
Learning
to Quantify

Andrea Esuli
Alessandro Fabris
Alejandro Moreo
Fabrizio Sebastiani

The Information Retrieval Series

The Information Retrieval Series

Volume 47

Series Editors

ChengXiang Zhai, University of Illinois, Urbana, IL, USA

Maarten de Rijke, University of Amsterdam, The Netherlands and Ahold Delhaize,
Zaandam, The Netherlands

Editorial Board Members

Nicholas J. Belkin, Rutgers University, New Brunswick, NJ, USA

Charles Clarke, University of Waterloo, Waterloo, ON, Canada

Diane Kelly, University of Tennessee at Knoxville, Knoxville, TN, USA

Fabrizio Sebastiani , Consiglio Nazionale delle Ricerche, Pisa, Italy

 507 1781 a 507 1781 a

Information Retrieval (IR) deals with access to and search in mostly unstructured
information, in text, audio, and/or video, either from one large file or spread over
separate and diverse sources, in static storage devices as well as on streaming data.
It is part of both computer and information science, and uses techniques from e.g.
mathematics, statistics, machine learning, database management, or computational
linguistics. Information Retrieval is often at the core of networked applications,
web-based data management, or large-scale data analysis.

The Information Retrieval Series presents monographs, edited collections, and
advanced text books on topics of interest for researchers in academia and industry
alike. Its focus is on the timely publication of state-of-the-art results at the
forefront of research and on theoretical foundations necessary to develop a deeper
understanding of methods and approaches.

This series is abstracted/indexed in EI Compendex and Scopus.

Andrea Esuli • Alessandro Fabris •
Alejandro Moreo • Fabrizio Sebastiani

Learning
to Quantify

Andrea Esuli
Istituto di Scienza e Tecnologie
dell’Informazione
Consiglio Nazionale delle Ricerche
Pisa, Italy

Alessandro Fabris
Dipartimento di Ingegneria
dell’Informazione
Università di Padova
Padova, Italy

Alejandro Moreo
Istituto di Scienza e Tecnologie
dell’Informazione
Consiglio Nazionale delle Ricerche
Pisa, Italy

Fabrizio Sebastiani
Istituto di Scienza e Tecnologie
dell’Informazione
Consiglio Nazionale delle Ricerche
Pisa, Italy

This work was supported by Istituto di Scienza e Tecnologie dell’Informazione

ISSN 1871-7500 ISSN 2730-6836 (electronic)
The Information Retrieval Series
ISBN 978-3-031-20466-1 ISBN 978-3-031-20467-8 (eBook)
https://doi.org/10.1007/978-3-031-20467-8

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 1826 496 a 1826 496 a

https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Policy makers or computer scientists may be
interested in finding the needle in the
haystack (. . .), but social scientists are more
commonly interested in characterizing the
haystack.

(Daniel J. Hopkins and Gary King, 2010)

Preface

In a number of applications involving classification, the final goal is not determining
which class (or classes) individual unlabelled instances belong to, but estimating
the prevalence (or “relative frequency”, or “prior probability”) of each class in the
unlabelled data. In recent years it has been pointed out that, in these cases, it would
make sense to directly optimise machine learning algorithms for this goal, rather
than (somehow indirectly) just optimising the classifier’s ability to label individual
instances. The task of training estimators of class prevalence via supervised learning
is known as learning to quantify, or, more simply, quantification. It is by now well
known that performing quantification by classifying each unlabelled instance via a
standard classifier and then counting the instances that have been assigned to the
class (the Classify and Count method) usually leads to biased estimators of class
prevalence, i.e., to poor quantification accuracy; as a result, methods (and evaluation
measures) that address quantification as a task in its own right have been developed.
This book covers the main applications of quantification, the main methods that
have been developed for learning to quantify, the measures that have been adopted
for evaluating it, and the challenges that still need to be addressed by future research.

The book is divided in seven chapters. Chapter 1 sets the stage for the rest
of the book by introducing fundamental notions such as class distributions, their
estimation, and dataset shift, by arguing for the suboptimality of using classification
techniques for performing this estimation, and by discussing why learning to
quantify has evolved as a task of its own, rather than remaining a by-product of
classification. Chapter 2 provides the motivation for what is to come by describing
the applications that quantification has been put at, ranging from improving clas-
sification accuracy in domain adaptation, to measuring and improving the fairness
of classification systems with respect to a sensitive attribute, to supporting research
and development in the social sciences, in political science, epidemiology, market
research, and others. In Chapter 3 we move on to discuss the experimental evaluation
of quantification systems; we look at evaluation measures for the various types
of quantification systems (binary, single-label multiclass, multi-label multiclass,
ordinal), but also at evaluation protocols for quantification, that essentially consist
in ways to extract multiple testing samples for use in quantification evaluation

vii

viii Preface

from a single classification test set. Chapter 4 is possibly the central chapter of
the book, and looks at the various supervised learning methods for learning to
quantify that have been proposed over the years, be they of an aggregative nature
(i.e., methods that require the classification of all individual unlabelled items as
an intermediate step) or of a non-aggregative nature (i.e., methods in which no
classification of individual items is performed). In Chapter 5 we look at a number of
“advanced” (or niche) topics in quantification, including quantification for ordinal
data, cross-lingual quantification of textual items, quantification for networked data,
and quantification for streaming data. Chapter 6 looks at other aspects of the
“quantification landscape” that have not been covered in the previous chapters, and
discusses the evolution of quantification research, from its beginnings to the most
recent quantification-based “shared tasks”, the landscape of quantification-based,
publicly available software libraries, and other tasks in data science that present
important similarities with quantification. Chapter 6 also presents the results of
experiments, that we have carried out ourselves, in which we compare many of
the methods discussed in Chapter 4 on a common testing infrastructure. Chapter 7
concludes the book, pointing to potential future developments in the quantification
arena.

The book is mostly addressed to researchers in data science that might want to
come up to speed with the state of the art in learning to quantify, but it can be
useful also to researchers and scientists that operate in other disciplines and that
apply techniques from data science to their own application domains. Indeed, it is
our experience that many potential users of quantification techniques (who operate
in the fields touched upon in Chapter 2, and possibly in others too) do not use them,
thus settling for suboptimal “classify and count” techniques, for the simple fact that
they are not aware of their existence, and of the existence of quantification as a task
of its own; it is also those potential users that we hope will be inspired by this book.

We thus hope that the availability of a book that surveys all aspects of the
quantification workflow and presents them in a hopefully accessible form, will
increase the interest in this subject on the part of researchers and practitioners alike,
and will contribute to making quantification better known to potential users of this
technology and to researchers interested in advancing the field.

Pisa, Italy Andrea Esuli
Padova, Italy Alessandro Fabris
Pisa, Italy Alejandro Moreo
Pisa, Italy Fabrizio Sebastiani

Acknowledgments

The work of Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani has been
supported by the SoBigData++ project, funded by the European Commission
(Grant 871042) under the H2020 Programme INFRAIA-2019-1, by the AI4Media
project, funded by the European Commission (Grant 951911) under the H2020
Programme ICT-48-2020, and by the SoBigData.it and FAIR projects, funded
by the Italian Ministry of University and Research under the NextGenerationEU
program. The authors’ opinions do not necessarily reflect those of the European
Commission. The work by Alessandro Fabris was supported by MIUR (Italian
Ministry for University and Research) under the “Departments of Excellence”
initiative (Law 232/2016).

ix

Contents

1 The Case for Quantification . 1
1.1 Class Distributions and Their Estimation . 2
1.2 The Suboptimality of Classify and Count . 3
1.3 Notational Conventions .. 5
1.4 Quantification Problems . 6
1.5 Dataset Shift and Quantification.. 8

1.5.1 Types of Dataset Shift and Their Relation
to Quantification .. 11

1.6 Quantification and Bias Mitigation.. 14
1.7 Structure of This Book .. 16

2 Applications of Quantification . 19
2.1 Improving Classification Accuracy . 19

2.1.1 Word Sense Disambiguation .. 21
2.2 Fairness . 22

2.2.1 Improving Fairness . 22
2.2.2 Measuring Fairness . 23

2.3 Sentiment Analysis . 24
2.4 Social and Political Sciences . 25
2.5 Market Research . 27
2.6 Epidemiology . 28
2.7 Ecological Modelling . 29
2.8 Resource Allocation . 31

3 Evaluation of Quantification Algorithms . 33
3.1 Measures for Evaluating SLQ, BQ, and MLQ. 34

3.1.1 Properties of Evaluation Measures for SLQ, BQ,
and MLQ. 35

3.1.2 Bias . 37
3.1.3 Absolute Error and its Variants . 37
3.1.4 Relative Absolute Error and its Variants . 38

xi

xii Contents

3.1.5 Kullback-Leibler Divergence and its Variants 41
3.1.6 Which Measure is the Best for SLQ?. 42

3.2 Measures for Evaluating OQ . 45
3.2.1 Earth Mover’s Distance . 45
3.2.2 Root Normalised Order-Aware Divergence 46

3.3 Measures for Evaluating Regression Quantification 47
3.4 Experimental Protocols for Evaluating Quantification 48

3.4.1 Natural Prevalence Protocol (NPP) . 49
3.4.2 Artificial Prevalence Protocol (APP) . 49
3.4.3 A Variant of the APP Based on the Kraemer Algorithm 50
3.4.4 Should we Use the NPP or the APP? . 51

3.5 Model Selection in Quantification.. 53

4 Methods for Learning to Quantify . 55
4.1 Maximum Likelihood Prevalence Estimation . 56
4.2 Aggregative Methods Based on General-Purpose Learners. 57

4.2.1 Classify and Count . 57
4.2.2 Probabilistic Classify and Count . 58
4.2.3 Adjusted Classify and Count . 59
4.2.4 Probabilistic Adjusted Classify and Count 61
4.2.5 X, MAX, and Threshold@0.50 .. 63
4.2.6 Median Sweep . 64
4.2.7 The Ratio Estimator . 64
4.2.8 Mixture Models. 66
4.2.9 Expectation Maximisation for Quantification 69
4.2.10 Class Distribution Estimation . 71
4.2.11 Ensemble Methods for Quantification .. 72
4.2.12 QuaNet . 73

4.3 Aggregative Methods Based on Special-Purpose Learners 74
4.3.1 Methods Based on Explicit Loss Minimisation 75
4.3.2 Quantification Trees and Quantification Forests 76

4.4 Non-AggregativeMethods.. 78
4.4.1 The README Method . 78
4.4.2 The iSA Method .. 79
4.4.3 The README2 Method .. 80
4.4.4 The HDx Method . 81
4.4.5 The MMD-RKHS Method .. 82
4.4.6 The Uncertainty-Aware Generative Model 82
4.4.7 Deep Quantification Network . 83

5 Advanced Topics . 87
5.1 Ordinal Quantification . 87
5.2 Regression Quantification . 88
5.3 Cross-Lingual Quantification . 90
5.4 Quantification for Networked Data . 91
5.5 Cost Quantification . 92

Contents xiii

5.6 Quantification in Data Streams . 94
5.7 One-Class Quantification . 97
5.8 Confidence Intervals for Class Prevalence Estimates 99

6 The Quantification Landscape . 103
6.1 Historical Development .. 103

6.1.1 The Trajectory of Quantification . 103
6.1.2 Shared Tasks . 104

6.2 Software . 105
6.2.1 Publicly Available Implementations .. 105
6.2.2 QuaPy: A Comprehensive Framework for Quantification .. . 106

6.3 How Do Different Quantification Methods Fare? . 109
6.3.1 A Tour of Experimental Results . 109
6.3.2 Visualisation Tools for the Analysis of Results 115

6.4 Related Tasks . 117
6.4.1 Links to Existing Tasks . 117
6.4.2 A Possible Variant of the Quantification Task 119

7 The Road Ahead . 121

Bibliography . 125

Index . 135

Acronyms

ACC Adjusted Classify and Count 59
AE Absolute Error 37
APP Artificial-Prevalence Protocol 49
ARS Adjusted Regress and Sum 89
BCD Bray-Curtis Dissimilarity 38
BQ Binary Quantification 7
CAQ Conservative Average * Quantifier 93
CC Classify and Count 58
CDE-Iterate Class Distribution Estimation Iterate 71
CI Confidence Interval 65
CLQ Cross-Lingual Quantification 90
CLT Central Limit Theorem 65
CT Classify and Total 92
DD Demographic Disparity 23
DQN Deep Quantification Network 83
DyS Distribution y-Similarity 67
EMD Earth Mover’s Distance 45
GPM Generative Probabilistic Modelling 82
GSLS Gain-Some-Lose-Some 68
GUT Grossed-Up Total 93
HD Hellinger Distance 66
IID Independently and Identically Distributed 8
KLD Kullback-Leibler Divergence 41
LBQ Link-Based Quantification 91
LC Land Cover 30
MLPE Maximum Likelihood Prevalence Estimation 56
MLQ Multi-label Quantification 7
MM Mixture Model 66
MM(KS) Kolmogorov-SmirnovMixture Model 66
MM(PP) PP-Area Mixture Model 66

xv

xvi Acronyms

MMD-RKHS Maximum Mean Discrepancy measure in a Reproducing Kernel
Hilbert Space 82

MS Median Sweep 64
NAE Normalised Absolute Error 38
NKLD Normalised Kullback-Leibler Divergence 41
NPP Natural-Prevalence Protocol 49
NRAE Normalised Relative Absolute Error 40
ODIn One Distribution Inside 97
OQ Ordinal Quantification 7
PACC Probabilistic Adjusted Classify and Count 61
PAT-ACC Passive Aggressive Threshold ACC 97
PCAQ Precision Corrected Average * Quantifier 93
PCC Probabilistic Classify and Count 58
PD Pearson Divergence 99
PEq Proportional Equality 22
PPMS Posteriori Probability Model Selection 71
QF Quantification Forest 77
RAE Relative Absolute Error 38
RE Ratio Estimator 65
RQ Regression Quantification 7
RSp Regress and Splice 89
RSu Regress and Sum 88
SE Squared Error 38
SLD Expectation Maximisation for Quantification 70
SLQ Single-label Quantification 6
SMR-HDy Single Most Relevant HDy 68
SQSI Stream Quantification by Score Inspection 95
TT Test to Train 88
WSD Word Sense Disambiguation 21
XO-HDy Crossed-Opinions HDy 68

Chapter 1
The Case for Quantification

Classification, perhaps the most fundamental among the tasks addressed by super-
vised machine learning, has to do with assigning one or more classes from a
predefined set to each data item from a given distribution. Over the last 50 years
or more, classification has been extensively studied, not only in machine learning
but also in philosophy, content analysis, statistics, and other branches of science.

About fifteen years ago, in a seminal paper, Forman (2005) observed that,
in several applications involving classification, the final goal is not determining
which class (or classes) individual unlabelled data items belong to, but estimating
the prevalence (also called “relative frequency”, or “prior probability”, or simply
“prior”) of each class in the unlabelled data. Training class prevalence estimators
via supervised learning has come to be known as quantification, a term coined by
Forman (2005, 2006, 2008) which has stuck from then on; the term learning to
quantify is also used, which stresses the fact that prevalence estimation is, in this
case, tackled by means of supervised learning.

To see the importance of learning to quantify, let us examine the task of
classifying textual answers returned to open-ended questions in questionnaires
(Esuli and Sebastiani, 2010b), and let us discuss two important such scenarios.

In the first scenario, a telecommunications company asks its current customers
the question “How satisfied are you with our mobile phone services?”, and has its
information scientists classify each resulting textual answer into one of a set of
classes of interest. One of the goals of this survey is to know which of the resulting
textual answers belong to class MayDefectToCompetition. The company is likely
interested in accurately classifying each individual customer, since it may want to
call each customer that is assigned the class MayDefectToCompetition and offer
her improved conditions, so as not to lose her as a customer.

In the second scenario, a market research expert, working for a fast food
company, asks respondents the question “What do you think of onions in cheese-
burgers?”, and wants to know which of the resulting textual answers belong to class
LikesOnionsInCheeseburgers. Here, the market research expert is presumably

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_1

1

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1
https://doi.org/10.1007/978-3-031-20467-8_1

2 1 The Case for Quantification

not interested in whether a specific individual belongs to the class, but is likely
interested in knowing how many respondents, out of the total number of respon-
dents, belong to it, i.e., in knowing the prevalence of the class.

In sum, while in the former scenario the interest is at the individual level, in the
latter the aggregate level is all that matters; in other words, in the former scenario
classification is the goal, while in the latter the real goal is quantification.

Other tasks in which “individuals do not matter”, i.e., in which the classes
to which belong are useful only inasmuch as they allow us to obtain indicators
concerning the entire population, are, e.g., predicting election results by estimating
the prevalence of blog posts (or tweets) supporting a given candidate or party
(Hopkins and King, 2010), or planning the amount of human resources to allocate to
different types of issues in a customer support centre by estimating the prevalence of
customer calls related to each issue (Forman, 2005), or supporting epidemiological
research by estimating the prevalence of medical reports where a specific pathology
is diagnosed (Baccianella et al., 2013). Indeed, there are entire fields of human
inquiry which are devoted to studying phenomena only at a collective level;
examples of such fields are market research, political science, the social sciences,
ecological modelling, and epidemiology. When researchers in these fields are
confronted with unlabelled data and the need to label them, they usually need
quantification, and not classification.

Note that, also due to the variety of fields in which it has emerged as an
application need, quantification goes under different names, in different areas of
science and in different scientific papers. It has variously been called counting,
(Lewis, 1995), class probability re-estimation (Alaíz-Rodríguez et al., 2011), class
prior estimation (Chan and Ng, 2006; Zhang and Zhou, 2010), and class distribution
estimation (González-Castro et al., 2013; Limsetto and Waiyamai, 2011; Xue and
Weiss, 2009).

1.1 Class Distributions and Their Estimation

An example quantification task is displayed, via a histogram, in Figure 1.1. The
example involves a number of textual product reviews labelled according to a set of
five classes (fromVeryNegative toVeryPositive) representing “scores” assigned to
the reviewed products. In the histogram, the blue bars represent the true (unknown)
class prevalence values that need to be estimated (i.e., the fractions of product
reviews that have been assigned the scores indicated), and the red bars represent
the corresponding estimates obtained by a quantification method. When the blue
bars are identical to the corresponding red bars, the estimation is perfectly accurate.
Since all the fractions are in the [0,1] interval and sum up to 1, we are here in the
presence of two probability distributions. This shows that learning to quantify may
be also defined as the task of learning to approximate an unknown true distribution
by a predicted distribution. (In the case of Figure 1.1 we are actually in the presence
of two ordinal distributions, since there are more than two classes and there is

1.2 The Suboptimality of Classify and Count 3

Fig. 1.1 An example quantification task; blue bars represent the unknown true class prevalence
values that need to be estimated, and red bars represent their estimates obtained by a quantification
method.

an implied total order on them; see Sections 3.2 and 5.1 for more on ordinal
distributions and their estimation.) As a result, and as we will see more thoroughly in
Section 3, practically all evaluation measures for quantification are divergences, i.e.,
measures of how a predicted distribution “diverges” from the true distribution. This
justifies the fact that, as previously hinted, quantification is sometimes called “class
distribution estimation” (González-Castro et al., 2013; Limsetto and Waiyamai,
2011; Xue and Weiss, 2009).

1.2 The Suboptimality of Classify and Count

In the absence of methods for estimating class prevalence values more directly, the
obvious method for doing it is Classify and Count, i.e., classifying each unlabelled
data item and estimating class prevalence values by counting the items that have
been assigned to each class.

However, this strategy is sub-optimal: while a perfect classifier is also, quite
obviously, a perfect quantifier (i.e., estimator of class prevalence values), a good
classifier may be a bad quantifier. To see this, one only needs to look at the definition
of .F1, a standard evaluation function for binary classification, which is defined as

.F1 = 2TP

2TP + FP + FN
(1.1)

4 1 The Case for Quantification

where .TP, .FP, .FN indicate the numbers of true positives, false positives, and false
negatives, respectively, in a binary contingency table. According to .F1, a binary
classifier .h1 for which .FP = 10 and .FN = 10 is worse than a classifier .h2 for
which, on the same test set, .FP = 8 and .FN = 10. However, when using “classify
and count”, .h1 is intuitively a better binary quantifier than .h2; indeed, .h1 is (on this
test set) a perfect estimator of class prevalence values, since .FP and .FN are equal and
thus compensate each other, so that the distribution of the unlabelled items across the
class and its complement is estimated perfectly. That a good classifier may be a bad
quantifier can be seen by the fact that, as evident from Equation 1.1, .F1 considers
“good” those classifiers that keep the sum .(FP + FN) to a minimum; however, the
goal of a quantification algorithm must be that of keeping to a minimum .|FP− FN|,
and not .(FP + FN).

The above example shows that even an accurate classifier may be biased, i.e.,
may keep its false positives to a minimum only at the expense of a substantially
higher number of false negatives (or vice versa); if this is the case, the classifier
is a bad quantifier. This phenomenon is not infrequent, especially in the presence
of imbalanced data, i.e., data in which the items from the majority class by far
outnumber the items from the other classes. This is very frequent, say, in text
classification, where data relevant to a certain topic are often a tiny fraction of
the entire set; but occurs in all other contexts in which the amount of “signal” is
much smaller than the amount of “noise”. In such cases, learning algorithms that
minimise “standard” loss functions (i.e., the Hamming loss, the hinge loss, or their
proxies) often generate classifiers with a tendency to choose the majority class,
which means a much higher number of false positives than false negatives for the
majority class, which means in turn that such an algorithmwill tend to underestimate
the counts of minority classes. For instance, Esuli and Sebastiani (2015) report
an experimentation on 5,148 binary test sets averaging 15,000+ examples each, in
which a linear SVM delivers an average .FN/FP ratio of 0.109 for the majority class;
by contrast, for a perfect estimator of class prevalence values this ratio is 1.

The previous arguments indicate that quantification should not be considered
a mere by-product of classification, and should be studied and solved as a task
of its own. There are at least two other arguments that support this idea. One is
that the functions that are used for evaluating classification cannot be used for
evaluating quantification, since these functions measure, by and large, how many
data items have beenmisclassified, and not howmuch the estimated class prevalence
values differ from the true class prevalence values. This means that the learning
algorithms that minimise these functions are optimised for classification, and not
for quantification. (We will come back on this topic in Section 4.3.1.) A second,
symmetrical argument, put forth by Forman (2008), is that methods specifically
devised for learning to quantify require fewer training data in order to deliver the
same quantification accuracy as standard methods based on “classify and count”.
While Forman’s observation is of an empirical nature, there are also theoretical
arguments that support this fact, which will be more thoroughly discussed in
Section 4.4.

1.3 Notational Conventions 5

1.3 Notational Conventions

Since in the next section we will start discussing quantification in some mathemat-
ical detail, we now fix some notation. By .x we will indicate a data item drawn
from a domain .X , represented as a vector of features. By y we will indicate a class
drawn from a set of classes (or codeframe) .Y = {y1, . . . , y|Y |}, and by .y we will
indicate its complement, i.e., .y = ⋃

yi∈Y\{y} yi . When the codeframe contains just
two classes we will often indicate this codeframe as .Y = {⊕,�}, and will call .⊕
“the positive class” and .� “the negative class”. Given .x ∈ X and .y ∈ Y , a pair
.(x, y) will thus denote a data item with its class label; given a pair .(x, y) we will
also write .�(x) = y, i.e., .�(x) will indicate the label of .x.1 The symbol .σ will
denote a sample, i.e., a non-empty set of (labelled or unlabelled) items drawn from
.X . Given a class .yi , we will denote by .σi the set of items in sample .σ that belong to
.yi ; we will denote by .|σ | the number of items contained in .σ .

By .pσ (y) we will indicate the true prevalence of class y in sample .σ , by .p̂σ (y)

we will indicate an estimate of this prevalence2, and by .p̂M
σ (y) we will indicate the

estimate of this prevalence as obtained via quantification methodM . In other words,
symbol p will denote a true distribution of the unlabelled items across codeframe
.Y , while symbol .p̂ will denote a predicted distribution (or estimator), i.e., the result
of estimating an unknown true distribution; symbol .P will denote the (infinite) set
of all distributions on .Y .3 By .D(p, p̂) we will denote an evaluation measure for
quantification.

A sample of labelled items (that we will typically use as a training set) will be
denoted by L, while a sample of unlabelled items (that we will typically use as a
sample to quantify on) will be denoted by U .

We will take a (hard) classifier to be a function .h : X → Y . By .ph
σ (ŷ) we will

denote the prevalence in sample .σ of the data items that have been assigned to class
y by classifier h. When dealing with binary contexts, we will use .TP, .FP, .FN, .TN, to
denote the numbers of true positives, false positives, false negatives, true negatives,
respectively, as resulting from the application of a hard classifier to an unlabelled
sample U , and as contained in the resulting binary contingency table.

We will instead take a soft classifier to be a function .s : X → [0, 1]|Y | such that
each .s(x) is a vector of .|Y| posterior probabilities (each indicated as .p(y|x)) and
such that .

∑
y∈Y p(y|x) = 1; .p(y|x) indicates the probability of membership in y

1 For the moment being we assume that a data item .x ∈ X can belong to one and only one class
.y ∈ Y ; the reason for this will be explained in Section 1.4.
2 Consistently withmost mathematical literature, we use the caret symbol (ˆ) to indicate estimation.
3 In order to keep things simple we avoid overspecifying the notation, thus leaving some aspects
of it implicit; e.g., in order to indicate a true distribution p of the unlabelled items in a sample .σ

across a codeframe .Y we will often write p instead of the more cumbersome .pY
σ , thus letting .σ

and .Y be inferred from context.

6 1 The Case for Quantification

Table 1.1 Notation for the symbols most frequently used in this book.

Symbol Meaning

.x ∈ X A data item from domain .X

.y, y ∈ Y A class from codeframe .Y and its complement in .Y

.⊕,� ∈ Y The two classes of a binary codeframe .Y

.�(x) ∈ Y The class label of data item .x

.σ A sample of data items drawn from domain .X

.|σ | Cardinality of sample .σ

L A labelled sample of items (typically: for training purposes)

U An unlabelled sample of items (typically: for testing purposes)

.pσ (y) True prevalence of class y in .σ

.p̂σ (y) Estimate of the prevalence of class y in .σ

.p̂M
σ (y) Estimate .p̂σ (y) obtained via method M

.ph
σ (ŷ) Fraction of elements in sample .σ to which h has assigned class y

.D(p, p̂) An evaluation measure for the prevalence estimate

.h : X → Y A hard classifier for .Y

.s : X → [0, 1]|Y| A soft classifier for .Y

.p(y|x) “Posterior” probability that .x is in y

of item .x as estimated by s.4 A hard classifier is obtained from a soft classifier by
taking

.h(x) = argmax
y∈Y

p(y|x) (1.2)

Table 1.1 summarises these symbols for convenience.

1.4 Quantification Problems

Similarly to classification, learning to quantify admits different problems of applica-
tive interest, based (a) on how many classes codeframe .Y contains, and (b) how
many of the classes in .Y can be attributed at the same time to the same item. We
characterise quantification problems as follows:

1. Single-Label Quantification (SLQ) is defined as quantification when each data
item belongs to exactly one of the classes in .Y = {y1, . . . , y|Y |}.

4 Another way of saying this is that s is a function that maps the domain .X onto the probability
simplex (aka standard simplex) .�|Y|, defined as the unit (.|Y | − 1)-simplex.

1.4 Quantification Problems 7

2. Multi-Label Quantification (MLQ) is defined as quantification when the same
item may belong to any number of classes (zero, one, or several) in .Y =
{y1, . . . , y|Y |}.

3. Binary Quantification (BQ) may alternatively be defined

(a) as SLQ with .|Y| = 2 (in this case .Y = {y1, y2} (or, as we will often write in
the binary case, .Y = {⊕,�}) and each item must belong to either .y1 or .y2),
or

(b) as MLQ with .|Y| = 1 (in this case .Y = {y} and each item either belongs or
does not belong to y).

4. Ordinal Quantification (OQ) is defined as single-label quantification when the
codeframe .Y = {y1, . . . , y|Y |} is such that there exists a total order .y1 ≺ . . . ≺
y|Y | among its classes. (The example discussed in Section 1.1 was of this type.)

5. Regression Quantification (RQ), a task which stands to regression as “standard”
quantification stands to classification. This task slightly falls outside the charac-
terisation of “quantification” that we have given in the previous sections, since
there is no set .Y of classes involved, i.e., each item is labelled with a real-valued
score and quantification amounts to estimating the fraction of items whose score
is in a given interval .[a, b], with .a, b ∈ R.

Among the above tasks, the one we will mostly devote our attention to in this book
is SLQ. The reasons for doing this are the following:

• BQ is a special case of SLQ (see Bullet 3a above), which means that any method
for performing SLQ and any measure for evaluating SLQ can also be used for
BQ.

• Any quantification method for BQ can also be used for MLQ, since MLQ can be
solved by deploying .|Y| independent binary quantification systems, one for each
.y ∈ Y .5 Additionally, any evaluation measure for BQ can be used for evaluating
MLQ, since MLQ can be evaluated by checking, for each .y ∈ Y , how well .p̂(y)

approximates .p(y) by means of an evaluation measure for BQ that uses .{y, y} as
the binary codeframe.

• Most quantification methods and evaluation measures that have been proposed in
the literature were either proposed for SLQ, or were originally proposed for BQ
and can be easily extended to SLQ. Conversely, there has been very little work
on methods for solving OQ or RQ, and on measures for evaluating them.

5 MLQ might in principle be solved in ways other than by recasting the problem into .|Y |
independent binary quantification problems, i.e., it might be solved by attempting to leverage
possible stochastic dependencies between the classes in .Y , similarly to what is done in many
approaches to multi-label classification. For MLQ, the only attempt we are aware of from past
literature is by Levin and Roitman (2017). However, in this work the problem is tackled as a set
of independent binary quantification problems, and the correlations among the classes are never
brought to bear.

8 1 The Case for Quantification

However, while SLQ will be the main focus of the book, the solutions that have
been proposed in the literature for other quantification problems, such as OQ and
RQ, will also be discussed.

1.5 Dataset Shift and Quantification

Standard supervised learning algorithms are based on the assumption that the train-
ing data and the unlabelled data the predictor is supposed to issue predictions about
(which in experimental settings is represented by the test set), are independently
and identically distributed (IID). In other words, since labelled data items are
represented by pairs of type .(x, y), the distribution of pairs in the labelled set is
assumed to be the same as that on the set of unlabelled items, i.e., .pL(x, y) =
pU(x, y). Of particular interest to quantification is the fact that, a fortiori, the
distribution of labels is assumed to stay constant, i.e., .pL(y) = pU(y).

But the world we live in and the data it provides are constantly evolving, and
the scenarios in which we might want to deploy the trained models may widely
differ. For instance, in an effort to use quantification technology for estimating
the prevalence of different species of living beings on the seabed (see Figure 1.2),

Fig. 1.2 Using quantification for estimating the prevalence of different species of living beings
on the seabed; red circles indicate the locations where the training data were collected while blue
circles indicate the locations where the unlabelled data to which the trained model was applied
were collected (from Beijbom et al., 2015).

1.5 Dataset Shift and Quantification 9

Beijbom et al. (2015) train a model on labelled data mostly collected on the coasts
off the Bahamas and Caicos islands, and apply the trained model on unlabelled
data collected in various other locations, including the coasts off Mexico and
Venezuela. In this case, and in many other cases, the IID assumption is violated,
and .pL(x, y) �= pU(x, y); this phenomenon is usually referred to as dataset shift
(Moreno-Torres et al., 2012; Quiñonero-Candela et al., 2009).6 Of interest to us is
the particular case in which .pL(y) �= pU(y), which is often called distribution shift
(Bella et al., 2014).

Example reasons why distribution shift may occur are the following:

1. The environment might not be stationary across time and/or space and/or other
variables, which means that the testing conditions would be irreproducible at
training time. For instance, in a backlog of newswire stories from year 2001, the
prevalence of class Terrorism in news produced before September 11 will not
be the same as in news produced after September 11; likewise, the prevalence of
reviews scored as VeryPositive for a certain product will not be the same before
and after its price has been cut in half. These are cases of non-stationarity across
time. Cases of non-stationarity across space are also ubiquitous: for instance,
the same news stories that fall under class HomeNews in the UK fall instead
under class Europe in the US, and the relative frequencies of classes Cricket
and Baseball are likely very different in datasets of news originating from these
two countries. The case illustrated in Figure 1.2 is also a case of non-stationarity
across space.

2. The process of labelling training data might be class-dependent. For instance,
assume we need a predictor that recognises the presence of a rare disease
(e.g., a 1-in-a-million-cases disease). A training set consisting of one positive
example and 999,999 negative examples would likely deliver a highly ineffective
classifier, so we will typically try to insert into the training set as many positive
examples as we can put our hands on, and to remove from it a sizeable number
of negative examples. This means that the prevalence of the minority class in the
training set L will be much higher than its prevalence in the set U of unlabelled
items, and that (symmetrically) the prevalence of the majority class in L will be
much lower than its prevalence in U .

3. The labelling process might introduce bias in the training set. For instance,
suppose we build our training set via active learning. The active learning process
might ask the human assessor to annotate items that have a high probability
of membership in the minority class (this is indeed the stated goal of the
“relevance sampling” active learning technique Lewis and Gale, 1994), since
training examples of the minority class are usually more informative than those
of the majority class. Also in this case the prevalence of the minority class in the
training set will be much higher than its prevalence in the unlabelled set. More in

6 The word “drift” is also often used in place of “shift” in the machine learning literature; this
applies not only to term “dataset shift ” but also to the various types of shift we will discuss in this
section.

10 1 The Case for Quantification

Fig. 1.3 Example of distribution shift in the RCV1-v2 test collection.

general, when using active learning in order to build the training set, dataset shift
will be present regardless of the active learning technique used (i.e., relevance
sampling or other), for the simple fact that all active learning techniques force
the assessor to annotate items in a non-random fashion, and this divergence from
randomness inherently means dataset shift.

Bullets 2 and 3 are both examples of sample selection bias, a term that refers to the
presence of a systematic bias (sometimes intended, sometimes unintended) either in
the process of data collection or in the process of data labelling, and to the fact that
due to this bias the distribution of training examples ends up being different from
the distribution of data in the domain to be modelled.

Figure 1.3 illustrates an example of distribution shift in the well-known RCV1-
v2 test collection (Lewis et al., 2004). This collection consists of one year’s worth
of timestamped news published by Reuters from Aug 20, 1996, to Aug 19, 1997.
The blue curve in Figure 1.3 is the result of binning these 804,414 news stories
into 52 bins, one per week, and computing the prevalence in each bin of one of the
101 classes (class E21) of which the codeframe consists. The x axis indicates the
week on which the prevalence value is to be computed, while the y axis indicates
the corresponding prevalence value. The blue curve represents the true prevalence
values, while the other three curves represent the prevalence values as estimated by
three of the quantification methods that we will discuss in Section 4 (the ACC,
PACC, and SVM(KLD) methods, discussed in Sections 4.2.3, 4.2.4, and 4.3.1,
respectively). The fact that there is distribution shift in this dataset is shown by
the fact that the blue curve is not a flat line; a good quantifier is one that generates
a curve as close to the blue curve as possible. Note that, while there is indeed some
dataset shift here, its magnitude is not high, as shown by the fact that the oscillations

1.5 Dataset Shift and Quantification 11

of the blue curve around the .y = 0.05 line are moderate. Other applicative scenarios
exhibit a much more marked distribution shift.

Note that the presence of dataset shift, and of distribution shift in particular, is
the raison d’être of applications that track class prevalence across different contexts
(i.e., across time, space, or other variables), i.e., of studying quantification. If
we could assume that there is no dataset shift, i.e., that .pL(x, y) always equals
.pU(x, y), the optimal quantification strategy would be to assume that, for each
.y ∈ Y , .pL(y) = pU(y) for all unlabelled samples U . (This trivial strategy, that
we call Maximum Likelihood Prevalence Estimation (MLPE), will be discussed in
Section 4.1.) In other words, the reason for studying and solving quantification lies
in the awareness that dataset shift, and distribution shift in particular, exists.

1.5.1 Types of Dataset Shift and Their Relation to
Quantification

In order to assess the impact of distribution shift on quantification, it is useful to
note that .p(y) may be written as

.p(y) =
∑

x

p(y|x)p(x) (1.3)

When any of .p(y|x) and .p(x) vary in switching from the training data to the
unlabelled data, distribution shift occurs. The case in which .p(x) varies occurs
when certain regions of the feature space are more densely populated in U than
in L while other regions are correspondingly less densely populated in U than in L;
this phenomenon is usually called covariate shift. For instance, the example about
class Terrorism in Bullet 1 above is a case of covariate shift, as is the example in
Bullet 2. Instead, the case in which .p(y|x) varies occurs when the meaning of class
y has changed (where “meaning” is to be understood in the sense of extensional
semantics), and the very same item .x that had label y in L might not have label y in
U ; this phenomenon is usually called concept shift. For instance, the example about
news falling in the HomeNews or Europe classes in Bullet 1 above is a case of
concept shift.

Figure 1.4 (taken from Bella et al., 2014) exemplifies covariate shift, concept
shift, and the distribution shift that derives from them, in graphical form. The plots
are the result of an experiment for a regression task, where labels take values not
on a discrete codeframe but on the set of real numbers (here: on the [0,1] interval),
and where we assume the existence of a single feature x. The top left sub-figure
shows the distribution of the examples in the training set. The top right sub-figure
shows the distribution of the examples in a test set which exhibits neither covariate
shift nor concept shift (i.e., the training set and the test set are IID). The bottom
left sub-figure shows the distribution of the examples in a test set which exhibits no
concept shift (since .p(y|x) is the same as in the training set) but reveals the presence

12 1 The Case for Quantification

Fig. 1.4 Distribution shift and concept shift in regression; the image is from Bella et al. (2014),
where “concept shift” is called (as often happens in machine learning literature) “concept drift”.

of covariate shift (since .p(x) is not the same as in the training set), which in turns
generates distribution shift (.p(y) not being the same as in the training set). The
bottom right sub-figure shows the distribution of the examples in a test set which
exhibits no covariate shift (since .p(x) is the same as in the training set) but reveals
the presence of concept shift (since .p(y|x) is not the same as in the training set),
which also causes distribution shift to happen (.p(y) being different in the training
set and in the test set).

Covariate shift, concept shift, distribution shift, and Equation 1.3 are relevant in
what Fawcett and Flach (2005) have called .X → Y problems, i.e., problems in
which it is the values of the features in .x that probabilistically determine the label
y of .x. An example of an .X → Y learning problem is weather forecasting, since it
is a number of climatic conditions (e.g., pressure, temperature, humidity, etc., that
can be represented in a feature vector .x) that determine whether it is going to snow
or not (a fact that can be represented by a binary dependent variable y), and not the

1.5 Dataset Shift and Quantification 13

other way around. In these cases, if the distribution of climatic conditions shifts, the
probability that it is going to snow shifts too.

It is also useful to note that .p(x) may be written as

.p(x) =
∑

y

p(x|y)p(y) (1.4)

This equation is instead relevant in what Fawcett and Flach (2005) have called
.Y → X problems, i.e., problems in which the class to which a data item .x belongs
probabilistically determines the values of the features in vector .x. An example of
a .Y → X learning problem is authorship attribution, i.e., the task of inferring
the author (from a set of .|Y| candidate authors) of a text of unknown or disputed
paternity (Koppel et al., 2009). Authorship attribution, a task which is usually
carried out by using as features a number of “stylistic” traits that tend to characterise
an author’s writing style, is an .Y → X problem, since it is the fact that a certain
text is, say, Shakespeare’s, that causes it to have certain stylistic characteristics, and
not the other way around. In .Y → X problems, when .p(y) varies across L and U ,
it does so “autonomously” (since y is a cause, and not an effect); this phenomenon
is usually called prior probability shift (Storkey, 2009), or sometimes label shift
(Alexandari et al., 2020).

In the context of text classification, Card and Smith (2018) call the class labels
attached to data items in .X → Y problems extrinsic labels, while they call the
ones in .Y → X problems intrinsic labels. The rationale of these names is that in
.Y → X problems the labels are intrinsic properties of the data item, and precede
the generation of the data item itself, while this is not the case in .X → Y problems.
In other words, in .X → Y problems, whether the label of a data item .x is y or not
is open to subjective interpretation, while it is not in .Y → X problems.

However, it should be noted that it is not always easy to characterise with
certainty a given problem as being of type .X → Y or of type .Y → X ; sometimes
this question looks a bit akin to wondering which of chicken and egg came first. As
a result, different types of shift (covariate shift, concept shift, prior probability shift)
that concur in causing distribution shift may be at play at the same time.

In realistic settings, distribution shift is bound to happen at some scale. Its
magnitude might just be negligible, in which case the performance of a classifier
at deployment will be nearly unaffected, and .pU(y) will be well approximated by
.pL(y). However, in the absence of guarantees stemming from domain expertise, a
cautious approach will include a procedure to monitor distribution shift and, ideally,
a mechanism to adapt to it.7

7 An example test for checking if the class prevalence values have significantly changed from one
labelled set to another is the one discussed in Saerens et al. (2002, §3).

14 1 The Case for Quantification

1.6 Quantification and Bias Mitigation

Quantification is inherently connected to the notion of bias, and to attempts at
mitigating it. This is best explained by looking at the behaviour of the Classify
and Count method in action. To this aim, let us consider IMDb, a dataset of movie
reviews often used for evaluating binary sentiment quantification systems. The
dataset consists of 50,000 documents and is perfectly balanced, i.e., there is an equal
number of Positive and Negative reviews. Let us split the dataset in two equally-
sized, perfectly balanced portions, one used for training purposes and another used
for testing purposes. Let us use the training portion (containing 25,000 documents)
to generate 9 random training samples of 5,000 documents each, at controlled class
prevalence values. Specifically, let us sample random training sets .L10%, .L20%,
.. . ., .L90% with a prevalence value for the class .Positive of .10%, .20%,, .90%,
respectively. Let us use each training set thus generated to train a classifier (in
this case we use an SVM with a linear kernel), and we use each such classifier to
implement a basic Classify & Count approach, thus generating a series of quantifiers
that we denote by CC.10%, CC.20%,, CC.90%. Let us do something similar in the
test portion in order to generate test samples characterised by widely varying class
prevalence values. In particular, let us use a finer-grained grid of prevalence values in
order to generate test sets .U0%, .U5%, .U10%,, .U100% of 500 documents each, and
let us repeat this process 100 times in order to obtain more reliable results. Finally,
we use all of our CC quantifiers to generate predictions for all the test samples.
(Experimental protocols like the one we have described here are rather common
in the quantification literature, and will be the subject of Section 3.4.) The results
of this experiment are reported in Figure 1.5. These plots represent the estimated

0.0 0.2 0.4 0.6 0.8 1.0
true prevalence

0.0

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

pr
ev

al
en

ce

ideal

CC50%

CC10%

CC20%

CC30%

CC40%

CC60%

CC70%

CC80%

CC90%

Fig. 1.5 Diagonal plot showing how CC delivers biased estimators of class prevalence values.

1.6 Quantification and Bias Mitigation 15

prevalence values along the y-axis and the true prevalence values along the x-axis;
we show results averaged across the 100 repetitions, with colour bands representing
standard deviation. Since IMDb is binary, we only report results for the Positive
class. Such a plot is typically called a “diagonal plot”, and will be more thoroughly
discussed in Section 6.3.2.

The most important fact that emerges from this figure is that Classify and Count
generates biased estimators of class prevalence, and is thus (as already anticipated
in Section 1.2) a suboptimal quantification method: its prevalence estimates .p̂Uα (y)

for a class y are always intermediate between the true prevalence .α = pUα (y) in the
unlabelled set .Uα and the prevalence .β = pLβ (y) in the labelled set .Lβ on which
the classifier was trained (where .α, β ∈ [0%, 100%]), and are very often much
closer to the latter than to the former. In other words, the factor that biases the class
prevalence estimators is the class prevalence of the training set: in general, given
sets of data L and U , Classify and Count does not seem to be able to predict class
prevalence values for y much different from .pL(y), even if the true class prevalence
value .pU(y) is faraway from this value. This trend is by no means specific to this
dataset, and naturally arises in many different applicative contexts.

This should not surprise us, since standard learning mechanisms assume that the
training set L and the unlabelled set U are IID, i.e., that .pL(x, y) = pU(x, y);
as a result, the predictor learns from L not only the correlation between features
and labels (i.e., .p(x, y)), but also the prevalence values of the labels (i.e., .p(y)).
An additional fact that emerges from Figure 1.5 is that the more the training set is
imbalanced, the stronger this effect is; in fact, this effect is strongest in the extreme
cases concerning the L.10% and L.90% datasets, while it is weakest in the perfectly
balanced L.50% dataset.

As much recent research on the fairness and accountability of machine learning
methods shows Mehrabi et al. (2019), sample selection bias may be a serious
problem, in that it may propagate stereotypes and lead to incorrect decision-
making. As an example, suppose our aim is to estimate the prevalence of class
AfricanAmerican in an unlabelled set representing patients not covered by insur-
ance (Elliott et al., 2009). If the prevalence of this class is .10 in the training
set L, the estimate .p̂(AfricanAmerican) may be close to .10 even if the true
prevalence of AfricanAmerican in U is, say, .50. This may lead to underestimating
racial disparities in healthcare, misguided public health decisions, and diversion of
precious resources.

The goal of “genuine” quantification methods (i.e., methods different from
Classify and Count) is thus to eliminate, or at least mitigate, this bias; aside from
Classify and Count, Figure 1.6 plots the results of CC along with two other methods
for learning to quantify (in this case, all methods are trained on a perfectly balanced
subset of 5,000 documents), and the fact that the curves corresponding to these other
methods are closer to the diagonal line than the Classify and Count curve, shows
that these other methods succeed, in varying degrees, in mitigating this bias. More
on this in the sections to follow.

16 1 The Case for Quantification

Fig. 1.6 Diagonal plot showing quantification methods that succeed in mitigating bias for the
IMDb dataset.

1.7 Structure of This Book

In the above sections we have motivated why quantification is an interesting
problem, why it should be addressed as a task of its own instead of as a byproduct
of classification, how it is rooted in the fundamental problem of dataset shift, and
how one of its goals is to mitigate the bias of which Classify and Count suffers.

The rest of this book is structured as follows.
Section 2 examines the applications of quantification. Special emphasis is

given to the fields of human inquiry which are devoted to studying phenomena
only at a collective level, such as market research, political science, the social
sciences, ecological modelling, and epidemiology. However, we also pay attention
to quantification as a means to improve, in scenarios characterised by distribution
shift, the accuracy of classification, and this may in turn have an impact on many
diverse fields and applications.

In Section 3 we turn our attention to the issue of how to experimentally evaluate
quantification algorithms. A large part of this section is devoted, as should be
expected, to discussing the various measures that have been proposed over the
years for evaluating quantifiers. However, we also pay attention to the different
experimental protocols that have been used in different works for carrying out the
evaluation, protocols that differ essentially in terms of the stand they take towards
relying or not on artificially generated samples.

Section 4 is devoted to presenting supervised learning methods for performing
quantification, starting with “aggregative” methods (i.e., methods that involve the
classification of individual items as a preliminary step) and ending with “non-
aggregative” ones (i.e., methods that analyse the sample “holistically”, without

1.7 Structure of This Book 17

issuing individual classification decisions). In the course of this discussion, attention
is paid both to methods that rely on “general-purpose” learners (i.e., ones that had
originally been designed for tasks other than quantification) and to methods that are
based on “special-purpose” learners (i.e., learners designed with quantification in
mind).

In Section 5 we look at some advanced, “niche” topics, including quantification
for ordinal codeframes, regression quantification, text quantification in cross-lingual
settings, quantification for networked data, quantification for data streams, and
others.

Section 6 takes a look back at the historical development of quantification as a
task, and how (as many other tasks) it has witnessed independent contributions from
researchers coming from different areas (machine learning, data mining, statistics,
information retrieval), sometimes unaware of the developments that had gone on in
other areas. This section also describes publicly available software packages and a
brief tour of experimental results and visualisation tools to present them. Finally,
we look at related tasks, spelling out the differences between them and learning to
quantify. We conclude in Section 7, hinting at open problems and possible areas of
further investigation.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Applications of Quantification

Broadly speaking, there are two reasons why one might want to perform supervised
prevalence estimation:

1. The first is that the estimated class prevalence values may serve the purpose
of improving the accuracy or the fairness of a classifier. It is mostly machine
learning researchers who have investigated supervised prevalence estimation
from this angle, a task which they normally call (class) prior estimation. We
look at this type of applications in Sections 2.1 and 2.2.

2. The second is that the estimated class prevalence values may be applicatively
interesting by themselves, i.e., obtaining them is the final goal. It is mostly data
mining / statistics / text mining researchers who have taken this angle, and it is
here that the term quantification has been coined (by Forman, 2005) and adopted.
We look at this type of applications in Sections 2.3 to 2.8.

2.1 Improving Classification Accuracy

The presence of dataset shift can damage the accuracy of a machine-learned
classifier, because essentially all classifier training algorithms are based on the
IID assumption (i.e., perform at their best when the training set L and the set
U of unlabelled items are IID), an assumption which dataset shift invalidates. A
particularly illuminating example of why distribution shift, of all the types of dataset
shift that can occur, can make a classifier perform sub-optimally, is the Bayes
optimal classifier, which is given by

.

h(x) = argmax
y

p(y|x)

= argmax
y

p(x|y)p(y)

p(x)

(2.1)

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_2

19

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2
https://doi.org/10.1007/978-3-031-20467-8_2

20 2 Applications of Quantification

This equation shows that the posterior probabilities .p(y|x) generated by the
classifier (and, in turn, the classification decision .argmaxy p(y|x)) depend on
the class prevalence values .p(y), which are estimated on L. In the presence of
distribution shift betweenL andU this estimation will be inaccurate, and the quality
of the posterior probabilities (and of the final decision) will be negatively influenced.
For instance, if .pU(y) > pL(y), then .p(y|x) as deriving from Equation 2.1 will be
smaller than it should be, and y will have a lower-than-ideal chance to be picked as
the label for .x.

In order to improve the quality of both the posterior probabilities and the
classification decisions generated by the classifier, we would need to use, in
Equation 2.1, the value .pU(y) in place of the value .pL(y) that is normally used.
Since .pU(y) is unknown, one possibility is to use quantification methods to estimate
it.

More precisely, what the use of quantification methods allows to do is to improve
the calibration of the posterior probabilities. An intuition of what “calibrated
probabilities” means is given by the following example. For instance, if only 10%
of all the data items .x for which .p(y|x) = .5 indeed belong to y, we can say that
the classifier has overestimated the probability that these items belong to y, and that
their posteriors are thus inaccurate; if this percentage is instead 90%, we can say
that the classifier has underestimated this probability, again resulting in inaccurate
posteriors. Indeed, we say (see e.g., Flach, 2017) that the posteriors .p(y|x), where
the data items .x belong to a sample .σ , are (perfectly) calibrated (i.e., accurate)
when, for all .a ∈ [0, 1], it holds that1

.
|{x ∈ σ | p(y|x) = a,�(x) = y}|

|{x ∈ σ | p(y|x) = a}| = a (2.2)

Even assuming that our learner generates classifiers that tend to return well-
calibrated probabilities, the classifier is calibrated for the training set L, which
means that, in the presence of distribution shift, it cannot be calibrated for U too.
The posteriors .p(y|x) can be re-calibrated (i.e., tuned on the unlabelled data) by
multiplying them by .pU(y)/pL(y), but in order to do this, .pU(y) needs to be
estimated, which is where quantification comes into play. Well calibrated proba-
bilities are important in a number of tasks, including (aside standard classification,
as argued earlier in this section) (a) cost-sensitive classification (Elkan, 2001), (b)
risk assessment and minimisation (as in credit scoring Hand and Henley, 1997 or
in technology-assisted review Oard et al., 2018), and (c) ranking classes in terms of
their suitability to a data item (Makris et al., 2007).

Most works that use quantification in order to improve classification accuracy do
so, as explained above, by trying to improve the quality of the posterior probabilities;

1 Perfect calibration is usually unattainable on any non-trivial dataset; however, calibration comes
in degrees (and the quality of calibration can indeed be measured, via functions such as calibration
error), so efforts can be made to obtain posteriors that are as close as possible to their perfectly
calibrated counterparts.

2.1 Improving Classification Accuracy 21

this is the route that Alaíz-Rodríguez et al. (2011), Saerens et al. (2002), Vucetic
and Obradovic (2001), Xue and Weiss (2009), and Zhang and Zhou (2010) follow.
A different line of research is that of Balikas et al. (2015), who use quantification for
optimising the parameters of the classifier in semi-supervised classification contexts
in which there are not enough labelled validation data to optimise the parameters on.

2.1.1 Word Sense Disambiguation

Chan and Ng (2005, 2006) show that Word Sense Disambiguation (WSD) is a
particularly interesting application context in which one might want, as discussed
above, to improve the quality of the posterior probabilities with the goal of
improving classification accuracy. WSD is the task of predicting, given a natural
language sentence in which an ambiguous word occurs, which of the senses that
this word has is the intended one. For each word it is assumed that there are a finite
number of senses and that these senses are known in advance; as a result, this is
a classification task, where the occurrence of the word is the item to classify and
the senses of the word are the classes. As a result, word sense disambiguators are
usually classifiers trained on corpora of sense-tagged texts.

However, these classifiers are often influenced by the sense priors of the corpora
they have been trained on. For instance, assume that the word to disambiguate is
bank, that one of its senses is that of a financial institution (as in the bank
round the corner) and another of its senses is that of a hydraulic artefact
(as in the banks of river Thames). Assume that such a classifier has been
trained on a corpus L of financial texts; in this case the prevalence of the former
sense will be much larger than that of the latter sense. Assume also that the trained
classifier is used to disambiguate a set U of texts about hydraulic engineering; in this
case many occurrences of word bank will have the latter sense but will be wrongly
attributed to the former one, since the classifier is biased towards the financial sense
of the word. One might thus want to recalibrate on the unlabelled set U the posterior
probabilities of the different word senses, and the way Chan and Ng (2005, 2006)
do so is by using quantification in the way discussed above.

Note that this is just an instance of the general process of adapting a classifier
trained on a “source” domain to a different, “target” domain, a process known as
transfer learning (Vilalta et al., 2011) which has countless applications. Since no
part of the process described above is specific to word sense disambiguation, this
suggests that quantification may play an important role in several other contexts in
which transfer learning is used.

22 2 Applications of Quantification

2.2 Fairness

2.2.1 Improving Fairness

Quantification can be used to improve not only the accuracy of a classifier h but also
its fairness, i.e., its ability to avoid propagating prejudice, inequity, and partisanship.
Biswas and Mukherjee (2021) use quantification in order to make sure that a
classifier h does not promote discrimination with respect to a sensitive attribute,
such as race or gender, and do so by introducing the notion of Proportional Equality
(PEq). Suppose we mark a given attribute s as “sensitive” or “protected”, i.e., we
want to impose that it should not be a basis for discrimination. For the sake of
exposition, let us consider binary sex as sensitive, with class values .c ∈ S = {♂, ♀}.
It might well be that our training set L is sex-biased, i.e., for a certain class y it
happens that .pL(y|♂) (the prevalence of y in the set of male individuals belonging
to L) is substantially different from its female counterpart .pL(y|♀); for instance, if
y corresponds to the class of Engineers, it might happen that .pL(y|♂) � pL(y|♀).
It might also happen that our set U of unlabelled items does not have this bias, i.e.,
it does not hold that .pU(y|♂) � pU(y|♀). In this case, we would not want the bias
in L to influence the way the data in U are classified.2 This can be achieved by
imposing proportional equality, i.e., imposing that

.PEq =
∣
∣
∣
∣
∣

ph
U(ŷ|♂)

ph
U (ŷ|♀)

− pU(y|♂)

pU (y|♀)

∣
∣
∣
∣
∣
≤ ε (2.3)

where .ph
U(ŷ|c) represents (see Table 1.1) the fraction of members of sample U

that belong to c and to which classifier h has assigned class y. In other words,
Equation 2.3 prescribes that the way the labels assigned by the classifier are
distributed in U is “fair”, i.e., reflects the way they are actually distributed in U .
Of course, this latter distribution is unknown; the idea is thus to estimate it via
quantification methods, and plug the resulting estimate of PEq into an optimisation
procedure aimed at minimising it.

2 A well-known example comes from machine translation. In the past, it was reported that services
such as Google Translate or Microsoft Translator, when translating into English from gender-
neutral languages such as Turkish (where, e.g., the personal pronoun “o” is used for males and
females alike), tended to associate words such as “doctor” to male pronouns (“O bir doktor” .→
“He is a doctor”), while they tended to associate words such as “cook” to female pronouns (“O
bir ahci” .→ “’She is a cook’), presumably due to gender bias present in the text corpora the
translation service had been trained on. See (Emel Ince, Do the footprints of stereotyping and
gender bias follow us in online environments?, 2018, https://www.capstan.be/do-the-footprints-
of-stereotyping-and-gender-bias-follow-us-in-online-environments/, retrieved on Feb 28, 2020)
for the full story.

https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/
https://www.capstan.be/do-the-footprints-of-stereotyping-and -gender-bias-follow-us-in-online-environments/

2.2 Fairness 23

2.2.2 Measuring Fairness

Quantification methods are also suited to “measuring (classifier) fairness under
unawareness”, i.e., providing estimates of the fairness of classifiers with respect
to a sensitive attribute (e.g., race, sex) in situations where the values of the sensitive
attribute are not available at classifier training and/or test time. This is a common
setting in practice, due to several factors, including legislation on demographic
data collection (Bogen et al., 2020), privacy-by-design standards, and a data
minimisation ethos (Andrus et al., 2021). For this reason, the problem of measuring
fairness under unawareness has become important for many practitioners interested
in evaluating the differential impact of their classifiers across salient subpopulations,
identified by sensitive attributes whose ground truth values are not known (Holstein
et al., 2019).

Fabris et al. (2021) adapt quantification approaches to tackle the fairness-under-
unawareness problem. For the sake of exposition, let us focus on “demographic
parity” (Barocas et al., 2019; Calders and Verwer, 2010), a measure of classifier
fairness focused on the difference in the values of “acceptance rate” (i.e., the
fraction of data items that are assigned the class of interest) across different
subpopulations (determined by sensitive attribute s) for a classifier .k : X → Y ,
issuing predictions .k(x) for a target variable (e.g., employability) across the data
points (e.g., candidates).3 Let us consider again, for the sake of exposition, binary
sex as the sensitive attribute s, with class values .c ∈ S = {♀,♂}, and employability
as the target variable, with class values .y ∈ Y = {⊕,�} (where we assume that .⊕
stands for “Hire” and .� stands for “Turn down”). The demographic disparity (DD)
of classifier k with respect to sensitive attribute s is defined as

.DD(k, s, σ) = pk
σ (⊕̂|♀) − pk

σ (⊕̂|♂) (2.4)

where

.pk
σ (⊕̂|c) = pk

σ (c|⊕̂)
pk

σ (⊕̂)

pσ (c)
(2.5)

is the acceptance rate for class c, and where Equation 2.5 is just an application
of Bayes’ theorem. Under this measure, classifiers are considered fair if their DD
is close to zero, while extreme values of .−1 or .+1 indicate maximum unfairness,
since the difference in acceptance rates across sensitive subpopulations is maximum.
If .k(x) represents the employability of candidates, k as applied to .σ is considered
maximally fair under DD if the probability .pk

σ (⊕̂) of being hired is the same for

3 In this section, we let .k(x), instead of .h(x) as defined in Table 1.1, denote the hard classifier
issuing predictions in .Y , since here sensitive attributes in .S are the target of quantification. In other
words, we reserve the notation .h(x) for a hard classifier issuing predictions in the same domain of
the quantification task.

24 2 Applications of Quantification

males and females, which would mean that .DD(k, s, σ) = 0. Due to the difficulties
in demographic data procurement outlined above, the values for sensitive attribute s

are often unknown at classifier training and/or test time. The value of .pk
σ (⊕̂|c) can

be computed if we have reliable estimates of groupwise prevalence values .pk
σ (c|⊕̂)

and .pk
σ (c|�̂), since Equation 2.5 can be re-written as

.pk
σ (⊕̂|c) = pk

σ (c|⊕̂)
pk

σ (⊕̂)

pk
σ (⊕̂) · pk

σ (c|⊕̂) + pk
σ (�̂) · pk

σ (c|�̂)
(2.6)

In other words, since .pk
σ (⊕̂) and .pk

σ (�̂) are available, DD.(k, s, σ) (Equation 2.4)
can be readily estimated by leveraging quantificationmethods that provide estimates
.pk

σ (c|⊕̂) and .pk
σ (c|�̂). A necessary requirement for this is the availability of a

(possibly small) auxiliary annotated dataset L in which the values of the sensitive
attribute are the labels. This dataset is to be used for training the quantifier that must
be applied to .σ , and may derive from voluntary data disclosures, surveys, or other
targeted efforts.

However, because of their nature, these datasets are likely to suffer from
selection bias, and unlikely to be fully representative of the deployment conditions.
Fabris et al. (2021) show that quantification methods are particularly suited to
tackle the fairness-under-unawareness problem, as they are robust to the inevitable
distribution shift that derives e.g., from selection bias. Moreover, the authors show
that quantification methods can effectively decouple the (desirable) objective of
measuring classifier fairness from the (undesirable) side effect of allowing the
inference of the sensitive attribute values of individuals, thus reducing the potential
for model misuse at the individual level (e.g., profiling).

2.3 Sentiment Analysis

Sentiment classification, the task of classifying a piece of text about a certain
object as expressing a positive, neutral, or negative sentiment toward that object,
has become a ubiquitous enabling technology, with applications in many fields,
including financial news analysis, brand positioning and reputation management,
stock market prediction, customer relationships management, and others.

Of interest to us is the fact that, while in some applications the sentiment of a spe-
cific individual is of interest, in other cases the application requirements only involve
assessing the sentiment of a certain population (Esuli and Sebastiani, 2010b); for
instance, while customer relationship management is typically an application of the
former type, brand positioning is usually concerned with collective sentiment only.
In particular, Gao and Sebastiani (2016) observe that most endeavours having to
do with sentiment classification in Twitter are really about sentiment quantification,
since hardly anybody who sets out to classify tweets by sentiment, is interested in
the sentiment expressed in specific, individual tweets.

2.4 Social and Political Sciences 25

Collective sentiment is often an object of study in the social and political
sciences, as well as in market research; much of what is discussed in the next
two sections, which are devoted to applications in these disciplines, touches on
sentiment-related issues too.

2.4 Social and Political Sciences

The social and political sciences are disciplines in which individual cases hardly
matter, and where the interest is instead on phenomena that require analysis at the
aggregate level.

One of the many examples of this (and of the rising field of computational
social science) is illustrated in Figure 2.1 (from Dodds et al., 2011). Here, the
authors set out to study the temporal patterns of happiness in the population
of Twitter users. Essentially, what the authors do is to engage in some type of
sentiment classification (Happy vs. Unhappy) that detects whether a certain tweet
denotes happiness or unhappiness, bin the results according to the time and date
the corresponding tweets were issued, and plot the Happy and Unhappy relative
frequencies of the corresponding bins on a temporal scale. This endeavour has two
characteristics that are of interest to us. The first is that the objects of interest (the
tweets) are unlabelled, i.e., it is not known (and it is not possible to deterministically
determine) whether they are representative of the class Happy or not. The second
is that the authors are not interested in individual tweets, but in the big picture,

Fig. 2.1 Temporal patterns of happiness as resulting from a Twitter study (from (Dodds et al.,
2011)).

26 2 Applications of Quantification

Fig. 2.2 Temporal trend in the proportions of tweets supporting or opposing military intervention
in Egypt during the “Arab spring” in summer 2013 (from Borge-Holthoefer et al., 2015).

i.e., in the proportions (at different time points) of tweets that belong or do not
belong to class Happy. This is thus a case where quantification (actually: sentiment
quantification) techniques could have been applied. Yet a further example is reported
in Figure 2.2 (from Borge-Holthoefer et al., 2015), where the authors mine the
Twittersphere in order to determine (among other things) the prevalence values
of the pro-military-intervention stance vs. the against-military-intervention stance
concerning the summer 2013 “Arab spring” in Egypt. Again, we have a combination
of unlabelled data and interest at the aggregate level only, which would have made
this research suitable for the application of stance quantification (see Walker et al.,
2012).

Concerning the fact that social scientists are interested in phenomena that require
analysis at the aggregate level, we simply echo the words of Hopkins and King
(2010), who have been the first to use a non-trivial quantification method (i.e., one
different from “classify and count”) for political analysis reasons:

When social scientists use formal content analysis, it is typically to make generalisations
using document category proportions. (. . .)
Policy-makers or computer scientists may be interested in finding the needle in the haystack
(. . .) but social scientists are more commonly interested in characterising the haystack. (. . .)
Although computer scientists have methods for automated content analysis, most are
optimised to classify individual documents, whereas social scientists instead want gener-
alisations about the population of documents, such as the proportion in a given category.

In their work, these authors use the ReadMe algorithm (that we will analyse in detail
in Section 4.4.1) with the aim of estimating the prevalence of different political
candidates in bloggers’ preferences through an analysis of their blog posts. In other
works in a similar spirit, researchers have variously tried to estimate the distribution

2.5 Market Research 27

of press releases related to legislators’ credit claiming efforts (Grimmer et al., 2012),
to estimate the prevalence of different types of censored news in Chinese media
(King et al., 2013), and to estimate the distribution of citizens’ political preferences
by performing sentiment analysis on tweets (Ceron et al., 2014).

It has to be noted that, while the above-mentioned works use a quantification
method other than Classify and Count, the vast majority of works in the social and
political sciences that make use of supervised learning use Classify and Count (see
Mandel et al., 2012 for an example), no doubt due to a lack of awareness of the
sub-optimality of this strategy, of the existence of better alternatives, and of the
very existence of quantification as a task. This state of affairs is not limited to the
social and political sciences, though, and cuts across all the disciplines to which
quantification has been applied (or could be applied), and which will be mentioned
in the next sections.

2.5 Market Research

The goal of market research is to obtain information concerning the desires and
needs of actual or potential customers of products or services. This information is
usually collected through surveys, conducted by a survey specialist and involving a
number of respondents. Conducting a survey usually involves a questionnaire, i.e., a
list of questions which respondents are asked to answer. The majority of questions to
be found in questionnaires are of the “closed” type, where the respondent is required
to tick one of a predefined set of answers. Open (a.k.a. “open-ended”) questions
instead involve returning a textual answer.When computing the results of the survey,
in order to manage open questions the survey specialist first defines a set of classes
of interest for the given application (e.g.,HatesSitComs,WantsMoreSoaps, etc.,
for a survey run on behalf of a TV network), and then classifies (either manually
or via a machine-learned classifier) each answer based on its textual content. The
results of the survey are then obtained by checking how many respondents’ answers
have been attributed which class. Quite obviously, the focus on “how many” (as
opposed to “which”) in the previous sentence indicates that the survey specialist
needs, rather than a classifier, a quantifier of open-ended answers.

The use of non-trivial methods for performing quantification for open-ended
answers in market research has been proposed only very recently (Sebastiani,
2018). Unsurprisingly, previous literature (see Esuli and Sebastiani, 2010a for an
example) just reports uses of Classify and Count, for pretty much the same reasons
as described in Section 2.4.

28 2 Applications of Quantification

2.6 Epidemiology

Epidemiology is a discipline with traits analogous to the social and political
sciences, since the objects of study are individuals but the quantities of interest are
only indicators at the aggregate level. Epidemiologists try to obtain estimates of
disease prevalence values across different geographical regions, time periods, age
groups, or gender. (See the example in Figure 2.3.) These prevalence estimates are
important in assessing the spread of infectious diseases, in assessing the impact of
toxic environmental conditions, in planning and allocating health services, and in
measuring health risks.

One way quantification may be applied to epidemiology is in establishing disease
prevalence by analysing, via text quantification techniques, clinical reports of a
textual nature. One such example is reported in Baccianella et al. (2013), where
the authors quantify (using Classify and Count) over a dataset of radiology reports.
Applications such as this are difficult, especially when it comes to rare diseases.
In these cases, as already mentioned in Bullet 2 of Section 1.5, when creating the
training set the classes that represent rare illnesses need to be oversampled, in order
to improve the accuracy of the predictor; the distribution of these classes in the
training data may thus be very different from the distribution in the unlabelled data,
thus generating situations of extreme distribution shift.

Fig. 2.3 The prevalence of tubercolosis in 2019, expressed as number of cases per 100,000
inhabitants (from the Global Tubercolosis Report, Geneva: World Health Organization, 2020).

2.7 Ecological Modelling 29

Another (perhaps more peculiar) application of quantification to epidemiology
that has been reported is the estimation of the prevalence of various causes of death
via “verbal autopsies” (King and Lu, 2008). A verbal autopsy is a textual description
of the symptoms that a deceased person exhibited before dying; this description
may be obtained from family members or other caretakers. Such a description may
be used in order to later establish the causes of death of the deceased in situations
in which a doctor entitled to certify these causes is not available; example such
scenarios are remote villages in developing countries, or in areas faraway from
hospitals. Using a verbal autopsy in such a way can be framed as a supervised
classification problem, using classification schemes where all known causes of death
are organised in a taxonomy: a text classifier classifies the verbal description of
symptoms (which can be represented as a vector of features) and assigns it the
classes in the taxonomy that befit this description. In order to train such a classifier,
training data may be obtained at hospitals, since for patients that have deceased in
a hospital both a description of symptoms obtained from nurses and doctors and
the causes of death as certified by a doctor, are typically available. When these
causes of death are needed for reasons other than epidemiological ones, a classifier
is the desirable tool; for the needs of epidemiology, instead, a quantifier is the most
adequate one. Note that in typical scenarios of the above type, distribution shift is
at play, for various reasons. One reason is the same as mentioned for the analysis of
clinical reports, i.e., rare diseases requiring oversampling for creating the training
data. A second reason is that the training set may have been collected by merging
different datasets from hospitals in different geographical areas. Yet another reason
is that local environmental conditions in the application scenario (e.g., a nearby
toxic industrial plant) may make these conditions irreproducible at training time.
One application of quantification to establishing the prevalence of causes of death
for epidemiological purposes is reported in King and Lu (2008) and King et al.
(2010), where the ReadMe quantification method (to be discussed in Section 4.4.1)
is used.

A further type of application involves analysing social media posts in order
to obtain indicators and trends related to public health. As reported by Daughton
and Paul (2019), “classifying and counting” posts that allow to infer specific
health-related characteristics of the person who has posted them, has been widely
used, for applications ranging from influenza surveillance to measuring attitudes
towards vaccination. However, only Daughton and Paul (2019) themselves, in yet
another influenza surveillance application, have approached these problems by
using quantification methods other than the trivial Classify and Count.

2.7 Ecological Modelling

When attempting to characterise ecosystems in order to allow their management
and preservation, ecologists often need to assess the distribution of certain species
across land and sea. When individual living beings cannot be characterised with

30 2 Applications of Quantification

certainty as belonging to a certain species or not, classification (carried out either
manually or via a trained classifier) needs to be employed. However, ecologists are
often interested in characterising not individual living beings, but entire populations
of them; this is where quantification comes into play. A work in this direction is the
one by González et al. (2017), which applies quantification technology in order to
estimate the distribution of various plankton species in images of sea water samples.

A similar situation arises with land cover (LC) mapping. Given an aerial (e.g.,
satellite) image, LCmapping has to do with characterising howmuch of the territory
represented in the image is covered in, e.g., forest, cultivated land, water, urban
areas, etc. In order to do so, each pixel of the image is classified by an automated
classifier as belonging to one of the above LC types. However, since we are only
interested in predicting howmuch of the territory represented in the image is covered
in a certain LC type, we may replace a classifier with a quantifier. This is the
approach taken by Latinne et al. (2001), who (using the method that we will describe
in Section 4.2.9) perform LC mapping on Landsat satellite images.

A work in the same spirit is Beijbom et al. (2015), where quantification is used to
monitor the world’s coral reefs by performing quantification on underwater images
of seabed cover. Here, the objective is to estimate the percentages of seabed covered
by each of 32 different species (see Figure 2.4), and distribution shift is caused by
the fact that the location where the training images have been acquired is typically
different, and thus exhibits a different distribution of species, from the locations
where the unlabelled images are obtained (see Figure 1.2).

Fig. 2.4 Class prevalence of each of 32 living species in seabed cover as estimated via quantifica-
tion technology (from Beijbom et al., 2015); the different columns represent different samples on
which quantification has been performed.

2.8 Resource Allocation 31

2.8 Resource Allocation

Companies need to carefully plan how to allocate and distribute human resources
to specific departments of the company, and must anticipate the needs of these
departments in order not to be caught off-guard when the amount of work for a
certain department spikes due to unusual circumstances.

In a series of papers, Forman (2005, 2006, 2008) describes an application of
supervised prevalence estimation to resource allocation within a company. His
work consists of automatically classifying the transcripts of phone calls received
at the customer support department of a large IT company, where the classes are
the different types of issues that such a customer support department is routinely
asked to solve. Since the goal is to detect which issues are more prevalent, and thus
need more personnel to be allocated to them, he proposes to use text quantification
(instead of classification) technology. A correct estimation of the prevalence of the
different issues not only allows a more adequate allocation of human resources: if
performed systematically it allows to identify increasingly prevalent issues before
they get out of control, to monitor if the resource allocation thus performed has been
effective, and to focus product re-engineering / redesign efforts on the areas where
this effort is most needed.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 3
Evaluation of Quantification Algorithms

As all other supervised learning algorithms, quantification algorithms must be
subjected to a thorough experimental evaluation, and a pillar of this evaluation is
the mathematical measure to be used. Sections 3.1 to 3.3 thus review the main
evaluation measures for quantification that have been proposed for the various
problems discussed in Section 1.4.

As already hinted in Section 1.1, quantification may be seen as generating a
predicted distribution .p̂ over .Y that approximates a true distribution p over .Y .
Evaluating quantification thus means measuring how well .p̂ fits p. We will thus
be concerned with discussing functions that attempt to measure this goodness-of-
fit; we hereafter use the notation .D(p, p̂) to indicate such a function.

In this book we assume that the evaluation measures we are concerned with are
measures of quantification error, and not of quantification accuracy. The reason for
this is that most, if not all, the evaluation measures for quantification that have been
used so far are indeed measures of error, so it would be slightly unnatural to frame
everything in terms of quantification accuracy. Since anymeasure of accuracy can be
turned into a measure of error (typically: by taking its negation), this is an inessential
factor anyway.

A further problem in evaluating quantification is how we should choose the
dataset and the samples on which to carry out this evaluation, in order for them to
be representative of the scenarios encountered in real-world applications. This is a
particularly thorny issue, since available datasets might not exhibit the type of shift,
or the amount of shift, that we might want our quantifiers to be robust to. Section 3.4
thus discusses the different experimental protocols that have been proposed in the
literature in order to address this problem.

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_3

33

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3
https://doi.org/10.1007/978-3-031-20467-8_3

34 3 Evaluation of Quantification Algorithms

3.1 Measures for Evaluating SLQ, BQ, and MLQ

In this section we will discuss a number of evaluation measures that have been
proposed in the literature for evaluating single-label quantification.1 As mentioned
in Section 1.4, these measures can also be used in order to evaluate binary
quantification and multi-label quantification, since BQ is a special case of SLQ, and
since evaluating the error of a multi-label quantifier can be done by evaluating its
BQ error for each .y ∈ Y . Many of the measures that we discuss here were originally
proposed for BQ, but can be easily extended to deal with SLQ in general; we present
them in their SLQ form, even when they were originally proposed in BQ form.

Essentially all evaluation measures that have been proposed in the quantification
literature are divergences. Formally, a divergenceD is a measure of how a predicted
distribution .p̂ “diverges” (i.e., differs) from the true distribution p, and is such
that (1) .D(p, p̂) = 0 if and only if .p = p̂, and (2) .D(p, p̂) > 0 for all
.p̂ �= p. As an aside, note that two distributions p and .p̂ over .Y are essentially two
nonnegative-valued, length-normalised vectors of dimensionality .|Y|. The literature
on the evaluation measures for quantification thus obviously intersects the literature
on functions for computing the similarity of two vectors.

We here need to stress a key difference between measures of classification accu-
racy and measures of quantification accuracy (or error). The objects of classification
are individual unlabelled items, and all measures of classification accuracy (e.g., .F1)
are defined with respect to a test set of such objects. The objects of quantification,
instead, are samples, and all the measures of quantification error we will discuss
in this book are defined on a single such sample (i.e., they measure how well the
true distribution of the classes across this individual sample is approximated by the
predicted distribution of the classes across the same sample). Since every evaluation
is worthless if carried out on a single object, it is clear that quantification systems
need to be evaluated on sets of samples. This means that every measure that we are
going to discuss needs first to be evaluated on each sample, and then its global score
across the test set (i.e., the set of samples on which testing is carried out) needs to be
computed. This global score may be computed via any measure of central tendency,
e.g., via an average, or a median, or other.

1 The measures discussed in this section are just the most frequently used ones, and are by no means
an exhaustive list. E.g., other functions that have occasionally been used as evaluation measures for
quantification are the Pearson Divergence (Ceron et al., 2016) and the Discordance Ratio (Levin
and Roitman, 2017).

3.1 Measures for Evaluating SLQ, BQ, and MLQ 35

3.1.1 Properties of Evaluation Measures for SLQ, BQ,
and MLQ

The most thorough published study of evaluation measures for SLQ is probably
(Sebastiani, 2020). This paper defines a number of interesting formal properties
that an evaluation measure for SLQ may or may not enjoy, discusses if (and when)
each of these properties is desirable, and analyses whether the evaluation measures
that have been used in the quantification literature enjoy them or not; this process
is typical of the so-called axiomatic approach to “evaluating evaluation”, i.e., to
the study of evaluation measures (Busin and Mizzaro, 2013), an approach that has
also been applied to other tasks such as classification and clustering. A significant
result of this paper is that no existing evaluation measure for SLQ satisfies all the
properties identified as desirable; still, some evaluation measures are proven to be
“less inadequate” than others. We here briefly discuss four main such properties,
mostly by way of examples. Sebastiani (2020) discusses still other properties, but
these are satisfied by all the evaluation measures for quantification proposed in the
literature, and as such are less interesting.

The first property we discuss here is Maximum (MAX). Basically, an evaluation
measure for SLQ that enjoys MAX is one whose values are upper-bounded by a
value .β > 0, which is the same for all .Y and for all p, and which is such that
.D(p, p̂) = β for at least one predicted distribution .p̂, called the perverse (i.e.,
worst possible) estimator. An evaluation measure that enjoys MAX is such that its
range (or better: its image) is independent of the problem setting, and this allows to
easily judge whether a given value of D means high or low quantification error; in
other words, should this range depend on .Y , or on its cardinality, or on the true
distribution p, we would not be able to easily interpret the meaning of a given
value of D. An additional, possibly even more important reason for requiring this
range to be independent of the problem setting is that, in order to test a given
quantification method, the measure needs (as noted above) to be evaluated on a
set of n test samples .σ1, . . . , σn (each characterised by its own true distribution),
and a measure of central tendency across the n resulting values then needs to be
computed. If, for these n samples, the measure ranges on n different intervals, this
measure of central tendency will return unreliable results, since the results obtained
on the samples characterised by the wider such intervals will exert a higher influence
on the resulting value.

The second property is Impartiality (IMP). In essence, an evaluation measure
D that enjoys IMP equally penalises the underestimation of a true prevalence .p(y)

by an amount a (i.e., returning .p̂(y) = p(y) − a) or its overestimation by the
same amount a (i.e., returning .p̂(y) = p(y) + a). This makes sense, because
underestimation and overestimation should be considered equally undesirable,
unless there is a specific reason (i.e., application need) for not doing so; in the latter
case, the measure we choose should make its bias explicit, i.e., include a tunable
parameter (similar in spirit to the .β parameter of .Fβ) that allows specifying how
much underestimation should be penalised more/less than overestimation.

36 3 Evaluation of Quantification Algorithms

The third property is Relativity (REL). In a nutshell, an evaluation measure
that satisfies REL sanctions that an error of absolute magnitude a (i.e., the error
made when .p̂(y) = p(y) ± a) is more serious when the true class prevalence is
smaller. In some applications of quantification REL is indeed desirable. Consider,
as an example, the case in which the prevalence .p(y) of a certain cause of death
y in a population has to be estimated, as discussed in Section 2.6, from “verbal
autopsies”. In this case, the evaluation measure should arguably enjoy REL; in fact,
predicting .p̂(y) = 0.0101 when .p(y) = 0.0001 is a much more serious mistake
than predicting .p̂(y) = 0.1100 when .p(y) = 0.1000, since in the former case a
very rare cause of death is overestimated by two orders of magnitude, while the
same is not true in the latter case.

The fourth property is Absoluteness (ABS), and is the opposite of REL. Basi-
cally, an evaluation measure that satisfies ABS sanctions that an error of absolute
magnitude a should be penalised independently of the value of the true class preva-
lence. Of course, an evaluation measure cannot enjoy REL and ABS at the same
time; however, while there are applications that require REL, other applications
require ABS. Consider an example in which we want to predict the prevalence of
the NoShow class among the passengers booked on a flight with actual capacity
n (so that the airline can “overbook” additional .p̂(NoShow) × n seats). Here the
evaluation measure should enjoy ABS, since returning .p̂(NoShow) = 0.05 when
.p(NoShow) = 0.10 or returning .p̂(NoShow) = 0.15 when .p(NoShow) = 0.20
brings about the same cost to the airline (i.e., that .0.05×n seats will remain empty).

Note that, while REL and ABS are mutually exclusive, they do not cover the
entire space of possibilities, i.e., there can be measures that enjoy neither REL nor
ABS. One such measure is cosine distance, which, as it can be shown, considers an
error of absolute magnitude a less serious when the true class prevalence is smaller.2

We will frame the discussion of evaluation measures for SLQ in terms of these
four properties; for each such property and for each measure discussed in the
following sections, Sebastiani (2020) presents proofs of whether the measure enjoys
or does not enjoy the property.3

2 Cosine distance will not be discussed any further in this book, because it has never been proposed
or used as an evaluation measure for SLQ, and because a measure that enjoys neither REL notABS
is arguably of little use in any application of quantification.
3 Note that there are several other properties that the literature on divergence functions and distance
functions discusses, and that we do not consider here because we do not deem them interesting
when it comes to evaluating quantification. For instance, one of them is symmetry, i.e., the property
that states that for any two distributions .p′ and .p′′ it holds that .D(p′, p′′) = D(p′′, p′); in
evaluating quantification we are not interested in symmetry, because our two distributions are
not just any two distributions, but are always a true distribution and a predicted distribution, and
switching their roles is not interesting.

3.1 Measures for Evaluating SLQ, BQ, and MLQ 37

3.1.2 Bias

Bias (B), defined as

.B(y) = p̂(y) − p(y) (3.1)

is technically not an evaluation measure for quantification as we have defined it
before, since it does not apply to an entire distribution p but only to a specific label
y. Even when using it in a binary setting, one thus needs to specify which of the two
classes it is applied to. It is a fairly simplistic measure, and we cover it only since
it has been used in several papers on quantification (e.g., Forman, 2005, 2006; Tang
et al., 2010).

A positive .B score indicates that the prevalence of y has been overestimated,
while a negative score indicates that it has been underestimated. If used as an
evaluation measure for quantification, an obvious problem with .B is that averaging
the scores across different classes brings about unintuitive results, since the positive
bias for one class and the negative bias for another class cancel each other out. The
same problem occurs when sticking to the same class but averaging across different
samples.

As a result, this measure can at most be used to determine if a method has
a tendency to underestimate or overestimate the prevalence of a specific class
(typically: the minority class) in BQ, and not as an evaluation measure for general
use.

3.1.3 Absolute Error and its Variants

Absolute Error (AE), defined as

.AE(p, p̂) = 1

|Y|
∑

y∈Y
|p̂(y) − p(y)| (3.2)

is similar, but enforces the notion that positive and negative bias are equally
undesirable. As a result, averaging it across several classes, or several samples, is
not problematic.

As shown in Sebastiani (2020), .AE enjoys IMP and ABS but does not enjoy
MAX (and, since it enjoys ABS, does not enjoy REL either), since .AE ranges
between 0 (best) and

.zAE =
2(1 − min

y∈Y
p(y))

|Y| (3.3)

(worst), i.e., its range depends on the true distribution p and on the cardinality of .Y .

38 3 Evaluation of Quantification Algorithms

If viewed as a generic function of dissimilarity between vectors (and not just
probability distributions), .AE is nothing else than the well-known “city-block
distance” normalised by the number of classes. Note that .AE often goes by the
name of Mean Absolute Error; for simplicity, for this and the other measures we
discuss in the rest of this book we will omit the qualification “Mean”, since every
measure mediates across the class-specific values in its own way. Some recent
papers Beijbom et al. (2015); González et al. (2017) that tackle quantification in
the context of ecological modelling discuss or use, as an evaluation measure for
quantification, Bray-Curtis dissimilarity (BCD), a measure popular in ecology for
measuring the dissimilarity of two samples. However, when used to measure the
dissimilarity of two probability distributions, BCD defaults to .AE; as a result we
will not analyse BCD any further.

Normalised Absolute Error (NAE), defined as

.NAE(p, p̂) = AE(p, p̂)

zAE
=

∑
y∈Y |p̂(y) − p(y)|
2(1 − min

y∈Y
p(y)) (3.4)

is a version of .AE that always ranges between 0 (best) and 1 (worst), and thus enjoys
MAX. However, .NAE does not enjoy ABS (while at the same time not enjoying
REL either).

A slight variant of absolute error is Squared Error (SE), defined as

.SE(p, p̂) = 1

|Y|
∑

y∈Y
(p̂(y) − p(y))2 (3.5)

It obviously shares the same pros and cons of .AE, and we will not discuss it any
further.

For .AE and for all the other evaluation measures for quantification discussed in
this book, Table 3.1 (reproduced from Sebastiani (2020)) lists the papers where the
measure has been proposed and those which have subsequently used it for evaluation
purposes.

3.1.4 Relative Absolute Error and its Variants

Relative Absolute Error (RAE), defined as

.RAE(p, p̂) = 1

|Y|
∑

y∈Y

|p̂(y) − p(y)|
p(y)

(3.6)

is a refinement of AE that enforces REL by making AE relative to true class
prevalence. RAE enjoys IMP and REL but does not enjoy MAX and (obviously)

3.1 Measures for Evaluating SLQ, BQ, and MLQ 39

Table 3.1 Research works about quantification where the evaluation measures for quantification
discussed in this book have been first proposed (.�) and later used (�).

.A
E

.N
A
E

.R
A
E

.N
R
A
E

.S
E

.D
R

.K
L
D

.N
K
L
D

.P
D

Saerens et al. (2002) .�
Forman (2005) � .�
Forman (2006) � �
Forman (2008) � �
Tang et al. (2010) � �
Bella et al. (2010) � .�
González-Castro et al. (2010) � .�
Zhang and Zhou (2010) �
Alaíz-Rodríguez et al. (2011) � �
Milli et al. (2013) �
Barranquero et al. (2013) �
González-Castro et al. (2013) � �
Esuli and Sebastiani (2014) � .� � .� � .�
du Plessis and Sugiyama (2014) �
Esuli and Sebastiani (2015) � �
Gao and Sebastiani (2015) � � � � � �
Barranquero et al. (2015) � �
Beijbom et al. (2015) �
Milli et al. (2015) �
Gao and Sebastiani (2016) � � � � � �
Ceron et al. (2016) � .�
Kar et al. (2016) �
Nakov et al. (2016) �
González et al. (2017) �
du Plessis et al. (2017) �
Levin and Roitman (2017) .�
Pérez-Gállego et al. (2017) � �
Tasche (2017) �
Nakov et al. (2017) � � �
Maletzke et al. (2017) � � �
Maletzke et al. (2018) �
Esuli et al. (2018) � � �
Card and Smith (2018) �
Moreira dos Reis et al. (2018a) �
Moreira dos Reis et al. (2018b) � �

(continued)

40 3 Evaluation of Quantification Algorithms

Table 3.1 (continued)

.A
E

.N
A
E

.R
A
E

.N
R
A
E

.S
E

.D
R

.K
L
D

.N
K
L
D

.P
D

Sanya et al. (2018) �
Keith and O’Connor (2018) �
Fernandes Vaz et al. (2019) �
Pérez-Gállego et al. (2019) � �
Spence et al. (2019) �
Hassan et al. (2020) �
Esuli et al. (2020) � � �
Qi et al. (2020) � � �
Alexandari et al. (2020) �
Fabris et al. (2021) � �
Biswas and Mukherjee (2021) �
Moreo and Sebastiani (2021) � �
Moreo et al. (2021a) �
Schumacher et al. (2021) � �
Moreo and Sebastiani (2022) � �
Jerzak et al. (2022) �

ABS. It does not enjoyMAX because it ranges between 0 (best) and

.zRAE =
|Y| − 1 +

1 − min
y∈Y

p(y)

min
y∈Y

p(y)

|Y| (3.7)

(worst), i.e., its range depends on the true distribution p and on the cardinality of .Y .
Normalised Relative Absolute Error (NRAE), a version of RAE that ranges between
0 (best) and 1 (worst), can thus be obtained as

.NRAE(p, p̂) = RAE(p, p̂)

zRAE
=

∑

y∈Y

|p̂(y) − p(y)|
p(y)

|Y| − 1 +
1 − min

y∈Y
p(y)

min
y∈Y

p(y)

(3.8)

However, it can be shown that NRAE does not enjoyREL (and does not enjoyABS
either), so its name “Normalised Relative Absolute Error” is somehow a misnomer.

3.1 Measures for Evaluating SLQ, BQ, and MLQ 41

Note that both .RAE and .NRAE may be undefined due to the presence of zero
denominators. To solve this problem, in computing .RAE and .NRAE we can smooth
both .p(y) and .p̂(y) via additive smoothing, i.e., we take

.p(y) = ε + p(y)

ε|Y| +
∑

y∈Y
p(y)

(3.9)

where .p(y) denotes the smoothed version of .p(y) and the denominator is just a

normalising factor (same for the .p̂(y)’s); the quantity .ε = 1
2|U | is often used as a

smoothing factor. The smoothed versions of .p(y) and .p̂(y) are then used in place of
their original non-smoothed versions in Equations 3.6 and 3.8; as a result, .RAE and
.NRAE are always defined. The same method will also be used for all other measures
that may incur in the problem of zero denominators (see e.g., Equation 3.10), and
that we will encounter in the next sections.

3.1.5 Kullback-Leibler Divergence and its Variants

Forman (2005) proposes to evaluate SLQ by means of normalised cross-entropy,
better known as Kullback-Leibler Divergence (KLD). KLD, defined as

.KLD(p, p̂) =
∑

y∈Y
p(y) log

p(y)

p̂(y)
(3.10)

ranges between 0 (best) and .+∞ (worst). .KLD is widely used as an evaluation
measure for SLQ, and it has also been adopted as the official evaluation measure of
the only quantification-related shared task that has been organised so far, Subtask
D “Tweet Quantification on a 2-point Scale” of SemEval-2016 and SemEval-2017
“Task 4: Sentiment Analysis in Twitter” (Nakov et al., 2016, 2017).

The fact that KLD is not upper-bounded means that it does not satisfy MAX.4

Normalised Kullback-Leibler Divergence (NKLD), defined as

.NKLD(p, p̂) = 2
eKLD(p,p̂)

eKLD(p,p̂) + 1
− 1 (3.11)

is a variant of KLD that does enjoy MAX, since it ranges between 0 (best) and 1
(worst). Unfortunately, as shown in Sebastiani (2020), both KLD and NKLD enjoy

4 Actually, the fact that smoothing is used makes KLD upper-bounded, but by a factor that depends
on both p and .Y , which means that KLD does not satisfy MAX anyway. See Sebastiani (2020,
§4.7) for details.

42 3 Evaluation of Quantification Algorithms

none of IMP, REL and ABS, which makes their use as evaluation measures for
quantification questionable.

A further problem of KLD and NKLD is that they score low in terms of
understandability, i.e., look esoteric to the mathematically uninitiated, at least when
compared to the much easier-to-grasp AE ad RAE. A second problem is that their
typical values are usually difficult to make sense of, since genuinely engineered
quantifiers may easily obtain values in .[10−6, 10−2].

A third, related problem is that realistic quantifiers trained by genuinely engi-
neered quantification methods may obtain values that are different by orders of
magnitude, which is something that experimenters may find difficult to interpret. As
an example, assume a (very realistic) scenario in which .|σ | = 1000, .Y = {y1, y2},
.p(y1) = 0.01, and in which three different quantifiers .p̂′, .p̂′′, .p̂′′′ are such
that .p̂′(y1) = 0.0101, .p̂′′(y1) = 0.0110, .p̂′′′(y1) = 0.0200. In this scenario
.KLD ranges on .[0, 7.46], .KLD(p, p̂′) = 4.78e-07, .KLD(p, p̂′′) = 4.53e-05,
.KLD(p, p̂′′′) = 3.02e-03, i.e., the difference between .KLD(p, p̂′) and .KLD(p, p̂′′)
and the difference between .KLD(p, p̂′′) and .KLD(p, p̂′′′) are 2 orders of magnitude
each, while the difference between .KLD(p, p̂′) and .KLD(p, p̂′′′) is no less than 4
orders of magnitude. The increase in error (as computed by .KLD) deriving from
using .p̂′′′ instead of .p̂′ is +632599%. We should add that, if (as noted at the
beginning of Section 3.1) one wanted to average .KLD results across a set of samples,
the average would be completely dominated by the value with the highest order of
magnitude, and the others would have little or no impact.

Unfortunately, switching from .KLD to .NKLD does not help much in this respect
since, for realistic quantification systems, .NKLD(p, p̂) ≈ 1

2 KLD(p, p̂). The
reason is that .NKLD is obtained by applying a sigmoidal function (namely, the
logistic function) to .KLD, and the tangent to this sigmoid for .x = 0 is .y = 1

2x;
since the values of .KLD for realistic quantifiers are (as we have observed above)
very close to 0, for these values the .NKLD(p, p̂) curve is well approximated by
.y = 1

2 KLD(p, p̂). As a measure for evaluating SLQ, .NKLD thus de facto inherits
most of the problems of .KLD .

3.1.6 Which Measure is the Best for SLQ?

Figure 3.1 (adapted from Sebastiani (2020)) plots the six main evaluation measures
discussed in Sections 3.1.3 to 3.1.5 for the binary case. Table 3.2 summarises
instead, in compact form, the properties that these measures enjoy. From this table
it appears evident that no measure proposed so far is completely satisfactory. Which
measure should one adopt then?

KLD and NKLD are the least satisfactory ones, and seem out of the question.
Concerning the others, the problem is that MAX seems to be incompatible with

3.1 Measures for Evaluating SLQ, BQ, and MLQ 43

Fig. 3.1 2D plots and 3D plots (for a binary quantification task) for the six main evaluation
measures mentioned in Sections 3.1.3 to 3.1.5; .p(y1) and .p(y2) are represented as x and .(1 − x),
respectively, while .p̂(y1) and .p̂(y2) are represented as y and .(1−y). Darker areas represent values
closer to 0 (i.e., smaller error) while lighter areas represent values more distant from 0 (i.e., higher
error).

44 3 Evaluation of Quantification Algorithms

Table 3.2 Properties of the
evaluation measures for
quantification discussed in
this book. (Adapted from
Sebastiani (2020)).

MAX IMP REL ABS

.AE No � No �

.NAE � � No No

.RAE No � � No

.NRAE � � No No

.KLD No No No No

.NKLD � No No No

REL / ABS, and vice versa. In order to break the deadlock, it is important to
remember that

1. the argument in favour of REL is that it reflects the needs of applications in
which an estimation error of a given absolute magnitude should be considered
more serious if it affects a rarer class;

2. the argument in favour ofABS is that it reflects the needs of applications in which
an estimation error of a given absolute magnitude should be considered to have
the same impact independently of the true prevalence of the affected class;

3. the main (although not the only) argument in favour of MAX is that, if an
evaluation measure for quantification does not satisfy it, the n samples on which
we may want to compare our quantification algorithms will each have a different
weight on the final result.

Sebastiani (2020, §5.1) contends that Arguments 1 and 2 seem more important than
Argument 3, since they are really about how an evaluationmeasure reflects the needs
of the application; if the corresponding properties are not satisfied, one may argue
that the quantification accuracy (or error) being measured is only loosely related
to what the user really wants. Argument 3, while important, only implies that, if
MAX is not satisfied, (1) results obtained on codeframes of different cardinality will
not be comparable, and (2) results obtained on samples characterised by different
true distributions will not be comparable. Despite this, results obtained by different
systems on the same set of samples, even if this set contains samples that refer to
codeframes of different cardinality, remain comparable.

This suggests that AE and RAE (or their “squared” versions, such as the SE
measure of Section 3.1.3) are the measures of choice; AE should be preferred
when an estimation error of a given absolute magnitude should be considered more
serious when the true prevalence of the affected class is lower, while .RAE should be
chosen when an estimation error of a given absolute magnitude has the same impact
independently of the true prevalence of the affected class.

3.2 Measures for Evaluating OQ 45

3.2 Measures for Evaluating OQ

3.2.1 Earth Mover’s Distance

The most popular measure for evaluating ordinal quantification systems is currently
the Earth Mover’s Distance (EMD – Rubner et al., 1998). EMD, also known as the
Vasers̆teı̆n metric (Rüschendorf, 2001), is a function often used in content-based
image retrieval for computing the distance between colour distributions of two
images (see Levina and Bickel, 2001 for a rigorous probabilistic interpretation of
the EMD). It was first proposed as an evaluation measure for ordinal quantification
in Esuli and Sebastiani (2010b), and was used as the official evaluation measure
of Subtask E “Tweet Quantification on a 5-point Scale” of SemEval-2016 and
SemEval-2017 “Task 4: Sentiment Analysis in Twitter” (Nakov et al., 2016, 2017).

To see the intuition upon which the EMD is based, if the two distributions are
interpreted as two different ways of scattering a certain amount of “earth” across
different “heaps”, the EMD is defined to be the minimum amount of work needed
for transforming one set of heaps into the other, where the work is assumed to
correspond to the sum of the amounts of earth moved times the distance by which
they are moved. EMD may be seen as computing the minimal “cost” incurred
in transforming one distribution into the other, where the cost is computed as
the probability mass that needs to be shuffled around from one class to another,
weighted by the “distance” between the classes involved.

Originally, the EMD is defined for the general case in which a distance .d(y ′, y ′′)
is defined on .Y2. In the much more specific case in which (a) there is a total
order .y1 ≺ . . . ≺ y|Y | on the classes in .Y , and (b) .d(yi, yj) = d(yi, yi+1) +
d(yi+1, yi+2) + . . . + d(yj−2, yj−1) + d(yj−1, yj) for all .1 ≤ i < j ≤ |Y| (as
is the case in ordinal quantification), EMD comes down to the Normalised Match
Distance (NMD) (Sakai, 2018; Werman et al., 1985), defined as

.NMD(p, p̂) = 1

|Y| − 1

|Y |−1∑

j=1

d(yj , y(j+1)) · |
j∑

i=1

p̂(yi) −
j∑

i=1

p(yi)| (3.12)

where .
1

|Y |−1 is just a normalisation factor that allows NMD to range between 0
(best) and 1 (worst).

The rationale of Equation 3.12 is the following. Assume that, in line with
the interpretation of the NMD we have given above, in order to transform the
estimated distribution .p̂ into the true distribution p we need to move some estimated
probability across classes, from the ones where prevalence has been overestimated
to the ones where prevalence has been underestimated. We formalise this by saying
that if .p(yi) has been overestimated there is going to be a positive quantity .(p̂(yi)−
p(yi)) outgoing from class .yi , while if .p(yi) has been underestimated this outgoing
quantity is negative (which means that the incoming quantity is positive). In order
to minimise the travelled distance, it makes sense to transfer probability mass from

46 3 Evaluation of Quantification Algorithms

classes that are next to each other in the total order. The first step, from left to right,
is thus to transfer .|p̂(y1) − p(y1)| from .y1 to .y2 if .(p̂(y1) − p(y1)) is positive, or to
transfer .|p̂(y1) − p(y1)| from .y2 to .y1 if it is negative; in either case the cost of this
transfer is .d(y1, y2) · |p̂(y1) − p(y1)|. Since .p̂(y1) has now been transformed into
.p(y1), the next step is to transfer probability mass from .y2 to .y3. The probability
mass outgoing from .y2 is now .(p̂(y1)+ p̂(y2))− (p(y1)+p(y2)), which is going to
be positive if .y1 and .y2 have altogether been overestimated, and negative otherwise;
in either case the cost of this transfer is .d(y2, y3)·|(p̂(y1)+p̂(y2))−(p(y1)+p(y2))|.
Proceeding in this fashion, .|Y| − 1 probability mass transfers are performed, which
explains Equation 3.12; this also shows that, in the form of Equation 3.12, NMD can
be computed in .|Y| − 1 steps from the estimated and true class prevalence values.

Note that in many practical cases it happens that .d(yi, yi+1) = 1 for all .i ∈
{1, . . . , (|Y| − 1)}, which means that Equation 3.12 simplifies even further.

NMD can be seen as the ordinal equivalent of absolute error; in fact, assuming
that .d(y ′, y ′′) is the same for all .y ′, y ′′ ∈ Y2 (in which case ordinal quantification
defaults to standard single-label quantification), the probabilitymass that needs to be
moved from one class to another, weighted by the distance between the two classes
(though this weighting is inessential, as all inter-class distances are the same) in
order to recover p from .p̂, is exactly absolute error.

3.2.2 Root Normalised Order-Aware Divergence

Another proposed measure for evaluating the quality of OQ estimates is the Root
Normalised Order-aware Divergence (RNOD), proposed by Sakai (2018) and
defined as

.RNOD(p, p̂) =
(∑

yi∈Y∗
∑

yj ∈Y d(yj , yi)(p(yj) − p̂(yj))
2

|Y∗|(|Y| − 1)

) 1
2

(3.13)

where .Y∗ = {yi ∈ Y|p(yi) > 0}.
However, RNOD is a more controversial measure for OQ than NMD since,

without making it explicit, it penalizes more heavily mistakes (i.e., “transfers” of
probability mass from a class to another) closer to the extremes of the codeframe.
For instance, given codeframe .Y = {y1, y3, y3, y4, y5}, assume that the true
distribution is .p = (0.2, 0.2, 0.2, 0.2, 0.2), and assume two predicted distributions
.p̂′ = (0.2, 0.2, 0.3, 0.1, 0.2) and .p̂′′ = (0.2, 0.2, 0.2, 0.3, 0.1). The two predicted
distributions make essentially the same mistake, i.e., erroneously “transfer” a
probability mass of 0.1 from a class .yi to a class .y(i−1), the difference being that
in .p̂′ it is the case that .i = 4 and in .p̂′′ it is the case that .i = 5. NMD penalizes them
equally (since .NMD(p, p̂′) = NMD(p, p̂′′) = 0.1). RNOD instead does not (since
.RNOD(p, p̂′) ≈ 0.080 while .RNOD(p, p̂′′) ≈ 0.092), and the degree to which

3.3 Measures for Evaluating Regression Quantification 47

mistakes closer to the extremes of the codeframe are penalised more heavily than
the ones close to the center of the codeframe, is not explicit in the formula.

Other OQ evaluation measures are proposed by Sakai (2021), such as Root
Symmetric Normalised Order-aware Divergence (RSNOD) and Root Normalised
Average Distance-Weighted sum of squares (RNADW), but we do not consider
them here since they are variants of RNOD that share the characteristics of RNOD
mentioned above.

3.3 Measures for Evaluating Regression Quantification

The only work to date that investigates regression quantification (RQ) is Bella et al.
(2014); this work (discussed in details in Section 5.2) is thus also the only one that
discusses how to perform evaluation for this task.

In a regression problem, every input object is assigned with a real-valued
score as output, differently from the classification case in which the output has
a categorical form. For the regression quantification scenario, Bella et al. (2014)
identify two possible quantification goals, aggregated indicator estimation and
distribution estimation.

The case of estimating an aggregated indicator is defined as the one in which
the interest is on estimating a statistic function .I that summarises some property of
the distribution on regression scores over the unlabelled set U . A typical example of
indicator function in regression quantification is the average of the regression values
of the elements, i.e.,

.

I(U) = μU

= 1

|U |
|U |∑

i=1

yi

(3.14)

Bella et al. (2014) observe that the single numerical value produced by an
aggregated indicator can be compared to the true value from test data using an error
measure such as the Squared Error (see Section 3.1.3).

The optimal value of SE is always zero, while the upper bound of this measure
depends on the range of regression values and distribution of data. Bella et al. (2014)
propose a variant of SE, VSE, that normalises the SE value by the variance of the
training set, i.e.,

.VSE(p, p̂, L) = SE(p, p̂)

Var(L)
(3.15)

where .Var(L) is the variance of the true regression scores computed on elements
in the training set. The motivation the authors give to support VSE is to make the

48 3 Evaluation of Quantification Algorithms

results from experiments less dependent on the magnitude range of the data when
such experiments are run on different datasets, or involve repeated runs.

Bella et al. (2014) do not provide a theoretical motivation to support VSE, in
particular on why the variance should be computed on the training set, instead of
the test set. In experiments using different test sets, either from different datasets or
produced by sampling, the variance of the test set has the same ability to measure
the difference in the magnitude range of values. In experiments using the same test
set, a training set with higher variance get an advantage when evaluated using VSE.
The intuition the authors followed may be that learning from a training set with
higher variance is more difficult than learning from a low variance one. Yet, this
does not take into account the actual variance of the test set. It could be the case
that also the test set has a high variance, and the lower variance training set is thus
the one from which is more difficult to learn an accurate regressor. Moreover, it is
possible to cheat VSE by adding dummy examples in training set with the sole aim
of increasing variance.

The case of estimating a probability distribution over the regression values can be
evaluated comparing distribution of the true values with the one of predicted values.
This is an intermediate step in the complexity of prediction between accurately
predicting each single value, i.e., the actual regression problem, and predicting an
aggregated estimator.

A way to compare probability distributions is to use divergence measures, yet
Bella et al. (2014) observe that some divergence measures are not always defined
when comparing empirical distributions5. and they thus suggest to perform the
evaluation using the cumulative distributions. Within the set of measures that
compare cumulative distributions they mention the Kolmogorov-Smirnov statistic
measures, but they criticise the fact that it only considers the point where the
distributions differ the most, when the entire shape of the distributions should
be considered instead. For this reason they thus suggest to adopt, as a better
refined evaluation measure, the Cramér-von-Mises statistic (Anderson, 1962) that
computes an integral between the difference of the two cumulative distributions.
More specifically, they adopt in their experiments the L1-version of the statistic
(Xiao et al., 2006).

3.4 Experimental Protocols for Evaluating Quantification

Any test set routinely used for testing the accuracy of classification can obviously
be used also for evaluating quantification. However, the problem is that, while
for classification a set of k unlabelled data provides k unlabelled data points,

5 E.g., Kullback-Leibler divergence requires that .p(x) = 0 �⇒ p̂(x) = 0. KL is thus undefined
when the regressor predicts even a single value that is not within the set of values appearing in the
test set.

3.4 Experimental Protocols for Evaluating Quantification 49

for quantification the same test set just provides 1 test data point. Evaluating
quantification algorithms is thus challenging, due to the fact that the availability
of labelled data for testing purposes is not unlimited.

There are two main experimental protocols that have been taken in order to deal
with this problem; we will here call them the Natural-Prevalence Protocol (NPP)
and the Artificial-Prevalence Protocol (APP).

3.4.1 Natural Prevalence Protocol (NPP)

The NPP was first used by Esuli and Sebastiani (2015). It consists of taking a
large enough test set, partitioning it in a number of samples, and carrying out the
evaluation individually on each such sample. For instance, Esuli and Sebastiani
(2015) tested binary quantifiers on the well-known RCV1-v2 text classification
dataset, whose test set consists of about 780,000 news items issued by the Reuters
news agency over a period of 52 weeks, and labelled with 99 different classes. This
allowed the authors to split the test set in 52 samples (each corresponding to a week),
each of which provided 1 testing data point for 99 different BQ experiments, thus
generating .52 × 99 = 5148 testing data points.

3.4.2 Artificial Prevalence Protocol (APP)

The APP was first used by Saerens et al. (2002). This protocol consists of taking
a standard dataset, split into a training set L and a set U of unlabelled items,
and conducting repeated experiments in which either the training set prevalence
or the test set prevalence of a class are artificially varied via subsampling. For
instance, in the BQ experiments carried out by Forman (2005), given codeframe
.Y = {⊕,�}, repeated experiments are conducted in which either examples of .⊕
or examples of .� are removed at random from the test set in order to generate
a predetermined prevalence of .⊕ in the sample U thus obtained. In this way,
different samples can be generated, each characterised by a different prevalence of .⊕
(e.g., .pU(⊕) ∈ {0.00, 0.05, . . . , 0.95, 1.00}). This can be repeated, thus generating
multiple random samples for each class prevalence. Analogously, random removal
of either positive or negative examples can be performed on the training set, thus
bringing about training sets with different values of .p(⊕). Example results of the
application of the APP will be illustrated in Section 6.3.

Doing an analogous grid-based exploration in the SLQ setting is certainly
possible, but cumbersome; for instance, if we want to restrict ourselves to class
prevalence values in the set .{0.00, 0.05, . . . , 0.95, 1.00}, there are just 21 possible
distributions in the BQ case, but in the SLQ case there are many, many more,
especially when .|Y| is high, due to combinatorial explosion. If we use a grid of

50 3 Evaluation of Quantification Algorithms

class prevalence values .g = { i
m

}mi=0 containing .|g| = m + 1 possible values (with
m an integer), and we have .|Y| = 2 classes, then there are .(m + 1) choices for
.pσ (y1); of course, these constrain the value of .pσ (y2), which must be equal to
.pσ (y2) = 1 − pσ (y1).

Let us define a function .K(m, n) that computes the number of possible combi-
nations for .|Y| = n classes using a grid of prevalence values, from 0 to 1 at a step
size of .

1
m
. For the binary case discussed above, it is the case that .K(m, 2) = m + 1.

For the ternary case, i.e., when .n = 3, we have .K(m, 3) = (m + 1)(m + 2)/2.
This follows from the observation that, when we set .pσ (y1) = 0/m, there are .m+1
possible choices for .pσ (y2) (while .pσ (y3) = 1−(pσ (y1)+pσ (y2)) is constrained);
when we set .pσ (y1) = 1/m, there only exist m possible choices for .pσ (y2); and
so on, until we end up setting .pσ (y1) = m/m = 1, for which there is only one
possible combination .pσ (y2) = pσ (y3) = 0 representing a valid distribution. In
our previous example, with .|g| = 21, we thus have .K(20, 3) = 231. In general,
for arbitrary m and n values, the number of possible prevalence distributions can be
derived from the so-called “stars and bars” method6 and is given by

.K(m, n) =
(

m + n − 1

n − 1

)

(3.16)

3.4.3 A Variant of the APP Based on the Kraemer Algorithm

As one would expect by looking at Equation 3.16, the number of possible
distribution vectors that the APP generates grows very rapidly. To exemplify, for
5 classes we already reach .K(20, 5) = 10,626 valid combinations, while for 10
classes the number of combinations rises to .K(20, 10) = 10,015,005. Things get
even worse when using a finer-grained grid; for example, using a stepsize of 0.01
(i.e., setting .m = 100) the number of combinations to explore for 10 classes,
.K(100, 10) > 4E12, becomes impractical.

One possible solution consists of simply renouncing to predetermine class
prevalence values, and instead letting them vary at random, by first generating a
random distribution p and then generating a sample .σ by randomly picking items

6 A probability distribution of n classes taking prevalence values from a grid g of .(m+1) prevalence
values of probability mass .1/m each, can be seen as a vector of .(m+n−1) positions filled with m

“stars” (each star representing a probability mass of .1/m) and .(n−1) “bars” (each bar representing
a separator for two adjacent classes). For example, for .n = 4 and .m = 10, the probability
distribution given by .pσ (y0) = 0.3, .pσ (y1) = 0, .pσ (y2) = 0.6, and .pσ (y3) = 0.1, corresponds
to the vector of “stars and bars” .(∗, ∗, ∗, |, |, ∗, ∗, ∗, ∗, ∗, ∗, |, ∗), where each ‘.∗’ amounts to .0.1
of probability mass, and there are .(n − 1) separators ‘.|’. The number of ways .(n − 1) bars (resp.,
m stars) can be inserted in a vector of .(m + n − 1) positions, with the remaining elements set to
stars (resp., bars) is given by the binomial coefficient above. See https://brilliant.org/wiki/integer-
equations-star-and-bars/#stars-and-bars for further details.

https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars
https://brilliant.org/wiki/integer-equations-star-and-bars/#stars-and-bars

3.4 Experimental Protocols for Evaluating Quantification 51

from the population according to p. Somehow unexpectedly though, sampling
distribution vectors p uniformly at random, i.e., so that all legitimate distribution
vectors are equally likely, is not a trivial task. An intuitive and straightforward
procedure, consisting of drawing n values, uniformly at random from the .[0, 1]
interval, and then normalizing each value by the sum of all values (the sampling
method used in Esuli et al. (2021)), corresponds to a sampling distribution that
is strongly biased towards the centre of the distribution, for reasons that are
discussed by Smith and Tromble (2004). Luckily enough, Smith and Tromble
(2004) presented also a correct sampling algorithm, called the Kraemer algorithm,
for sampling the unit .(n − 1)-simplex7 uniformly. Given a set n of classes, the
method works as follows:

1. Generate a vector .x = (x1, . . . , x(n−1)) of values, where each .xi is sampled
uniformly at random from [0,1]

2. Sort .x to obtain .x′, so that .x ′
1 ≤ . . . ≤ x ′

(n−1), and define two additional values
.x ′
0 = 0 and .x ′

n = 1
3. Return the distribution vector .p = (p1, . . . , pn) in which .pi = (x ′

i − x ′
(i−1)) for

every .i ∈ {1, . . . , n}
The Kraemer sampling algorithm has two additional advantages with respect to
sampling based on a predefined grid: (i) it allows the practitioner to draw a desired
number of samples, instead of imposing to generate all .K(m, n) valid combinations
from the grid of prevalence values; and (ii) it truly allows any possible distribution
vector to be picked, while this is not possible when using a grid of values, and
especially so when the grid is a coarse-grained one.

To the best of our knowledge, the first experimental setting in the quantification
literature that adopts the Kraemer algorithm as the sample-generating function is the
one described in Esuli et al. (2022). Since this work is very recent, the version of
the APP that is generally used by the quantification community is the “grid-based”
version that we have discussed above. It remains to be see whether the version that
adopts the Kraemer algorithm will gain significant acceptance in the years to come.

3.4.4 Should we Use the NPP or the APP?

The APP is much more widely used than the NPP in the quantification literature,
possibly due to the difficulty of finding the large enough test sets that the NPP
requires. However, both protocols have different pros and cons. One advantage of
the APP (and a corresponding disadvantage of the NPP) is that it allows many test
data points to be created from the same test set; it is not always the case that test sets
large enough for the NPP to be adopted (such as the above-mentioned RCV1-v2)

7 A distribution vector .p = (pσ (y1), . . . , pσ (yn)) belongs to the unit .(n − 1)-simplex since
.pσ (yi) ∈ [0, 1] for all .yi ∈ Y and since .

∑
yi∈Y pσ (yi) = 1.

52 3 Evaluation of Quantification Algorithms

are available, so, when a smaller test set is all we have, the APP allows generating
test data points almost at will. Additionally, the APP allows many situations (i.e.,
different training class prevalence values, different test class prevalence values,
different amounts of shift, . . .) to be simulated; in such a way, one can test the
robustness of a quantification algorithm on many conditions even if the dataset itself
does not naturally exhibit such conditions. However, one disadvantage of the APP
is that it is not clear how realistic these different situations are; e.g., if .p(y) in
the test set is 0.05, testing a quantifier on a sample U extracted from it such that
.pU(y) = 0.95 might be challenging but unrealistic, since these amounts of shift
may be unlikely in real-world applications. The NPP, by focusing on real samples
and really occurring situations, scores higher than the APP in terms of realism.

It may be worth noting that some of the problems discussed above might be
solved by defining a protocol “intermediate” between the NPP and the APP, i.e., a
protocol which uses prior knowledge about the distribution of “likely” prevalence
vectors that one could expect to encounter in the specific domain at hand. However,
we are unaware of previous experiments that used this or similar approaches, likely
due to the fact that, in real scenarios, it is difficult to have any such prior knowledge
about how the distribution might vary. Anyway, the bottom line is that the pros and
cons of the APP and the NPP have led to some controversy around the adequacy
of these protocols in the assessment of the performance of quantification systems.
Hassan et al. (2021) expose the shortcomings and potential risks that the adoption
of the APP (more specifically: of the grid-based variant discussed in Section 3.4.2)
might bring about in the evaluation. Among other things, the authors reported that
knowing in advance the expected value of the distribution vectors that the APP
generates (e.g., that in binary quantification the positive class has an expected
prevalence value of .E[pσ (⊕)] = 0.5) might be maliciously exploited in order to
get an (illusory) advantage over other methods that do not make such assumption.

It should also be mentioned that the APP, as it has been used up to now, only
models either covariate shift or prior probability shift, and does not model concept
shift. To see this, assume we are dealing (see Section 1.5) with a “.X → Y” problem,
which is modelled by Equation 1.3. By subsampling the test set we are simulating
covariate shift, whereby .p(y) changes only because .p(x) changes (since we have
selectively removed specific data items .x); note that .p(y|x) does not change, i.e.,
there is no concept shift, since the labels of the items that have not been removed
have remained the same. Concept shift could be simulated not by removing labelled
items but by flipping the labels on some data items, e.g., according to one of the
two methods discussed in Esuli and Sebastiani (2013). With this method, given a set
U of unlabelled items, many samples that contain the very same data items (which
means there is no covariate shift) could be generated by flipping different subsets
of the items contained in U . Conversely, assume we are dealing with a “.Y → X ”
problem, which is modelled by Equation 1.4. By subsampling the test set we are
simulating prior probability shift, whereby .p(y) changes motu proprio (since we
have selectively removed data items characterised by a specific label y); note that
.p(x|y) does not change, i.e., there is no shift in the within-class densities, since the
feature vectors of the items that have not been removed have remained the same.

3.5 Model Selection in Quantification 53

3.5 Model Selection in Quantification

The performance of many machine learning algorithms depends on how their
hyperparameters are set. Hyperparameters control specific aspects of the learning
process and, in contrast to the parameters of the model, they are not learned during
the training phase, but are instead set in advance.

Although machine learning methods often come with default values for the
hyperparameters (values that the inventors of the method have found to work
reasonably well in a variety of scenarios), it is well known that the final performance
can often be improved by carefully tuning the hyperparameters for the specific
applicative domain. Quantification systems are no exception in this regard.

The process of hyperparameter optimisation is known as model selection,
and typically consists of testing how well the model fares when setting the
hyperparameters with different combinations of values from a set of candidate
configurations. Model selection is carried out in a fully automated way, i.e., the
model’s performance is assessed on held-out validation data or via cross-validation.

Model selection is thus inherently related to performance evaluation. Hyperpa-
rameter optimisation should thus mimic the evaluation protocol (using validation
data) when assessing the adequacy of each of the candidate configurations. Since
quantification has become a task on its own right, with dedicated evaluation mea-
sures (Sections 3.1, 3.2, and 3.3) and dedicated experimental protocols (Section 3.4),
it should likewise have specific model selection routines (Moreo and Sebastiani,
2021). In other words, since the goal of model selection is to choose the config-
uration of hyperparameters that perform best according to a given experimental
protocol and a given evaluation measure, it makes perfect sense to adopt the
same evaluation protocols and error metrics customarily used in the evaluation of
quantification systems.

Somehow surprisingly, though, the quantification community has largely over-
looked this aspect in the past. In a large body of quantification work, it is not
even documented whether the hyperparameters were optimised at all (Esuli and
Sebastiani, 2014; Forman, 2008; González et al., 2017; González-Castro et al.,
2013; Hopkins and King, 2010; Levin and Roitman, 2017; Pérez-Gállego et al.,
2017; Saerens et al., 2002). Other papers Barranquero et al. (2015); Bella et al.
(2010); Esuli and Sebastiani (2015); Hassan et al. (2020); Milli et al. (2013) simply
report that the hyperparameters were left to their default values; others do not
document the evaluation measure being optimised during model selection (Esuli
et al., 2020; Gao and Sebastiani, 2016), or instead optimise for a classification-
oriented loss (Barranquero et al., 2013; Pérez-Gállego et al., 2019).

54 3 Evaluation of Quantification Algorithms

The only paper we are aware of that proposed the use of a quantification-oriented
optimisation of hyperparameters is Moreo and Sebastiani (2021). In their work,
the authors claimed that the “Classify and Count” (CC – Section 4.2.1) method
and its variants (Sections 4.2.2, 4.2.3, 4.2.4), routinely used as baseline models in
experimental evaluations, have largely been misrepresented, since they have never
been optimised properly for the task of quantification. In their results they showed
that, when properly optimised, these simple method become respectable contenders,
even if still inferior to the most sophisticated quantification methods.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Methods for Learning to Quantify

This section is devoted to discussing methods that have been proposed in the
literature for tackling quantification1. All of these methods rely on supervised
learning, and depart from standard classification methods in one or more ways.

As in the rest of this book, our main focus is (for the reasons discussed in
Section 1.4) single-label multiclass quantification. While many of the methods that
will be discussed in this section can natively deal with the single-label multiclass
case, some other methods (for example, those of Sections 4.2.5, 4.2.12 and 4.3.1)
are only defined for the binary case, and cannot easily be extended to the single-
label multiclass case. In order to use them for single-label multiclass quantification,
it is thus necessary to run them in binary mode for each class in the codeframe, and
to normalise the resulting class prevalence values so that they sum to 1.

Broadly speaking, two large classes of methods can be discerned in the literature.
The first class is that of aggregative methods, i.e., methods that require the

classification of all the individual data items as an intermediate step; these methods
will be the subject of Sections 4.2 and 4.3. Within the class of aggregative
methods, two subclasses can be identified. The first subclass (Section 4.2) includes
methods based on general-purpose learners; in these methods the classification of
the individual items performed as an intermediate step may be accomplished by
means of any classifier. The second subclass (Section 4.3) is instead composed of
methods that, in order to classify the individual data items, rely on special-purpose
learning methods devised with quantification in mind.

The second class (Section 4.3) is that of non-aggregativemethods, i.e., methods
that solve the quantification task “holistically”, i.e., without classifying the individ-
ual items; these methods will be the subject of Section 4.4.

1 Section 6.2 presents a lists of software tools implementing quantification methods, including
many of those presented in this section.

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_4

55

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4
https://doi.org/10.1007/978-3-031-20467-8_4

56 4 Methods for Learning to Quantify

We start by discussing, in the next section, a method that belongs to none of the
classes above, but that is sometimes considered as a trivial baseline in comparative
experiments.

4.1 Maximum Likelihood Prevalence Estimation

Maximum Likelihood Prevalence Estimation (MLPE) is not a real quantification
method, but is sometimes used (see e.g., Barranquero et al., 2013) as a trivial
baseline against which genuine quantification methods are compared. MLPE makes
the naïve assumption that there is zero distribution shift between L and U , and thus
consists of taking .pL(y) as an estimate of .pU(y), i.e.,

.p̂MLPE
U (y) = pL(y) (4.1)

This is the trivial predictor for quantification, somehow akin to always picking the
majority class in classification.2

However, that MLPE should be used as a baseline at all is questionable. In fact,
on a dataset where it indeed happens that .pU(y) = pL(y), MLPE cannot be beaten
by any genuine quantificationmethod, and will be hardly beaten by any such method
on datasets characterised by very low distribution shift. However, this should not be
taken to mean that these genuine quantification methods are ineffective, but should
rather indicate that we have chosen the wrong dataset(s), since there is no point in
applying quantification in environments characterised by the absence of distribution
shift.3

As a side note, the assumption that .pU(y) = pL(y) has been used in the past to
justify classification policies. For instance, in the binary case, Yang (2001) defines
a strategy (called “Pcut”) for optimising classification thresholds, which consists

2 Given a prediction task, an effectiveness measure M for it, and labelled and sets of unlabelled
items L and U (assumed to be independently and identically distributed), the trivial predictor
may be defined as the predictor we obtain if we attempt to maximise M on U by using only the
output variables (and not the input variables) of L. When “vanilla” accuracy (i.e., the fraction
of classification decisions that are correct) is the effectiveness measure, the classifier that always
predicts the majority class is the trivial predictor for both binary and multiclass classification; under
any reasonable effectiveness measure, MLPE is the trivial predictor for quantification.
3 As an example, assume we are asked by a customer to set up a system that monitors, in a stream
of data, the class prevalence of a certain class y of interest to the customer. (For instance, the data
may be textual comments about a product marketed by the customer, and .y = ⊕ may be the class
of positive such comments.) Assume also that the customer provides us with a training set L of
comments labelled according to .Y = {⊕,�}, where .pL(⊕) = k. If the system we deliver to the
customer is one that always returns .pσ (⊕) = k, for any sample .σ that we may sample from the
stream, the customer would not be happy, even if we justify this by saying that, on our test data,
this system has outperformed any other genuine quantification system we have tested.

4.2 Aggregative Methods Based on General-Purpose Learners 57

of picking the threshold that causes .pU(y) to be equal (or as close as possible) to
.pL(y).

4.2 Aggregative Methods Based on General-Purpose
Learners

In this section and in Section 4.3 we will discuss quantification methods that
have an aggregative nature, i.e., that first require a (hard or soft) classifier to
issue a prediction for each individual item, and that then output an estimated
class prevalence based on these individual predictions. Indeed quantification- and
classification-related goals can be supported, to some degree, by the same training
strategy (Tasche, 2021). All the methods discussed in this section can be applied on
top of any supervised learning algorithm for training classifiers.

Of the methods discussed in this section,

1. some (e.g., the ones of Sections 4.2.1 and 4.2.3) require as input the class labels
(as returned by a hard classifier), while

2. some others (e.g., the ones of Sections 4.2.2 and 4.2.4) require as input the
posterior probabilities (as output by a soft classifier).

For methods of type 2, these posterior probabilities should be well calibrated (in
the sense discussed in Section 2.1). Some classifiers are known to return well
calibrated probabilities (e.g., classifiers trained via logistic regression (Zadrozny
and Elkan, 2002)). The posterior probabilities returned by some other classifiers are
known instead to be not well calibrated (e.g., this is the case of the naïve Bayesian
classifier (Domingos and Pazzani, 1997)). Yet some other classifiers (e.g., those
trained via SVMs or AdaBoost) do not return posterior probabilities, but generic
confidence scores. In these two last cases it is possible to map the obtained posterior
probabilities / confidence scores into well calibrated posterior probabilities via some
calibration method (Platt, 2000; Zadrozny and Elkan, 2002).

All this basically means that any supervised learning method can be used both
for methods of type 1 and for methods of type 2 above. We now discuss all of these
methods in increasing order of sophistication.

4.2.1 Classify and Count

An obvious method for quantification consists of training a hard classifier h from L

via a standard learning algorithm, classifying the items in sample U , and estimating
.pU(y) by simply counting the fraction of items in U that are predicted to belong to

58 4 Methods for Learning to Quantify

class y. This corresponds to computing

.

p̂CC
U (y) = ph

U(ŷ)

= |{x ∈ U |h(x) = y}|
|U |

(4.2)

Forman (2008) calls this the Classify and Count (CC) method.
As already discussed in Section 1.2, CC is sub-optimal, because standard

classifiers might be biased, i.e., generate severely unbalanced numbers of false
positives and false negatives, and because they are usually tuned to minimise a
measure of classification error, and not of quantification error. However, CC plays
an important role in quantification research since it is always used as the trivial
baseline which any reasonable quantification method must improve upon.

4.2.2 Probabilistic Classify and Count

Probabilistic Classify and Count (PCC) is a variant of CC which consists of using
L for training a probabilistic classifier .s : X → [0, 1]|Y |, generating a posterior
probability .p(y|x) for each item .x ∈ U and for each class .y ∈ Y , and computing
.pU(y) as the expected fraction of items predicted to belong to y. If by .E[x] we
indicate the expected value of x, this corresponds to computing

.

p̂PCC
U (y) = E[ph

U(ŷ)]

= 1

|U |
∑

x∈U

p(y|x) (4.3)

As a quantification method, PCC was first used by Bella et al. (2010), where it is
called “Probability Average”4. The rationale of PCC is that posterior probabilities
contain richer information than classification decisions, which are usually obtained
from posterior probabilities via Equation 1.2. When using the classification deci-
sions, CC does not leverage the quantitative information encoded in the .p(y|x)’s,
which is discarded when using Equation 1.2, and this may be suboptimal.

As a quantification method, PCC was first evoked by Lewis (1995), who stated
that “(. . .) if our goal is to count class members, and if we have estimates of the
probability of class membership, we should use the estimates directly to estimate
the number of class members, rather than use them to classify documents.” PCC
was later dismissed a priori (i.e., without even being tested) as unsuitable by

4 Tang et al. (2010) also use a method called “Probabilistic Classify and Count”, and they also
show that it outperforms CC. Their method might indeed coincide with the method discussed in
this section, but the authors do not explain what their method precisely consists of.

4.2 Aggregative Methods Based on General-Purpose Learners 59

Forman (2005, 2008), on the grounds that, when the training distribution .pL and
the unlabelled distribution .pU are different (as they should be assumed to be
in any application of quantification), probabilities calibrated on L (L being the
only available set where calibration may be carried out) cannot be, by definition,
calibrated for U at the same time (see also Section 2.1). Forman’s criticism is
indeed well-taken, since the assumption underlying the very notion of probability
calibration is the IID assumption, whose consequence (namely, that class prevalence
values are invariant across the training and the set of unlabelled items) is at odds with
the very notion of quantification.

4.2.3 Adjusted Classify and Count

Adjusted Classify and Count (ACC – also called “Adjusted Count” in Forman (2008)
and the “ConfusionMatrixMethod” in Saerens et al. (2002)) requires training a hard
classifier h from L via a standard learning algorithm, classifying the items in U , and
then observing that, thanks to the law of total probability, it holds that

.ph
U(ŷj) =

∑

yi∈Y
ph

U(ŷj |yi) · pU(yi) (4.4)

Here, .ph
U(ŷj |yi) represents the fraction of data items in U whose true class is .yi and

that have been instead assigned to class .yj by classifier h. Once the classifier has
been trained and applied to U , the quantity .ph

U (ŷj), which represents the fraction
of items in U that have been assigned .yj by classifier h, can be observed, and the
quantity .ph

U(ŷj |yi) can be estimated from L via k-fold cross-validation (k-FCV)5;
the quantity .pU(yi) is instead unknown, and is indeed the quantity we want to
estimate. Since there are .|Y| equations of the type described in Equation 4.4 (one
for each .yj ∈ Y), and since there are .|Y| quantities of type .pU(yi) to estimate (one
for each .yi ∈ Y), we are in the presence of a system of .|Y| linear equations in
.|Y| unknowns. This system can be solved via standard techniques, thus yielding the
.p̂ACC

U (yi) estimates.
In a nutshell, ACC is based on the idea of adjusting the results of CC by taking

into account the propensity of the classifier to make misclassifications of a certain
type. This is particularly evident in the binary case .Y = {⊕,�}, where Equation 4.4

5 Barranquero et al. (2013); Forman (2005, 2008) actually use stratified k-fold cross-validation,
i.e., the training set is split in such a way as to ensure that the class distribution is invariant across
the different folds. Given that our goal is quantification (i.e., that we assume the presence of
distribution shift), the rationale of using stratification seems dubious here, given that we do not
have any guarantee that the distribution that stratification enforces in the various folds will be the
same in the test set.

60 4 Methods for Learning to Quantify

comes down to

.

ph
U(⊕̂) = ph

U(⊕̂|⊕) · pU(⊕) + ph
U(⊕̂|�) · pU(�)

= TPRU · pU(⊕) + FPRU · pU(�)

= TPRU · pU(⊕) + FPRU · (1 − pU(⊕))

(4.5)

where by .TPR = TP
TP+FN and .FPR = FP

FP+TN we indicate the true positive rate (a.k.a.
“recall”, or “sensitivity”) and false positive rate (a.k.a. “specificity”), resp., that the
classifier has obtained. From Equation 4.5 we obtain

.

pU(⊕) = ph
U(⊕̂) − FPRU

TPRU − FPRU

= p̂CC
U (⊕) − FPRU

TPRU − FPRU

(4.6)

from which, if by .TPRL and .FPRL we indicate the true positive rate and false
positive rate, resp., that have been estimated by k-FCV, we derive

. p̂ACC
U (⊕) = p̂CC

U (⊕) − FPRL

TPRL − FPRL

(4.7)

ACC can be proved to be Fisher-consistent under prior probability shift (Tasche,
2017), which is a guarantee that the provided estimate .p̂U (y) would be correct if
computed on the whole populations of interest (instead of the available samples
L and U of limited cardinality), on condition that the training and unlabelled
populations are linked by prior probability shift.

Fisher consistency is related to an estimator being unbiased, and has been
proposed as a desirable property of a quantification method (Tasche, 2017).
Fisher consistency does not provide any practical guarantee, given it discounts
the randomness of empirical distributions sampled in the real world. However,
a quantification method lacking this property can be seen as problematic, given
that, even for large sample size, it may end up providing poor estimates of class
prevalence. Thus it can be seen as a necessary, not sufficient, property of a good
quantification method. Dataset shifts (Section 1.5) close to, but slightly deviating
from, prior probability shift can cause a loss of Fisher consistency for ACC (Tasche,
2017).

One problem with ACC is that the .p̂ACC
U (yi)’s are not guaranteed to be in

[0,1], due to the fact that the estimates of the .ph
U(ŷj |yi)’s may be inaccurate, i.e.,

substantially different from the true .ph
U(ŷj |yi)’s.6 In fact, ACC is based on the

hypothesis that the .ph
U(ŷj |yi)’s are invariant across the training set and the set of

6 This problem had already been noted by Lew and Levy (1989).

4.2 Aggregative Methods Based on General-Purpose Learners 61

unlabelled items, which is questionable in the presence of distribution shift.7 The
fact that the .p̂ACC

U (yi)’s may not be in [0,1] particularly affects classes characterised
by a low or very low prevalence (which are ubiquitous in e.g., text classification):
in these case it may well be that .p̂CC

U (y) < FPRL, which means that, since in these
scenarios it is usually the case that .TPRL > FPRL, ACC returns a negative value.

This problem has led most authors (see e.g., Forman, 2008) to rely on “clipping
and rescaling”, i.e., (i) “clip” the .p̂U (yi) estimates (i.e., equate to 1 every value
higher than 1 and to 0 every value lower than 0), and (ii) rescale them so that they
sum up to 1. Clipping is a hardly justified heuristics, though, and if the values to be
clipped are either much smaller than 0 or much higher than 1, it can seriously bias
the results. A better alternative (that does away with clipping, but that – to the best of
our knowledge – has never been discussed in the literature) might consist of giving
the .ph

U(ŷj) values obtained from Equation 4.4 as input to a “softmax” function

.σ(x) = ex

∑

xi

exi
(4.8)

whose effect is to monotonicallymap the .p̂U (ŷj)’s obtained from solving the system
of linear equations, to .|Y| values in [0,1] that sum up to 1. The values returned by
the softmax would then be used as the final .p̂ACC

U (ŷj) class prevalence estimates in
place of the values computed from the system of linear equation.

ACC is actually very old, since its binary version goes back at least to (Gart and
Buck, 1966), where, in an application pertaining to epidemiology, it was used in
order to determine the prevalence of a given disease from the results of a screening
test with known true positive rate and true negative rate (see Section 6.4 for more on
this).8 As a quantification method, the earliest recorded use of it is in Vucetic and
Obradovic (2001).

4.2.4 Probabilistic Adjusted Classify and Count

Probabilistic Adjusted Classify and Count (PACC) is a probabilistic variant of ACC,
i.e., it stands to ACC as PCC stands to CC. Its underlying idea is to replace both side

7 Esuli and Sebastiani (2015, Appendix A) show an example in which this assumption is far from
being verified in actual data.
8 Several past works erroneously attribute this method to Levy and Kass (1970); in reality, the latter
paper does use the method, but the authors correctly attribute its paternity to Gart and Buck (1966).

62 4 Methods for Learning to Quantify

of Equation 4.4 with their expected values. Equation 4.4 is thus transformed into

.

E[ph
U(ŷj)] = E[

∑

yi∈Y
ph

U(ŷj |yi) · pU(yi)]

=
∑

yi∈Y
E[ph

U(ŷj |yi) · pU(yi)]

=
∑

yi∈Y
E[ph

U(ŷj |yi)] · pU(yi)

(4.9)

where the last passage is justified by the fact that .pU(yi) is a constant, and where

.

E[ph
U(ŷj)] = 1

|U |
∑

x∈U

p(yj |x)

= p̂PCC
U (yi)

E[ph
U(ŷj |yi)] = 1

|Ui |
∑

x∈Ui

p(yj |x)

(4.10)

and .Ui indicates the set of items in U whose true class is .yi . Like for ACC, once the
(soft) classifier has been trained and applied to U , the quantity .E[ph

U(ŷj)] can be
observed, and the quantity .E[ph

U(ŷj |yi)] can be estimated from L via k-fold cross-
validation, which means that we are again in the presence of a system of .|Y| linear
equations in .|Y| unknowns, that we can solve by the usual techniques. In the binary
case, Equation 4.9 simplifies as

. E[ph
U(⊕̂)] = E[ph

U(⊕̂|⊕)] · pU(⊕) + E[ph
U(⊕̂|�)] · pU(�) (4.11)

from which, similarly to the case of ACC (Equations 4.5 to 4.7), we can derive

. p̂PACC
U (⊕) = p̂PCC

U (⊕) − E[ph
L(⊕̂|�)]

E[ph
L(⊕̂|⊕)] − E[ph

L(⊕̂|�)] (4.12)

where .E[ph
L(⊕̂|⊕)] and .E[ph

L(⊕̂|�)] are the probabilistic counterparts of TPR and
FPR in ACC, i.e.,

.

E[ph
L(⊕̂|⊕)] = 1

|x ∈ L : �(x) = ⊕|
∑

x∈L:�(x)=⊕
p(⊕|x)

E[ph
L(⊕̂|�)] = 1

|x ∈ L : �(x) = �|
∑

x∈L:�(x)=�
p(⊕|x)

(4.13)

4.2 Aggregative Methods Based on General-Purpose Learners 63

PACC was first proposed by Bella et al. (2010). Like PCC, also PACC is dismissed
as unsuitable by Forman (2005, 2008), essentially for the same reasons for which
he also dismisses PCC and already mentioned in Section 4.2.2.

Like ACC, also PACC can return values for .p̂U (yi) that fall off the [0,1] range.
Again, clipping and rescaling has been used in the literature to deal with these cases;
again, applying a softmax (as suggested in Section 4.2.3 for ACC) may prove a
better idea.

4.2.5 X, MAX, and Threshold@0.50

The methods we will describe in this section are binary-only quantification methods
(i.e., multiclass versions have not been discussed in the literature, and are non-
obvious) proposed by Forman (2006, 2008) and arising from a critical analysis of
the ACC method.

Assume a binary quantification task with classes .Y = {⊕,�}. Equation 4.7 is
such that, in principle, .p̂ACC

U (⊕) is undefined when .TPRL = FPRL: however this is
not problematic in practice, since a classifier such that .TPR = FPR is, as observed
by Forman (2005), too bad to arise in real-life situations (since it is usually the case
that .TPR is higher, or much higher, than .FPR). Forman (2008) points out that ACC is
very sensitive to the decision threshold of the classifier, which may make .p̂ACC

U (⊕)

behave erratically. In particular he points out that, if .⊕ is an infrequent class and the
classifier is optimised for standard accuracy, the classifier may have a tendency to
almost always predict .�, i.e., to deliver very small values of .TPR and .FPR. With
such small values, the denominator of Equation 4.4 may be highly unstable and
very small anyway, thus jeopardising the method. The methods discussed in this
section are instances of ACC that use a threshold different from the standard one: in
particular, Forman devised these methods with the goal of choosing “a threshold that
admits more true positives and many more false positives, yielding worse classifier
accuracy but better quantifier accuracy”.

One solution proposed by Forman (2006, 2008) is to heuristically set the decision
threshold in such a way that .FPRL = 1−TPRL (this method is dubbed X) and then
use Equation 4.7. The claimed rationale of this heuristics is to avoid the tails of the
.FPRL(t) and .1 − TPRL(t) curves, where t is the decision threshold.

An alternative heuristic that Forman (2006, 2008) discusses is to set the decision
threshold in such a way that .(TPRL − FPRL) is maximised (this is dubbed MAX).
Here, the rationale is to avoid small values in the denominator of Equation 4.7, with
the goal of avoiding the above-mentioned instability in the final values computed by
the equation.

Yet another heuristics proposed by Forman (2006, 2008) is to set the decision
threshold in such a way that .TPRL is equal to ..50 and then use Equation 4.7; this
method is dubbed Threshold.@0.50 (T50). The reason why the author proposes this
is that such a threshold tends to be good at avoiding the tail of the .1 − TPRL(t)

curve.

64 4 Methods for Learning to Quantify

Forman (2008) argues that it is especially in highly imbalanced datasets that
.(TPRL − FPRL) risks being low; the three methods introduced in this section are
thus meant to be helpful especially in contexts characterised by high imbalance.

One problem that seems to affect these methods is that, while the thresholds
they choose tend to have some desired properties (e.g., avoiding small values in the
denominator of Equation 4.7), these properties do not seem correlated to the one
property which would seem of interest here, i.e., the fact that the resulting values of
.TPRL and .FPRL are accurate estimates of .TPRU and .FPRU .

4.2.6 Median Sweep

An alternative, binary-only quantification method, proposed by Forman (2006,
2008), consists of computing .p̂ACC

U (⊕) for every decision threshold that gives rise
(in k-fold cross-validation) to different .TPRL or .FPRL values, and take the median
of all the resulting estimates of .p̂ACC

U (⊕). This method is dubbed Median Sweep
(MS), and its rationale lies in the ability of the median to avoid outliers. Following
this intuition, Forman (2006, 2008) proposed another variant of this method, called
MS2, which computes the median only for cases in which .TPRL − FPRL > 0.25.

Again, similarly to what we said about the methods discussed in Section 4.2.5,
the problem with this method is that there does not seem to be any a priori reason
that the median of the estimates of .p̂ACC

U (⊕) brought about by all possible decision
thresholds, while probably not an outlier, is any closer to the true value of .pACC

U (⊕)

than any of the estimates generated by other “legitimate” methods such as CC or
ACC.

4.2.7 The Ratio Estimator

The ACC and PACC methods (Sections 4.2.3, 4.2.4) along with their heuristic
spin-offs (Sections 4.2.5 and 4.2.6), have one aspect in common: the solution they
propose is based on a specialised version of a general equation, which has the form

.p̂RE
U (⊕) = EU [g(x)] − EL[g(x)|�(x) = �]

EL[g(x)|�(x) = ⊕] − EL[g(x)|�(x) = �] (4.14)

(for simplicity we here deal with the binary case) where .Eσ [x] indicates, as usual,
the expected value of x in sample .σ . Here .g(x) is a function of the covariates which
can be specialised to obtain Equations 4.7 and 4.12 as

• .g(x) = 1(h(x) = ⊕) (i.e., the function that is equal to 1 if .h(x) = ⊕, and is
equal to 0 otherwise) for ACC, i.e., the output of a hard classifier;

• .g(x) = p(⊕|x) for PACC, i.e., the output of a soft classifier.

4.2 Aggregative Methods Based on General-Purpose Learners 65

This is a key result from Fernandes Vaz et al. (2019), where the authors dub the
family of functions described by Equation 4.14 the ratio estimator (RE), which is
shown, in its entirety, to be Fisher-consistent (a property defined in Section 4.2.3)
under prior probability shift. Moreover, the authors prove a Central Limit Theorem
(CLT) for RE, allowing the practitioner to approximate the mean squared error
(MSE) for the prevalence estimates. Subsequently, they propose a way for selecting
the function .g(x) based on explicit MSE minimisation, as estimated via the CLT,
i.e.,

.MSE(p̂U (⊕)) � 1

(μ̂⊕ − μ̂�)2|L|

(
p̂U (⊕)2ŝ2⊕

pL(⊕)
+ p̂U (�)2ŝ2�

pL(�)

)

(4.15)

where we have defined the sample moments

.μ̂⊕ = 1

|{x ∈ L : �(x) = ⊕}|
∑

x∈L:�(x)=⊕
g(x)

ŝ2⊕ = 1

|{x ∈ L : �(x) = ⊕}|
∑

x∈L:�(x)=⊕
(g(x) − μ̂⊕)2

Here MSE is clearly shown to decrease when the difference between .μ̂⊕ and .μ̂� is
high. This provides theoretical support for choosing .g(x) as the output of a classifier
(a function specifically aimed at separating .⊕ from .�), as is the case with ACC and
PACC. In general, it is worth noting that a clear characterisation of the relationship
between classification and quantification performance remains under-explored in
the literature, except for some recent initial results (Tasche, 2021). Additionally,
the CLT proved for RE can be exploited to compute confidence intervals (CI) for
quantification estimates.9 CIs for prevalence estimation are discussed more in depth
in Section 5.8.

Finally, the authors generalise their results to two novel quantification scenarios.
In one scenario, some labels from the target population U are available, thus
providing some additional information, not available in typical quantification
settings, which can be exploited via a weighted average

.p̂AVG
U (⊕) = w · p̂RE

U (⊕) + (1 − w) · p̂ML
U (⊕) (4.16)

between the ratio estimator .p̂RE
U (⊕) and a maximum likelihood estimator .p̂ML

U (⊕)

based on available labels from population U (Section 4.1), weighted according to

9 CI are typically defined with respect to a coverage level .(1− α), and define a real-valued interval
.[�̂lo, �̂hi] ⊆ [0, 1] around an estimation point .�̂ so that the probability (from a frequentist point
of view) for the interval to contain the true value .�∗ is .(1 − α)%.

66 4 Methods for Learning to Quantify

the MSE of each estimator. This setting is related to active learning in data streams,
described in Section 5.6.

In a second scenario, we are interested in an estimate of prevalence with finer
granularity, dependent on a covariate of interest z. One example of practical interest
described by this scenario is the release of an improvement for a given product. In
this case one might be interested in verifying the users’ reaction to the novelty by
segmenting the population of user reviews according to a temporal variable z. A
minimal extension of the ratio estimator, i.e.,

.p̂RE
U (⊕|z) = EU [g(x)|z] − EL[g(x)|�]

EL[g(x)|⊕] − EL[g(x)|�] (4.17)

can solve this task.

4.2.8 Mixture Models

Forman (2005, 2008) proposed a method for quantification based on Mixture
Models (MM). MM is yet another binary-only quantification method (i.e., no SLQ
extension has surfaced in the literature to date). MM assumes that the cumulative
distribution .FU (shorthand for .FU(s(x))) of the scores assigned to data points in U

is a mixture

.FU = pU(⊕) · FU⊕ + pU(�) · FU� (4.18)

where .FU⊕ and .FU� are the cumulative distributions of the scores that the classifier
assigns to the positive and to the negative unlabelled examples, respectively, and
where .pU (⊕) and .pU (�) = (1 − pU(⊕)) are the parameters of this mixture. The
MMmethod consists of estimating .FU⊕ and .FU� via k-fold cross-validation onL, and
picking as value of .pU(⊕) the one that generates the best fit between the observed
.FU and the mixture. It is worth noting that this approach may work with generic
scoring functions .s(x) that are not necessarily the output of a soft classifier.

Two variants of this method, called the Kolmogorov-Smirnov Mixture Model
(MM(KS)) and the PP-Area Mixture Model (MM(PP)), are actually defined by
Forman (2005), which differ in terms of how the goodness of fit between the left-
and the right-hand side of Equation 4.18 is estimated.

Essentially, any method for measuring this goodness of fit can be used in
connection with the MM method. Another MM method is HDy, proposed by
González-Castro et al. (2013). The difference between HDy and the two previously
discussed methods is that in HDy the Hellinger Distance (HD, an instance of the

4.2 Aggregative Methods Based on General-Purpose Learners 67

class of divergences, that we discussed in Section 3.1) is used to compare two
distributions, i.e.,

.p̂
HDy
U (⊕) = HDy(f L⊕ , f L� , f U)

= arg min
0≤α≤1

{HD(αf L⊕ + (1 − α)f L� , f U)} (4.19)

where .f L⊕ and .f L� are the probability density functions of scores (e.g., the output of a
soft classifier) for the positive and negative samples of L, respectively, obtained via
k-fold cross-validation on L, and .f U is the distribution of scores obtained for U by
the classifier trained onL. Notice that .f L⊕ , .f L� , and .f U are empirically approximated
with histograms.

Maletzke et al. (2019) proposed the Distribution y-Similarity (DyS) framework,
that generalises the HDy approach by considering the dissimilarity function .DS
as a parameter of the model. A dissimilarity function compares two probability
distributions, i.e., the same process of HDy, but uses a different distance function.
In this case, the authors approximate probability distributions with histograms, and
test a variety of distance functions (Maletzke et al., 2019, Table 1), i.e., Squared
Euclidean (SEc), Manhattan (MH), Probabilistic Symmetric (PS), Topsøe (TD),
Jensen Difference (JD), Taneja (TN), Hellinger (HD), Dice (DC), Jaccard (JC),
Chebyshev (CB), Inner Product (IP), Kumar-Hassebrook (HB), Cosine (CS), and
Harmonic Mean (HM). The authors also propose distance functions that do not
operate on distributions but directly compare the scores assigned to samples, i.e.,
Mixable Kolmogorov-Smirnov (MKS) and Sample Ordinal Distance (SORD)10.
The DyS framework is defined as

.

p̂
DyS
U (⊕) = DyS(f L⊕ , f L� , f U)

= arg min
0≤α≤1

{DS(αf L⊕ + (1 − α)f L� , f U)} (4.20)

where .f L⊕ , .f L� , and .f U are the same probability distributions that appear in
Equation 4.19.

Experiments in Maletzke et al. (2019) indicate that the Topsøe distance performs
better than all the other compared distance measures. The Topsøe distance is a
symmetric version of the Kullback-Leibler divergence (Johnson and Sinanovic,
2001), and is defined as

.TD(f, g) = KLD(f,m) + KLD(g,m) (4.21)

where .m = 1
2 (f + g).

10 For MKS and SORD, Maletzke et al. (2019) presents a specific implementation of the
Equation 4.20 that computes the distance function from the classification scores rather than from
probability distributions.

68 4 Methods for Learning to Quantify

Moreira dos Reis et al. (2018b) explore the use of HDy in a recurrent contexts
scenario, i.e., they assume that the distribution of the data may change only among a
limited set of possible distributions. They assume the availability of training data for
all the possible contexts .LCi for .i ∈ {1, 2, .., |C|}, each one representing a possible
distribution. They propose two extensions of the HDy method, i.e.,

• Single Most Relevant HDy (SMR-HDy). This method applies HDy (Equa-
tion 4.19) to each context .LCi , selecting the context .LCm that minimises the
Hellinger distance, and returns the prevalence estimate associated to that context,
i.e.,

.Cm = argmin
i∈C

HDy(f
LCi⊕ , f

LCi� , f U). (4.22)

p̂
SMR−HDy
U (⊕) = HDy(f

LCm⊕ , f
LCm� , f U) (4.23)

• Crossed-Opinions HDy (XO-HDy), in which the data in every context is split into
two parts, train .T rCi and validation .V aCi , resulting in more complex procedure
for the selection of the most likely context .Cm. Specifically, each training set is
used to learn a classifier, which is then applied to every validation set, producing
.|C|2 classifications. The distribution .f Lij for each of such classifications is
computed. The distribution of U is compared with all the distributions .f Lij to
find the most plausible context for unlabelled data, i.e.,

.Cm = argmin
j∈C

1

|C|
∑

i∈C

HD(αij f
Lij

⊕ + (1 − αij)f
Lij

� , f Ui) (4.24)

where .f Lij is the distribution of the scores obtained by a classifier trained in
context .Ci on the validation set from context .Cj , .f Ui is the distribution obtained

by the same classifier on U , and .αij = HDy(f
Lij

⊕ , f
Lij

� , f Ui). Finally, XO-HDy

returns the prevalence estimate .p̂
HDy,LCm

U (⊕) associated to that context. Notice
that, after selecting the most likely context for U , prevalence estimate can be
provided by quantification methods other than HDy.

Also grounded in mixture models, the method Gain-Some-Lose-Some (GSLS)
Denham et al. (2021) was proposed as a means to counter the effects of dataset
shift in class prevalence estimation. The authors argue that GSLS is designed to
deal with forms of dataset shift other than prior probability shift.

The method assumes that the observed probability distribution .f L(x) and the
target distribution .f U(x), hereafter shortened to .f L and .f U , are related by means
of an intermediate distribution .f R . This intermediate distribution is indicated with
an R standing for “remaining distribution”, since the framework assumes that the
source distribution .f L can be composed as a mixture of the .f R distribution and
a loss distribution .f − (i.e., that .f R is what remains after losing (subtracting)
a distribution .f − from .f L) and .f U can be composed as a mixture of the .f R

4.2 Aggregative Methods Based on General-Purpose Learners 69

distribution and a gain distribution .f + (i.e., the target distribution .f U is obtained
from .f R by adding a gain distribution .f +). That is,

.f L = w−f − + (1 − w−)f R
. (4.25)

f U = w+f + + (1 − w+)f R (4.26)

where .w− and .w+ are the weights of the mixtures, i.e., the amount of loss and gain,
respectively. Note that the distributions .f − and .f + refer to subpopulations, lose
and gain respectively, and have nothing to do with the classes of a binary problem;
indeed, GSLS is formulated for the general multiclass setting.

Without further assumptions, there are infinitely many ways for choosing
distributions .f −, .f +, and .f R , and weights .w− and .w+. GSLS thus makes some
simplifications and imposes some constraints to render the problem tractable.
One such simplification consists of modelling, as other methods like HDy do,
the distributions as b-bin histograms of the outputs produced by a probabilistic
classifier. For doing so, and in order to avoid overfitting, the classifier is trained on
separate source data, and the histogram is computed on held-out validation source
data. Then, the unknowns .f R , .f −, .f +, .w−, and .w+ are searched by solving an
optimisation problem that attempts to minimise the degree of (gain and loss) shift.
This is akin to minimising .w− + w+ and constraining the bins of the histogram for
.f R to lie between those of .f L and .f U .

Once all distributions and mixture weights have been fixed, GSLS uses knowl-
edge from the source distribution to compute quantification predictions, along with
their corresponding confidence intervals, for the classes of interest. GSLS computes
.pU(⊕) via maximum likelihood, for which a number of assumptions are needed.
The most important one comes down to assuming the proportion of target samples
belonging to .⊕ to follow a binomial distribution .B(|U |, pU (⊕)) scaled by .

1
|U | ,

and establishing a relation between the unknown .pU(⊕) and the (already known)
factors of the mixture model. Further assumptions on the underlying distributions
allow GSLS to express this probability in terms of other parametric distributions;
the complete mathematical derivation is explained in Denham et al. (2021).

4.2.9 Expectation Maximisation for Quantification

All the methods discussed so far have an inductive nature, since the quantification
model is trained exclusively on the training set. Some quantification methods
proposed in the literature have instead a transductive nature (see e.g., Joachims,
1999), i.e., they are trained by also looking at certain characteristics of the
unlabelled examples they need to issue predictions for (although not at their labels).
Because of this, the model generated may fit the designated test set better than the
models generated via inductive methods, but is less general, since it is especially
tailored to the very set of unlabelled items used in the training phase, and may

70 4 Methods for Learning to Quantify

underperform when applied to different sets of unlabelled items. The Saerens-
Latinne-Decaestecker (SLD) algorithm, proposed by Saerens et al. (2002), has
a transductive component, since it applies a transductive correction to the test
predictions (issued by an inductive classifier).

SLD is an instance of Expectation Maximisation (Dempster et al., 1977),
the well-known iterative algorithm for finding maximum-likelihood estimates of
parameters (in our case: the class prevalence values) for models that depend
on unobserved variables (in our case: the class labels). Essentially, SLD (see
Algorithm 1) incrementally updates (Line 10) the posterior probabilities by using
the class prevalence values computed in the last step of the iteration, and updates
(Line 14) the class prevalence values by using the posterior probabilities computed
in the last step of the iteration, in a mutually recursive fashion.

Input : Class prevalence values pL(y) on L, for all y ∈ Y ;
Posterior probabilities p(y|x), for all y ∈ Y and for all x ∈ U ;

Output: Estimates p̂U (y) of class prevalence values on U ;

/* Initialisation */
1 s ← 0;
2 for y ∈ Y do
3 p̂

(s)
U (y) ← pL(y);

4 for x ∈ U do
5 p(s)(y|x) ← p(y|x);
6 end
7 end

/* Main Iteration Cycle */
8 while stopping condition = false do
9 s ← s + 1;

10 for y ∈ Y do
11 for x ∈ U do

12 p(s)(y|x) ←

p̂
(s−1)
U (y)

p̂
(0)
U (y)

· p(0)(y|x)

∑

y∈Y

p̂
(s−1)
U (y)

p̂
(0)
U (y)

· p(0)(y|x)

13 end

14 p̂
(s)
U (y) ← 1

|U |
∑

x∈U

p(s)(y|x)
15 end
16 end

/* Generate output */
17 for y ∈ Y do
18 p̂U (y) ← p̂

(s)
U (y)

19 end

Algorithm 1: The SLD algorithm (Saerens et al., 2002).

4.2 Aggregative Methods Based on General-Purpose Learners 71

Like ACC (Section 4.2.3), SLD was proven to be Fisher-consistent under
prior probability shift (Tasche, 2017). In the same work, the author provides a
counterexample of dataset shift under which SLD loses Fisher consistency.

Alaíz-Rodríguez et al. (2011) propose an extension of SLD, based on the
assumption that each class can be decomposed into several subclasses and that
the change in the prevalence of the class is actually determined by the change in
the prevalence of its subclasses11. The method that Alaíz-Rodríguez et al. (2011)
propose consists of two main steps. The first step consists of estimating the number
of subclasses and their prior probabilities. To do so, an iterative method called
Posteriori Probability Model Selection (PPMS) Arribas and Cid-Sueiro (2005) is
applied to L. PPMS applies pruning, splitting, and merging criteria, to dynamically
choose the optimal number of subclasses of each class during training. The output
is not only the number of subclasses per class, but also their prior probabilities and
the posterior probabilities of each item, as computed by a two-layered feedforward
network called Generalised Softmax Perceptron (GPS) (Guerrero-Curieses et al.,
2005). The second step applies an extension of SLD that jointly adjusts for the class
and subclass probabilities.

Re-estimating class prevalence values at subclass level was empirically shown
to yield improved results when compared to SLD in the experiments of Alaíz-
Rodríguez et al. (2011). One interesting experiment showed that (artificially)
introducing concept shift at subclass level (within classes), yet leaving the prior
probabilities unchanged at the class level, might cause the application of SLD (at
class level) to be detrimental with respect to not performing re-estimation at all.

4.2.10 Class Distribution Estimation

Xue and Weiss (2009) propose a similar procedure dubbed Class Distribution
Estimation Iterate (CDE-Iterate). This procedure is primarily aimed at improving
classification accuracy, while the improvement of quantification estimates (i.e., class
priors) is considered by the authors as an accessory step toward the main goal.

CDE-Iterate employs cost-sensitive learning, by assigning different values to the
cost of false negatives (.cFN), and false positives (.cFP). The ratio between the two
costs is kept proportional to a value associated with the shift in prior probabilities,
by enforcing

.cFP = pL(⊕)

pL(�)

p̂U (�)

p̂U (⊕)
cFN (4.27)

11 The problem setting they address is single-label, both at class and subclass levels (i.e., data items
labelled as .yi belong to strictly one of the j subclasses of .yi).

72 4 Methods for Learning to Quantify

This probabilities shift is defined as the ratio between positive-to-negative rate in L

and positive-to-negative rate in U ; the former is readily available, whereas the latter
is estimated via Classify and Count, which is also the quantification method used to
determine quantification estimates.

The algorithm, iterative and transductive in nature, starts training a cost-sensitive
hard classifier h on L, using .cFP = cFN = 1. The value .cFN does not change through
the execution of the method. The main iteration of the algorithm consists of the
following steps:

1. Run a hard classifier h on U , thus obtaining .p̂U (⊕), .p̂U (�).
2. Update .cFP according to Equation 4.27.
3. Retrain h on L in a cost-sensitive fashion with new values for .cFP, .cFN.

A key disadvantage with respect to SLD is the need to retrain a cost-sensitive
classifier h at each iteration, slightly compensated by the possibility of wrap-
ping CDE-Iterate around hard classifiers, without requiring h to output posterior
probabilities. A further disadvantage is the lack of Fisher consistency under prior-
probability shift.

4.2.11 Ensemble Methods for Quantification

Attempts have been made at characterising the applicability of ensemble techniques
to problems of binary quantification. This paradigm was proposed in early quan-
tification work (Forman, 2006, 2008), which focuses on the choice of an optimal
threshold for a classifier that would allow a good estimate for true positive rate and
false positive rate. An approach dubbedMedian Sweep (Section 4.2.6) is proposed,
which considers different classifier thresholds each yielding a different estimate of
class prevalence via Adjusted Classify and Count. The estimates are aggregated by
computing their median, which is regarded as the final quantification result.

In more recent years, a line of work has emerged in quantification literature,
solely focused on ensembles (Pérez-Gállego et al., 2017, 2019). The key idea for
this paradigm is training multiple quantifiers introducing diversity in the skew level
of the training set employed for each model. At testing time, the outputs from each
model (or a subset thereof) are suitably aggregated into a single prevalence estimate.
In its simplest form, the algorithm can be conceptually divided into 3 steps:

1. Sample generation is carried out by sampling an unlabelled prevalence .pi at
random from .[0, 1]. For each .pi , a training set .Li is then generated enforcing
a prior .pLi (y) = pi for positive class via random sampling with replacement.

2. Model training is performed on each sample .Li generated under the procedure
described above. Three quantification algorithms are considered for this step,
namely Classify and Count (Section 4.2.1), Adjusted Classify and Count (Sec-
tion 4.2.3), and HDy (Section 4.2.8).

4.2 Aggregative Methods Based on General-Purpose Learners 73

3. Output aggregation: the final estimate for class prevalence of the unlabelled set
U is computed as the arithmetic mean of the outputs from all models from the
ensemble.

Pérez-Gállego et al. (2019) expand on the above work by considering different
combination techniques for output aggregation (Step 3). The strategy employed
consists of discarding half of the learnt models, thereafter averaging the output of
the remaining ones. If model selection is carried out considering only labelled data,
the resulting procedure is dubbed static, as opposed to a dynamic approach whereby
the choice also takes into account the unlabelled dataset U . Two static methods are
proposed for the selection of the strongest models:

• An accuracy-based approach ranks models according to the Mean Squared Error
they exhibit when tested on every sample .Li of the training set generated during
Step 1.

• An approach inspired by the algorithms described in Section 4.2.5, and aimed at
producing stable adjustments to class prevalence estimates, e.g., by maximising
the denominator from Equation 4.5.

Two more criteria are proposed that embrace a dynamic approach:

• Training prevalence runs all quantifiers on U and ranks them according to the
difference between the mean estimated prevalence for U and the prevalence in
the training set .Li used for training them.

• Distribution similarity, inspired by the work described in Section 4.4.4, compares
the distribution of posteriors .p(y|x) between .Li and U , ranking each quantifier
based on the Hellinger distance computed on histograms.

After ranking models based on static or dynamic criteria, the top half is selected
and the respective estimates are averaged, thus yielding the final estimate of class
prevalence.

4.2.12 QuaNet

A first attempt at using a deep neural network for text quantification is presented
in Esuli et al. (2018). The network takes as input the classification scores for
each document in the sample to be quantified produced by document classifier,
a document embedding for each document in the sample, and the output of an
ensemble of quantification methods.

The QuaNet neural network is composed of two main parts (see Figure 4.1).
Given a set of documents on which to perform the quantification, a first part of
the network takes as input the sequence of document embeddings sorted by the
classification score assigned by a document classifier. This part of the network is
composed of an LSTM that, by observing how the content of the documents varies
(as represented in the document embeddings) in relation to the classification scores,

74 4 Methods for Learning to Quantify

Fig. 4.1 Architecture of the QuaNet network, from Esuli et al. (2018).

learns to output a “quantification embedding” which captures the composition of
the whole set of documents to be quantified.

The second part of the network takes as input such quantification embedding
vector as well as the estimated prevalence values from the ensemble of quantifica-
tion methods, i.e., those described by Equations 4.2, 4.3, 4.4, 4.9 (i.e., .p̂CC

U (⊕),
.p̂PCC

U (⊕), .ph
U(⊕̂i), .E[ph

U(⊕̂i)]), and other statistics on the underlying classifier
(the .TPR, .FPR, .TNR and .FNR estimates, see Section 4.2.3). All these values are
processed through a set of fully connected layers that output the quantification
prediction. Given a training set of labelled documents, the training examples for
QuaNet are samples of the training set sampled so as to cover all the possible
prevalence values.

The rationale behind QuaNet is that the network learns to select, combine and
correct the information coming from a committee of quantification methods, as a
function of an abstract representation of the content of the set of documents to be
quantified in order to produce a more accurate quantification across all the spectrum
of possible prevalence values, whereas each single method maybe more accurate
on some ranges than on others. The QuaNet network can in principle work with
any classifier, and also the embeddings can have different origin and form, e.g., they
can be either traditional bag-of-word sparse representations or dense representations
produced by a language model or as the by-product of a classification NN (as done
in Esuli et al. (2018)). Similarly, the committee of quantification methods given
in input can be varied, with experiments from the original authors confirming the
intuition that the richer the committee is, the better the results are.

4.3 Aggregative Methods Based on Special-Purpose Learners

To date, most proposed methods explicitly addressed to quantification (Barranquero
et al., 2013; Bella et al., 2010; Forman, 2005, 2006, 2008; Forman et al., 2006;
Hopkins and King, 2010; Xue andWeiss, 2009) employ general-purpose supervised
learning methods, i.e., address quantification by elaborating on the results returned
by a general-purpose classifier. A different stance is taken by the works in this
section, which propose the use of learning algorithms explicitly designed with quan-
tification in mind. Said methods propose special optimisation criteria, which are

4.3 Aggregative Methods Based on Special-Purpose Learners 75

devised to bring about good quantification performance under simple aggregation
(i.e., Classify and Count). Tasche (2016) provides an interesting theoretical analysis
on this approach, which he dubs quantification without adjustment, highlighting
some inherent limitations.

4.3.1 Methods Based on Explicit Loss Minimisation

In a position paper, Esuli and Sebastiani (2010b) suggest the use of an explicit loss
minimisation approach to quantification, based on the idea of using a learning algo-
rithm that is “aware” of the measure (a.k.a. “loss”) used for evaluating quantification
error, i.e., a learning algorithm that explicitly minimises that measure, whichever it
may be. This is an implicit answer to the methods discussed in Section 4.2.5, which
all attempt to address the undesired side effects of using learning algorithms that
minimise Hamming loss (i.e., “vanilla” classification error), or proxies thereof.

The idea of using classifier-training algorithms capable of directly minimising
the measure used for evaluating error is well-established in supervised learning.
However, in the case of quantification, following this route is non-trivial, because
the functions used for evaluating quantification (see Section 3) are inherently
nonlinear, i.e., are such that the error on the set of unlabelled items may not be
formulated as a linear combination of the error incurred by each unlabelled example.
The reason for this inherent non-linearity is that, how the error on an individual
unlabelled item impacts on the the error on the set of unlabelled items depends on
how the other unlabelled items have been classified. For instance, if in the other
unlabelled items there are more false positives than false negatives, an additional
false negative is actually beneficial to overall quantification error, because of the
mutual compensation effect between .FP and .FN mentioned in Section 1.2. As a
result, a measure of quantification error is inherently nonlinear, and should thus be
multivariate, i.e., take in consideration all the unlabelled items at once.

The assumption that the error on the set of unlabelled items may be formulated
as a linear combination of the error incurred by each unlabelled example (as indeed
happens for many common error measures – e.g., Hamming distance) underlies
most existing learners, which are thus suboptimal for tackling quantification. In
order to sidestep this problem, Esuli and Sebastiani (2010b) suggest the use of
the SVM for Multivariate Performance Measures (SVM.perf) learning algorithm
proposed by Joachims (2005). SVM.perf is a “structured output” learning algorithm
of the Support Vector Machine family that can generate classifiers optimised for
any nonlinear, multivariate loss function that can be computed from a contingency
table (as all the measures discussed in Section 3 are). Esuli and Sebastiani (2014,
2015) implement and test the idea, adopting KLD or NKLD as the loss function to
be minimised; the SVM(KLD) and SVM(NKLD) methods consist of adopting plain
Classify and Count using a classifier generated by SVM.perf as instantiated with the
KLD or NKLD loss measures.

76 4 Methods for Learning to Quantify

Barranquero et al. (2015) follow a very similar route, but instead of minimising
a “pure” quantification loss they minimise (also via SVM.perf) the Q measure, a
combination of a classification loss function .Mc and a quantification loss function
.Mq obtained (by mimicking the .Fβ measure (van Rijsbergen, 1979)) as the
harmonic mean between .Mc and .Mq, i.e.,

.Q
Mc,Mq

β = (1 + β2)
Mc · Mq

β2 · Mc + Mq (4.28)

The rationale of minimising the Q measure is that, by doing so, the authors attempt
to learn a good quantifier that is also a good classifier, the underlying idea being that
a system that delivers good quantification accuracy but bad classification accuracy
is not a trustworthy quantifier. (This idea will be discussed again in Section 4.3.2).
In their experiments, Barranquero et al. (2015) use (.1−recall) and NAE as the
classification and quantification loss functions .Mc and .Mq in Equation 4.28.

As an alternative to the use of SVM.perf for minimising quantification loss
measures, Kar et al. (2016) propose to tackle the explicit minimisation of KLD and
other quantification loss measures via an online stochastic optimisation algorithm
(NEsted priMal-dual StochastIc updateS – NEMSIS) that they devise. NEMSIS is
an algorithm for online stochastic optimisation of nested concave functions, i.e.,
concave functions of functions that are themselves concave; Kar et al. (2016) show
that .−KLD (the negation of KLD) is indeed nested concave, which means that
it lends itself to optimisation by means of NEMSIS. Via a similar process, the
authors propose online stochastic optimisation algorithms that can deal with several
other evaluation measures for quantification, including Barranquero et al.’s (2015)
Q measure and variants thereof. Following the same line of research, Sanya et al.
(2018) present a family of algorithms that can directly train deep neural networks,
and other methods that generate nonlinear classifiers, to optimise quantification loss
functions such as KLD.

4.3.2 Quantification Trees and Quantification Forests

Another work that proposes the use of learning technology specially designed for
quantification is the one by Milli et al. (2013). This work customises decision trees
to deal with quantification, thereby yielding what the authors call quantification
trees. Like all decision trees (see e.g., Duda et al., 2001, §8.2 for an introduction),
quantification trees are built by recursively selecting the best feature for splitting the
training data, until a stopping condition is verified. Essentially, a quantification tree
is a kind of decision tree in which both (a) the splitting criterion and (b) the stopping
condition are informed by measures of quantification accuracy. The authors propose
two methods for training a quantification tree, which differ in terms of how step (a)
is tackled.

4.3 Aggregative Methods Based on Special-Purpose Learners 77

In the first method (called classification error balancing), the .|FP−FN| measure
(a proxy of absolute error) is used for evaluating the quality of a split12. For instance,
if nodes in the tree check for the presence or the absence of a feature in the
unlabelled item (as in binary decisions trees), during the training phase the chosen
feature on which to split is the one that minimises the absolute difference between
the number of false positives and the number of false negatives resulting from the
split.

In the secondmethod (calledClassification-quantificationbalancing), the quality
of a split is evaluated by the function

.MOM(p, p̂) = |FP2 − FN2| = (FP + FN)(|FP − FN|) (4.29)

The rationale of .MOM (which stands for multi-objective measure) is that .(FP+FN)

is a measure of classification error, while .|FP − FN| is a measure of quantification
error, which means that by minimising their product one attempts to generate low
values of both quantities at the same time. The underlying intuition is that it is
difficult to trust a quantifier if it is not also a good classifier, and by attempting
to simultaneously maximise both classification and quantification accuracy we
thus strive to obtain good and trustworthy quantifiers. (Such an attempt is also
the rationale of Barranquero et al. (2015), a work that we have discussed in
Section 4.3.1). The reader may have noticed that we had not mentioned .MOM
in Section 3.1, i.e, when discussing evaluation measures for quantification. The
reason is that .MOM, while a reasonable measure for a learner to optimise, is not
a reasonable measure for evaluating the results of a quantifier, because it does
not evaluate quantification error but a combination of quantification error and
classification error.

Concerning step (b), Milli et al. (2013) stop growing the tree when no possible
split would bring about an improvement in the chosen measure of quality (a measure
which differs, of course, depending on which of the two methods above is used).
Milli et al. (2013) take this approach further by proposing Quantification Forests
(QFs). Essentially, a quantification forest is a “decision forest” (also known as
“random forest” – see Criminisi et al. (2011) for an introduction) of quantification
trees: a set of quantification trees is generated (each by restricting the training set
to .k1 randomly chosen training documents and .k2 randomly chosen features), and
the average of the prevalence estimates for class .⊕ is chosen as the final prevalence
estimate .p̂(⊕).

Note that quantification trees and quantification forests can be used either in
their pure form (i.e., using a CC-style method as in Section 4.2.1) or, as Milli et al.
(2013) indeed do, by applying the ACC-style correction of Section 4.2.3 to the class
prevalence estimates they generate.

12 The authors also mention the possibility of directly using .KLD as a loss (i.e., as a measure of
quality of the split), but do not present experiments on this.

78 4 Methods for Learning to Quantify

4.4 Non-Aggregative Methods

So far, we have discussed methods that work by aggregating the individual decisions
that a (hard or soft) classifier takes for each and every unlabelled item, and possibly
performing some post-processing. However, this is not the only possible route to
quantification, and systems that estimate class prevalence values without generating
binary decisions or posterior probabilities for the individual items as an intermediate
step, can be conceived. Indeed, this route has a theoretical justification in the so-
called Vapnik’s principle, that states (Vapnik, 1998)

“If you possess a restricted amount of information for solving some problem, try to solve
the problem directly and never solve a more general problem as an intermediate step. It is
possible that the available information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem.”

This principle is directly applicable to quantification, since classification is a more
general problem than quantification: in fact, if we have a (hard or soft) classifier
we also have a quantifier, since in order to estimate class prevalence values we only
need to apply (Probabilistic or non-) Classify and Count, but if we have a quantifier
(i.e., an estimator of class prevalence values) this does not mean that we have a
classifier. Vapnik’s principle suggests that the information in the training set might
be sufficient for solving quantification directly but not for solving it indirectly, i.e.,
for training a classifier that classifies the individual documents as an intermediate
step. Non-aggregativequantifiers are thus the ones that more closely follow the spirit
of Vapnik’s principle; this section is devoted to such non-aggregative methods for
learning to quantify.

4.4.1 The README Method

The method proposed by King and Lu (2008), later named README and popu-
larised by Hopkins and King (2010), is a text quantification method based on the
idea of estimating class prevalence values directly via equation

.p(xi) =
∑

yj ∈Y
p(xi |yj)p(yj) (4.30)

where .p(xi) represents the probability that a document drawn at random from U

has .xi as its vectorial representation. The problem is framed, using matrix notation,
as

.pU(X) = pU (X |Y)pU (Y) (4.31)

where .pU (X) is a .2K ×1 vector whose elements are the probability of each possible
variate (binary vector) of K features, .pU(X |Y) is a .2K × |Y| matrix where the j -th

4.4 Non-Aggregative Methods 79

column has the class-conditional probabilities of all possible variates, and .pU(Y) is
the .|Y|× 1 class prevalence array of interest; the solution to this equation can either
be achieved by standard constrained least squares as

.p̂U (Y) = (pU (X |Y)�pU(X |Y))−1pU(X |Y)�pU(X) (4.32)

and then replacing .pU(X |Y) with .pL(X |Y) under the assumption that the class-
conditional probabilities .p(xi |yj) remain invariant between the training and unla-
belled data13.

Of course, the problem is that in high-dimensional spaces (such as in the standard
“bag-of-words” representation used in text-related applications), the dimension .2K

affecting .pL(X |Y) and .pU(X) rapidly explodes, causing the method to become
computationally intractable. To solve this issue, Hopkins and King (2010) applied
bagging, i.e., repeatedly taking random subsets of features (“between approximately
5 and 25 words” long) and estimating .p(yj) as the average of several runs. They also
applied bootstrapping to re-sample matrix rows and estimate the method variance
and thus deriving confidence intervals of the estimation.

Hopkins and King (2010) perform a small-scale experimentation (using 4
datasets, with sizes ranging from 462 to 4303 documents) in which their method
is shown to outperform four baselines, each consisting of the CC method as applied
to an SVM with a different kernel (linear, radial, polynomial, sigmoid). However,
no details are given as to the number of subsets of the vectorial representation
and size of these subsets used in these experiments. One drawback of this method
is that it depends on several hyperparameters, e.g., the number of subsets of the
vectorial representation, and the size of these subsets. Finding optimal values for
these hyperparameters may thus require extensive cross-validation.

4.4.2 The iSA Method

Although README (Hopkins and King, 2010) already counters some computa-
tional issues presented in the original version by King and Lu (2008), it still demands
a considerable amount of computational power, mainly due to the application of
bagging. Ceron et al. (2016) proposed a variant called iSA (standing for integrated
Sentiment Analysis) that gets rid of the bagging approach by first applying a

13 King and Lu (2008) argued this assumption to hold whenever the “data generation process” falls
within the type .Y → X , that is, when the class variable turns to condition the distribution of the
variates in the feature space .X . While this might stand true in their applicative scenario (verbal
autopsies), where the causes of death might determine the symptoms, said assumption might not
hold in general, nor be easily verifiable in practice. All other things being equal, and for reasons
discussed in Section 1.5, we prefer not to stick to any dichotomy of quantification methods built
on top of beliefs about data causality (thus embracing data generation considerations, temporal
dependencies, or intrinsic/extrinsic judgements about labels).

80 4 Methods for Learning to Quantify

series of transformations to the data instances and then directly solving (once)
for Equation 4.32. The main transformation consists of artificially augmenting the
number of instances by replacing each original data with simpler versions of it.
Concretely, iSA replaces each n-dimensional document representation (within a
bag-of-wordsmodel) with its .b = �n/l� (non-overlapping) chunks of length l (with
l a parameter to be specified by the user).14

4.4.3 The README2 Method

Jerzak et al. (2022) proposed README2 aiming at improving the performance of
the original README system by Hopkins and King (2010). This improved version
attempts to counter three situations that could degrade the performance of the
original method, and that the authors identified as (i) semantic change, concerning
the differences in meaning of language used across L and U , which can in turn
be emergent (some terminology appears exclusively in U) or vanishing (some
terminology appears exclusively in L); (ii) lack of textual discrimination, regarding
those categories that are hardly distinguishable by the textual features; and (iii)
proportion divergence, which is analogous to the prior probability shift between
L and U .

README2 introduces two main novelties with respect to the former version,
seeking to better represent the meaning of text. The first one consists of moving
away from the sparse representation of the feature space and the subsampling pro-
cedure in favour of a dense representation based on word embeddings. The second
one consists of improving the feature discrimination by learning a (feed-forward)
neural transformation of the resulting matrix which is optimised for quantification.
This transformation is formalised as an optimisation problem seeking to satisfy
two desirable criteria for the new representation: category distinctiveness (the new
features brings about more distant class-conditional means across categories), and
feature distinctiveness (the rows of the transformed matrix present low correlation
of one another). Both criteria are implemented as two different loss functions which
define, as a weighted sum, the objective loss function to minimise.

Additionally, the aforementioned “vanishing” discourse effect is mitigated by
subsampling L in a way that its term distribution gets closer to that in U . Jerzak
et al. (2022) observed that selective pruning of L indirectly helped to reduce the
“proportion divergence” with respect to U .

14 Actually of length .(l + 1), since a positional character informing of the chunk’s order in the
original sequence is added.

4.4 Non-Aggregative Methods 81

4.4.4 The HDx Method

González-Castro et al. (2013) propose a quantification method for binary problems
based on distributional divergence as measured via the Hellinger Distance (HD).
The method, referred to as HDx, applies to scenarios in which .p(x|⊕) is assumed
to be fixed but .p(⊕) may vary.

This method is closely related to HDy and other mixture models (Section 4.2.8),
with the difference of considering probability distributions .f (x) over the multidi-
mensional input domain .X , instead of distributions .f (s(x)) over single-dimensional
scores computed from the input. The rationale is to measure the similarity between
the unlabelled distribution and a validation distribution, which is generated from
the training distribution at a controlled prevalence. HDx iteratively varies this
prevalence at small steps ranging from 0 to 1 and seeks the prevalence that
maximises the match with the unlabelled distribution as a Mixture Model.

HDx measures the distributional divergence between input data .x, as represented
in a feature space (e.g., tfidf values) between two distributions f and g via the HD,
defined as

.HD(f, g) =
√∫ (√

f (x) − √
g(x)

)2
dx (4.33)

The method they propose actually computes this divergence by integrating the HD
between each feature distribution independently, which is discretised using bins.
The integral is approximated by summing over the bins, i.e.,

.HD(V ,U) = 1

n

n∑

f =1

√
√
√
√
√

b∑

i=1

(√
|Vf i |
|V | −

√
|Uf i |
|U |

)2

(4.34)

where V is the validation sample, .|Vf i | is the number of times the feature f appears
in the bin i, n is the number of features (e.g., distinct terms), and b is the number of
bins. The method thus consist of returning

.α∗ = arg min
α∈[0,1]HD(V α,U) (4.35)

with .α∗ the prevalence. Actually, .V α is created neither by over- nor by under-
sampling L, but is instead constructed as a mixture of the class-conditional
distributions parameterised with the desired prevalence .α, i.e.,

.V α(x) = α · p(x|⊕) + (1 − α) · p(x|�) (4.36)

82 4 Methods for Learning to Quantify

Since the number of bins b might have a significant impact in the calculation, one
typically returns the median of the distribution of the best .α’s found for a range of
b’s (typical values are .b ∈ [10, 20, 30, . . . , 110]).

The same authors also propose HDy, previously discussed in Section 4.2.8,
which, contrarily to HDx, measures the divergence in a single-dimensional space,
which represents the codomain of a soft classifier .s(x). The fact that HDy relies
on a soft classifier to model .p(⊕|x) precludes it from being considered a pure non-
aggregativemethod. Notice HDy significantly outperformsHDx in the experimental
evaluation conducted in González-Castro et al. (2013).

4.4.5 The MMD-RKHS Method

Iyer et al. (2014) formulate the quantification problem in terms of minimising
the Maximum Mean Discrepancy measure in a Reproducing Kernel Hilbert Space
(MMD-RKHS). They prove some error bounds on the application of MMD to
quantification and use such theoretical results to define a kernel learning method
that minimises the MMD between the observed .pU(x) and .

∑
y pL(x|y)�y, under

the assumption that .pU(x|y) = pL(x|y), where .�y are the unknown prevalence
values to be estimated. They compareMMD-RKHS against the method of du Plessis
and Sugiyama (2012), obtaining similar or slightly better results.

4.4.6 The Uncertainty-Aware Generative Model

Keith and O’Connor (2018) propose a Generative Probabilistic Modelling (GPM)
approach to prevalence estimation. The proposed method directly conducts infer-
ence for the unknown prevalence and caters for confidence intervals (CIs) inference.
CIs aim to capture the uncertainty of the model in providing an accurate class
prevalence prediction (i.e., the more confident the model is about its prevalence
estimation, the narrower the CI, and vice versa). This is the first quantification
method in the literature that directly models uncertainty in terms of CIs.15 CI are
later discussed in more detail in Section 5.8.

The idea explored in Keith and O’Connor (2018) is to learn a generative
probabilistic model that, by assuming (i) the documents be conditionally dependent
on the label (i.e., the data generation process is of the formY → X , see Section 1.5),
and (ii) that the class-conditional (unigram) language models remain invariant
between training and unlabelled distributions, proceeds by first sampling a prior
class distribution �, then sampling a label yi ∼ Bernoulli(�) for each document,

15 Note that, although CIs were already mentioned in the work of Hopkins and King (2010), their
method (README – see 4.4.1) is not properly probabilistic, and CIs were obtained via bootstrap.

4.4 Non-Aggregative Methods 83

and finally sampling a bag-of-words document xi ∼ Multinomial(φyi) conditioned
on the label. Different methods are explored as alternatives for the language model
determining φyi . In particular, two explicit ones (Multinomial Naive Bayes and
Loglin) that directly model p(x|y), and another implicit (LR-Implicit) that instead
estimates said class-conditional p(x|y) via the posteriors p(y|x) generated by a
discriminative classifier (a logistic regressor). The optimal prevalence (along with
the CI) for a set of unlabelled items is then sought by simply exploring a grid of
possible values and returning the one maximising the marginal log probability of all
unlabelled documents.

Among the variants explored, LR-Implicit yields the best results in terms ofMAE
(for natural and artificial training prevalence values) and CI coverage (the proportion
of times the CIα=0.1 happens to contain the true class prevalence).

Technically, a generative model equipped with a discriminative classifier as a
proxy for computing p(x|y) from the posteriors p(y|x) might better fit within
the family of aggregative methods (discussed in Section 4.2) (indeed, the authors
discuss the close connections between LR-Implicit and the aggregative SLD method
of Saerens et al. (2002), see Section 4.2.9). However, the fact that the general
generative framework described in Keith and O’Connor (2018) does only require
the specification of a language model conditioned on the class labels (as directly
attained by the explicit variants), squarely places the approach within the non-
aggregative methods.

4.4.7 Deep Quantification Network

Qi et al. (2020) propose a Deep Quantification Network (DQN) that makes
quantification predictions by combining quantification predictions made on samples
from the test set to be quantified. More specifically, the training set L of labelled
objects (binary or multi-class labels), is split, by sampling without replacement, in
� |L|

m
� m-tuples of m objects (e.g., 100 objects). The training examples for DQN are

thus the m-tuples with their prevalence values, as determined by the labels assigned
to the elements in the tuple. The sampling policy that generates the m-tuples is
a parameter of the method. The authors tested two sampling methods: random
sampling, which may have low variance in the prevalence values of the m-tuples,
thus risking to overfit DQN on the prevalence of the training set. The other sampling
method is based on the Zipf distribution, which produces samples that exhibit more
varied prevalence values, aimed at contrasting overfitting to the prevalence of the
training set.

A set of m-tuples generated using the whole training set defines an epoch of the
training process. Many set of m-tuples, and thus many training epochs, are used to
train the DQN.

84 4 Methods for Learning to Quantify

The DQN is composed of three main components, chained one after the other:

• A sample feature extraction component. This component produces a vectorial
representation for each object in each of the m-tuples. This component is media-
dependent; for text it can be an LSTM-based network, for images a CNN-based
one.

• A m-tuple feature extraction component. This component converts the m sample
feature vectors for an m-tuple in a single vector representing the whole m-tuple.
The authors tested simple methods such as concatenation (CON), averaging
(AVG), minimum (MIN), and maximum (MAX) of the sample vectors, as well
as a dense layer with sigmoid activation function (NN).

• A class distribution prediction component. This component is implemented as a
dense layer with output of the size of the number of labels, and softmax activation
function, to output a probability distribution.

DQN is thus a feature extraction network followed by one (if CON, AVG, MIN,
MAX components are used) or two (if NN is used) dense layers that convert the
feature vector into prevalence estimations.

At test time the test size is split in m-tuples in the same way as the training data,
prevalence predictions are collected for every m-tuple and averaged. Similarly to
the training process, more than one split can be generated for a test set. In this case
the various prevalence predictions from the different splits are averaged to produce
the final prediction for the test set.

Qi et al. (2020) tested their method on binary (IMDb) and multi-class text
datasets up to 20 labels (20 Newsgroups (Lang, 1995)), comparing it against CC,
PCC, ACC, PACC, and ReadMe (King and Lu, 2008). The configuration using
Zipf-based sampling and NN as the m-tuple feature extraction component always
performed better than any other configuration, and better by a 45% on average,
measured in terms of MAE reduction, than any of the compared baselines.

A key difference betweenDQN and QuaNet (Section 4.2.12) is that DQN directly
tackles the quantification problem without leveraging on a classification method. In
QuaNet, the document embeddings and classification scores are based on solving
a classification problem. In DQN, all vector representations, including the feature
vector representation for a single item in an m-tuple, are learned during the end-to-
end learning16 process that aims at quantification.

16 In deep learning, the expression “end-to-end learning” indicates that all the parameters of a
possibly complex and deep network are fitted at the same time during a single training phase,
considering the whole network as a single model. This is in contrast to other training approaches in
which some neural models are regarded as pre-trained models, and that typically consist of either
training (only) a set of additional layers, or modules, stacked on top of the pre-trained model, or
performing fine-tuning of the pre-trained model using the dataset at hand.

4.4 Non-Aggregative Methods 85

It is worth noting that setting the m-tuple size to the extreme, and rather odd,
value of one transforms DQN into an aggregative method based on classification.
When m-tuple size is one, any m-tuple can only have a prevalence of either one or
zero, i.e., coinciding with the classification label of the single item it contains. The
DQN thus classifies every single items and then outputs its prevalence estimate by
looking at the set of classification scores. For any other m-tuple size value larger
than one DQN can be considered a non-aggregative method.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Advanced Topics

5.1 Ordinal Quantification

A special case of single-label classification is the ordinal one, in which the .m > 2
classes are arranged in a total order. In this case, classes define a discrete, typically
non-metric, qualitative scale. An example of this is the star rating model of product
reviews, which is a typical problem faced in sentiment analysis. The sentiment
scenario is one that highlights how quantification fits well with ordinal problems,
as the typical use of ordinal ratings is to observe how the aggregated evaluations
distribute among the various grades.

It is straightforward to observe that any quantification method for the SLQ case
(see Section 4) can be applied to the ordinal case, and also that this approach is likely
suboptimal as it does not take advantage of the total order among classes. Esuli and
Sebastiani (2010b) discussed the scenario of ordinal quantification, and proposed an
evaluation measure for it (see Section 3.2). The 2016 SemEval challenge proposed
an ordinal quantification task (Nakov et al., 2016) that collected ten submissions
from participants. Among them, only two submissions were based on methods
specifically designed for the ordinal quantification task.

The method proposed by Da San Martino et al. (2016a,b), winner of the
challenge, builds a binary tree from a set of binary classifiers trained on .(m −
1) split points of the ordinal scale. For example, when .m = 5, four binary
classifiers are trained: one that classifies elements in .{y1} from the elements in
.{y2, y3, y4, y5}, and three other for the .{y1, y2} vs .{y3, y4, y5}, .{y1, y2, y3} vs
.{y4, y5}, and .{y1, y2, y3, y4} vs .{y5} splits. All the binary classifiers are corrected
for quantification by applying PCC (see Section 4.2.2). The root node of the tree
structure is determined by selecting the binary classifiers that has the smallest quan-
tification error, measured via KLD. Subsequent nodes of the tree are determined
recursively on the subsets of classifiers selected by the split of the parent node,
until a split selects a single classifier. Quantification is performed by accumulating
posterior probabilities for each element in the set of unlabelled items with respect

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_5

87

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5
https://doi.org/10.1007/978-3-031-20467-8_5

88 5 Advanced Topics

to each category. The posterior probability for an element with respect to a category
is defined by the product of the probabilities in the path of the binary tree the goes
from the root to the leaf associated with that category.

Esuli (2016) proposed a similar approach, in which a binary tree of classifiers is
built on split points of the ordinal scale. The difference with the previous approach
lies in the criterion used to define the tree, which in this work is based on selecting
for the root (and then recursively for any other subtree) the split point that produces
the most balanced training set, adopting the heuristic that quantificationmethodmay
perform better on balanced dataset rather than unbalanced ones. For example, for on
a ordinal scale that has labels .{y1, y2, y3, y4}, respectively with 40, 20, 10 and 10
training examples, the best split for the root of the tree is .{y1} vs .{y2, y3, y4}, as
it produces a 50-50% split of the examples. The method of Da San Martino et al.
(2016a), which is based on the actual evaluation of the quantification accuracy to
define the binary tree, experimentally proved superior to the one of Esuli (2016).

5.2 Regression Quantification

Aggregative approaches can provide useful results also in applications where regres-
sion (not classification) is the task at hand for single data points. In a foundational
work with little follow-up (Bella et al., 2014), the problem of quantification for
regression is outlined, aimed at estimating composite quantities such as sales,
quantities of consumed goods, or overall duration.

The authors provide a supporting sample application: “Consider a maternity
ward that has collected data about baby weight at birth (dependent variable) for
risk pregnancies, jointly with several features about the mother and her current
and previous pregnancies (input variables). With these (training) data, a regression
model has been trained in order to predict baby weight. In order to better plan the
resources needed and the number of expected complications, the hospital wants
to estimate the distribution of weight births for the following month, according
to a new group of pregnant women (unlabelled data) that the maternity ward is
monitoring for future deliveries.”

Let y denote the dependent variable, as customary in regression settings. As a
key aggregated value to quantify is the average of the dependent variable over a
sample U of unlabelled items is considered. A first trivial solution is proposed by
computing

.μ̂U = μL (5.1)

i.e., the regression counterpart of Maximum Likelihood Prevalence Estimation
(Section 4.1), dubbed Test to Train (TT). As usual, L represents the labelled
(training) set, and U the unlabelled (test) set.

Another solution which neglects dataset shift (Section 1.5) and performs simple
aggregation of individual estimates, is dubbed Regress and Sum (RSu), and corre-

5.2 Regression Quantification 89

sponds to computing

.μ̂U =
∑|U |

i=1 ŷi

|U | (5.2)

where .ŷ represents the estimate provided by a regression model trained on L. This
estimate is clearly reminiscent of Classify and Count. RSu estimates are likely
to suffer from potential weakness of the underlying regression model, typically
trained via minimisation of mean square error onL. The authors argue that quadratic
loss functions discourage predictions far from the mean, thus bringing about more
packed predictions.

This may be acceptable if we are only interested in a single value or indicator
such as the mean .μ̂U , but becomesmore of an issue if we are interested in estimating
a full probability distribution for the output value y, a different and fully legitimate
task in the realm of quantification for regression. To exemplify, the counterpart of
RSu for this task can be computed as

.P̂U (y ≤ r) =
∑|U |

i=1 1(ŷi ≤ r)

|U | (5.3)

where .1(·) is the indicator function. This method is dubbed Regress and Splice
(RSp).

A further drawback of RSu is the inheritance of bias from its underlying
regression model, which can be non-zero even in the absence of dataset shift.
The authors propose three heuristics designed to reduce the impact of the above-
mentioned issues thus improving aggregate quantification:

• Adjustment is aimed at compensating for bias, as estimated on L. This leads to a
method dubbed Adjusted Regress and Sum (ARS), summarised by the formula

.μ̂ARS
U = μ̂RSu

U + αBRSu
L (5.4)

Here .BRSu
L is the bias of the RSu estimate computed on L, and .α represents a

modulating factor optimised empirically.
• Segmentation responds to the need for different adjustments across regions of the

input space. In other words, it is reasonable to expect that the bias of a regression
model will be region-dependent, bringing about systematic underestimation in
some areas, while overestimating elsewhere. A number of thresholds are suitably
defined for y, based on values taken by y in the training set L. Predictions .ŷ

issued on U are binned according to these thresholds, approximated with a value

90 5 Advanced Topics

deemed representative of the respective bin, and adjusted in a bin-dependentway.
More in detail, the computation is the result of the following steps:

1. Thresholds are selected based on three alternative criteria, namely equal width
of intervals, equal frequency (i.e., in such a way that the resulting partition on
L determines sets of same cardinality), or k-means.

2. After partitioningL based on variable y, the values of the respective estimates
.ŷ from a single bin are averaged, in order to determine a prototypical value
.ŷm for said bin.

3. After performing regression on U , each data point is assigned to a bin via
comparison of .ŷ with bin thresholds. Each regression estimate is then replaced
by its prototype .ŷm.

4. Finally, adjustment is performed independently on each bin.

Individual predictions are thus corrected according to formula

.ŷ = ŷm
j + αBj (5.5)

where bin membership is denoted by subscript j . Finally, .μ̂U is computed as the
average of predictions over U .

• Spreading is aimed at counteracting the compression of predictions .ŷ, brought
about by regression models which have a tendency to produce packed outputs.
For this reason, estimates .ŷ are corrected via the Nadaraya-Watson kernel as
a first step. This kernel smoothing algorithm allows to artificially increase the
variance of predicted values to better match the variance of the real values y when
required. Spreading can be used in conjunction with all techniques described
above, including TT, RSu and ARS. It is deemed especially useful when the task
at hand requires an estimate of the whole probability density, less so when the
interest lies in the average value .μ̂U .

5.3 Cross-Lingual Quantification

Cross-Lingual Quantification (CLQ) is the task of performing quantification in
scenarios in which training documents in the target language for which quantifi-
cation needs to be performed do not exist (or are too few as to deploy a reliable
quantifier) but exist for a different source language. Additionally, large quantities
of unlabelled documents are assumed to be easily accessible for both domains.
Esuli et al. (2020) formally defined the task and proposed preliminary baselines
for binary sentiment classification. The key observation is that, when performed via
aggregative methods, cross-lingual quantification could be directly enabled via the
combination of cross-lingual classification and quantification correction. In Esuli
et al. (2020), Cross-lingual Structural Correspondence Learning (Prettenhofer and
Stein, 2011) and Distributional Correspondence Indexing (Moreo et al., 2016),
two methods capable of generating cross-lingual vectorial representations (i.e., in

5.4 Quantification for Networked Data 91

a language-agnostic vector space), were used to train (general purpose) classifiers
and tested in combination with CC, PCC, ACC, PACC, and QuaNet (discussed in
Section 4.2).

Note that CLQ is an instance of transfer learning (Pan and Yang, 2010),
the general learning framework dealing with differences in data distribution and
data representation between the source and the target domains. Other variants of
transfer learning (e.g., cross-domain text quantification) remain, to the best of our
knowledge, unexplored. We are likewise unaware of more general CLQ methods
tackling quantification by topic (instead of by sentiment), dealing with multi-class
problems (instead of binary), or adopting non-aggregative approaches (that is,
without relying on cross-lingual classification as an intermediate step).

5.4 Quantification for Networked Data

Networked data quantification is a special quantification setting where a network
structure connects the individual unlabelled items, as is the case e.g., with hyper-
linked web pages. In classification, the presence of hyperlinks allows the use of
supervised (“relational”) learning techniques that leverage both endogenous features
(e.g., textual content) and exogenous features (e.g., hyperlinks and/or the labels
of neighbouring items) (Chakrabarti et al., 1998; Macskassy and Provost, 2007).
The term “collective classification” (see also Section 6.4) is often used to denote
the fact that the classification of networked items is best tackled collectively, and
not for each item in isolation of the others, since the label to be assigned to one
item may influence the label to be assigned to another item. This is consistent
with homophily effects and preferential attachment often seen in networked data.
So, one obvious method of performing relational quantification is using a state-
of-the-art collective classification algorithm and correcting the resulting prevalence
estimates via method ACC (or Method Max, Method X, T50, MS, MM). Tang et al.
(2010) follow this route by using the wvRN algorithm of Macskassy and Provost
(2003) as the collective classification algorithm. However, they further propose a
non-aggregative method called Link-Based Quantification (LBQ), inspired by the
ACC method of Section 4.2.3. Let .p(�ik) denote the fraction of nodes in the network
that link to node i with .(k−1) levels of indirection (so that, e.g., .p(�i1) is the fraction
of nodes in the network that directly link to node i). From the law of total probability
it follows that

.p(�ik) = p(�ik|⊕) · pU(⊕) + p(�ik |�) · (1 − pU(⊕)) (5.6)

entailing

.pU(⊕) = p(�ik) − p(�ik|�)

p(�ik|⊕) − p(�ik|�)
(5.7)

92 5 Advanced Topics

Equation 5.7 allows estimating .pU(⊕), since the value of .p(�ik) can be observed
directly in the network, while the values of .p(�ik|⊕) and .p(�ik|�) can be estimated
from a training set. A different estimate .p̂

(i,k)
U (⊕) of .pU(⊕) can be obtained for each

pair .(i, k) composed of a node i in the network and an integer value of k. In order to
obtain a robust estimate, the authors compute all estimates for .k ∈ [1, kmax] (for a
given .kmax), and use their median as the final estimate .p̂U (⊕). Quantification based
on homophily is further explored in Milli et al. (2015). A community detection
algorithm is run on the whole network graph (comprising elements from U and L).
Each node in U is subsequently assigned the most frequent label from nodes in
its community belonging to L. In case of community overlap, a prevailing one is
identified based on its density or on highest class prevalence within the community.
Alternatively, ego-networks are proposed as a way to define the community of a
given node. Given a node’s neighbourhood (nodes directly or k-hop-connected to
it), its missing label is determined as the majority one in the neighbourhood.

After label assignment is carried out, Classify and Count and Adjusted Classify
and Count are employed as strategies to aggregate the results. For the latter, false
positive rates and true positive rates are estimated on L with a leave-one-out
approach.

5.5 Cost Quantification

A specific flavour of quantification has been tackled by Forman (2006, 2008)
and dubbed cost quantification. For this application, each data point comes with
additional cost information associated to it. A key application is represented by
a business looking for insight into warranty costs for its products. Given a set of
customer support logs, comprising textual data about issues described by customers
and the cost of support (e.g., repairs), we are interested in quantifying how much
each type of issue is contributing to after-sales expenses. Classes are represented by
different issues or any atomic feature that might drive quality assurance decisions
for the business, e.g., CrackedScreen or SwollenBattery. This task is trivially
resolved by a quantifier if the average cost for a given issue is fixed and known
in advance. However, a further source of complexity is often introduced due to
variability of prices for components.

Classify and Total (CT), is the simplest algorithm considered. Being the counter-
part of Classify and Count, it is based on running a classifier on each sample from
U and adding up the cost .c(x) associated to each sample labelled as belonging to
the class of interest, which comes down to computing

.Sy =
∑

x∈U :h(x)=y

c(x) (5.8)

This approach has similar limitations to Classify and Count.

5.5 Cost Quantification 93

Grossed-Up Total (GUT) mitigates this problem by pushing the CT estimate .Sy

upwards or downwards according to the ratio between the class prevalence estimate
by a proper quantifier .Mq and the one provided by the classifier employed, i.e.,

.S′
y = Sy × p̂

Mq

U (y)

1
|U |

∑
x∈U 1(h(x) = y)

(5.9)

which can be rewritten as

.S′
y = p̂

Mq

U (y)|U | × Sy
∑

x∈U 1(h(x) = y)
(5.10)

thus making two factors explicit. The first represents an estimate of cardinality for
class y within U given by quantifier .Mq , while the second one can be interpreted as
a best guess of average cost for class y provided by classifier .h(x), which, however,
is quite likely to be polluted by misclassified items.

Conservative Average * Quantifier (CAQ) is aimed at reducing pollution by
computing a cost average on a predefined amount of items from U , which we
deem very likely to belong to class y. These items are taken in decreasing order
of posterior probability .p(y|x).

Precision Corrected Average * Quantifier (PCAQ) takes the above idea a step
further by estimating the precision (or Positive Predictive Value – PPV) of classifier
.h(x) on the unlabelled set U . For ease of notation, in the binary case, let us shorten
the symbol for estimates of prevalence for class .⊕ within U provided by quantifier

.Mq to .q = p̂
Mq

U (⊕). Moreover, let .PPVh denote the precision of classifier .h(x) on
U . The values of .PPVh on U can be computed from estimates of class prevalence
q and estimates of true and false positive rates for .h(x) (.TPRh, .FPRh), obtained via
cross-validation on L, i.e.,

.PPVh = q · TPRh

q · TPRh + (1 − q) · FPRh

(5.11)

This value is then employed to compute the average cost of positive predicted
instances via

.Ch⊕ = PPVhC⊕ + (1 − PPVh)C� (5.12)

where .C⊕ is the average cost of items in class .⊕, which we need to estimate. A
further equation linking these quantities can be specified on the whole set U of
unlabelled items, i.e.,

.CU = pU(⊕)C⊕ + (1 − pU(⊕))C� (5.13)

94 5 Advanced Topics

where .CU is the average cost of items in U . After solving for .C�, plugging into
Equation 5.12, and substituting .pU(⊕) with its estimate q , we obtain

.C⊕ = (1 − q)Ch⊕ − (1 − PPVh)CU

PPVh − q
(5.14)

which is then multiplied by estimated class cardinality .q · |U | to get the final cost
quantification. Note that both estimates of classifier precision .PPVh and average
cost .Ch⊕ depend on how the classifier’s threshold is selected.

Median Sweep of PCAQ applies the philosophy of Median Sweep from Sec-
tion 4.2.6 to PCAQ by considering several values for classifier threshold, getting a
different estimate .Cy for each of them via PCAQ, and regarding their median as a
final estimate.

Mixture Model Average * Quantifier applies a similar idea directly to Equa-
tion 5.12. By letting threshold t vary we obtain

.
Ct⊕
PPVt = C⊕ + C�

1 − PPVt

PPVt (5.15)

i.e., a system of equations, one for each threshold value, which can be solved for
.C⊕, .C� via linear regression.

Note that these methods approximate the values of .TPR and .FPR on the
unlabelled set U with estimates computed via cross-validation on L, which may be
a bad approximation unless .pL(x|y) = pU(x|y), i.e., unless L and U are connected
by prior probability shift.

5.6 Quantification in Data Streams

Yang and Zhou (2008) consider the problem of estimating the shift in prior
distribution while observing a sequence of objects from a stream. Their aim is to
improve the classification accuracy by using shift updated priors in the classification
model that is trained only once at the beginning of the process, i.e., without resorting
to active learning and retraining. The proposed method adapts the EM method of
Saerens et al. (2002) to work from a batch setup, i.e., estimating new priors for a
set of unlabelled objects, to an online setup, i.e., correcting priors every time a new
object appears in the stream. Differently from the method by Saerens et al. (2002),
the Online EM (OEM) method of Yang and Zhou (2008) applies the E and M steps
only once to each element that is sequentially generated by the stream. The initial
priors, as well as the likelihood function, are computed on a training set. The E step
computes the posteriors probabilities of the k-th element of the sequence .x1 . . . xn

of elements of the set U of unlabelled items using the likelihood function and the
priors for the k-th step, similarly to the method by Saerens et al. (2002). The M
step computes the corrected priors for the next .k + 1 element of the sequence using

5.6 Quantification in Data Streams 95

an exponential forget function that combines the priors of the k-th step with the
posteriors of the k-th element, i.e.,

.p̂k+1(y) = αp̂k(y|xk) + (1 − α)p̂k(y) (5.16)

The OEMmethod is thus an online quantificationmethod in the strict sense of online
processing, as each element of the sequence is observed and processed only once.

In experiments OEM performs better than the original EM at improving the
classification accuracy, yet the actual priors’ estimation are not very accurate. Zhang
and Zhou (2010) observed that this issue is likely related to a small-sample effect,
i.e., that priors update in Equation 5.16 is determined by a single element. They
propose to overcome this issue by means of a transfer estimation method, which
computes the M step using the posteriors from N previous elements in the stream,
i.e, Equation 5.16 is changed into

.p̂k+1(y) = α
1

N

N−1∑

i=0

p̂k(y|xk−i) + (1 − α)p̂k(y) (5.17)

Maletzke et al. (2018) explore the use of active learning on data streams as a device
to improve the quantification accuracy. They define data streams as generators
of instances across time. For quantification, they consider U to be composed
of a sequence of event windows .Ut across time. Quantification requests happen
whenever an event window is complete. The true label y is known for an initial batch
of instances that define the training set L. The true label for successive instances
may be available after a verification latency time .Tl , which may range from .Tl = 0
to .Tl = ∞. The first case means that, if requested, the true label for an instance is
immediately available. This is an unrealistic case for most real-world applications as
some time is inevitably required by the labelling oracle, typically a human annotator,
to produce the true labels. The latter case of .Tl = ∞ means that no true labels will
be ever available for instances outside the training set, which is an extreme scenario
in which no active learning strategy can be applied. Active learning can be exploited
in all the cases for which .Tl < ∞, exploring many possible strategies and trade-offs
between labelling cost and quantification accuracy improvement.

The methods proposed by Maletzke et al. (2017, 2018) are template methods
as they leverage a classification-based method to perform the actual quantification,
while they manipulate the training data (transforming or enriching it).

The StreamQuantification by Score Inspection (SQSI) algorithm (Maletzke et al.,
2017) leverages statistical tests to decide if a classifier trained on L can be reliably
used to perform classification and quantification on .Ut . The algorithm works as
follows:

1. It starts by training a classifier h on an initial training set L.
2. Given a set of items .Ut to quantify, h is used to get the classification scores on

all of them.

96 5 Advanced Topics

3. The set of classification scores on .Ut is compared to the set of classification
scores on L (obtained with a leave-one-out cross validation). The comparison is
done with a Kolmogorov-Smirnov test, under the null hypothesis that the two
sets of scores come from the same distribution.

(a) If the null hypothesis is not rejected, a quantification method based on h is
used to estimate class prevalence on .Ut . The algorithm repeats from Step 2
for the successive set .Ut+1.

(b) Otherwise, the algorithm makes a first attempt at transforming L into a shift
adapted training set .L′ using the shift adaptation algorithm described in dos
Reis et al. (2016).

4. h is replaced with a new classifier trained on .L′.
5. The Kolmogorov-Smirnov test between .L′ and .Ut classification scores from

Step 3 is repeated.

(a) If the null hypothesis is not rejected, a quantification method based on .h′
is used to estimate class prevalence on .Ut . .L′ replaces L and the algorithm
repeats from Step 2 for the successive set .Ut+1.

(b) If the null hypothesis is rejected again then the true labels of .Ut are asked to
an oracle, defining a new training set L. The algorithm repeats from Step 1
for the successive set .Ut+1

Assuming a small shift between successive sets of items .Ut ,Ut+1 one can expect
that the oracle will seldom be consulted. In the experimental evaluation of Maletzke
et al. (2017), performed on fourteen datasets with a very low number of features
(only two features for 8 synthetic datasets, and less than 100 in the other cases), the
portion of items labelled by the oracle was below 10% in all but one case.

The SQSI algorithm can help the quantification process only when the observed
shift is within the range of correction of the shift adaptation method, otherwise it
fails, requiring a complete labelling of the set of items to be quantified by the oracle.
The SQSI-IS (where IS stands for Instance Selection) algorithm tries to reduce the
amount of labelling required by using instance selection and self-learning whenever
the shift adaptation method fails. Instead of requiring the oracle to label the whole
set U (Step 5b above), only a fraction of elements of U is selected for labelling
by the oracle, while the remaining part is labelled using an iterative process of
self-learning adding to L the element of .U \ L that is classified with the highest
confidence. The authors test several instance selection methods (random, clustering
based, farthest-first traversal), and find that a clustering-based approach performs
consistently better, with the best overall quantification performance observed for
SQSI-IS instantiated with clustering and the PCC quantification method.1 The
observed reduction in labelling requests from SQSI to SQSI-IS is 50% on average,
while achieving the same quantification performance.

1 Maletzke et al. (2018) tested CC, PCC and ACC as the base quantification methods.

5.7 One-Class Quantification 97

5.7 One-Class Quantification

A one-class classification problem assumes that the labelled examples are all
positive examples of a single class, and that no negative examples are available.
Performing quantification in the one-class case is challenging because it is not
possible to measure a real prevalence on the training set L. Moreover, for quantifi-
cation methods that rely on classification, also the one-class classification scenario
is obviously a harder problem than the traditional classification scenario in which
one has representative examples of both the positive and the negative classes.

Nonetheless, approaching a quantification problem as a one-class quantification
problem may be a more robust approach in cases in which the definition of the
negative cases is open. In a one-class setup the positive label will likely identify
a specific property while the negative label comprises the universe of data points
for which such property does not hold. In this case is it thus hard to have the
domain of negative examples properly represented in the training set. The domain
of negative examples may change considerably after training the quantification
model. For example, one may be interested in training a Sports news quantifier,
having as negative example only news about Health. The trained quantifier may be
then applied to datasets that include news about Economics and Politics. In this
scenario, a one-class quantifier, trained only on positive examples for Sports, may
be more robust to the variation of data composition between the training phase and
the deployment phase.

Moreira dos Reis et al. (2018a) propose two methods for one-class quantification,
the Passive Aggressive Threshold ACC (PAT-ACC) the One Distribution Inside
(ODIn) method, which draws inspiration from the MM approach (Forman, 2008,
see Section 4.2.8). Both methods are designed to work in combination with one-
class classifiers.

PAT-ACC extends ACC to work on one-class problems by observing that the
problem of estimating FPR can be circumvented by choosing a conservative
classification threshold, so that one can assume that .FPR ≈ 0. If the classification
threshold is set so that a quantile q of observations is classified as positive, then the
TPR can be estimated as .TPR = 1−q , allowing to perform quantification using the
ACC method (see Equation 4.5), i.e.,

.p̂PAT−ACC
U (⊕) = min

(

1,
pU (h(⊕))

(1 − q)

)

(5.18)

Moreira dos Reis et al. (2018a) claim that the PAT-ACC method is not sensitive to
the value of q and report that a value of .q = 0.25 is a generally good choice. They
also suggest that an approach similar to Median Sweep can be adopted to avoid
using a fixed q value.

The ODIn method compares the score distribution that is available only for
positive examples in the case of the training set L with the score distribution for U ,
which includes both negative and positive examples. Scores from the classification

98 5 Advanced Topics

of L are used to define a variable-width histogram .HL in which each bin has the
same number of elements. The number of bins b is a parameter, which in Moreira
dos Reis et al. (2018a) is set to .b = 10. Scores from the classification of U define a
histogram .HU , which uses the bin definition of .HL. The overflow of .HL in .HU is
defined as

.OF(α,HU ,HL) =
b∑

i=1

max(0,HU
i − αHL

i) (5.19)

The value .α scales the histogram .HL and OF measures how much the scaled
histogram still has higher valued bins than .HU . Intuitively ODIn searches for the
largest parameter .α that better fits .HL inside .HU , then producing the quantification
estimate by correcting it for its overflow, i.e.,

.p̂ODIn
U (⊕) =s − OF(s,HU ,HL) (5.20)

where

.s = sup
0≤α≤1

{α|OF(α,HU ,HL) ≤ αL}

where .L is a parameter of the method. In Moreira dos Reis et al. (2018a) the authors
set .L = μ̂OF + dσ̂OF, where the values .μ̂OF and .σ̂OF are the mean and standard
deviation of the OF function estimated on pairs of samples from L, and d is a new
parameter that replaces .L. The authors claim that the parameter d has a clearer
semantic than .L, i.e., d is the number of standard deviations of the expected average
overflow, and arbitrarily set to .d = 3 for all of their experiments.

The problem of class prior estimation in the one-class case is faced in du Plessis
and Sugiyama (2014). This work has the main goal of learning a classifier from
positive examples and unlabelled data, and quantification is not the subject of its
proposal. Yet, the proposed method, which they call PE, performs the estimation
of class priors, considering it a necessary step to learn a good classifier. Given that
the correct estimation of class priors is indeed quantification, we consider this work
relevant to our goals. They start from the input density formula

.q(x; �) = �p(x|�(x) = ⊕) + (1 − �)p(x|�(x) = �) (5.21)

observing that .q(x; �) = p(x) when .� = p(⊕), thus defining a full-matching
method for prior estimation. However, in the one-class case .p(x|�(x) = �)

is unknown. To overcome this issue the authors make the assumption that the
class-conditional densities .p(x|�(x) = ⊕) and .p(x|�(x) = �) are not strongly
overlapping and propose a partial-matching estimation method. Such method

5.8 Confidence Intervals for Class Prevalence Estimates 99

matches only .�p(x|�(x) = ⊕) to .p(x) using the Pearson Divergence (PD), i.e.,

.p̂PE
U (⊕) = argmin

�
PD(�) (5.22)

where PD is defined as

.PD(�) = 1

2

∫ (
�p(x|�(x) = ⊕)

p(x)
− 1

)2

p(x)dx (5.23)

The authors experimentally proved that the partial-matching method based on PD
has a lower error than the method based on Equation 5.21 for the one-class case. In
a subsequent work (du Plessis et al., 2017) the approach is further extended to other
divergence functions.

Zeiberg et al. (2020) proposed the DistCurve algorithm that estimates the
prevalence of a sample .σ by leveraging of the concept of distance curve. A distance
curve is computed starting from a sample .σ and a labelled set L that contains
only positive elements. Points of the curve are determined by sampling, with
replacement, a random element from L, and measuring its distance from the closest
element in .σ , that element is removed from .σ . The procedure continues until .σ is
empty. The idea is that the distance curve should show a steep increase in distance
at the step .pσ (⊕)|σ |, as all the positive elements have been removed from the set.
A neural network is trained on distance curves generated on samples with known
priors, so as to be able to predict the .p̂σ value from the distance curve for .σ . In order
to be robust to statistical variation caused by the sampling mechanism, the distance
curve for .σ that is given as input to the neural network is determined as the average
of multiple runs of the method that computes the distance curve.

5.8 Confidence Intervals for Class Prevalence Estimates

A confidence interval (CI), in the context of quantification, is a range of values .(l, h)

which should contain the true prior probability .pU(y) for class y with a desired level
of confidence, such as .95%. In mathematical terms, l and h should be such that the
probability of event .(pU (y) ∈ (l, h)) is equal to 0.95. This information is often
more useful than a point estimate of class prevalence .p̂U (y).

Hopkins and King (2010) first mentioned computing bootstrapped CIs for their
estimates, without providing much detail. CIs for quantification have received
more attention in recent years. Keith and O’Connor (2018) propose a generative
model, whose characteristics naturally allows for the computation of CIs for class
prevalence values (Section 4.2.8). Let .pU(⊕) denote the true proportion of positives
in U . Algorithmswhich supportMaximum a posteriori estimation are typically used
to compute the single most plausible value for .pU(⊕), i.e. the one that is most
compatible with the covariates observed in U , but also support the computation of

100 5 Advanced Topics

likelihood values for any possible .pU(⊕) ∈ [0, 1]. The authors exploit this idea,
training different versions of the generative models. At inference time, they employ
grid search over all possible (quantised) values of .pU(⊕), in conjunction with a
uniform prior, constructing a posterior density from which confidence intervals are
derived.

Daughton and Paul (2019) propose a technique called error-adjusted bootstrap
to compute CIs for quantification based on the outputs of a classifier, with a
correction procedure accounting for its (im)precision. In the construction of a
bootstrap sample, they draw an instance with covariates .x from U , and feed it to
a classifier .h(x), to obtain a predicted class .c ∈ {⊕,�}. The bootstrap sample is
expanded by using the classifier output as a parameter to sample from a Bernoulli
distribution with success probability .pU(⊕|h(x) = c); (un)successful draws result
in attaching class .⊕ (.�) to the sample. Prevalence estimates for a single bootstrap
sample are subsequently obtained by computing the frequency of .⊕ within it.
Confidence intervals at a desired level are then constructed customarily, based on
the estimates from all bootstrap samples. Crucially, the precision-related parameter
.pU(⊕|h(x) = c), shaping the Bernoulli distribution, is estimated on the training
sample L. As duly noted by Tasche (2019), this approach does not generally work
under dataset shift. This is due to the fact that .pU(⊕|h(x) = c) = pL(⊕|h(x) = c)

is not guaranteed to hold. Hence, the approach of Daughton and Paul (2019) seems
suited to handle covariate shift, a setting where the previous equation holds true.

Fernandes Vaz et al. (2019), whose work is discussed in Section 4.2.7, provide a
central limit theorem for the ratio estimator, from which confidence intervals can be
computed without any numerical simulation.

Tasche (2019) deploys a simulation study to shed some light on the topic of CIs
in quantification tasks, under prior probability shift. Despite lacking the complexity
of real-world datasets, the study provides some illustrative and interesting results
in a controlled setting described very clearly. Several quantification methods are
selected based on Fisher-consistency (Tasche, 2017) and popularity in the literature,
including ACC (Section 4.2.3), PACC (Section 4.2.4), MS (Section 4.2.6), HDy
(Section 4.2.8). Each of these methods is tested in a variety of settings, with proba-
bility shift ranging from strong to mild, exploiting underlying classifiers of variable
discriminatory power, and testing on unlabelled samples of size .|U | ∈ {50, 500}.
For each combination of the above parameters, CIs at 90% are constructed via
regular bootstrapping. One key finding is that, if a quantification method is based
on an underlying classifier with high power, then the CIs will be shorter and more
informative while retaining desired coverage levels.

The study also points out that, for quantification problems, prediction intervals
are, in principle, more useful than confidence intervals. Indeed, a practitioner is not
exactly interested in having a range for the true prior probability from which the
unlabelled sample U originated, i.e., the target of confidence intervals. Rather, they
plausibly care about having a range of plausible values for the realised prevalence,
i.e. the percentage of points from U that belong to the positive class, a quantity
that should be targeted by (more conservative) prediction intervals. However, the
results of simulations carried out by Tasche (2019) in a variety of settings suggest

5.8 Confidence Intervals for Class Prevalence Estimates 101

that, for .|U | > 50, as reasonable in most practical applications, the construction of
confidence intervals is sufficient (adequate coverage) and there seems to be no need
for the construction of more conservative prediction intervals.

Thanks to central limit theorems (see e.g., Section 4.2.7), confidence intervals for
some approaches can be constructed without bootstrapping. Tasche (2019) also tests
the effectiveness of this approach, concluding that it results in suboptimal results
(e.g. low coverage) in the presence of certain conditions. As an example, if the true
positive rate and false positive rate of an underlying classifier have to be estimated, a
limited sample size forLmay be a source of imprecision in said estimate, corrupting
prevalence estimates and bringing about confidence intervals of insufficient size.

More recently, Denham et al. (2021) note that PCC can natively provide
confidence intervals, since PCC may be thought of as computing the mean of a
Poisson binomial distribution of the posterior probabilities (scaled by a constant
factor), and since we know how to derive reliable confidence intervals under this
assumption. The authors exploit this idea, along with other assumptions on the
underlying distributions of a mixture model, to derive confidence intervals for their
method GSLS (explained in Section 4.2.8).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 6
The Quantification Landscape

6.1 Historical Development

6.1.1 The Trajectory of Quantification

The “prehistory” of quantification research may be traced to the interest in the
estimation of class prevalence from screening tests, as carried out in epidemiology.
Accordingly, the first recorded “quantification” technique is probably the one of
Gart and Buck (1966) (see Section 4.2.3). This literature is different from that
discussed in the rest of this book (and this is the reason why the term “quantification”
above is in quotation marks) since no training data (and no supervised learning) is
involved here: the role of the classifier is here played by a clinical test that has
imperfect (but known) sensitivity and specificity (see Section 6.4 for details). The
estimation of class prevalence has remained an important concern of epidemiologi-
cal research to this day, and several papers on this topic (e.g., Levy and Kass, 1970;
Lew and Levy, 1989; Morvan et al., 2008; Rahme and Joseph, 1998; Viana et al.,
1993; Zhou et al., 2002) have continued to appear in epidemiology-related journals
to this day.

The first stage of such history in which supervised learning is involved coincides
with interest in the estimation of class prevalence from the machine learning
community, where the goal is (as already discussed in Section 2.1) that of building
classifiers that are robust to the presence of distribution shift, and that are better
attuned to the characteristics of the data to which they need to be applied. Here, the
precursors seem to have been Vucetic and Obradovic (2001), but the most influential
paper to date in this field is certainly that of Saerens et al. (2002); later works are,
e.g., Alaíz-Rodríguez et al. (2011), Chan and Ng (2005), Chan and Ng (2006), Xue
and Weiss (2009), and Zhang and Zhou (2010). As mentioned in Section 2.1, in
this stream of research the estimated class prevalence values are not interesting
per se, but only serve the purpose of allowing a better estimation of the posterior

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_6

103

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6
https://doi.org/10.1007/978-3-031-20467-8_6

104 6 The Quantification Landscape

probabilities .p(y|x) (and hence a more accurate classification) for unlabelled data
in contexts characterised by significant distribution shift.

The second and last stage of such history coincides with interest from data
mining, text mining, and content analysis; it is mainly the applications from these
fields that have provided the impetus behind the most recent wave of research in
quantification.

Some 10 years before the very first developments in this line of research, Lewis
(1995, §7) had already evoked a task (that he called counting) that was to consist
of simply counting the unlabelled items that belonged to a given class (which, once
the counts are normalised by the total number of unlabelled items, coincides with
quantification). In that paper Lewis observed that “if our goal is to count class
members, and if we have estimates of the probability of class membership, we
should use the estimates directly to estimate the number of class members, rather
than use them to classify documents”; this is exactly the principle that Bella et al.
(2010), unaware of Lewis’ observation 15 years earlier, based their PCC method
upon (see Section 4.2.2). In this work, Lewis briefly discussed a potential evaluation
measure for “counting” (which consisted of the square of the differences between
.FP and .FN), but did not discuss the task in any further detail. His remarks about
“counting” went essentially unnoticed, and quantification had to wait another 10
years in order for someone to call attention to the need to study it as a task separate
from classification.

This finally happened with (Forman, 2005) and the papers by the same author
that soon followed (Forman, 2006, 2008; Forman et al., 2006); it is in these papers
that the term “quantification” was coined, a term that has since stuck and become
standard terminology. Contrary to the works mentioned above (re: “first stage
of such history”), in these works the estimated class prevalence values are the
true objects of interest. These works eventually became well-known among, and
inspired, researchers in machine learning, data mining, and text mining to develop
the new methods and algorithms that we have discussed in Sections 4 and 5.

There is one chapter in the history of quantification research that has yet to be
written, though, i.e., the one on a widespread uptake of quantification technology
by users, that unfortunately has yet to happen. One only needs to look at the
proceedings of, say, recent computational social science conferences, to realise how
many works are carried out where classification is used despite the fact that the
investigators are only interested in results at the aggregate level. Undoubtedly, this
has to do with a scarce awareness, on the part of data scientists, that prevalence
estimation is not just a by-product of classification. It is a goal of this book to
improve this awareness.

6.1.2 Shared Tasks

To the best of our knowledge, the only shared task that has gathered researchers
on a challenge that explicitly addressed quantification is the “Sentiment Analysis

6.2 Software 105

in Twitter” task of the SemEval-2016 (Nakov et al., 2016) and SemEval-2017
(Nakov et al., 2017) evaluation campaigns. The general goal of this task was to
evaluate algorithms that classify tweets by sentiment. In both 2016 and 2017, this
task included a binary quantification subtask (where positive vs. negative attitudes
towards the designated object had to be identified) and an ordinal quantification
subtask (where these attitudes had to be graded on an ordered scale of five values).
That a shared task devoted to sentiment classification in Twitter should include
subtasks devoted to quantification is just natural, given the fact that (as already
mentioned in Section 2.3) most researchers and practitioners who apply sentiment
classification technology to Twitter datasets are essentially interested in aggregate
results.

One fairly disappointing result of those subtasks was that most participants used
Classify and Count solutions, albeit often based on some sophisticated sentiment
classification technology using deep learning. This testifies to the fact that, despite
its many potential applications, quantification is still a fairly unknown task, and
that there is very little awareness that Classify and Count delivers suboptimal
quantification accuracy.

An ongoing challenge at the time of writing this book is the LeQua 2022 lab on
Learning to Quantify (Esuli et al., 2022). The challenge brings textual quantification
into focus, and comeswith 2 separate tasks: “T1” for binary quantification, and “T2”
for single-label quantification. Each of the tasks admits two variants, one in which
documents come in the form of dense vectors, and another where documents come
in raw form. The datasets consists of product reviews from the Amazon website.
Task “T1” consists of predicting the binary class prevalence of the sentiment polarity
of the reviews, while task “T2” consists instead of predicting the class prevalence of
the merchandise categories (“Automotive”, “Baby”, “Beauty”, . . .) of the products,
for a total of 28 categories. While the training samples reflect the natural prevalence
as from the Amazon website, the validation and test samples are generated following
artificial prevalence values, according to the Kraemer sampling algorithm discussed
in Section 3.4. The results of the challenge will be presented at the CLEF 2022
conference.

6.2 Software

6.2.1 Publicly Available Implementations

Throughout the second phase of the history of quantification (Section 6.1), espe-
cially in recent years, several works have been published that make software
implementations public, thus favouring the reproducibility and, more broadly, the
adoption of quantification techniques. Indeed, publishing a software implementation
of a method proposed in a paper produces many benefits to research, e.g., it
provides a reference implementation, it allows peers to replicate the experiments,

106 6 The Quantification Landscape

and it facilitates the comparison of the method with others in lab experiments.
Some of the authors who have published papers on quantification methods have
published software implementing their methods, and, sometimes, also of the
methods they used as baselines. Table 6.1 reports on the available implementations
of quantification methods, the papers where the link to the implementation is to be
found, and the sections of this book in which the method is discussed.

6.2.2 QuaPy: A Comprehensive Framework for Quantification

The last of the packages in Table 6.1 is our own. It is called QuaPy (Moreo et al.,
2021a), and was originally conceived as supplementary material accompanying this
book. As such, it provides implementations of the main concepts discussed here,
and using the same “jargon”. Differently from other existing packages, QuaPy
is not only a suite of methods, but an ecosystem for quantification, catering for
model evaluation (including implementations for the most important evaluation
measures), model selection (targeting quantification-oriented loss functions), and
visualisation tools for analysing the experimental results (some examples are shown
in Section 6.3.2). QuaPy also provides access to commonly used datasets, and
implements a common interface to allow using other datasets. It is a Python-based
open-source package with BDS-3-Clause licence that can be directly installed via
pip.1 It is extensible and in constant evolution, so that anyone can contribute new
material via GitHub.2

Figure 6.1 shows a complete example of QuaPy’s usage. In this example,
the IMDb dataset of movie reviews is fetched (it is downloaded the first time)
and vectorised using TFIDF weights. The example goes on by training a PACC
quantifier that uses Logistic Regression as the probabilistic classifier. The quantifier
hyperparameters (C and class_weight in this case, all coming from the classifier)
are optimised via grid search using the artificial prevalence protocol for generating
a maximum of 100 validation samples of 500 data items each (as indicated by
eval_budget and by the environment variable SAMPLE_SIZE, respectively) out of
a 25% held-out validation set and in terms of mean absolute error. The model is
refitted on the entire training set once the hyperparameters have been optimised.
Model training is then followed by model evaluation, by applying the artificial
prevalence protocol anew, this time on the test set. The evaluation routine used in
this example is one that generates a Pandas dataframe containing the error figures
for absolute error, relative absolute error, and Kullback-Leibler divergence (see
Figure 6.2).

1 https://pypi.org/project/QuaPy/
2 https://github.com/HLT-ISTI/QuaPy

https://pypi.org/project/QuaPy/
https://pypi.org/project/QuaPy/
https://pypi.org/project/QuaPy/
https://pypi.org/project/QuaPy/
https://pypi.org/project/QuaPy/
https://github.com/HLT-ISTI/QuaPy
https://github.com/HLT-ISTI/QuaPy
https://github.com/HLT-ISTI/QuaPy
https://github.com/HLT-ISTI/QuaPy
https://github.com/HLT-ISTI/QuaPy
https://github.com/HLT-ISTI/QuaPy

6.2 Software 107

T
ab

le
6.
1

So
ft
w
ar
e
pa
ck
ag
es

im
pl
em

en
ti
ng

qu
an
ti
fic
at
io
n
m
et
ho
ds
.B

ol
df
ac
e
in
di
ca
te
s
th
e
m
ai
n
m
et
ho
d
pr
op
os
ed

by
th
e
pa
pe
r
w
he
re

th
e
li
nk

to
th
e
so
ft
w
ar
e

is
to

be
fo
un
d.

T
he

“S
ec
ti
on
”
co
lu
m
n
in
di
ca
te
s
w
he
re

th
e
m
ai
n
m
et
ho
d
is
di
sc
us
se
d
in

th
is
bo
ok
.T

he
lo
w
er

bl
oc
k
of

th
e
ta
bl
e
li
st
s
so
ft
w
ar
e
pa
ck
ag
es

th
at
ar
e

no
td

ir
ec
tl
y
li
nk
ed

to
a
sp
ec
ifi
c
m
et
ho
d.

M
et
ho
ds

L
an
gu
ag
e

U
R
L

Pa
pe
r

Se
ct
io
n

R
E
,C

C
,E

M
R

bi
t.l
y/
Q
ua
nt
So

ft
2

Fe
rn
an
de
s
V
az

et
al
.(
20
17
,2

01
9)

4.
2.
7

H
D
x,

H
D
y,
C
C
,A

C
C
,

Ja
va

bi
t.l
y/
Q
ua
nt
So

ft
3

M
al
et
zk
e
et
al
.(
20
17
,2

01
9)

4.
2.
8

M
ax
,X

,T
50
,M

S,
M
M
,

5.
6

A
C
C
,P

C
C
,P
A
C
C
,S

L
D

Q
ua

N
et

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
4

M
or
eo

et
al
.(
20
21
b)

4.
2.
12

SV
M
(N

K
L
D
),

C
+
+

bi
t.l
y/
Q
ua
nt
So

ft
5a

E
su
li
an
d
Se
ba
st
ia
ni

(2
01
5)

4.
3.
1

SV
M
(K

L
D
),
SV

M
(Q

)

R
ea
dM

e
R

bi
t.l
y/
Q
ua
nt
So

ft
1

K
in
g
et
al
.(
20
13
)

2.
6

R
bi
t.l
y/
Q
ua
nt
So

ft
6

H
op
ki
ns

an
d
K
in
g
(2
01
0)

4.
4.
1

R
ea
dM

e2
R

bi
t.l
y/
Q
ua
nt
So

ft
7

Je
rz
ak

et
al
.(
20
22
)

4.
4.
3

G
P
M

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
8

K
ei
th

an
d
O
’C
on
no
r
(2
01
8)

4.
4.
6

A
R
C
,

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
9

E
su
li
(2
01
6)

5.
1

C
C
,A

C
C
,P

C
C
,P
A
C
C

C
ro
ss
-l
in
gu

al
Q
ua

N
et

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
10

E
su
li
et
al
.(
20
20
)

5.
3

D
is
tC

ur
ve

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
11

Z
ei
be
rg

et
al
.(
20
20
)

5.
7

P
E

M
at
la
b

bi
t.l
y/
Q
ua
nt
So

ft
12
a

du
Pl
es
si
s
an
d
Su

gi
ya
m
a
(2
01
4)

5.
7

O
D
In
,H

D
y

L
ua

bi
t.l
y/
Q
ua
nt
So

ft
13

M
or
ei
ra

do
s
R
ei
s
et
al
.(
20
18
a)

5.
7

D
Q
N

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
16

Q
ie
ta
l.
(2
02
0)

4.
2.
12

C
C
,A

C
C
,M

ax
,X

,T
50
,

M
at
la
b

bi
t.l
y/
Q
ua
nt
So

ft
14

N
/A

N
/A

M
S,

M
M
,A

C
C
,P

C
C
,

PA
C
C
,S

L
D
,P

E

(c
on
ti
nu
ed
)

 2957 3530 a 2957 3530 a

 2957 3630 a 2957 3630 a

 2957 3931 a 2957 3931 a

 2957
4030 a 2957 4030 a

 2957 4230 a 2957 4230 a

 2957 4331 a 2957
4331 a

 2957 4430 a 2957 4430 a

 2957 4530 a 2957
4530 a

 2957 4630 a 2957 4630 a

 2957 4830 a 2957 4830 a

 2957
4929 a 2957 4929 a

 2957 5029 a 2957
5029 a

 2957 5129 a 2957 5129 a

 2957 5228 a 2957 5228 a

 2957 5328 a 2957 5328 a

108 6 The Quantification Landscape

T
ab

le
6.
1

(c
on
ti
nu
ed
)

M
et
ho
ds

L
an
gu
ag
e

U
R
L

Pa
pe
r

Se
ct
io
n

C
C
,A

C
C
,P

C
C
,P
A
C
C
,X

,T
50
,

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
17

Sc
hu
m
ac
he
r
et
al
.(
20
21
)

N
/A

M
ax
,M

S,
D
yS

,R
ea
dM

e,
H
D
x,

H
D
y,
SL

D
,C

D
E
,S

V
M
(K

L
D
),

SV
M
(Q

),
M
M
,Q

F,
PE

C
C
,A

C
C
,P

C
C
,P
A
C
C
,

Py
th
on

bi
t.l
y/
Q
ua
nt
So

ft
15

M
or
eo

et
al
.(
20
21
a)

N
/A

SL
D
,H

D
y,
Q
ua
N
et
,E

ns
em

bl
es
,

SV
M
(N

K
L
D
),
SV

M
(K

L
D
),

SV
M
(Q

),
SV

M
(A

E
),
SV

M
(R
A
E
)

 3131 4142 a 3131
4142 a

 3131 4543 a 3131 4543 a

6.3 How Do Different Quantification Methods Fare? 109

1 import quapy as qp
2 from quapy.method.aggregative import PACC
3 from sklearn.linear_model import LogisticRegression
4 import numpy as np
5 import pandas as pd
6

7 # setting this environment variable allows some
8 # error metrics (e.g., mrae) to be smoothed
9 qp.environ["SAMPLE_SIZE"] = 500

10

11 dataset = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5)
12

13 # model selection with the APP
14 model = qp.model_selection.GridSearchQ(
15 model=PACC(LogisticRegression()),
16 param_grid={
17 'C': np.logspace(-4, 5, 10),
18 'class_weight': ['balanced', None]
19 },
20 protocol='app',
21 eval_budget=100,
22 error='mae',
23 refit=True, # retrain on the whole labelled set once done
24 val_split=0.25,
25).fit(dataset.training)
26

27 df = qp.evaluation.artificial_prevalence_report(
28 model, # the quantification method
29 dataset.test, # the set on which the method will be evaluated
30 n_prevpoints=101, # i.e., using the grid [0.,.01,.02,...,.99,1.]
31 n_jobs=-1, # the number of parallel workers (-1 for all CPUs)
32 random_seed=42, # allows replicating test samples across runs
33 error_metrics=['ae', 'rae', 'kld']) # evaluation metrics
34

35 print(f'best hyper-params={model.best_params_}')
36

37 pd.set_option('display.max_columns', None)
38 pd.set_option('display.width', 100)
39 print(df)
40

Fig. 6.1 Code example using QuaPy (version 0.1.6).

6.3 How Do Different Quantification Methods Fare?

6.3.1 A Tour of Experimental Results

In this section we show some of the most important quantification systems in action.
This set of experiments is not intended to be exhaustive, nor is it intended to
make conclusive statements about the relative merits of the different quantification
systems being tested. The aim of this experimentation is rather that of demonstrating
some of the major performance trends that typically arise naturally in different

110 6 The Quantification Landscape

best hyper-params={'C': 100.0, 'class_weight': 'balanced'}

true-prev estim-prev ae rae kld
0 [0.0, 1.0] [0.057592, 0.942407] 0.057592 28.824875 0.055245
1 [0.01, 0.99] [0.034542, 0.965457] 0.024542 1.127931 0.011950
2 [0.02, 0.98] [0.039174, 0.960825] 0.019175 0.466312 0.005742
3 [0.03, 0.97] [0.035338, 0.964661] 0.005339 0.088854 0.000428
4 [0.04, 0.96] [0.081784, 0.918215] 0.041784 0.531303 0.013911
..
96 [0.96, 0.04] [0.948444, 0.051555] 0.011556 0.146937 0.001445
97 [0.97, 0.03] [0.972371, 0.027628] 0.002372 0.039477 0.000099
98 [0.98, 0.02] [0.967576, 0.032423] 0.012423 0.302125 0.002743
99 [0.99, 0.01] [0.967542, 0.032457] 0.022458 1.032138 0.010480
100 [1.0, 0.0] [0.996870, 0.003129] 0.003129 1.566181 0.001716

Fig. 6.2 QuaPy’s output example (version 0.1.6).

experimental settings. A more comprehensive overview and understanding of the
relative merits of the different quantification systems might only be obtained by
analysing the experimental evaluation carried out by multiple teams; see, e.g.,
Moreo and Sebastiani (2022), Pérez-Gállego et al. (2019), and Schumacher et al.
(2021). The experiments we report here are extracted fromMoreo et al. (2021a) and
are obtained using the QuaPy framework.3

As the learning methods we chose CC (Section 4.2.1), PCC (Section 4.2.2), ACC
(Section 4.2.3), PACC (Section 4.2.4), Forman’s variants MAX (Section 4.2.5), MS
and MS2 (Section 4.2.6), the mixture model HDy (Section 4.2.8), the expectation-
maximisation-based SLD method (Section 4.2.9), SVM(AE) (Section 4.3.1) as the
representative of the “explicit loss minimisation” family (minimising the same
evaluation metric we use here), and .E(HDy)DS as the representative of ensemble
methods (Section 4.2.11); we set the number of base quantifiers to 30 and the
number of members to be selected dynamically to 15 (we perform model selection
independently for each base member).

The evaluation benchmark consists of 30 binary datasets coming from the UCI
Machine Learning datasets, as were previously used by Pérez-Gállego et al. (2017).
Results are mean AE scores (Section 3.1.3) obtained via 5-fold cross-validation.
For each test fold, we follow an APP protocol (Section 3.4.2) and generate 100
different random samples of 100 instances each, using a grid of prevalence values
.{0.00, 0.05, . . . , 0.95, 1.00}. The hyperparameters of the quantifiers are optimised
via model selection for quantification (Section 3.5); in this case, minimising the

3 The code to replicate all these experiments, and to generate the relative tables and plots,
can be accessed via GitHub. See the files uci_experiments.py (runs all experiments),
uci_tables.py (generates Table 6.2 directly in LATEX), and uci_plots.py (generates plots
from Figures 6.3, 6.4, 6.5, 6.6) included in the folder wiki_examples/ of the repository https://
github.com/HLT-ISTI/QuaPy.wiki.git

https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git

6.3 How Do Different Quantification Methods Fare? 111

T
ab

le
6.
2

V
al
ue
s
of

A
E
ob
ta
in
ed

in
ou
r
ex
pe
ri
m
en
ts
;
ea
ch

va
lu
e
is
th
e
av
er
ag
e
ac
ro
ss

10
,5
00

te
st
sa
m
pl
es
.
B
ol
df
ac
e
in
di
ca
te
s
th
e
be
st
m
et
ho
d
fo
r
a
gi
ve
n

da
ta
se
t.
Su

pe
rs
cr
ip
ts

.†
an
d
.‡
de
no
te
th
e
m
et
ho
ds

(i
fa
ny
)w

ho
se

sc
or
es

ar
e
no
ts
ta
ti
st
ic
al
ly
si
gn
ifi
ca
nt
ly

di
ff
er
en
tf
ro
m

th
e
be
st
on
e
ac
co
rd
in
g
to
a
pa
ir
ed

sa
m
pl
e,

tw
o-
ta
il
ed

t-
te
st
at

di
ff
er
en
t
co
nfi

de
nc
e
le
ve
ls
:s
ym

bo
l.
†
in
di
ca
te
s
.0
.0
01

<
p
-v
al
ue

.<
0.
05

w
hi
le
sy
m
bo
l.
‡
in
di
ca
te
s
.0
.0
5

≤
p
-v
al
ue
.
Fo

r
ea
se

of
re
ad
ab
il
it
y,

fo
r
ea
ch

da
ta
se
tw

e
co
lo
ur
-c
od
e
ce
ll
s
vi
a
in
te
ns
e
gr
ee
n
fo
r
th
e
be
st
re
su
lt
,i
nt
en
se

re
d
fo
r
th
e
w
or
st
re
su
lt
,a
nd

an
in
te
rp
ol
at
ed

to
ne

fo
r
th
e
sc
or
es

in
-b
et
w
ee
n.

Q
ua
nt
ifi
ca
ti
on

m
et
ho
ds

C
C

A
C
C

PC
C

PA
C
C

M
A
X

M
S

M
S2

SL
D

SV
M
(A

E
)

H
D
y

E
(H

D
y)

D
S

B
A
L
A
N
C
E
.1

0.
03
9

0.
03
2

0.
04
9

0.
03
7

0.
04
0

0.
04
6

0.
03
6

0.
02
5

0.
03
5

0.
02
2

0.
02
0

B
A
L
A
N
C
E
.2

0.
31
4

0.
37
9

0.
26
4

0.
43
2

0.
46
5

0.
28
8

0.
33
1

0.
37
2

0.
50
0

0.
47
0

0.
35
5

B
A
L
A
N
C
E
.3

0.
03
9

0.
02
0

0.
04
5

0.
02
1

0.
04
0

0.
04
6

0.
03
6

0.
01
8

0.
06
4

0.
01
7

0.
01
4

B
R
E
A
ST

-C
A
N
C
E
R

0.
02
2

0.
02
5

0.
02
9

0.
02
3

0.
02
8

0.
02
1

0.
02
3

0.
02
0

0.
14
4

0.
02
9

0.
02
6

C
M
C
.1

0.
19
4

0.
10
8

0.
22
6

0.
11
7

0.
19
1

0.
19
5

0.
17
8

0.
09
4

0.
22
7

0.
15
6

0.
12
6

C
M
C
.2

0.
17
8

0.
13
8

0.
22
0

0.
09
8

0.
27
1

0.
50
0

0.
42
7

0.
10
5

0.
44
9

0.
11
8

0.
10
3

C
M
C
.3

0.
21
1

0.
17
2

0.
23
9

0.
12
7

0.
25
4

0.
37
6

0.
35
3

0.
12
4‡

0.
33
6

0.
13
6

0.
12
2

C
T
G
.1

0.
03
7

0.
02
0

0.
05
0

0.
02
0

0.
04
1

0.
03
3

0.
03
5

0.
01
7

0.
09
4

0.
02
8

0.
01
8

C
T
G
.2

0.
04
8

0.
04
0

0.
07
8

0.
04
5

0.
04
8

0.
65
3

0.
05
9

0.
03
0

0.
15
2

0.
04
5

0.
04
0

C
T
G
.3

0.
04
7

0.
04
4

0.
05
0

0.
04
3

0.
04
5

0.
64
9

0.
06
1

0.
02
2

0.
11
3

0.
05
3

0.
04
5

G
E
R
M
A
N

0.
15
1

0.
14
2

0.
19
1

0.
09
2

0.
15
4

0.
12
5

0.
13
4

0.
10
1

0.
26
2

0.
16
5

0.
11
3

H
A
B
E
R
M
A
N

0.
23
1

0.
19
0‡

0.
23
7

0.
26
7

0.
24
2

0.
57
2

0.
24
4

0.
19
0

0.
28
3

0.
39
9

0.
32
4

IO
N
O
SP

H
E
R
E

0.
11
1

0.
07
4

0.
11
6

0.
08
4

0.
12
4

0.
20
9

0.
08
9

0.
07
5‡

0.
25
6

0.
10
4

0.
08
2

IR
IS
.2

0.
20
1

0.
24
1

0.
19
5

0.
18
3

0.
25
1

0.
41
2

0.
25
6

0.
21
5

0.
46
1

0.
07
5

0.
05
6

IR
IS
.3

0.
01
9

0.
07
4

0.
04
4

0.
07
1

0.
05
4

0.
13
4

0.
02
4

0.
05
7

0.
20
5

0.
06
9

0.
04
7

(c
on
ti
nu
ed
)

112 6 The Quantification Landscape

T
ab

le
6.
2

(c
on
ti
nu
ed
)

Q
ua
nt
ifi
ca
ti
on

m
et
ho
ds

C
C

A
C
C

PC
C

PA
C
C

M
A
X

M
S

M
S2

SL
D

SV
M
(A

E
)

H
D
y

E
(H

D
y)

D
S

M
A
M
M
O
G
R
A
PH

IC
0.
09
0

0.
04
8

0.
13
0

0.
04
0

0.
09
1

0.
05
9

0.
06
0

0.
03
6

0.
13
4

0.
04
4

0.
03
1

PA
G
E
B
L
O
C
K
S.
5

0.
04
8

0.
04
0

0.
06
7

0.
04
1‡

0.
06
6

0.
47
4

0.
11
5

0.
07
0

0.
34
2

0.
08
5

0.
06
6

SE
M
E
IO

N
0.
04
2

0.
04
9

0.
05
8

0.
04
0

0.
03
8

0.
50
0

0.
07
4

0.
03
0

0.
07
0

0.
03
7

0.
04
7

SO
N
A
R

0.
13
5

0.
20
0

0.
16
3

0.
11
9

0.
14
5

0.
17
1

0.
15
9

0.
11
4

0.
34
6

0.
13
6

0.
13
1

SP
A
M
B
A
SE

0.
04
2

0.
02
6

0.
06
6

0.
02
2

0.
04
9

0.
07
0

0.
03
7

0.
03
1

0.
19
6

0.
02
5

0.
02
4

SP
E
C
T
F

0.
14
3

0.
15
5

0.
17
8

0.
13
3

0.
27
6

0.
62
0

0.
18
2

0.
10
5

0.
29
6

0.
42
0

0.
23
1

T
IC
TA

C
T
O
E

0.
02
4

0.
01
9

0.
02
4

0.
01
4

0.
02
4

0.
13
6

0.
02
4

0.
01
9

0.
50
0

0.
01
8

0.
01
9

T
R
A
N
SF

U
SI
O
N

0.
17
8

0.
13
9

0.
21
5

0.
09
7

0.
22
0

0.
51
0

0.
43
3

0.
08
7

0.
44
2

0.
24
6

0.
16
6

W
D
B
C

0.
03
4

0.
03
6

0.
03
4

0.
02
7

0.
03
8

0.
09
6

0.
02
9

0.
02
5

0.
05
6

0.
01
9

0.
01
5

W
IN

E
.1

0.
02
9

0.
02
5

0.
02
5

0.
03
0

0.
03
3

0.
13
3

0.
03
0

0.
04
4

0.
06
2

0.
04
0

0.
01
9

W
IN

E
.2

0.
02
6

0.
04
8

0.
04
3

0.
05
2

0.
04
5

0.
08
8

0.
04
1

0.
04
6

0.
05
1

0.
03
2

0.
02
2

W
IN

E
.3

0.
03
1

0.
04
0

0.
01
6

0.
03
3

0.
02
8

0.
19
0

0.
02
9

0.
06
1

0.
01
8†

0.
01
8

0.
02
5

W
IN

E
-Q

-R
E
D

0.
14
0

0.
07
6

0.
18
3

0.
05
9

0.
14
1

0.
06
5

0.
09
9

0.
05
6

0.
22
2

0.
06
5

0.
05
8

W
IN

E
-Q

-W
H
IT
E

0.
15
0

0.
07
7

0.
19
4

0.
06
4

0.
14
9

0.
11
3

0.
12
4

0.
05
9

0.
24
7

0.
07
2

0.
06
6

Y
E
A
ST

0.
15
5

0.
10
7

0.
19
7

0.
07
1

0.
15
9

0.
23
3

0.
23
5

0.
06
6

0.
37
8

0.
07
3

0.
07
1

A
ve
ra
ge

0.
10
4‡

0.
09
3‡

0.
12
1†

0.
08
3‡

0.
12
5†

0.
25
7

0.
13
2†

0.
07
7

0.
23
1

0.
10
7‡

0.
08
3‡

R
an
k
A
ve
ra
ge

5.
73
3

4.
96
7†

7.
03
3

3.
90
0‡

7.
13
3

9.
03
3

6.
73
3

3.
13
3

9.
90
0

5.
23
3

3.
20
0‡

6.3 How Do Different Quantification Methods Fare? 113

Fig. 6.3 Diagonal plot.

Fig. 6.4 Error-by-Shift plot.

mean AE score of APP in a stratified validation split consisting of 40% of the
training set. The model, with optimised hyperparameters, is re-fit on the whole
training set before estimating the test prevalence values. Except for SVM(AE), that
natively uses SVM.perf (Joachims, 2005), all other quantifiers rely on a Logistic

114 6 The Quantification Landscape

Fig. 6.5 Global Bias-Box plot.

Fig. 6.6 Local-Bias-Box plot with 5 bins.

6.3 How Do Different Quantification Methods Fare? 115

Regressor as the underlying classifier. We explore the regularisation parameter
C (common to LR and SVM) in .{10−3, 10−2, . . . , 102, 103}, and the parameter
class_weight (only for LR) in {“balanced” , “not balanced”}.

These results are fairly consistent with other results previously reported in
the literature (Moreo and Sebastiani, 2021, 2022; Pérez-Gállego et al., 2019;
Schumacher et al., 2021). They clearly indicate the quantifier SLD behaves very
well overall (in this case beating all other methods in 13 datasets out of 30). Methods
.E(HDy)DS (8 times best method), PACC (4 times best method), and (to a lesser
extent) ACC (2 times best method), also fare very well, obtaining average ranks not
statistically significantly different from the best average rank obtained by SLD. The
method SVM(AE) tends to produce results that are markedly worse than the rest
of competitors. In line with the observations of Schumacher et al. (2021), none of
the variants MAX, MS, MS2 improve over ACC. Also in line with the findings of
Pérez-Gállego et al. (2019), the ensemble .E(HDy)DS clearly outperforms the base
quantifier HDy it is built upon. A general trend that emerges in this experimentation,
and that is consistent with almost any other (not to say all) reported experiments,
concerns the fact that performing classification alone (as, e.g., CC, PCC, SVM(AE))
does not suffice for providing accurate estimations of class prevalence values in
situations of distribution shift; in such situations one typically needs to perform
some sort of adjustment to the prevalence estimation derived from the use of a
(biased) classifier.

6.3.2 Visualisation Tools for the Analysis of Results

While averaged error scores do certainly speak clearly about the macro behaviour
of quantification systems, they do not tell the entire story. The analysis of results
can sometimes be complemented with the aid of visualisation tools that can help to
unravel how a system performs in specific experimental conditions. This is specially
useful in scenarios in which the practitioner wants to better understand how the
system fares, say, in presence of high/low shift, or in regions of high/low prevalence.
Complementing the analysis with such additional viewpoints is interesting since,
for reasons discussed in Section 3.4.4, some protocols are sometimes criticised for
involving testing conditions that some practitioners might deem unlikely to occur in
real cases. In what follows, we discuss some useful types of plots that can be helpful
in practical scenarios.

One plot which is of particular relevance for the analysis of binary quantifiers
is the so-called “diagonal plot”. This plot displays the predicted prevalence values
along the y-axis against the true prevalence values in the x-axis; predicted values
are sometimes binned according to the true prevalence values. The plot is called
“diagonal” since the ideal quantifier is described by a diagonal line, from coor-
dinates (0,0) to (1,1). An example of this plot, computed on the same batch of
experiments reported in Table 6.2, is offered in Figure 6.3 (we also showed some
examples in Section 1.6). This type of plot allows one to rapidly grasp intuitions

116 6 The Quantification Landscape

about the tendency of a quantification method to systematically overestimate or
underestimate the true class prevalence. In this example, the plot reveals that, for
high prevalence values of the Positive class, SLD tends to slightly overestimate the
class prevalence values, while most other methods tend instead to underestimate
them. For low prevalence values of the Positive class, methods MAX, MS, MS2,
PCC, and CC show a tendency to overestimate these prevalence values.

This plot is sometimes enriched by error bars, or colour bands around the
averaged results, representing the deviations from the average. It is, however,
sometimes cumbersome to plot all this information in a single plot, with many
graphical elements ending up inevitably juxtaposed on top of each other. Not
displaying them might however lead to misleading conclusions, since a method
displaying high variance could anyway seem to perform very well, by looking at
the averages of predictions, whenever the estimator is an unbiased one. (In this
example, we have opted for omitting them for the sake of clarity, but some examples
of diagonal plots including colour bands can be found in Esuli et al. (2018), or in
the Figures 1.5 and 1.6 accompanying this book.) Yet another limitation of this kind
of plot is that it is reserved for binary problems only. While it is true that one could
display a dedicated diagonal plot for each of the classes in a SLQ problem, it is no
less true that the intuitions one gains by inspecting diagonal plots get blurred as the
number of classes increase.

Another type of plot that does not present this limitation is what we might call
the “Error-by-Shift plot”. This plot displays any target error metric (say, AE) along
the y-axis as a function of the distribution shift between the training set and each
of the test samples, on the x-axis. As for the diagonal plot, one typically displays
averaged values across bins; here too, error bars or colour bands might help to reveal
the system variance provided that the number of visual elements is moderate. Since
this plot works with the concept of “shift” (as implemented in terms of any error or
divergence metric), it can be applied to any problem characterised by any number
of classes. Figure 6.5 shows an example for the experiments of Table 6.2. Note
that the errors in the left-hand size of the plot correspond to situations in which the
test and the training prevalence are close to each other, while errors on the right-
hand size of the plot describe how the systems perform in cases of high shift. In this
particular example, the plot reveals how .E(HDy)DS excels at situations characterised
by low distribution shift, while SLD seems the most robust in dealing with high-shift
scenarios. This example consists of averages across 30 datasets, and so for many of
them there are few, or none at all, cases of very high shift; this explains why the
curves look less stable in the right-most part of the plot.

As mentioned before, both the Diagonal plot and the Error-by-Shift plot struggle
to display error variances when the number of methods to compare becomes rela-
tively high. The “Bias-Box plot” is specifically devised for studying the distribution
of the error predictions in such cases. This kind of plot resorts to the well-known
box plots to display the bias of the system, i.e., the signed error difference between
the true class prevalence and the predicted class prevalence (see Equation 3.1
in Section 3.1.2). A box plot summarises a distribution by means of different
graphical elements: the extremes of the box delimit the first and third quartiles

6.4 Related Tasks 117

of a distribution, a central line represents the median of the distribution while the
position of a small triangle represents the average of the distribution, the maximum
and the minimum are represented by the whiskers on the top and on the bottom
the box, and finally the outliers appear above or below the corresponding whiskers.
Figure 6.5 shows the Bias-Box plot of our experiments. This diagram reveals that
PACC, SLD, and .E(HDy)DS are the methods displaying the lowest bias overall,
given that their boxes are the most squashed, and given that their whiskers are
the shortest. Note how the reduction of variance with respect to the base members
(HDy) that characterise the ensemble methods (.E(HDy)DS) is clearly perceivable
in the last two boxes; this is in line with the observations reported by the inventors
of this method (Pérez-Gállego et al., 2019). It is also interesting to note how the
heuristic implemented in MS2 drastically reduces the variance displayed by MS.

As in the other cases, this plot is not exempt from limitations, though. Given
that this plot uses distributions based on the bias (signed error difference), this plot
gets unavoidably tied to one class (acting as the positive class), and is thus more
appealing for binary problems. Yet another limitation of the Bias-Box plot has to do
with the fact that the distribution of the bias is computed on the whole experiment,
which might involve (as it does indeed involvewhen APP is adopted) cases of severe
distribution shift mixed up with cases of very low shift. The “Local-Bias-Box plot”
can be of help in situations in which one prefers to crumble up the distribution in
different pieces each characterised by a different prevalence range, or by a different
range of shift. In Figure 6.6 we show the Local-Bias-Box plot for our experiments,
in which we bin the error bias in five ranges of true prevalence. This plot reveals how
the “unadjusted” methods (e.g., CC, PCC) display positive bias for low prevalence
values (thus showing a tendency to overestimate the true prevalence) and negative
bias for high prevalence values (thus showing a tendency to underestimate the true
prevalence). The “adjusted” versions (ACC and PACC), on the contrary, manage to
reduce this effect, as witnessed by the fact that their box plots are centred at zero
bias in those cases. This plot also reveals that MS tends to display a huge positive
bias in the low-prevalence regime, while SVM(AE) displays a huge negative bias in
the high-prevalence regime.

6.4 Related Tasks

6.4.1 Links to Existing Tasks

Quantification bears strong relations with prevalence estimation from screening
tests, an important task in epidemiology (see Levy and Kass, 1970; Lew and
Levy, 1989; Rahme and Joseph, 1998; Zhou et al., 2002); indeed, as already
hinted in Section 6.1, the ACC quantification method discussed in Section 4.2.3
was used (in its binary form) for this task well before research in quantification
was born. A screening test is a test that a patient undergoes in order to check if

118 6 The Quantification Landscape

s/he has a given pathology. Tests are often imperfect, i.e., they may give rise to
false positives (the patient is incorrectly diagnosed with the pathology) and false
negatives (the test wrongly diagnoses the patient to be free from the pathology).
Therefore, testing a patient is akin to classifying a data item, and using these tests
for estimating the prevalence of the pathology in a given population is akin to
performing quantification via classification. The main difference between this task
and quantification is that a screening test typically has known and fairly constant
recall (that epidemiologists call “sensitivity”) and fallout (whose complement
epidemiologists call “specificity”), while the same usually does not happen for a
classifier.

Quantification is also closely related to the problem of density estimation (Sil-
verman, 1986), defined as the estimation, based on observed data, of the unknown
probability density function of a given random variable; if the random variable
is discrete, this means estimating, using observed data, the unknown distribution
across the discrete set of events, i.e., across the classes. A classic, textbook
example of density estimation is estimating the prevalence of white balls in a large
urn containing white balls and black balls. However, quantification and density
estimation are different in at least two respects. First, the above “urn” example
assumes that, when we pick a ball from the urn, we can deterministically assess
whether the ball is black or white, by simple visual inspection; in quantification
we instead assume that assessing whether a given item belongs to the class is
not a deterministic operation, and depends on subjective judgment. A second key
difference is that the density estimation problem arises from the fact that in many
applications it is practically impossible to assess class membership for each single
individual (e.g., we do not want to inspect every single ball in the urn); however,
in the case of quantification it is feasible to analyse every single item, since this
is done automatically. (This is due to the fact that the items that are the object of
quantification are digital objects, and any number of them can be processed given
enough computational resources.) These differences clearly indicate the existence of
a task different from density estimation, and characterised (a) by the need to assess
class prevalence when class membership cannot be established deterministically,
and (b) by the fact that all individuals contained in the sample can be analysed.
These facts indicate altogether that our task is closely related to classification, a
task in which facts (a) and (b) both hold. However, the goal of classification is
different from the one we have set ourselves, since in classification we are interested
in correctly estimating the true class of each single item.

A research area that might seem related to quantification is collective classifi-
cation (CoC) (Sen et al., 2008), as in statistical relational learning. Similarly to
quantification, in CoC the classification of instances is not viewed in isolation.
However, CoC is radically different from quantification in that its focus is on
improving the accuracy of classification by exploiting relationships between the
items to classify (e.g., hypertextual documents that link to each other). For
instance, in certain applications characterised by “homophily” (i.e., the tendency
of individuals to associate with their similar) the fact that a data item has a certain
label may provide additional evidence towards the fact that a related data item (say,

6.4 Related Tasks 119

one that is hyperlinked to the previous one) may have that label too. Differently
from quantification, CoC assumes the existence of explicit relationships between the
items to classify (which quantification does not), and is evaluated at the individual
level, rather than at the aggregate level as quantification is.

Another related research task is divergence approximation (Sugiyama et al.,
2013), which consists of estimating the divergence between two distributions. This
seems, on the surface, akin to evaluating the accuracy of quantification. However,
the main difference is that divergence approximation is performed when one does
not have access to the two distributions, but only to finite samples from them.
In other words, divergence approximation is useful when one is interested in the
divergence of two distributions that should be estimated via the density estimation
techniques previously discussed in this section: in this case, as Sugiyama et al.
(2013) put it, “directly approximating the divergence without estimating probability
distributions is more sensible than a naive two-step approach of first estimating
probability distributions and then approximating the divergence.” Evaluating the
accuracy of quantification is thus different from divergence approximation because
of the very same factors that make quantification and density estimation different.

Yet another related task is learning with label proportions (de Freitas and Kück,
2005; Quadrianto et al., 2009), which consists of learning to estimate the class labels
of individual items when training data comes in the form of samples of such items
with labels at the aggregate level. In other words, we do not know the class labels
of individual training items, but we only know the class prevalence of samples of
such items. This is the other way around with respect to quantification, where we
need to predict labels at the aggregate level by learning from training data which are
labelled at the individual level.

6.4.2 A Possible Variant of the Quantification Task

Quantification, as defined in this book and in the literature that this book looks at,
is (somehow similarly to learning with label proportions) an unusual supervised
learning task, in that the labels that we need to predict and the labels we use in order
to train our predictors are not homologous, i.e., are not of the same type. In fact, in
quantification we start from a training set of labelled items, and we need to predict
the prevalence of the classes in a sample of unlabelled items. In other words, in the
training data the labels (i) are attached to each individual item, and (ii) are drawn
from the set .Y of classes, while in the unlabelled data for which we need to issue
predictions the labels (iii) must be attached to each pair consisting of a sample (i.e.,
a set of individual items) and a class, and (iv) are drawn from the [0,1] interval. This
is unlike most other tasks in supervised learning (e.g., classification, regression),
where the training items and the unlabelled items that need to be labelled are
homologous, and where the labels of the training items and the labels to be attached
to the unlabelled items are drawn from the same set.

120 6 The Quantification Landscape

In the future, one might want to investigate a variant of the quantification task
in which the training data and the unlabelled data are homologous, and where the
training labels and the labels to be predicted are homologous too. In this variant,
the training data would thus consist not of a set of items labelled at the individual
level, but of a set of labelled samples, where the labels are from the [0,1] interval
and where no labels are attached to the individual items. The advantage of this
formulation would be the possibility to use more standard tools from the arsenal of
supervised learning machinery, since this would squarely be a standard regression
task (albeit one in which the label .pσ (yi) for a pair .(σ, yi) must be in [0,1] and the
sum .

∑
yi∈Y pσ (yi) must be equal to 1).4

The disadvantage of this formulation is that it may appear unnatural, since in
many applications labelled data tend to come in the form of labelled individual
items, rather than labelled samples. Still, applications in which there is no access to
the individual labels but a label at the collective level is available, indeed exist (as
in the “learning with label proportions” task); for instance, in datasets of a medical
nature the individual labels of training data might be masked off due to privacy
considerations, but a label for the entire set might be available. In the future it
might be interesting to investigate whether the advantages brought about by this
formulation offset its disadvantages or not.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

4 Indeed, this formulation is clearly reminiscent ofmultiple-instance regression (Dooly et al., 2002;
Ray and Page, 2001), a class of supervised learning techniques in which individual items (called
instances) each have a vectorial representation and are grouped into sets (called bags). In multiple-
instance regression, only the bags, and not the individual instances, have (real-valued) labels.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 7
The Road Ahead

Quantification has seen a growing amount of work in the last 15 years, spawned
by the realisation that there are a lot of application settings in which the class
labels to be attributed to individual items are not interesting per se, but are only
the stepping stones towards estimating prevalence values for the classes of interest.
While research on learning to quantify has grown steadily since 2005 onwards,
much more is still needed in order to stably deliver accurate results across the entire
range of applicative settings on which quantification can be employed.

What is the road ahead, then, for learning to quantify? While there are margins
of improvements on all the areas that this book has touched upon, from plain
single-label quantification to the more complex ordinal quantification, from standard
application contexts to more peculiar ones involving, say, streaming data or
multilingual text, we think there are a few “burning topics” which are sorely in
need of (and that are likely to see) further work:

• Quantification and deep learning. While deep learning has had an enormous
impact on AI and machine learning in general, and on classification in particular,
there has not been much work on applying deep learning to quantification; so
far, the only works in this department are Esuli et al. (2018), Sanya et al. (2018),
and Qi et al. (2020), discussed in Sections 4.2.12 and 4.3.1, respectively. While
nowadays neural architectures naturally cater for variable-length sequential data,
how to properly represent (or embed) unordered sets of elements is less clear, and
it has been shown that simply arranging the elements in the set in an arbitrary
order is problematic (Vinyals et al., 2016). Since unordered sets represent the
primary form of interest in learning to quantify, it is likely that the study of
permutation-invariant functions will become a central subject in future research
on deep learning and quantification. Although some attempts have been made
in trying to represent unordered sets of inputs with deep learning architectures
(Vinyals et al., 2016; Zaheer et al., 2017), more recent work suggests that this
field is yet to be well understood (Wagstaff et al., 2019).

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8_7

121

 2353 179 a 2353 179 a

https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7
https://doi.org/10.1007/978-3-031-20467-8_7

122 7 The Road Ahead

• Non-aggregative methods for learning to quantify. Most approaches to learning
to quantify that have been proposed up to now consist of aggregative methods,
while research on non-aggregative methods has been somehow lagging behind.
It is our impression that the future of learning to quantify will be in the
non-aggregative camp, though, since these methods are, as observed at the
beginning of Section 4.4, the true realisation of Vapnik’s principle as applied
to quantification; it is by fully taking advantage of the fact that quantification is
an “easier” problem than classification, that quantification accuracy will witness
a substantial improvement.

• Explainable quantification.Machine learning algorithms have traditionally been
opaque. In recent years, though, driven by the need to ensure fairness and
transparency in the decision-making processes that ML-powered algorithms
allow, we have seen a surge of interest in making the inferences carried
out by these algorithms (e.g., the classification decisions) explainable. While
explainability has been a hot issue for classification, we are not aware of any
work yet on explainable quantification. One problem that researchers who will
address this area should tackle, is the fact that, if we train our best classifier
and our best quantifier, their decisions will in general not coincide (unless we
use Classify and Count); in other words, if we classify all the unlabelled items
via our classifier and count the items that have been assigned a certain class,
the resulting prevalence value will not coincide with the one estimated by our
quantifier. Providing these results, say, to a customer that has commissioned us
with this work, may prove embarrassing, and hard to convincingly explain in
layman’s terms.

One possible solution might consist of ranking the unlabelled items in
decreasing order of the posterior probabilities generated by our classifier, and
setting the classification threshold exactly at the value that justifies the class
prevalence estimated by our quantifier; the items ranked above the threshold
would thus constitute the “explanation” of the class prevalence returned by
our quantifier. (The classifier, if generated with “explainable machine learning”
technology, would in turn provide explanations for its individual classification
decisions.) Still, this threshold would be different from the one that “our best
possible classifier” would use, which makes this solution suboptimal. Research
on quantification and explainability is thus sorely needed.

• Transductive quantification. A number of applications of quantification are
transductive in nature, i.e., there is a single, finite set of unlabelled items for
which we are interested in estimating class prevalence values, and this set is
available at training time. For instance, in the “What do you think of onions
in cheeseburgers?” scenario mentioned at the very beginning of Chapter 1, the
market research expert may be interested in running this survey monthly, in order
to track the evolution of customers’ preferences (such a survey would be called
a “tracker”, in market research jargon). Alternatively, she might be interested in
running the survey only once, in a one-off manner; in this case, the quantifier can
be trained “on purpose” once the survey data are in, and the training process can
take advantage from the fact that the data to quantify on are already available.

7 The Road Ahead 123

Transductive quantification is yet another context in which Vapnik’s principle
applies: estimating class prevalence values for a finite set of data is a less general
(hence simpler) problem than generating a quantifier that generalises to the entire
domain. So far, this aspect has been exploited by a few methods, e.g., in Saerens
et al. (2002)’s SLD method (Section 4.2.9) and Xue and Weiss (2009)’s CDE-
Iterate method (Section 4.2.10); the fact that, for tasks other than quantification,
transductive inference has been investigated quite frequently in recent years,
and the abundance of contexts to which it can be applied, should incentivise
researchers in devoting more effort to this area.

However, if there is one aspect of the quantification task that is even more sorely
in need of advancement than the ones mentioned above, this is the awareness of its
very existence on the part of its potential users. The large majority of application
papers in which class prevalence values need to be estimated on sets of unlabelled
data, still use Classify and Count, essentially because the authors ignore that there is
a better alternative out there. Raising the awareness that class prevalence estimation
is a problem that should be solved by its own specific techniques is a necessary step.
This awareness is important especially since, with the advent of big data, more and
more application contexts spring up in which we cannot afford analysing the data at
the individual level, and the aggregate level is what we have to be happy with.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Bibliography

Alaíz-Rodríguez, R., Guerrero-Curieses, A., and Cid-Sueiro, J. (2011). Class and subclass
probability re-estimation to adapt a classifier in the presence of concept drift. Neurocomputing,
74(16):2614–2623.

Alexandari, A., Kundaje, A., and Shrikumar, A. (2020). Maximum likelihood with bias-corrected
calibration is hard-to-beat at label shift adaptation. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), pages 222–232, Vienna, AT.

Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von Mises criterion. The
Annals of Mathematical Statistics, 33(3):1148–1159.

Andrus, M., Spitzer, E., Brown, J., and Xiang, A. (2021). What we can’t measure, we can’t
understand: Challenges to demographic data procurement in the pursuit of fairness. In
Proceedings of the 4th ACM Conference on Fairness, Accountability, and Transparency (FAccT
2021), pages 249–260, Toronto, CA.

Arribas, J. I. and Cid-Sueiro, J. (2005). A model selection algorithm for a posteriori probability
estimation with neural networks. IEEE Transactions on Neural Networks, 16(4):799–809.

Baccianella, S., Esuli, A., and Sebastiani, F. (2013). Variable-constraint classification and
quantification of radiology reports under the ACR Index. Expert Systems and Applications,
40(9):3441–3449.

Balikas, G., Partalas, I., Gaussier, E., Babbar, R., and Amini, M.-R. (2015). Efficient model
selection for regularized classification by exploiting unlabeled data. In Proceedings of the 14th
International Symposium on Intelligent Data Analysis (IDA 2015), pages 25–36, Saint Etienne,
FR.

Barocas, S., Hardt, M., and Narayanan, A. (2019). Fairness and machine learning. fairmlbook.org.
Barranquero, J., Díez, J., and del Coz, J. J. (2015). Quantification-oriented learning based on

reliable classifiers. Pattern Recognition, 48(2):591–604.
Barranquero, J., González, P., Díez, J., and del Coz, J. J. (2013). On the study of nearest neighbor

algorithms for prevalence estimation in binary problems. Pattern Recognition, 46(2):472–482.
Beijbom, O., Hoffman, J., Yao, E., Darrell, T., Rodriguez-Ramirez, A., Gonzalez-Rivero, M.,

and Hoegh-Guldberg, O. (2015). Quantification in-the-wild: Data-sets and baselines. CoRR
abs/1510.04811 (2015). Presented at the NIPS 2015 Workshop on Transfer and Multi-Task
Learning, Montreal, CA.

Bella, A., Ferri, C., Hernández-Orallo, J., and Ramírez-Quintana, M. J. (2010). Quantification
via probability estimators. In Proceedings of the 11th IEEE International Conference on Data
Mining (ICDM 2010), pages 737–742, Sydney, AU.

Bella, A., Ferri, C., Hernández-Orallo, J., and Ramírez-Quintana, M. J. (2014). Aggregative
quantification for regression. Data Mining and Knowledge Discovery, 28(2):475–518.

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8

125

https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8

126 Bibliography

Biswas, A. and Mukherjee, S. (2021). Ensuring fairness under prior probability shifts. In
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES 2021), pages
414–424, [Virtual Event]].

Bogen, M., Rieke, A., and Ahmed, S. (2020). Awareness in practice: Tensions in access to sensitive
attribute data for antidiscrimination. In Proceedings of the 3rd ACM Conference on Fairness,
Accountability, and Transparency (FAT* 2020), pages 492–500, Barcelona, ES.

Borge-Holthoefer, J., Magdy, W., Darwish, K., and Weber, I. (2015). Content and network
dynamics behind Egyptian political polarization on Twitter. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work and Social Computing (CSCW 2015),
pages 700–711, Vancouver, CA.

Busin, L. and Mizzaro, S. (2013). Axiometrics: An axiomatic approach to information retrieval
effectiveness metrics. In Proceedings of the 4th International Conference on the Theory of
Information Retrieval (ICTIR 2013), page 8, Copenhagen, DK.

Calders, T. and Verwer, S. (2010). Three naive Bayes approaches for discrimination-free
classification. Data Mining and Knowledge Discovery, 21(2):277–292.

Card, D. and Smith, N. A. (2018). The importance of calibration for estimating proportions
from annotations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics (HLT-NAACL 2018), pages 1636–1646, New
Orleans, US.

Ceron, A., Curini, L., and Iacus, S. M. (2016). iSA: A fast, scalable and accurate algorithm for
sentiment analysis of social media content. Information Sciences, 367/368:105—124.

Ceron, A., Curini, L., Iacus, S. M., and Porro, G. (2014). Every tweet counts? How sentiment
analysis of social media can improve our knowledge of citizens’ political preferences with an
application to Italy and France. New Media & Society, 16(2):340–358.

Chakrabarti, S., Dom, B. E., and Indyk, P. (1998). Enhanced hypertext categorization using
hyperlinks. In Proceedings of the 24th ACM International Conference on Management of Data
(SIGMOD 1998), pages 307–318, Seattle, US.

Chan, Y. S. and Ng, H. T. (2005). Word sense disambiguation with distribution estimation. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005),
pages 1010–1015, Edinburgh, UK.

Chan, Y. S. and Ng, H. T. (2006). Estimating class priors in domain adaptation for word
sense disambiguation. In Proceedings of the 44th Annual Meeting of the Association for
Computational Linguistics (ACL 2006), pages 89–96, Sydney, AU.

Criminisi, A., Shotton, J., and Konukoglu, E. (2011). Decision forests: A unified framework for
classification, regression, density estimation, manifold learning and semi-supervised learning.
Foundations and Trends in Computer Graphics and Vision, 7(2/3):81–227.

Da San Martino, G., Gao, W., and Sebastiani, F. (2016a). Ordinal text quantification. In
Proceedings of the 39th ACM Conference on Research and Development in Information
Retrieval (SIGIR 2016), pages 937–940, Pisa, IT.

Da San Martino, G., Gao, W., and Sebastiani, F. (2016b). QCRI at SemEval-2016 Task 4:
Probabilistic methods for binary and ordinal quantification. In Proceedings of the 10th
International Workshop on Semantic Evaluation (SemEval 2016), pages 58–63, San Diego,
US.

Daughton, A. R. and Paul, M. J. (2019). Constructing accurate confidence intervals when
aggregating social media data for public health monitoring. In Proceedings of the 3rd AAAI
International Workshop on Health Intelligence (W3PHIAI 2019), pages 9–17, Phoenix, US.

de Freitas, N. and Kück, H. (2005). Learning about individuals from group statistics. In
Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence (UAI 2005), pages
332–339, Edimburgh, UK.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, B, 39(1):1–38.

Denham, B., Lai, E. M., Sinha, R., and Naeem, M. A. (2021). Gain-Some-Lose-Some: Reliable
quantification under general dataset shift. In Proceedings of the 2021 IEEE International
Conference on Data Mining (ICDM 2021), pages 1048–1053.

Bibliography 127

Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A., and Danforth, C. M. (2011). Temporal
patterns of happiness and information in a global social network: Hedonometrics and Twitter.
PLoS ONE, 6(12):1–26.

Domingos, P. M. and Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning, 29(2-3):103–130.

Dooly, D. R., Zhang, Q., Goldman, S. A., and Amar, R. A. (2002). Multiple-instance learning of
real-valued data. Journal of Machine Learning Research, 3:651–678.

dos Reis, D. M., Flach, P., Matwin, S., and Batista, G. (2016). Fast unsupervised online drift
detection using incremental Kolmogorov-Smirnov test. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016),
pages 1545–1554, San Francisco, US.

du Plessis, M. C., Niu, G., and Sugiyama, M. (2017). Class-prior estimation for learning from
positive and unlabeled data. Machine Learning, 106(4):463–492.

du Plessis, M. C. and Sugiyama, M. (2012). Semi-supervised learning of class balance under class-
prior change by distribution matching. In Proceedings of the 29th International Conference on
Machine Learning (ICML 2012), Edinburgh, UK.

du Plessis, M. C. and Sugiyama, M. (2014). Class prior estimation from positive and unlabeled
data. IEICE Transactions, 97-D(5):1358–1362.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern classification. John Wiley & Sons, New
York, US, 2nd edition.

Elkan, C. (2001). The foundations of cost-sensitive learning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001), pages 973–978, Seattle,
US.

Elliott, M. N., Morrison, P. A., Fremont, A., McCaffrey, D. F., Pantoja, P., and Lurie, N. (2009).
Using the Census Bureau’s surname list to improve estimates of race/ethnicity and associated
disparities. Health Services and Outcomes Research Methodology, 9(2):69–83.

Esuli, A. (2016). ISTI-CNR at SemEval-2016 Task 4: Quantification on an ordinal scale. In
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval 2016), San
Diego, US.

Esuli, A., Molinari, A., and Sebastiani, F. (2021). A critical reassessment of the Saerens-Latinne-
Decaestecker algorithm for posterior probability adjustment. ACM Transactions on Information
Systems, 39(2):Article 19.

Esuli, A., Moreo, A., and Sebastiani, F. (2018). A recurrent neural network for sentiment
quantification. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management (CIKM 2018), pages 1775–1778, Torino, IT.

Esuli, A., Moreo, A., and Sebastiani, F. (2020). Cross-lingual sentiment quantification. IEEE
Intelligent Systems, 35(3):106–114.

Esuli, A., Moreo, A., and Sebastiani, F. (2022). LeQua@CLEF2022: Learning to Quantify. In
Proceedings of the 44th European Conference on Information Retrieval (ECIR 2022), pages
374–381, Stavanger, NO.

Esuli, A. and Sebastiani, F. (2010a). Machines that learn how to code open-ended survey data.
International Journal of Market Research, 52(6):775–800.

Esuli, A. and Sebastiani, F. (2010b). Sentiment quantification. IEEE Intelligent Systems, 25(4):72–
75.

Esuli, A. and Sebastiani, F. (2013). Improving text classification accuracy by training label
cleaning. ACM Transactions on Information Systems, 31(4):Article 19.

Esuli, A. and Sebastiani, F. (2014). Explicit loss minimization in quantification applications
(preliminary draft). In Proceedings of the 8th International Workshop on Information Filtering
and Retrieval (DART 2014), pages 1–11, Pisa, IT.

Esuli, A. and Sebastiani, F. (2015). Optimizing text quantifiers for multivariate loss functions.
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.

Fabris, A., Esuli, A., Moreo, A., and Sebastiani, F. (2021). Measuring fairness under unawareness
via quantification. arXiv preprint arXiv:2109.08549.

128 Bibliography

Fawcett, T. and Flach, P. (2005). A response to Webb and Ting’s ‘On the application of ROC
analysis to predict classification performance under varying class distributions’. Machine
Learning, 58(1):33–38.

Fernandes Vaz, A., Izbicki, R., and Bassi Stern, R. (2017). Prior shift using the ratio estimator.
In Proceedings of the International Workshop on Bayesian Inference and Maximum Entropy
Methods in Science and Engineering, pages 25–35, Jarinu, BR.

Fernandes Vaz, A., Izbicki, R., and Bassi Stern, R. (2019). Quantification under prior probability
shift: The ratio estimator and its extensions. Journal of Machine Learning Research, 20:79:1–
79:33.

Flach, P. A. (2017). Classifier calibration. In Sammut, C. and Webb, G. I., editors, Encyclopedia
of Machine Learning, pages 212–219. Springer, Heidelberg, DE, 2nd edition.

Forman, G. (2005). Counting positives accurately despite inaccurate classification. In Proceedings
of the 16th European Conference on Machine Learning (ECML 2005), pages 564–575, Porto,
PT.

Forman, G. (2006). Quantifying trends accurately despite classifier error and class imbalance. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2006), pages 157–166, Philadelphia, US.

Forman, G. (2008). Quantifying counts and costs via classification. Data Mining and Knowledge
Discovery, 17(2):164–206.

Forman, G., Kirshenbaum, E., and Suermondt, J. (2006). Pragmatic text mining: Minimizing
human effort to quantify many issues in call logs. In Proceedings of the 12th ACM
International Conference on Knowledge Discovery and Data Mining (KDD 2006), pages 852–
861, Philadelphia, US.

Gao, W. and Sebastiani, F. (2015). Tweet sentiment: From classification to quantification. In
Proceedings of the 7th International Conference on Advances in Social Network Analysis and
Mining (ASONAM 2015), pages 97–104, Paris, FR.

Gao, W. and Sebastiani, F. (2016). From classification to quantification in tweet sentiment analysis.
Social Network Analysis and Mining, 6(19):1–22.

Gart, J. J. and Buck, A. A. (1966). Comparison of a screening test and a reference test
in epidemiologic studies: II. A probabilistic model for the comparison of diagnostic tests.
American Journal of Epidemiology, 83(3):593–602.

González, P., Álvarez, E., Díez, J., López-Urrutia, A., and del Coz, J. J. (2017). Validation methods
for plankton image classification systems. Limnology and Oceanography: Methods, 15:221–
237.

González, P., Díez, J., Chawla, N., and del Coz, J. J. (2017). Why is quantification an interesting
learning problem? Progress in Artificial Intelligence, 6(1):53–58.

González-Castro, V., Alaiz-Rodríguez, R., and Alegre, E. (2013). Class distribution estimation
based on the Hellinger distance. Information Sciences, 218:146–164.

González-Castro, V., Alaiz-Rodríguez, R., Fernández-Robles, L., Guzmán-Martínez, R., and
Alegre, E. (2010). Estimating class proportions in boar semen analysis using the Hellinger
distance. In Proceedings of the 23rd International Conference on Industrial Engineering and
other Applications of Applied Intelligent Systems (IEA/AIE 2010), pages 284–293, Cordoba,
ES.

Grimmer, J., Messing, S., and Westwood, S. J. (2012). How words and money cultivate a personal
vote: The effect of legislator credit claiming on constituent credit allocation. American Political
Science Review, 106(4):703–719.

Guerrero-Curieses, A., Alaiz-Rodríguez, R., and Cid-Sueiro, J. (2005). Loss functions to combine
learning and decision in multiclass problems. Neurocomputing, 69(1-3):3–17.

Hand, D. J. and Henley, W. E. (1997). Statistical classification methods in consumer credit scoring:
A review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 160(3):523–
541.

Hassan, W., Maletzke, A., and Batista, G. (2020). Accurately quantifying a billion instances
per second. In Proceedings of the 7th IEEE International Conference on Data Science and
Advanced Analytics (DSAA 2020), pages 1–10, Sydney, AU.

Bibliography 129

Hassan, W., Maletzke, A. G., and Batista, G. (2021). Pitfalls in quantification assessment. In Cong,
G. and Ramanath, M., editors, Proceedings of the CIKM 2021 Workshops co-located with 30th
ACM International Conference on Information and Knowledge Management (CIKM 2021),
Gold Coast, Queensland, Australia, November 1-5, 2021, volume 3052 of CEUR Workshop
Proceedings. CEUR-WS.org.

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., and Wallach, H. (2019). Improving
fairness in machine learning systems: What do industry practitioners need? In Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI 2019), pages 1–16,
Glasgow, UK.

Hopkins, D. J. and King, G. (2010). A method of automated nonparametric content analysis for
social science. American Journal of Political Science, 54(1):229–247.

Iyer, A., Nath, S., and Sarawagi, S. (2014). Maximum mean discrepancy for class ratio estimation:
Convergence bounds and kernel selection. In Proceedings of the 31st International Conference
on Machine Learning (ICML 2014), pages 530–538, Beijing, CN.

Jerzak, C. T., King, G., and Strezhnev, A. (2022). An improved method of automated nonparamet-
ric content analysis for social science. Political Analysis. Forthcoming.

Joachims, T. (1999). Transductive inference for text classification using support vector machines.
In Proceedings of the 16th International Conference on Machine Learning (ICML 1999), pages
200–209, Bled, SL.

Joachims, T. (2005). A support vector method for multivariate performance measures. In
Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), pages
377–384, Bonn, DE.

Johnson, D. and Sinanovic, S. (2001). Symmetrizing the Kullback-Leibler distance. IEEE
Transactions on Information Theory, 1(1):1–10.

Kar, P., Li, S., Narasimhan, H., Chawla, S., and Sebastiani, F. (2016). Online optimization methods
for the quantification problem. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2016), pages 1625–1634, San
Francisco, US.

Keith, K. A. and O’Connor, B. (2018). Uncertainty-aware generative models for inferring
document class prevalence. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2018), Brussels, BE.

King, G. and Lu, Y. (2008). Verbal autopsy methods with multiple causes of death. Statistical
Science, 23(1):78–91.

King, G., Lu, Y., and Shibuya, K. (2010). Designing verbal autopsy studies. Population Health
Metrics, 19(8).

King, G., Pan, J., and Roberts, M. E. (2013). How censorship in China allows government criticism
but silences collective expression. American Political Science Review, 107(2):326–343.

Koppel, M., Schler, J., and Argamon, S. (2009). Computational methods in authorship attribution.
Journal of the American Society for Information Science and Technology, 60(1):9–26.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the 12th International
Conference on Machine Learning (ICML 1995), pages 331–339, Tahoe City, US.

Latinne, P., Saerens, M., and Decaestecker, C. (2001). Adjusting the outputs of a classifier to
new a priori probabilities may significantly improve classification accuracy: Evidence from a
multi-class problem in remote sensing. In Proceedings of the 18th International Conference on
Machine Learning (ICML 2001), pages 298–305, Williamstown, US.

Levin, R. and Roitman, H. (2017). Enhanced probabilistic classify and count methods for multi-
label text quantification. In Proceedings of the 7th ACM International Conference on the Theory
of Information Retrieval (ICTIR 2017), pages 229–232, Amsterdam, NL.

Levina, E. and Bickel, P. (2001). The Earth Mover’s Distance is the Mallows distance: Some
insights from statistics. In Proceedings of the 8th International Conference on Computer Vision
(ICCV 2001), pages 251–256, Vancouver, CA.

Levy, P. S. and Kass, E. H. (1970). A three-population model for sequential screening for
bacteriuria. American Journal of Epidemiology, 91(2):148–154.

130 Bibliography

Lew, R. A. and Levy, P. S. (1989). Estimation of prevalence on the basis of screening tests.
Statistics in Medicine, 8(10):1225–1230.

Lewis, D. D. (1995). Evaluating and optimizing autonomous text classification systems. In
Proceedings of the 18th ACM International Conference on Research and Development in
Information Retrieval (SIGIR 1995), pages 246–254, Seattle, US.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classifiers. In
Proceedings of the 17th ACM International Conference on Research and Development in
Information Retrieval (SIGIR 1994), pages 3–12, Dublin, IE.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397.

Limsetto, N. and Waiyamai, K. (2011). Handling concept drift via ensemble and class distribution
estimation technique. In Proceedings of the 7th International Conference on Advanced Data
Mining (ADMA 2011), pages 13–26, Bejing, CN.

Macskassy, S. A. and Provost, F. (2003). A simple relational classifier. In Proceedings of the
SIGKDD MultiRelational Data Mining Workshop (MRDM 2003), Washington, US.

Macskassy, S. A. and Provost, F. J. (2007). Classification in networked data: A toolkit and a
univariate case study. Journal of Machine Learning Research, 8:935–983.

Makris, C., Panagis, Y., Sakkopoulos, E., and Tsakalidis, A. (2007). Category ranking for
personalized search. Data & Knowledge Engineering, 60(1):109–125.

Maletzke, A., Moreira dos Reis, D., Cherman, E., and Batista, G. (2019). DyS: A framework for
mixture models in quantification. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI 2019), pages 4552–4560, Honolulu, US.

Maletzke, A. G., Moreira dos Reis, D., and Batista, G. E. (2017). Quantification in data streams:
Initial results. In Proceedings of the 2017 Brazilian Conference on Intelligent Systems (BRACIS
2017), pages 43–48, Uberlândia, BZ.

Maletzke, A. G., Moreira dos Reis, D., and Batista, G. E. (2018). Combining instance selection and
self-training to improve data stream quantification. Journal of the Brazilian Computer Society,
24(12):43–48.

Mandel, B., Culotta, A., Boulahanis, J., Stark, D., Lewis, B., and Rodrigue, J. (2012). A
demographic analysis of online sentiment during hurricane Irene. In Proceedings of the
NAACL/HLT Workshop on Language in Social Media, pages 27–36, Montreal, CA.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2019). A survey on bias
and fairness in machine learning. arXiv 1908.09635.

Milli, L., Monreale, A., Rossetti, G., Giannotti, F., Pedreschi, D., and Sebastiani, F. (2013).
Quantification trees. In Proceedings of the 13th IEEE International Conference on Data Mining
(ICDM 2013), pages 528–536, Dallas, US.

Milli, L., Monreale, A., Rossetti, G., Pedreschi, D., Giannotti, F., and Sebastiani, F. (2015).
Quantification in social networks. In Proceedings of the 2nd IEEE International Conference
on Data Science and Advanced Analytics (DSAA 2015), Paris, FR.

Moreira dos Reis, D., Maletzke, A., Cherman, E., and Batista, G. E. (2018a). One-class
quantification. In Proceedings of the 29th European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2018), pages
273–289, Dublin, IE.

Moreira dos Reis, D., Maletzke, A. G., Silva, D. F., and Batista, G. E. (2018b). Classifying and
counting with recurrent contexts. In Proceedings of the 24th ACM International Conference on
Knowledge Discovery and Data Mining (KDD 2018), pages 1983–1992, London, UK.

Moreno-Torres, J. G., Raeder, T., Alaíz-Rodríguez, R., Chawla, N. V., and Herrera, F. (2012). A
unifying view on dataset shift in classification. Pattern Recognition, 45(1):521–530.

Moreo, A., Esuli, A., and Sebastiani, F. (2016). Distributional correspondence indexing for cross-
lingual and cross-domain sentiment classification. Journal of Artificial Intelligence Research,
55:131–163.

Moreo, A., Esuli, A., and Sebastiani, F. (2021a). QuaPy: A Python-based framework for
quantification. In Proceedings of the 30th ACM International Conference on Knowledge
Management (CIKM 2021), pages 4534–4543, Gold Coast, AU.

Bibliography 131

Moreo, A., Esuli, A., and Sebastiani, F. (2021b). Word-class embeddings for multiclass text
classification. Data Mining and Knowledge Discovery, 353(3):911–963.

Moreo, A. and Sebastiani, F. (2021). Re-assessing the “classify and count” quantification method.
In Proceedings of the 43rd European Conference on Information Retrieval (ECIR 2021),
volume II, pages 75–91, Lucca, IT.

Moreo, A. and Sebastiani, F. (2022). Tweet sentiment quantification: An experimental re-
evaluation. PLoS ONE, 17(9):1–23.

Morvan, J., Coste, J., Roux, C. H., Euller-Ziegler, L., Saraux, A., and Guillemin, F. (2008).
Prevalence in two-phase surveys: Accuracy of screening procedure and corrected estimates.
Annals of Epidemiology, 18(4):261–269.

Nakov, P., Farra, N., and Rosenthal, S. (2017). SemEval-2017 Task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017),
Vancouver, CA.

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., and Stoyanov, V. (2016). SemEval-2016 Task 4:
Sentiment analysis in Twitter. In Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval 2016), pages 1–18, San Diego, US.

Oard, D. W., Sebastiani, F., and Vinjumur, J. K. (2018). Jointly minimizing the expected costs
of review for responsiveness and privilege in e-discovery. ACM Transactions on Information
Systems, 37(1):11:1–11:35.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359.

Platt, J. C. (2000). Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D., editors,
Advances in Large Margin Classifiers, pages 61–74. The MIT Press, Cambridge, MA.

Prettenhofer, P. and Stein, B. (2011). Cross-lingual adaptation using structural correspondence
learning. ACM Transactions on Intelligent Systems and Technology, 3(1):Article 13.

Pérez-Gállego, P., Castaño, A., Quevedo, J. R., and del Coz, J. J. (2019). Dynamic ensemble
selection for quantification tasks. Information Fusion, 45:1–15.

Pérez-Gállego, P., Quevedo, J. R., and del Coz, J. J. (2017). Using ensembles for problems
with characterizable changes in data distribution: A case study on quantification. Information
Fusion, 34:87–100.

Qi, L., Khaleel, M., Tavanapong, W., Sukul, A., and Peterson, D. (2020). A framework for deep
quantification learning. In Proceedings of the European Conference on Machine Learning and
Principles of Knowledge Discovery in Databases (ECML/PKDD 2020), pages 232–248, Ghent,
BE.

Quadrianto, N., Smola, A. J., Caetano, T. S., and Le, Q. V. (2009). Estimating labels from label
proportions. Journal of Machine Learning Research, 10:2349–2374.

Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors (2009).
Dataset shift in machine learning. The MIT Press, Cambridge, US.

Rahme, E. and Joseph, L. (1998). Estimating the prevalence of a rare disease: Adjusted maximum
likelihood. The Statistician, 47:149–158.

Ray, S. and Page, D. (2001). Multiple instance regression. In Proceedings of the 18th International
Conference on Machine Learning, ICML 2001, pages 425–432, Williams College, US.

Rüschendorf, L. (2001). Wasserstein metric. In Hazewinkel, M., editor, Encyclopaedia of
Mathematics. Kluwer Academic Publishers, Dordrecht, NL.

Rubner, Y., Tomasi, C., and Guibas, L. J. (1998). A metric for distributions with applications
to image databases. In Proceedings of the 6th International Conference on Computer Vision
(ICCV 1998), pages 59–66, Mumbai, IN.

Saerens, M., Latinne, P., and Decaestecker, C. (2002). Adjusting the outputs of a classifier to new
a priori probabilities: A simple procedure. Neural Computation, 14(1):21–41.

Sakai, T. (2018). Comparing two binned probability distributions for information access evalua-
tion. In Proceedings of the 41st International ACM Conference on Research and Development
in Information Retrieval (SIGIR 2018), pages 1073–1076, Ann Arbor, US.

132 Bibliography

Sakai, T. (2021). A closer look at evaluation measures for ordinal quantification. In Proceedings
of the CIKM 2021 Workshop on Learning to Quantify, Virtual Event.

Sanya, A., Kumar, P., Kar, P., Chawla, S., and Sebastiani, F. (2018). Optimizing non-decomposable
measures with deep networks. Machine Learning, 107(8-10):1597–1620.

Schumacher, T., Strohmaier, M., and Lemmerich, F. (2021). A comparative evaluation of
quantification methods. arXiv:2103.03223.

Sebastiani, F. (2018). Market research, deep learning, and quantification. Presented at the ASC
Conference on the Application of Artificial Intelligence and Machine Learning to Surveys,
London, UK. http://goo.gl/JvWU7A.

Sebastiani, F. (2020). Evaluation measures for quantification: An axiomatic approach. Information
Retrieval Journal, 23(3):255–288.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., and Eliassi-Rad, T. (2008). Collective
classification in network data. AI Magazine, 29(3):93–106.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall,
London, UK.

Smith, N. A. and Tromble, R. W. (2004). Sampling uniformly from the unit simplex. Technical
report, Johns Hopkins University. https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.
tr04.pdf.

Spence, D., Inskip, C., Quadrianto, N., and Weir, D. (2019). Quantification under class-conditional
dataset shift. In Proceedings of the 11th International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2019), pages 528–529, Vancouver, CA.

Storkey, A. (2009). When training and test sets are different: Characterizing learning transfer. In
Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors,Dataset
shift in machine learning, pages 3–28. The MIT Press, Cambridge, US.

Sugiyama, M., Liu, S., du Plessis, M. C., Yamanaka, M., Yamada, M., Suzuki, T., and Kanamori, T.
(2013). Direct divergence approximation between probability distributions and its applications
in machine learning. Journal of Computing Science and Engineering, 7(2):99–111.

Tang, L., Gao, H., and Liu, H. (2010). Network quantification despite biased labels. In Proceedings
of the 8th Workshop on Mining and Learning with Graphs (MLG 2010), pages 147–154,
Washington, US.

Tasche, D. (2016). Does quantification without adjustments work? arXiv:1602.08780 [stat.ML].
Tasche, D. (2017). Fisher consistency for prior probability shift. Journal of Machine Learning

Research, 18:95:1–95:32.
Tasche, D. (2019). Confidence intervals for class prevalences under prior probability shift.Machine

Learning and Knowledge Extraction, 1(3):805–831.
Tasche, D. (2021). Minimising quantifier variance under prior probability shift. arXiv:2107.08209

[stat.ML].
van Rijsbergen, C. J. (1979). Information retrieval. Butterworths, London, UK, second edition.
Vapnik, V. (1998). Statistical learning theory. Wiley, New York, US.
Viana, M. A., Ramakrishnan, V., and Levy, P. S. (1993). Bayesian analysis of prevalence from

the results of small screening samples. Communications in Statistics - Theory and Methods,
22(2):575–585.

Vilalta, R., Giraud-Carrier, C., Brazdil, P., and Soares, C. (2011). Inductive transfer. In Sammut,
C. and Webb, G. I., editors, Encyclopedia of Machine Learning, pages 545–548. Springer,
Heidelberg, DE.

Vinyals, O., Bengio, S., and Kudlur, M. (2016). Order matters: Sequence to sequence for sets.
In Proceedings of the 4th International Conference on Learning Representations (ICLR 2016),
San Juan, PR.

Vucetic, S. and Obradovic, Z. (2001). Classification on data with biased class distribution. In
Proceedings of the 12th European Conference on Machine Learning (ECML 2001), pages 527–
538, Freiburg, DE.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Osborne, M. A. (2019). On the limitations of
representing functions on sets. In Proceedings of the 36th International Conference on Machine
Learning (ICML 2019), pages 6487–6494, Long Beach, US.

http://goo.gl/JvWU7A
http://goo.gl/JvWU7A
http://goo.gl/JvWU7A
http://goo.gl/JvWU7A
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf

Bibliography 133

Walker, M. A., Anand, P., Abbott, R., and Grant, R. (2012). Stance classification using dialogic
properties of persuasion. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics (HLT-NAACL 2012), pages 592–596,
Montreal, CA.

Werman, M., Peleg, S., and Rosenfeld, A. (1985). A distance metric for multidimensional
histograms. Computer Vision, Graphics, and Image Processing, 32:328–336.

Xiao, Y., Gordon, A., and Yakovlev, A. (2006). The L1-version of the Cramér-von Mises test for
two-sample comparisons in microarray data analysis. EURASIP Journal on Bioinformatics and
Systems Biology, 2006:1–9.

Xue, J. C. and Weiss, G. M. (2009). Quantification and semi-supervised classification methods
for handling changes in class distribution. In Proceedings of the 15th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD 2009), pages 897–906, Paris,
FR.

Yang, C. and Zhou, J. (2008). Non-stationary data sequence classification using online class priors
estimation. Pattern Recognition, 41(8):2656–2664.

Yang, Y. (2001). A study on thresholding strategies for text categorization. In Proceedings of the
24th ACM International Conference on Research and Development in Information Retrieval
(SIGIR 2001), pages 137–145, New Orleans, US.

Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the 8th ACM International Conference on Knowledge
Discovery and Data Mining (KDD 2002), pages 694–699, Edmonton, CA.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).
Deep sets. In Proceedings of the 31st Annual Conference on Neural Information Processing
Systems (NIPS 2017), pages 3391–3401, Long Beach, US.

Zeiberg, D., Jain, S., and Radivojac, P. (2020). Fast nonparametric estimation of class proportions
in the positive-unlabeled classification setting. In Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI 2020), pages 6729–6736, New York, US.

Zhang, Z. and Zhou, J. (2010). Transfer estimation of evolving class priors in data stream
classification. Pattern Recognition, 43(9):3151–3161.

Zhou, X.-H., McClish, D. K., and Obuchowski, N. A. (2002). Statistical methods in diagnostic
medicine. Wiley, New York, US.

Index

Symbols
.F1, 3, 34
.Fβ , 35
.X → Y problem, 12
.Y → X problem, 13

A
Absolute Error (AE), 37, 38, 46, 77

Mean, 38
Normalised (NAE), 38
Normalised Relative (NRAE), 40
Relative (RAE), 38

Adjusted Classify and Count (ACC), 10,
59–65, 71, 72, 77, 91, 97, 100, 117

Adjusted Regress and Sum (ARS), 89
Artificial-prevalence protocol, 49
Authorship attribution, 13
Axiomatic approach to evaluation, 35

B
Bias, 4, 14, 15

sample selection, 10, 15
Bias (evaluation measure), 37
Bray-Curtis dissimilarity (BCD), 38

C
Calibration, 20, 57, 59
City-block distance, 38
Classification, 1, 19

collective, 118
Classification error balancing, 77
Classification-quantification balancing, 77

Classifier, 5
fairness of a, 22
hard, 5
soft, 5

Classify and Count (CC), 3, 27–29, 58, 64, 72,
77–79, 92, 105

Classify and Total (CT), 92
Class distribution estimation, 2
Class prevalence, 1
Class prior estimation, 2, 19
Class probability re-estimation, 2
Codeframe, 5
Computational social science, 25
Concave function, 76

nested, 76
Confidence interval, 65, 82, 99, 101
Contingency table, 4
Cosine distance, 36
Cost-sensitive learning, 71
Counting, 2, 104
Cramér-von-Mises statistic, 48
Cross-lingual Structural Correspon-

dence Learning, 90

D
Deep learning, 73, 76, 121
Density estimation, 118
Discordance ratio, 34
Distribution

ordinal, 2
predicted, 2, 5, 36
probability, 2
true, 2, 5, 36

Distributional correspondence indexing, 90

© The Author(s) 2023
A. Esuli et al., Learning to Quantify, The Information Retrieval Series 47,
https://doi.org/10.1007/978-3-031-20467-8

135

https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8

136 Index

Distribution y-Similarity (DyS), 67
Divergence, 3, 34, 67

Kullback-Leibler (KLD), 41, 67, 75–77, 87
Normalised Kullback-Leibler (NKLD), 41
Pearson (PD), 34

Divergence approximation, 119
Drift, 9

E
Earth Mover’s Distance (EMD), 45
Estimator, 5

perfect, 4
perverse, 35

Explicit loss minimisation, 75
Extrinsic label, 13

F
False negative, 4, 5
False positive, 4, 5
Fisher consistency, 60, 71

G
Grossed-Up Total (GUT), 93

H
HDx, 81, 82
HDy, 66, 68, 72, 82, 100
Hellinger distance (HD), 66–68, 73, 81

I
Independently and identically distributed (IID),

8, 11, 15, 19, 59
Intrinsic label, 13

K
Kolmogorov-Smirnov Mix-

ture Model (MM(KS)), 66

L
Learning with label proportions, 119
Link-Based Quantification, 91

M
Maximum Likelihood Prevalence Estima-

tion (MLPE), 11, 56
Median Sweep (MS), 64, 72

Multi-objective measure, 77
Multivariate loss function, 75

N
Natural-Prevalence Protocol, 49
Nonlinear loss function, 75

O
Online stochastic optimisation, 76
Overestimation, 35

P
Political science, 25
PP-Area Mixture Model (MM(PP)), 66
Prevalence estimation from screening tests,

117
Prior, 1
Probabilistic Adjusted Clas-

sify and Count (PACC), 10,
61, 63–65, 100

Probabilistic Classify and Count (PCC), 58,
61, 63, 78, 87, 96, 104

Probability
calibrated, 20
posterior, 5, 58, 88, 122
prior, 1

Proportional equality, 22

Q
Quantification, 1, 19

binary, 7, 34, 63
cost, 92
explainable, 122
multi-label, 7, 34
ordinal, 7, 45
regression, 7, 47, 88
sentiment, 24
single-label, 6–8, 34, 35, 49, 66, 87
stance, 26
text, 73, 78, 79

cross-lingual, 90
Quantification forests, 77
Quantification methods

aggregative, 55, 57
non-aggregative, 55, 78, 122

Quantification trees, 76
Quantifier, 3

R
Ratio estimator (RE), 65

Index 137

ReadMe, 26, 29, 78, 80, 82
Regress and Splice (RSp), 89
Regress and Sum (RSu), 88
Relative frequency, 1

S
Saerens-Latinne-Decaestecker algo-

rithm (SLD), 69–71, 123
Sample, 5, 34
SemEval, 41, 45, 87, 104
Shared tasks, 41, 45, 87, 104
Shift

concept, 11–13, 52
covariate, 11–13, 52, 100
dataset, 9–11, 19, 60, 71, 88, 89
distribution, 9–13, 19, 20, 28, 29, 56, 103,

104
prior probability, 13, 52, 60, 65, 71, 80

Smoothing, 41
Social sciences, 25
Squared Error (SE), 38, 47
Structured output learning, 75

T
Threshold at 0.50 (T50), 63
Topsøe distance, 67
Transduction, 69, 122
Transfer learning, 21, 91
Trivial predictor, 56
True negative, 5
True positive, 4, 5

U
Underestimation, 35

V
Vanilla accuracy, 56
Vapnik’s principle, 78, 122, 123
Vasers̆teı̆n metric, 45

W
Word sense disambiguation, 21

	Preface
	Acknowledgments
	Contents
	Acronyms
	1 The Case for Quantification
	1.1 Class Distributions and Their Estimation
	1.2 The Suboptimality of Classify and Count
	1.3 Notational Conventions
	1.4 Quantification Problems
	1.5 Dataset Shift and Quantification
	1.5.1 Types of Dataset Shift and Their Relation to Quantification

	1.6 Quantification and Bias Mitigation
	1.7 Structure of This Book

	2 Applications of Quantification
	2.1 Improving Classification Accuracy
	2.1.1 Word Sense Disambiguation

	2.2 Fairness
	2.2.1 Improving Fairness
	2.2.2 Measuring Fairness

	2.3 Sentiment Analysis
	2.4 Social and Political Sciences
	2.5 Market Research
	2.6 Epidemiology
	2.7 Ecological Modelling
	2.8 Resource Allocation

	3 Evaluation of Quantification Algorithms
	3.1 Measures for Evaluating SLQ, BQ, and MLQ
	3.1.1 Properties of Evaluation Measures for SLQ, BQ,and MLQ
	3.1.2 Bias
	3.1.3 Absolute Error and its Variants
	3.1.4 Relative Absolute Error and its Variants
	3.1.5 Kullback-Leibler Divergence and its Variants
	3.1.6 Which Measure is the Best for SLQ?

	3.2 Measures for Evaluating OQ
	3.2.1 Earth Mover's Distance
	3.2.2 Root Normalised Order-Aware Divergence

	3.3 Measures for Evaluating Regression Quantification
	3.4 Experimental Protocols for Evaluating Quantification
	3.4.1 Natural Prevalence Protocol (NPP)
	3.4.2 Artificial Prevalence Protocol (APP)
	3.4.3 A Variant of the APP Based on the Kraemer Algorithm
	3.4.4 Should we Use the NPP or the APP?

	3.5 Model Selection in Quantification

	4 Methods for Learning to Quantify
	4.1 Maximum Likelihood Prevalence Estimation
	4.2 Aggregative Methods Based on General-Purpose Learners
	4.2.1 Classify and Count
	4.2.2 Probabilistic Classify and Count
	4.2.3 Adjusted Classify and Count
	4.2.4 Probabilistic Adjusted Classify and Count
	4.2.5 X, MAX, and Threshold@0.50
	4.2.6 Median Sweep
	4.2.7 The Ratio Estimator
	4.2.8 Mixture Models
	4.2.9 Expectation Maximisation for Quantification
	4.2.10 Class Distribution Estimation
	4.2.11 Ensemble Methods for Quantification
	4.2.12 QuaNet

	4.3 Aggregative Methods Based on Special-Purpose Learners
	4.3.1 Methods Based on Explicit Loss Minimisation
	4.3.2 Quantification Trees and Quantification Forests

	4.4 Non-Aggregative Methods
	4.4.1 The ReadMe Method
	4.4.2 The iSA Method
	4.4.3 The ReadMe2 Method
	4.4.4 The HDx Method
	4.4.5 The MMD-RKHS Method
	4.4.6 The Uncertainty-Aware Generative Model
	4.4.7 Deep Quantification Network

	5 Advanced Topics
	5.1 Ordinal Quantification
	5.2 Regression Quantification
	5.3 Cross-Lingual Quantification
	5.4 Quantification for Networked Data
	5.5 Cost Quantification
	5.6 Quantification in Data Streams
	5.7 One-Class Quantification
	5.8 Confidence Intervals for Class Prevalence Estimates

	6 The Quantification Landscape
	6.1 Historical Development
	6.1.1 The Trajectory of Quantification
	6.1.2 Shared Tasks

	6.2 Software
	6.2.1 Publicly Available Implementations
	6.2.2 QuaPy: A Comprehensive Framework for Quantification

	6.3 How Do Different Quantification Methods Fare?
	6.3.1 A Tour of Experimental Results
	6.3.2 Visualisation Tools for the Analysis of Results

	6.4 Related Tasks
	6.4.1 Links to Existing Tasks
	6.4.2 A Possible Variant of the Quantification Task

	7 The Road Ahead
	Bibliography
	Index

