
at the step .pσ (⊕)|σ |, as all the positive elements have been removed from the set.
A neural network is trained on distance curves generated on samples with known
priors, so as to be able to predict the .p̂σ value from the distance curve for .σ . In order
to be robust to statistical variation caused by the sampling mechanism, the distance
curve for .σ that is given as input to the neural network is determined as the average
of multiple runs of the method that computes the distance curve.

5.8 Confidence Intervals for Class Prevalence Estimates

A confidence interval (CI), in the context of quantification, is a range of values .(l, h)

which should contain the true prior probability .pU(y) for class y with a desired level
of confidence, such as .95%. In mathematical terms, l and h should be such that the
probability of event .(pU (y) ∈ (l, h)) is equal to 0.95. This information is often
more useful than a point estimate of class prevalence .p̂U (y).

Hopkins and King (2010) first mentioned computing bootstrapped CIs for their
estimates, without providing much detail. CIs for quantification have received
more attention in recent years. Keith and O’Connor (2018) propose a generative
model, whose characteristics naturally allows for the computation of CIs for class
prevalence values (Section 4.2.8). Let .pU(⊕) denote the true proportion of positives
in U . Algorithmswhich supportMaximum a posteriori estimation are typically used
to compute the single most plausible value for .pU(⊕), i.e. the one that is most
compatible with the covariates observed in U , but also support the computation of
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likelihood values for any possible .pU(⊕) ∈ [0, 1]. The authors exploit this idea,
training different versions of the generative models. At inference time, they employ
grid search over all possible (quantised) values of .pU(⊕), in conjunction with a
uniform prior, constructing a posterior density from which confidence intervals are
derived.

Daughton and Paul (2019) propose a technique called error-adjusted bootstrap
to compute CIs for quantification based on the outputs of a classifier, with a
correction procedure accounting for its (im)precision. In the construction of a
bootstrap sample, they draw an instance with covariates .x from U , and feed it to
a classifier .h(x), to obtain a predicted class .c ∈ {⊕,�}. The bootstrap sample is
expanded by using the classifier output as a parameter to sample from a Bernoulli
distribution with success probability .pU(⊕|h(x) = c); (un)successful draws result
in attaching class .⊕ (.�) to the sample. Prevalence estimates for a single bootstrap
sample are subsequently obtained by computing the frequency of .⊕ within it.
Confidence intervals at a desired level are then constructed customarily, based on
the estimates from all bootstrap samples. Crucially, the precision-related parameter
.pU(⊕|h(x) = c), shaping the Bernoulli distribution, is estimated on the training
sample L. As duly noted by Tasche (2019), this approach does not generally work
under dataset shift. This is due to the fact that .pU(⊕|h(x) = c) = pL(⊕|h(x) = c)

is not guaranteed to hold. Hence, the approach of Daughton and Paul (2019) seems
suited to handle covariate shift, a setting where the previous equation holds true.

Fernandes Vaz et al. (2019), whose work is discussed in Section 4.2.7, provide a
central limit theorem for the ratio estimator, from which confidence intervals can be
computed without any numerical simulation.

Tasche (2019) deploys a simulation study to shed some light on the topic of CIs
in quantification tasks, under prior probability shift. Despite lacking the complexity
of real-world datasets, the study provides some illustrative and interesting results
in a controlled setting described very clearly. Several quantification methods are
selected based on Fisher-consistency (Tasche, 2017) and popularity in the literature,
including ACC (Section 4.2.3), PACC (Section 4.2.4), MS (Section 4.2.6), HDy
(Section 4.2.8). Each of these methods is tested in a variety of settings, with proba-
bility shift ranging from strong to mild, exploiting underlying classifiers of variable
discriminatory power, and testing on unlabelled samples of size .|U | ∈ {50, 500}.
For each combination of the above parameters, CIs at 90% are constructed via
regular bootstrapping. One key finding is that, if a quantification method is based
on an underlying classifier with high power, then the CIs will be shorter and more
informative while retaining desired coverage levels.

The study also points out that, for quantification problems, prediction intervals
are, in principle, more useful than confidence intervals. Indeed, a practitioner is not
exactly interested in having a range for the true prior probability from which the
unlabelled sample U originated, i.e., the target of confidence intervals. Rather, they
plausibly care about having a range of plausible values for the realised prevalence,
i.e. the percentage of points from U that belong to the positive class, a quantity
that should be targeted by (more conservative) prediction intervals. However, the
results of simulations carried out by Tasche (2019) in a variety of settings suggest
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that, for .|U | > 50, as reasonable in most practical applications, the construction of
confidence intervals is sufficient (adequate coverage) and there seems to be no need
for the construction of more conservative prediction intervals.

Thanks to central limit theorems (see e.g., Section 4.2.7), confidence intervals for
some approaches can be constructed without bootstrapping. Tasche (2019) also tests
the effectiveness of this approach, concluding that it results in suboptimal results
(e.g. low coverage) in the presence of certain conditions. As an example, if the true
positive rate and false positive rate of an underlying classifier have to be estimated, a
limited sample size forLmay be a source of imprecision in said estimate, corrupting
prevalence estimates and bringing about confidence intervals of insufficient size.

More recently, Denham et al. (2021) note that PCC can natively provide
confidence intervals, since PCC may be thought of as computing the mean of a
Poisson binomial distribution of the posterior probabilities (scaled by a constant
factor), and since we know how to derive reliable confidence intervals under this
assumption. The authors exploit this idea, along with other assumptions on the
underlying distributions of a mixture model, to derive confidence intervals for their
method GSLS (explained in Section 4.2.8).
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