Skip to main content

Porphyrin and Phthalocyanine as Materials for Glass Coating—Structure and Properties

  • Chapter
  • First Online:
Advances in Glass Research

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

The chapter is an introduction to the nature of phthalocyanines as materials for glass coatings. Data of the close analogues porphyrins is reported. The most widely used synthesis methods of porphyrins and phthalocyanines are discussed. The spectroscopic characteristic of the compounds is provided based on UV-ViS and photoluminescence studies. The nonlinear optical and electric properties of various metal-phthalocyanines are discussed. Current and future applications of the phthalocyanines are presented. This chapter is an introduction to the second one entitled “Phthalocyanine and porphyrin films on glass substrate—processing, properties, and applications” where characterizations of hybrid materials are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun, A., & Tcherniac, J. (1907). Über die Produckte der Einwirkung von Acetanhydrid auf Phthalamid Ber. Berichte der deutschen chemischen Gesellschaft, 40, 2709–2714. https://doi.org/10.1002/cber.190704002202.

    Article  CAS  Google Scholar 

  2. de Diesbach, H., & von der Weid, E. (1927). Helvetica Chimica Acta, 10, 886–888.

    Article  Google Scholar 

  3. Scottish Dyes Limited. (1929). GB Patent 322, 169.

    Google Scholar 

  4. Linstead, R. P. (1934). Phthalocyanines. Part I. A new type of synthetic colouring matter. Journal of the Chemical Society. https://doi.org/10.1039/JR9340001016.

  5. Byrne, G. T., Linstead, R. P., & Lowe, A. R. (1934). Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivates from o-cyanobenzamide and phthalimide. Journal of the Chemical Society. https://doi.org/10.1039/JR9340001017.

  6. Linstead, R. P., & Lowe, A. R. (1934). Phthalocyanines. Part III. Preliminary experiments on the preparation of phthalocyanines from phthalonitrile. Journal of the Chemical Society. https://doi.org/10.1039/JR9340001022.

  7. Dent, C. E., & Linstead, R. P. (1934). Phthalocyanines. Part IV. Copper phthalocyanines. Journal of the Chemical Society. https://doi.org/10.1039/JR9340001027.

  8. Linstead, R. P., & Lowe, A. R. (1934). Phthalocyanines. Part V. The molecular weight of magnesium phthalocyanine. Journal of the Chemical Society. https://doi.org/10.1039/JR9340001031.

  9. Dent, C. E., Linstead, R. P., & Lowe, A. R. (1934). Phthalocyanines. Part VI. The structure of the phthalocyanines. Journal of the Chemical Society. https://doi.org/10.1039/JR9340001033.

  10. Roberston, J. M. (1935). An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds. Journal of the Chemical Society. https://doi.org/10.1039/JR9350000615.

  11. Roberston, J. M. (1936). An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. Journal of the Chemical Society. https://doi.org/10.1039/JR9360001195.

  12. Linstead, R. P., & Roberston, J. M. (1936). The stereochemistry of metallic phthalocyanines. Journal of the Chemical Society. https://doi.org/10.1039/JR9360001736.

  13. Roberston, J. M., & Woodward, I. (1937). An X-ray study of the phthalocyanines. Part III. Quantitative structure determination of nickel phthalocyanine. Journal of the Chemical Society. https://doi.org/10.1039/JR9370000219.

  14. Roberston, J. M., & Woodward, I. (1940). An X-ray study of the phthalocyanines. Part IV. Direct quantitative analysis of the platinum compound, Journal of the Chemical Society. https://doi.org/10.1039/JR9400000036.

  15. ICI, GB Patent, 464, 126, 12 April 1937.

    Google Scholar 

  16. Erk, P., & Hengelsberg, H. (2003). Applications of phthalocyanines, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 19, p. 105). Elsevier Science.

    Google Scholar 

  17. McKeown, N. B. (2003). Phthalocyanines: Synthesis, K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 15, p. 61). Elsevier Science.

    Google Scholar 

  18. Arslan, S. (2016). Phthalocyanines: Structure, synthesis, purification and applications. Life Sciences, 6(2).

    Google Scholar 

  19. Trytek, M., Makarska, M., Polska, K., Radzki, S., & Fiedurek, J. (2005). Porfiryny i ftalocyjaniny Cz. I. Właściwości i niektóre zastosowania. Biotechnologia, 4(71), 109.

    Google Scholar 

  20. Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (pp. 11–19). Springer.

    Book  Google Scholar 

  21. Urbani, M., Ragoussi, M.-E., Nazeeruddin, M. K., & Torres, T. (2019). Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 381, 1–64. https://doi.org/10.1016/j.ccr.2018.10.007.

    Article  CAS  Google Scholar 

  22. Dyrda, G., Słota, R., & Wacławek, W. (2002). Phthalocyanines and related macrocyclic analogues. Chem Dydakt Ekol Metrol, 1–2, 33.

    Google Scholar 

  23. Bouvet, M., Gaudillat, P., & Suisse, J.-M. (2013). Lanthanide macrocyclic complexes: from molecules to materials and from materials to devices. Journal of Porphyrins and Phthalocyanines, 17, 1–8. https://doi.org/10.1142/S1088424613300048.

  24. Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (p. 41). Springer.

    Google Scholar 

  25. Fukuda, T., Ono, K., Homma, S., & Kobayashi, N. (2003). A phthalocyanine producing green, ocher, and red colors depending on the central metals. Chemistry Letters, 32, 736–737. https://doi.org/10.1246/cl.2003.736.

    Article  CAS  Google Scholar 

  26. Hunger, K. (Ed.). Industrial dyes: Chemistry, properties, applications. Wiley-VCH Verlag.

    Google Scholar 

  27. Seoudi, R., El-Bahy, G. S., & El Sayed, Z. A. (2005). FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. Journal of Molecular Structure, 753, 119–126. https://doi.org/10.1016/j.molstruc.2005.06.003.

    Article  CAS  Google Scholar 

  28. Kirk-Othmer. (2000). Kirk-Othmer Encyclopedia of Chemical Technology. Wiley-Verlag. https://doi.org/10.1002/0471238961.1608200812150502.a01.

  29. Ghani, F., Kristen, J., & Riegler, H. (2012). Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. Journal of Chemical and Engineering Data, 57, 439–449. https://doi.org/10.1021/je2010215.

    Article  CAS  Google Scholar 

  30. Słota, R., Dyrda, G., & Wacławek, W. (2001). Spectrophotometric determination of phthalocyanines Part II. Phthalocyanines stable in concentrated sulfuric acid. Chemia Analityczna (Warsaw), 46, 889.

    Google Scholar 

  31. Simon, J., & Andre, J. J. (2012). Molecular semiconductors: Photoelectrical properties and solar cells (pp. 73–76). Springer Science Q Business Media.

    Google Scholar 

  32. Gardens, O. (2007). Trends in optical materials research (pp. 1–54). Nova Publishers.

    Google Scholar 

  33. González-Rodríguez, D., Torres, T., Denardin, E. L. G., Samios, D., Stefani, V., & Corrêa, D. S. (2009). Thermal stability of boron subphthalocyanines as a function of the axial and peripheral substitution. Journal of Organometallic Chemistry, 694, 1617–1622. https://doi.org/10.1016/j.jorganchem.2008.10.055.

    Article  CAS  Google Scholar 

  34. Geyer, M., Plenzig, F., Rauschnabel, J., Hanack, M., del Rey, B., Sastre, A., & Torres, T. (1996). Subphthalocyanines: Preparation, reactivity and physical properties. Synthesis, 9, 1139–1151. https://doi.org/10.1055/s-1996-4349.

    Article  Google Scholar 

  35. Meller, A., & Ossko, A. (1972). Phthalocyaninartige bor-komplexe. Monatshefte für Chemie/Chemical Monthly, 103, 150–155. https://doi.org/10.1007/BF00912939.

  36. Kietaibl, H. (1974). Die Kristall- und Molekiilstruktur eines neuartigen phthalocyaniniihnliehen Borkomplexes. Monatshefte fuer Chemie, 105, 405–418. https://doi.org/10.1007/BF00907390.

    Article  CAS  Google Scholar 

  37. Virdo, J. D., Lough, A. J., & Bender, T. P. (2016). Redetermination of the crystal structure of boron subphthalocyanine chloride (Cl-BsubPc) enabled by slow train sublimation. Acta Crystallographica Section C, 72, 297–307. https://doi.org/10.1107/S2053229616003491.

  38. Bernhard, Y., Lioret, V., & Decréau, R. A. (2018). Subphthalocyanine basicity: Reversible protonation at the azomethine bridge. New Journal of Chemistry, 42, 1622–1625. https://doi.org/10.1039/C7NJ02957H.

    Article  CAS  Google Scholar 

  39. Cuellar, E. A., Stojakovic, D. R., & Marks, T. J. (1980). In D. H. Busch (Ed.), Inorganic syntheses (Vol. XX, p. 97). Inorganic Syntheses Inc.

    Google Scholar 

  40. Day, V. W., Marks, T. J., & Wachter, W. A. (1975). Large metal ion-centered template reactions. A uranyl complex of cyclopentakis(2-iminoisoindoline). Journal of the American Chemical Society, 97, 4519.

    Google Scholar 

  41. Marks, T. J., & Stojakovic, D. R. (1978). Large metal ion-centered template reactions. chemical and spectral studies of the “Superphthalocyanine” dioxocyclopentakis(1-iminoisoindolinato)uranium( VI) and its derivatives. Journal of the American Chemical Society, 100(6), 1695.

    Google Scholar 

  42. Kuzmin, S. M., Chulovskaya, S. A., & Parfenyuka, V. I. (2018). Structures and properties of porphyrin-based film materials part I. The films obtained via vapor-assisted methods. Advances in Colloid and Interface Science, 253, 23–34. https://doi.org/10.1016/j.cis.2018.02.001.

  43. Senge, M. O., & Davisa, M. (2010). Porphyrin (porphine)—A neglected parent compound with potential. Journal of Porphyrins and Phthalocyanines, 14, 557–567. https://doi.org/10.1142/S1088424610002495.

    Article  CAS  Google Scholar 

  44. Bryden, F., Boyle, R. W. (2016). In R. van Eldik, & C. D. Hubbard (Eds.), Advances in inorganic chemistry (Vol. 68, p. 141). Elsevier Inc.

    Google Scholar 

  45. Falk, J. E. (2014). In M. Florkin, & E. H. Stotz (Eds.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents. Comprehensive Biochemistry (Vol. 9). Elsevier.

    Google Scholar 

  46. Inokuma, Y., Kwon, J. H., Ahn, T. K., Yoo, M. C., Kim, D., & Osuka, A. (2006). Tribenzosubporphines: Synthesis and Characterization, Angewandte Chemie International Edition, 45, 961–964. https://doi.org/10.1002/anie.200503426.

  47. Kirin, I. S., Moskalev, P. N., & Makashev, Y. A. (1965). Russian Journal of Inorganic Chemistry, 10, 1065–1066.

    Google Scholar 

  48. Kirin, I. S., Moskalev, P. N., & Makashev, Y. A. (1967). Russian Journal of Inorganic Chemistry, 12, 369–372.

    Google Scholar 

  49. Murugesu, M. (2015). Lanthanides and actinides in molecular magnetism (p. 223). Wiley-VCH.

    Google Scholar 

  50. Nemykina, V. N., & Lukyanetsb, E. A. (2010). Synthesis of substituted phthalocyanines. ARKIVOC, (i), 136–208. https://doi.org/10.3998/ark.5550190.0011.104.

  51. Nemykin, V. N., Dudkin, S. V., Dumoulin, F., Hirel, C., Gürek, A. G., & Ahsen, V. (2014). Synthetic approaches to asymmetric phthalocyanines and their analogues. Reviews and Accounts, 1, 142–204. https://doi.org/10.3998/ark.5550190.p008.412.

    Article  CAS  Google Scholar 

  52. Yamamoto, S., Dudkin, S. V., Kimura, M., & Kobayashi, N. (2019). Phthalocyanine synthesis and computational design of functional tetrapyrroles. K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine (Vol. 45, p. 1).

    Google Scholar 

  53. Dumoulina, F., Durmus, M., Ahsena, V., & Nyokong, T. (2010). Synthetic pathways to water-soluble phthalocyanines and close analogs. Coordination Chemistry Reviews, 254, 2792–2847. https://doi.org/10.1016/j.ccr.2010.05.002.

    Article  CAS  Google Scholar 

  54. Arslan, S. (2016). Phthalocyanines: Structure, synthesis, purification and applications. Journal of Life Sciences, 6(2/2), 188.

    Google Scholar 

  55. Claessens, C. G., González-Rodríguez, D., McCallum, C. M., Nohr, R. S., Schuchmannd, H.-P., & Torres, T. (2007). On the mechanism of boron-subphthalocyanine chloride formation. Journal of Porphyrins Phthalocyanines, 11, 181.

    Google Scholar 

  56. Rauschnabel, J., & Hanack, M. (1995). New derivatives and homologues of subphthalocyanine. Tetrahedron Letters, 36(10), 1629.

    Google Scholar 

  57. del Rey, B., Keller, U., Torres, T., Rojo, G., Agulló-López, F., Nonell, S., Martí, C., Brasselet, S., Ledoux, I., & Zyss, J. (1998). Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. Journal of the American Chemical Society, 120, 12808–12817. https://doi.org/10.1021/ja980508q.

    Article  Google Scholar 

  58. Claessens, C. G.,González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2014). Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chemical Reviews, 114, 2192–2277. https://doi.org/10.1021/cr400088w.

  59. Tolbin, A. Y., Breusova, M. O., Pushkarev, V. E., & Tomilova, L. G. (2005). Synthesis and spectroscopic properties of new boron subphthalocyanine complexes and a heteronuclear phthalocyanine complex. Russian Chemical Bulletin, 54(9), 2083–2086. https://doi.org/10.1007/s11172-006-0080-y.

    Article  CAS  Google Scholar 

  60. Claessens, C. G., González-Rodríguez, D., & Torres, T. (2002). Subphthalocyanines: Singular nonplanar aromatic compounds synthesis, reactivity, and physical properties. Chemical Reviews, 102, 835–853. https://doi.org/10.1021/cr0101454.

    Article  CAS  Google Scholar 

  61. Łapok, Ł, Claessens, C. G., Wohrle, D., & Torres, T. (2009). Synthesis of water-soluble subphthalocyanines. Tetrahedron Letters, 50, 2041–2044. https://doi.org/10.1016/j.tetlet.2009.02.066.

    Article  CAS  Google Scholar 

  62. Shirai, K., Takagi, A., Taniwaki, R., Kurata, M., Kinugasa, K., Yamamoto, K., Mizutani, T., Takao, Y., Moriwaki, K., Ito, T., Iwai, T., Matsumoto, F., & Ohno, T. (2018). Synthesis of chloroboron(III) 3,4,12,13,21,22-hexabromosubnaphthalocyanine under high dilution conditions and comparative studies of effects of halogenation on physicochemical properties of subnaphthalocyanines. Tetrahedron, 74, 4220–4225. https://doi.org/10.1016/j.tet.2018.06.043.

    Article  CAS  Google Scholar 

  63. Marks, T. J., & Stojakovic, D. R. (1978). Macrocycle contraction reactions of 5,35:14,19-Diimino-7,12:21,26:28,33 trinitrilopentabenzo[c, h, rn, r, w][1,6,11,16,2l]pentaazacyclopentacosinatodioxouranium(VI). Journal of the Chemical Society, Chemical Communications, 1, 28–29. https://doi.org/10.1039/C39750000028.

    Article  Google Scholar 

  64. Silver, J., & Jassim, Q. A. A. (1988). Reactions that Involve Collapse of the ‘Superphthalocyanine’ Dioxocyclopentakis(1-iminoisoindolinato)uranium(VI) to either Phthalocyanine or Metal Phthalocyanine. Inorganica Chimica Acta, 144, 281.

    Article  CAS  Google Scholar 

  65. Rothemund, P. (2010). Formation of porphyrins from pyrrole and aldehydes. Journal of the American Chemical Society, 57, 2010–2011. https://doi.org/10.1021/ja01313a510.

  66. Rothemund, P. (1939). Porphyrin studies. III. The structure of the porphine ring system. Journal of the American Chemical Society, 61, 2912–2915. https://doi.org/10.1021/ja01265a096.

  67. Rothemund, P., & Menotti, A. R. (1941). Porphyrin studies. IV. The synthesis of α, β, γ, δ-tetraphenylporphine. Journal of the American Chemical Society, 63, 267–270. https://doi.org/10.1021/ja01846a065.

  68. Adler, A. D., Longo, E. R., & Shergalis, W. (1964). Journal of the American Chemical Society, 86, 3145.

    Article  CAS  Google Scholar 

  69. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). The Journal of Organic Chemistry, 32, 476.

    Article  CAS  Google Scholar 

  70. Kim, J. B., Leonard, J. J., & Longo, F. R. (1972). Journal of the American Chemical Society, 94, 3986.

    Article  CAS  Google Scholar 

  71. Lindsey, J. S., Schreiman, I. C., Hsu, H. C., Keamey, P. C., & Marguerettaz, A. M. (1987). Journal of Organic Chemistry, 52, 827.

    Article  CAS  Google Scholar 

  72. Lindsey, J. S., Hsu, H. C., & Schreiman, I. C. (1986). Tetrahedron Letters, 27, 4969.

    Article  CAS  Google Scholar 

  73. Lindsey, J. S., & Wagner, R. W. (1989). Journal of Organic Chemistry, 54, 828.

    Article  CAS  Google Scholar 

  74. Lindsey, J. S., MacCrum, K. A., Tyhonas, J. S., & Chuang, Y. Y. (1994). Journal of Organic Chemistry, 59, 579.

    Article  CAS  Google Scholar 

  75. Al Neyadi, S. S., Alzamly, A., Al-Hemyari, A., Tahir, I. M., Al-Meqbali, S., Ali Ahmad, M. A., & Bufaroosha, M. (2019). An undergraduate experiment using microwave-assisted synthesis of metalloporphyrins: Characterization and spectroscopic investigations. World Journal of Chemical Education, 7, 26–32. https://doi.org/10.12691/wjce-7-1-4.

  76. Beletskaya, I. P., Uglov, A., Stern, C., & Guilard, R. (2012). Synthesis, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine (Vol. 23, p. 81). World Scientific.

    Google Scholar 

  77. Kumar, A., Maji, S., Dubey, P., Abhilash, G. J., Pandey, S., & Sarkar, S. (2007). One-pot general synthesis of metalloporphyrins. Tetrahedron Letters, 48, 7287–7290. https://doi.org/10.1016/j.tetlet.2007.08.046.

    Article  CAS  Google Scholar 

  78. Sun, Z. C., She, Y. B., Zhou, Y., Song, X. F., & Li, K. (2011). Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules, 16, 2960–2970. https://doi.org/10.3390/molecules16042960.

  79. Luciano, M., & Brückner, C. (2017). Modifications of porphyrins and hydroporphyrins for their solubilization in aqueous media. Molecules, 22, 980–1027. https://doi.org/10.3390/molecules22060980.

    Article  CAS  Google Scholar 

  80. Shimizu, S. (2017). Recent advances in subporphyrins and triphyrin analogues: Contracted porphyrins comprising three pyrrole rings. Chemical Reviews, 117, 2730–2784. https://doi.org/10.1021/acs.chemrev.6b00403.

    Article  CAS  Google Scholar 

  81. Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. Chemical Record, 8, 75–97. https://doi.org/10.1002/tcr.20139.

    Article  CAS  Google Scholar 

  82. Kadish, K. M., Smith, K. M., & Guilard, R., (Eds.). (2010). Handbook of porphyrin science: With applications to chemistry, physics, materials science, engineering, biology and medicine. World Scientific.

    Google Scholar 

  83. Wacławek, W., & Dyrda, G. (2006). Oscillating redox transformations of lanthanide diphthalocyanines due to proton donors and electron acceptors. Chem Dydakt Ekol Metrol, 1–2, 21–34.

    Google Scholar 

  84. Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (pp. 107–132). Springer.

    Google Scholar 

  85. Gorduk, S. (2020). Investigation of photophysicochemical properties of non-peripherally tetra-substituted metal-free, Mg(II), Zn(II) and In(III)CI phthalocyanines. Polyhedron. https://doi.org/10.1016/j.poly.2020.114727.

    Article  Google Scholar 

  86. Kantekin, H., Yalazan, H., Kahriman, N., Ertem, B., Serdaroğlu, V., Pişkin, M., & Durmuş, M. (2018). New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: Design, synthesis, spectroscopic characterization, photochemistry and photophysics. Journal of Photochemistry and Photobiology A, 361, 1–11. https://doi.org/10.1016/j.jphotochem.2018.04.034.

    Article  CAS  Google Scholar 

  87. Canlıca, M. (2020). 3,5-di-tert-butyl substituted phthalocyanines: Synthesis and specific properties. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2020.128160.

    Article  Google Scholar 

  88. Sen, P., Managa, M., & Nyokong, T. (2019). New type of metal-free and Zinc(II), In(III), Ga(III) phthalocyanines carrying biologically active substituents: Synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chimica Acta, 491, 1–8. https://doi.org/10.1016/j.ica.2019.03.010.

    Article  CAS  Google Scholar 

  89. Demirbaş, Ü., Pişkin, M., Bayrak, R., Ünlüer, D., Düğdüa, E., Durmuş, M., & Kantekin, H. (2016). The determination of photophysical and photochemical parameters of novel metal-free, zinc(II) and lead(II) phthalocyanines bearing 1,2,4-triazole groups. Synthetic Metals, 219, 76–82. https://doi.org/10.1016/j.synthmet.2016.05.008.

    Article  CAS  Google Scholar 

  90. Demirbaş, Ü., Pişkin, M., Akçay, H. T., Barut, B., Durmuş, M., & Kantekin, H. (2017). Synthesis, characterisation, photophysical and photochemical properties of free-base tetra-(5-chloro-2-(2,4-dichlorophenoxy) phenoxy)phthalocyanine and respective zinc(II) and lead(II) complexes.Synthetic Metals, 223, 166–171. https://doi.org/10.1016/j.synthmet.2016.12.004.

  91. Demirbaş, Ü., Göl, C., Barut, B., Bayrak, R., Durmuş, M., Kantekin, H., & Değirmencioğlu, İ. (2017). Peripherally and non-peripherally tetra-benzothiazole substituted metal-free zinc (II) and lead (II) phthalocyanines: Synthesis, characterization, and investigation of photophysical and photochemical properties. Journal of Molecular Structure, 1130, 677–687. https://doi.org/10.1016/j.molstruc.2016.11.017.

  92. Yalçın, İ, Yanık, H., Akçay, H. T., Değirmencioğlu, İ, & Durmuş, M. (2017). Photophysical and photochemical study on the tetra 4-isopropylbenzyloxy substituted phthalocyanines. Journal of Luminescence, 192, 739–744. https://doi.org/10.1016/j.jlumin.2017.07.062.

    Article  CAS  Google Scholar 

  93. Kędzierski, K., Barszcz, B., Kotkowiak, M., Bursa, B., Goc, J., Dinçer, H., & Wróbel, D. (2016). Photophysics of an unsymmetrical Zn(II) phthalocyanine substituted with terminal alkynyl group. Journal of Luminescence, 180, 132–139. https://doi.org/10.1016/j.jlumin.2016.08.010.

    Article  CAS  Google Scholar 

  94. Ali, H. E. A., Pişkin, M., Altun, S., Durmuş, M., & Odabaş, Z. (2016). Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. Journal of Luminescence, 173, 113–119. https://doi.org/10.1016/j.jlumin.2015.12.010.

  95. Kahriman, N., Ünver, Y., Akçay, H. T., Gülmez, A. D., Durmus, M., & Değirmencioğlu, İ. (2020). Photophysical and photochemical study on novel axially chalcone substituted silicon (IV) phthalocyanines. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2019.127132.

  96. Burtsev, I. D., Platonova, Y. B., Volov, A. N., & Tomilova, L. G. (2020). Synthesis, characterization and photochemical properties of novel octakis(p–fluorophenoxy)substituted phthalocyanine and its gallium and indium complexes. Polyhedron. https://doi.org/10.1016/j.poly.2020.114697.

    Article  Google Scholar 

  97. Sekhosana, K. E., & Nyokong, T. (2015). The nonlinear absorption in new lanthanide double decker pyridine based phthalocyanines in solution and thin films. Optical Materials, 47, 211–218. https://doi.org/10.1016/j.optmat.2015.05.022.

    Article  CAS  Google Scholar 

  98. Sekhosana, K. E., Manyeruke, M. H., & Nyokong, T. (2016). Synthesis and optical limiting properties of new lanthanide bis- and tris-phthalocyanines. Journal of Molecular Structure, 1121, 111–118. https://doi.org/10.1016/j.molstruc.2016.05.068.

  99. Sekhosana, K. E., Amuhaya, E., Khene, S., & Nyokong, T. (2015). Synthesis, photophysical and nonlinear optical behavior of neodymium based trisphthalocyanine. Inorganica Chimica Acta, 426, 221–226. https://doi.org/10.1016/j.ica.2014.11.029.

    Article  CAS  Google Scholar 

  100. Gouterman, M. (1978). Physical chemistry, Part A, In D. Dolphin (Ed.), The porphyrins (Vol. 3, p. 1). Academic Press.

    Google Scholar 

  101. Harvey, P. D. (2003). Multiporphyrins, multiphthalocyanines, and arrays, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 18, p. 63). Elsevier Science.

    Google Scholar 

  102. Neto, N. M. B., Correa, D. S., De Boni, L., Parra, G. G., Misoguti, L., Mendonça, C. R., Borissevitch, I. E., Zílio, S. C., & Gonçalves, P. J. (2013). Excited states absorption spectra of porphyrins—Solvent effects. Chemical Physics Letters, 587, 118–123. https://doi.org/10.1016/j.cplett.2013.09.066.

  103. Correa, D. S., De Boni, L., Parra, G. G., Misoguti, L., Mendonça, C. R., Borissevitch, I. E., Zílio, S. C., Neto, N. M. B., & Gonçalves, P. J. (2015). Excited-state absorption of meso-tetrasulfonatophenyl porphyrin: Effects of pH and micelles. Optical Materials, 42, 516–521. https://doi.org/10.1016/j.optmat.2015.01.047.

  104. Bhyrappa, P., & Sankar, M. (2018). Effect of solvent on the electronic absorption spectral properties of some mixed β-octasubstituted Zn(II)-tetraphenylporphyrins. Spectrochimica Acta A, 189, 80–85. https://doi.org/10.1016/j.saa.2017.07.059.

    Article  CAS  Google Scholar 

  105. Valicsek, Z., & Horváth, O. (2013). Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions. Microchemical Journal, 107, 47–62. https://doi.org/10.1016/j.microc.2012.07.002.

    Article  CAS  Google Scholar 

  106. Ghosh, M., Roy, B., Jha, A., & Sinha, S. (2014). Ground state charge transfer complex formation of some metalloporphyrins with aromatic solvents. Chemical Physics Letters, 592, 149–154. https://doi.org/10.1016/j.cplett.2013.12.040.

    Article  CAS  Google Scholar 

  107. Fagadar-Cosma, E., Vlascici, D., Birdeanu, M., & Fagadar-Cosma, G. (2019). Novel fluorescent pH sensor based on 5-(4-carboxyphenyl)-10,15,20-tris(phenyl)-porphyrin. Arabian Journal of Chemistry, 12, 1587–1594. https://doi.org/10.1016/j.arabjc.2014.10.011.

    Article  CAS  Google Scholar 

  108. Misra, R., & Gautam, P. (2015). Meso-tetrakis(ferrocenylethynylphenyl) porphyrins: Synthesis and properties. Journal of Organometallic Chemistry, 776, 83–88. https://doi.org/10.1016/j.jorganchem.2014.11.006.

    Article  CAS  Google Scholar 

  109. Lopes, J. M. S., Sharma, K., Sampaio, R. N., Batista, A. A., Ito, A. S., Machado, A. E. H., Araújo, P. T., & Neto, N. M. B. (2019). Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. Spectrochima Acta A, 209, 274–279. https://doi.org/10.1016/j.saa.2018.10.054.

  110. Dar, U. A., & Shah, S. A. (2020). UV-visible and fluorescence spectroscopic assessment of meso-tetrakis-(4-halophenyl) porphyrin; H2TXPP (X = F, Cl, Br, I) in THF and THF-water system: Effect of pH and aggregation behaviour. Spectrochima Acta A. https://doi.org/10.1016/j.saa.2020.118570.

  111. Amiri, N., Hajji, M., Taheur, F. B., Chevreux, S., Roisnel, T., Lemercier, G., & Nasri, H. (2018). Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: Syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity. Journal of Solid State Chemistry, 258, 477–484. https://doi.org/10.1016/j.jssc.2017.11.018.

  112. Major, M. M., Horváth, O., Fodor, M. A., Fodor, L., Valicsek, Z., Grampp, G., & Wankmüller, A. (2016). Photophysical and photocatalytic behavior of nickel(II) 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin. Inorganic Chemistry Communications, 73, 1–3. https://doi.org/10.1016/j.inoche.2016.09.001.

    Article  CAS  Google Scholar 

  113. Castro, M. C. R., Sedrine, N. B., Monteiro, T., & Machado, A. V. (2020). Iridium(III)porphyrin arrays with tuneable photophysical properties. Spectrochima Acta A. https://doi.org/10.1016/j.saa.2020.118309.

    Article  Google Scholar 

  114. Kalota, B., & Tsvirko, M. (2015). Fluorescence and phosphorescence of lutetium(III) and gadolinium(III) porphyrins for the intraratiometric oxygen sensing. Chemical Physics Letters, 634, 188–193. https://doi.org/10.1016/j.cplett.2015.06.013.

    Article  CAS  Google Scholar 

  115. Claessens, C. G., González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2014). Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chemical Reviews, 114(4), 2192–2277. https://doi.org/10.1021/cr400088w.

  116. Iida, N., Tokunaga, E., Saito, N., & Shibata, N. (2015). Pentafluorosulfanyl (SF5) in dyes: C3-regioselective synthesis of a-mono-substituted subphthalocyanine with SF5-phenyl group. Journal of Fluorine Chemistry, 171, 120–123. https://doi.org/10.1016/j.jfluchem.2014.08.016.

    Article  CAS  Google Scholar 

  117. Gotfredsen, H., Jevric, M., Broman, S. L., Petersen, A. U., & Nielsen, M. B. (2016). Aluminum chloride mediated alkynylation of boron subphthalocyanine chloride using trimethylsilyl-capped acetylenes. The Journal of Organic Chemistry, 81, 1−5. https://doi.org/10.1021/acs.joc.5b02719.

  118. Swarts, P. J., & Conradie, J. (2020). Redox and Photophysical Properties of Four Subphthalocyanines containing ferrocenylcarboxylic acid as axial ligands. Inorganic Chemistry, 59, 7444−7452. https://doi.org/10.1021/acs.inorgchem.0c00150.

  119. Nečedová, M. M., Magdolen, P., Fülöpová, A., Cigáň, M., Zahradník, P., & Filo, J. (2016). Synthesis, electrochemical, spectral and DFT study of novel thiazole-annelated subphthalocyanines with inherent chirality. Dyes and Pigments, 130, 24–36. https://doi.org/10.1016/j.dyepig.2016.03.001.

  120. Hamdoush, M., Nikitina, K., Skvortsov, I., Somov, N., Zhabanov, Y., & Stuzhin, P. A. (2019). Influence of heteroatom substitution in benzene rings on structural features and spectral properties of subphthalocyanine dyes. Dyes and Pigments. https://doi.org/10.1016/j.dyepig.2019.107584.

    Article  Google Scholar 

  121. Furuyama, T., Sato, T., & Kobayashi, N. (2015). A bottom-up synthesis of antiaromatic expanded phthalocyanines: Pentabenzotriazasmaragdyrins, i.e. Norcorroles of superphthalocyanines. Journal of the American Chemical Society, 137, 13788−13791. https://doi.org/10.1021/jacs.5b09853.

  122. Fan, Q., Luy, J. N., Liebold, M., Greulich, K., Zugermeier, M., Sundermeyer, J., & Gottfried, J. M. (2019). Template-controlled on-surface synthesis of a lanthanide supernaphthalocyanine and its open-chain polycyanine counterpart. Nature Communications. https://doi.org/10.1038/s41467-019-13030-7.

  123. Dubinina, T. V., Osipova, M. M., Zasedatelev, A. V., Krasovskii, V. I., Borisova, N. E., Trashin, S. A., Tomilova, L. G., & Zefirov, N. S. (2016). Synthesis, optical and electrochemical properties of novel phenyl- and phenoxy-substituted subphthalocyanines. Dyes and Pigments, 128, 141–148. https://doi.org/10.1016/j.dyepig.2016.01.023.

    Article  CAS  Google Scholar 

  124. Yoshinaga, K., Delage-Laurin, L., & Swager, T. M. (2020). Fluorous phthalocyanines and subphthalocyanines. Journal of Porphyrins and Phthalocyanines. https://doi.org/10.1142/S1088424620500182.

    Article  Google Scholar 

  125. Bernhard, Y., Richard, P., & Decréau, R. A. (2018). Addressing subphthalocyanines and subnaphthalocyanines features relevant to fluorescence imaging. Tetrahedron, 74, 1047–1052. https://doi.org/10.1016/j.tet.2018.01.029.

    Article  CAS  Google Scholar 

  126. Sampson, K. L., Josey, D. S., Li, Y., Virdo, J. D., Lu, Z.-H., & Bender, T. P. (2018). Ability to fine-tune the electronic properties and open-circuit voltage of phenoxy-boron subphthalocyanines through meta-fluorination of the axial substituent. The Journal of Physical Chemistry C, 122, 1091−1102. https://doi.org/10.1021/acs.jpcc.7b11157.

  127. Winterfeld, K. A., Lavarda, G., Guilleme, J., Sekita, M., Guldi, D. M., Torres, T., & Bottari, G. (2017). Subphthalocyanines axially substituted with a tetracyanobuta-1,3-diene−Aniline moiety: Synthesis, structure, and physicochemical properties. Journal of the American Chemical Society, 139, 5520–5529. https://doi.org/10.1021/jacs.7b01460.

    Article  CAS  Google Scholar 

  128. Inokuma, Y., Kwon, J. H., Ahn, T. K., Yoo, M.-C., Kim, D., & Osuka, A. (2006). Tribenzosubporphines: Synthesis and characterization. Angewandte Chemie International Edition, 45, 961–964. https://doi.org/10.1002/anie.200503426.

    Article  CAS  Google Scholar 

  129. Makarova, E. A., Shimizu, S., Matsuda, A., Luk’yanets, E. A., & Kobayashi, N. (2008). Meso-Aryl tribenzosubporphyrin-a totally substituted subporphyrin species. Chemical Communications, 18, 2109–2111. https://doi.org/10.1039/b801712c.

  130. Shiina, Y., Karasaki, H., Moric, S., Kobayashi, N., Furuta, H., & Shimizu, S. (2016). A novel isoindole-containing polyaromatic hydrocarbon unexpectedly formed during the synthesis of meso-2,6-dichlorophenyl-substituted tribenzosubporphyrin. Journal of Porphyrins and Phthalocyanines, 20, 1049–1054. https://doi.org/10.1142/S1088424616500541.

    Article  CAS  Google Scholar 

  131. Kise, K., Yoshida, K., Kotani, R., Shimizu, D., & Osuka, A. (2018). BIII 5-Arylsubporphyrins and BIII subporphine. Chemistry—A European Journal, 24, 19136–19140. https://doi.org/10.1002/chem.201801491.

    Article  CAS  Google Scholar 

  132. Takeuchi, Y., Matsuda, A., & Kobayashi, N. (2007). Synthesis and characterization of meso-triarylsubporphyrins. Journal of the American Chemical Society, 129, 8271–8281. https://doi.org/10.1021/ja0712120.

    Article  CAS  Google Scholar 

  133. Kobayashi, N., Takeuchi, Y., & Matsuda, A. (2007). Meso-Aryl subporphyrins. Angewandte Chemie International Edition, 46, 758–760. https://doi.org/10.1002/anie.200603520.

    Article  CAS  Google Scholar 

  134. Kotani, R., Yoshida, K., Tsurumaki, E., & Osuka, A. (2016). Boron arylations of subporphyrins with aryl zinc reagents. Chemistry—A European Journal, 22, 3320–3326. https://doi.org/10.1002/chem.201504719.

    Article  CAS  Google Scholar 

  135. Zhao, S., Liu, C., Guo, Y., Xiao, J.-C., & Chen, Q.-Y. (2014). βa-Perfluoroalkylated meso-Aryl-substituted subporphyrins: Synthesis and properties. Synthesis, 46, 1674–1688. https://doi.org/10.1055/s-0033-1341055.

  136. Tsurumaki, E., & Osuka, A. (2013). Synthesis of peripherally nitrated, aminated, and arylaminated subporphyrins. Chemistry—An Asian Journal, 8, 3042–3050. https://doi.org/10.1002/asia.201300869.

    Article  CAS  Google Scholar 

  137. Tanaka, T., Kitano, M., Hayashi, S.-Y., Aratani, N., & Osuka, A. (2012). Rational synthesis of A2B-type meso-triarylsubporphyrins. Organic Letters. https://doi.org/10.1021/ol300865s.

  138. Chandra, B., Mondal, N., Kumar, B. S., & Panda, P. K. (2016). New carbazole appended subporphyrin displaying intramolecular charge transfer and solid state fluorescence. Journal of Porphyrins and Phthalocyanines, 20, 1–9. https://doi.org/10.1142/S1088424616500255.

    Article  CAS  Google Scholar 

  139. Kitano, M., Shimizu, D., Tanaka, T., Yorimitsu, H., & Osuka, A. (2014). Synthesis of meso-heteroatom-substituted subporphyrins. Journal of Porphyrins and Phthalocyanines, 18, 1–7. https://doi.org/10.1142/S1088424614500394.

    Article  CAS  Google Scholar 

  140. Bekki, Y., & Osuka, A. (2020). meso-Free BIII subporphyrins with electron-donating groups. Chemistry—An Asian Journal, 15, 1580–1589. https://doi.org/10.1002/asia.202000288.

    Article  CAS  Google Scholar 

  141. Copley, G., Oh, J., Yoshida, K., Shimizu, D., Kim, D., & Osuka, A. (2016). Intramolecular electron transfer reactions in meso-(4-nitrophenyl)-substituted subporphyrins. Chemical Communications, 52, 1424–1427. https://doi.org/10.1039/c5cc09005a.

    Article  CAS  Google Scholar 

  142. Bekki, Y., Shimizu, D., Fujimoto, K., & Osuka, A. (2018). meso-Functionalization of Boron(III) Subporphyrin with Boron(III) meso-lithiosubporphyrin. Chemistry—A European Journal, 24, 12708–12715. https://doi.org/10.1002/chem.201802339.

    Article  CAS  Google Scholar 

  143. Yoshida, K., Copley, G., Mori, H., & Osuka, A. (2014). Probing the Rotational Dynamics of meso-(2-Substituted)aryl substituents in A2B-type subporphyrins. Chemistry—A European Journal, 20, 1–9. https://doi.org/10.1002/chem.201402778.

    Article  CAS  Google Scholar 

  144. Winterfeld, K. A., Lavarda, G., Yoshida, K., Bayerlein, M. J., Kise, K., Tanaka, T., Osuka, A., Guldi, D. M., Torres, T., & Bottari, G. (2020). Synthesis and optical features of axially- and peripherally-substituted subporphyrins. A paradigmatic example of charge transfer versus exciplex states. Journal of the American Chemical Society, 142, 1580–1589. https://doi.org/10.1021/jacs.0c01646.

  145. Yoshida, K., Mori, H., Tanaka, T., Mori, T., & Osuka, A. (2014). ABC-type meso-triaryl-substituted subporphyrins. European Journal of Organic Chemistry, 2014, 3997–4004. https://doi.org/10.1002/ejoc.201402435.

    Article  CAS  Google Scholar 

  146. Lee, S.-K., Kim, J. O., Shimizu, D., Osuka, A., & Kim, D. (2016). Effect of bulky meso-substituents on photoinduced twisted intramolecular charge transfer processes in meso-diarylamino subporphyrins. Journal of Porphyrins Phthalocyanines, 20, 1–7. https://doi.org/10.1142/S1088424616500723.

  147. Cha, W. Y., Oh, J., Kitano, M., Osuka, A., & Kim, D. (2017).meso-Arylethynyl subporphyrins as efficient and tunable photo-induced electron transfer units. Journal of Porphyrins Phthalocyanines, 21, 152–157. https://doi.org/10.1142/S1088424617500249.

  148. de la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (2004). Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chemical Reviews, 104, 3723–3750. https://doi.org/10.1021/cr030206t.

    Article  CAS  Google Scholar 

  149. Kumar, K. A., Kumar, S., Dharmaprakash, S. M., & Das, R. (2016). Impact of α→ β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films. The Journal of Physical Chemistry C, 120, 6733–6740. https://doi.org/10.1021/acs.jpcc.5b12328.

  150. Kumar, K. A., Raghavendra, S., Rao, S. V., Hamad, S., & Dharmaprakash, S. M. (2015). Dharmaprakash, Structural, linear and nonlinear optical study of zinc tetra-tert-butylphthalocyanine thin film. Optik, 126, 5918–5922. https://doi.org/10.1016/j.ijleo.2015.08.209.

  151. Bhattacharya, S., Reddy, G., Paul, S., Hossain, S. S., Raavi, S. S. K., Giribabu, L., & Soma, V. R. (2020). Comparative photophysical and femtosecond third-order nonlinear optical properties of novel imidazole substituted metal phthalocyanines. Dyes and Pigments. https://doi.org/10.1016/j.dyepig.2020.108791.

  152. Farajzadeh, N., Kösoğlu, G., Erdem, M., Eryürek, G., & Koçak, M. B. (2020). Nonlinear optical properties of peripheral symmetrically and nonsymmetrically 4-(trifluoromethoxy)phenoxy substituted zinc phthalocyanines. Synthetic Metals. https://doi.org/10.1016/j.synthmet.2020.116440.

  153. Fashina, A., & Nyokong, T. (2015). Nonlinear optical response of tetra and mono substituted zinc phthalocyanine complexes. Journal of Luminescence, 167, 71–79. https://doi.org/10.1016/j.jlumin.2015.06.003.

    Article  CAS  Google Scholar 

  154. Kadhum, A. J., Hussein, N. A., Hassan, Q. M. A., Sultan, H. A., Al-Asadi, A. S., & Emshary, C. A. (2018). Investigating the nonlinear behavior of cobalt (II) phthalocyanine using visible CW laser beam. Optik, 157, 540–550. https://doi.org/10.1016/j.ijleo.2017.11.135.

    Article  CAS  Google Scholar 

  155. Neduvhuledza, Z., Nkaki, T., Louzada, M., Nyokong, T., & Khene, S. (2020). Photophysical and nonlinear optical properties of the positional isomers of 4-(4-tertbutylphenoxy) substituted cobalt, nickel and copper phthalocyanines. Optical Materials. https://doi.org/10.1016/j.optmat.2020.110195.

    Article  Google Scholar 

  156. Biyiklioglu, Z., Arslan, T., Alawainati, F. A., Manaa, H., Jaffar, A., & Henari, F. Z. (2019). Comparative nonlinear optics and optical limiting properties of metallophthalocyanines. Inorganica Chimica Acta, 486, 345–351. https://doi.org/10.1016/j.ica.2018.10.061.

    Article  CAS  Google Scholar 

  157. Bankole, O. M., Britton, J., & Nyokong, T. (2015). Photophysical and non-linear optical behavior of novel tetra alkynyl terminated indium phthalocyanines: Effects of the carbon chain length. Polyhedron, 88, 73–80. https://doi.org/10.1016/j.poly.2014.12.020.

    Article  CAS  Google Scholar 

  158. Kuzmina, E. A., Dubinina, T. V., Dzuban, A. V., Krasovskii, V. I., Maloshitskaya, O. A., & Tomilova, L. G. (2018). Perchlorinated europium, terbium and lutetium mono(phthalocyaninates): Synthesis, investigation of thermal stability and optical properties. Polyhedron, 156, 14–18. https://doi.org/10.1016/j.poly.2018.08.076.

    Article  CAS  Google Scholar 

  159. Plekhanov, A. I., Basova, T. V., Parkhomenko, R. G., & Gürek, A. G. (2017). Nonlinear optical properties of lutetium and dysprosium bisphthalocyanines at 1550 nm with femto- and nanosecond pulse excitation. Optical Materials, 64, 13–17. https://doi.org/10.1016/j.optmat.2016.11.025.

    Article  CAS  Google Scholar 

  160. Zawadzka, A., Karakas, A., Płóciennik, P., Szatkowski, J., Łukasiak, Z., Kapceoglu, A., Ceylan, Y., & Sahraoui, B. (2015). Optical and structural characterization of thin films containing metallophthalocyanine chlorides. Dyes and Pigments, 112, 116–126. https://doi.org/10.1016/j.dyepig.2014.06.029.

    Article  CAS  Google Scholar 

  161. Zawadzka, A., Waszkowska, K., Karakas, A., Płóciennik, P., Korcala, A., Wisniewski, K., Karakaya, M., & Sahraoui, B. (2018). Dyes and Pigments, 157, 151–162. https://doi.org/10.1016/j.dyepig.2018.04.048.

    Article  CAS  Google Scholar 

  162. Makinde, Z. O., Louzada, M. S., Britton, J., Nyokong, T., & Khene, S. (2019). Spectroscopic and nonlinear optical properties of alkyl thio substituted binuclear phthalocyanines. Dyes and Pigments, 162, 249–256. https://doi.org/10.1016/j.dyepig.2018.10.022.

    Article  CAS  Google Scholar 

  163. Kabwe, K. P., Louzada, M., Britton, J., Olomola, T. O., Nyokong, T., & Khene, S. (2019). Nonlinear optical properties of metal free and nickel binuclear phthalocyanines. Dyes and Pigments, 168, 347–356. https://doi.org/10.1016/j.dyepig.2019.05.003.

  164. Boudebs, G., Cassagne, C., Wang, H., Godet, J.-L., & de Araújo, C. B. (2018). Third-order optical measurements of porphyrin compounds using Dark-field and D4σ-Z scan imaging techniques. Journal of Luminescence, 199, 319–322. https://doi.org/10.1016/j.jlumin.2018.03.055.

    Article  CAS  Google Scholar 

  165. Torres-Torres, D., Torres-Torres, C., Vega-Becerra, O., Cheang-Wong, J. C., Rodríguez-Fernández, L., Crespo-Sosa, A., & Oliver, A. (2019). Enhanced third order optical nonlinearity in ultrathin amorphous film of tetraphenyl-porphyrin in picosecond regime. Optics & Laser Technology. https://doi.org/10.1016/j.optlastec.2019.105642.

  166. Vijisha, M. V., Parambath, S., Jagadeesan, R., Arunkumar, C., & Chandrasekharan, K. (2019). Nonlinear optical absorption and optical limiting studies of fluorinated pyridyl porphyrins in chlorobenzene: An insight into the photo-induced protonation effects. Dyes and Pigments, 169, 29–35. https://doi.org/10.1016/j.dyepig.2019.05.012.

  167. Narendran, N. S., Soman, R., Sankar, P., Arunkumar, C., & Chandrasekharan, K. (2015). Ultrafast and short pulse optical nonlinearities of meso-tetrakis-(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl) porphyrin and its metal complexes. Optical Materials, 49, 59–66. https://doi.org/10.1016/j.optmat.2015.08.018.

  168. Narendran, N. S., Soman, R., Arunkumar, C., & Chandrasekharan, K. (2015). Third-order nonlinear optical investigations of meso-tetrakis(2,3,5,6-tetrafluoro-N,N-dimethyl-4-anilinyl)porphyrin and its metal complexes. Spectrochimica Acta Part A, 136, 838–844. https://doi.org/10.1016/j.saa.2014.09.102.

  169. Wan, Y., Xue, Y., Sheng, N., Rui, G., Lv, C., He, J., & Cui, Y. (2018). Solvent effects on the fluorescence and effective three-photon absorption of a Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin]. Optics & Laser Technology, 102, 47–53. https://doi.org/10.1016/j.optlastec.2017.12.018.

  170. Liang, Z., Gan, F., Sun, Z., Yang, X., Ding, L., & Wang, Z. (2000). Resonant third-order optical nonlinearity of a new Subphthalocyanine. Optical Materials, 14, 13–17. https://doi.org/10.1016/S0925-3467(99)00106-8.

    Article  CAS  Google Scholar 

  171. Chen, Z., Xia, C., Wu, Y., Zuo, X., & Song, Y. (2006). Synthesis, characterization and third-order nonlinear optical properties of bromo[tri-a-(2,4-dimethyl-3-pentyloxy) subphthalocyanine]boron complex. Inorganic Chemistry Communications, 9, 187–191. https://doi.org/10.1016/j.inoche.2005.10.034.

    Article  CAS  Google Scholar 

  172. Dini, D., Vagin, S., Hanack, M., Amendola, V., & Meneghetti, M. (2005). Nonlinear optical effects related to saturable and reverse saturable absorption by subphthalocyanines at 532 nm. Chemical Communications, 30, 3796–3798. https://doi.org/10.1039/b502359a.

    Article  CAS  Google Scholar 

  173. Shehata, M. M., Kamal, H., & Abdelhady, K. (2018). Photovoltaic performance, structural and electrical characterizations of thermally evaporated 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-Prophine Zinc (ZnTPyP) organic thin films. Vacuum, 154, 129–140. https://doi.org/10.1016/j.vacuum.2018.05.001.

    Article  CAS  Google Scholar 

  174. Benhaliliba, M., Missoum, I., Ozcelik, S., & Asar, T. (2020). Optical filter and electrical behavior of innovative Au/ZnPc/Si/Al organic heterojunction. Optik. https://doi.org/10.1016/j.ijleo.2019.163629.

    Article  Google Scholar 

  175. Oruç, Ç., Erkol, A., & Altındal, A. (2017). Characterization of metal (Ag, Au)/phthalocyanine thin film/semiconductor structures by impedance spectroscopy technique. Thin Solid Films, 636, 765–772. https://doi.org/10.1016/j.tsf.2017.03.058.

    Article  CAS  Google Scholar 

  176. Shehata, M. M., Abdel-Malik, T. G., & Abdelhady, K. (2018). AC impedance spectroscopy on Al/p-Si/ZnTPyP/Au heterojunction for hybrid solar cell applications. Journal of Alloys and Compounds, 736, 225–235. https://doi.org/10.1016/j.jallcom.2017.11.097.

    Article  CAS  Google Scholar 

  177. Dey, B., Chakraborty, S., Chakraborty, S., Bhattacharjee, D., Khan, A., & Hussain, S. A. (2018). Electrical switching behaviour of a metalloporphyrin in Langmuir-Blodgett Film. Organic Electronics, 55, 50–62. https://doi.org/10.1016/j.orgel.2017.12.038.

  178. Dini, D., & Hanack, M. (2003). Phthalocyanines: Properties and materials, In K. M. Kadish, K. M. Smith & R. Guilard (Eds.), The porphyrin handbook (Vol. 17, p. 1). Academic Press.

    Google Scholar 

  179. Gould, R. D. (1996). Structure and electrical conduction properties of phthalocyanine thin films. Coordination Chemistry Reviews, 156, 237–274. https://doi.org/10.1016/S0010-8545(96)01238-6.

    Article  CAS  Google Scholar 

  180. Azim-Araghi, M. E., & Pirifard, F. (2013). Morphology, optical and AC electrical properties of nanostructure thin film of bromo indium phthalocyanine. Materials Science in Semiconductor Processing, 16, 1466–1471. https://doi.org/10.1016/j.mssp.2013.04.008.

    Article  CAS  Google Scholar 

  181. Tatar, B., & Demiroğlu, D. (2015). Electrical properties of FePc organic semiconductor thin films obtained by CSP technique for photovoltaic applications. Materials Science in Semiconductor Processing, 31, 644–650. https://doi.org/10.1016/j.mssp.2014.12.078.

    Article  CAS  Google Scholar 

  182. Soliman, I. M., El-Nahass, M. M., & Mansour, Y. (2016). Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl). Solid State Communications, 225, 17–21. https://doi.org/10.1016/j.ssc.2015.10.011.

    Article  CAS  Google Scholar 

  183. Yabaş, E., Sülü, M., Dumludağ, F., Salih, B., & Bekaroğlu, Ö. (2018). Imidazole octasubstituted novel mono and double-decker phthalocyanines: Synthesis, characterization, electrical and gas sensing properties. Polyhedron, 153, 51–63. https://doi.org/10.1016/j.poly.2018.06.044.

    Article  CAS  Google Scholar 

  184. Kratochvílová, I., Šebera, J., Paruzel, B., Pfleger, J., Toman, P., Marešová, E., Havlová, Š, Hubík, P., Buryi, M., Vrňata, M., Słota, R., Zakrzyk, M., Lančok, J., & Novotný, M. (2018). Electronic functionality of Gd-bisphthalocyanine: Charge carrier concentration, charge mobility, and influence of local magnetic field. Synthetic Metals, 236, 68–78. https://doi.org/10.1016/j.synthmet.2018.01.007.

    Article  CAS  Google Scholar 

  185. Eguchi, K., Imai, Y., Matsushita, M. M., & Awaga, K. (2018). Influence of air exposure on photocarrier generation in amorphous and phase II thin films of titanyl phthalocyanine. Journal of Physical Chemistry C, 122, 7731–7736. https://doi.org/10.1021/acs.jpcc.8b00290.

    Article  CAS  Google Scholar 

  186. Darwish, A. A. A., Issa, S. A., & El-Nahass, M. M. (2016). Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synthetic Metals, 215, 200–206. https://doi.org/10.1016/j.synthmet.2016.03.002.

  187. Sun, Y., Xu, W., Di, C.-A., & Zhu, D. (2017). Metal-organic complexes-towards promising organic thermoelectric materials. Synthetic Metals, 225, 22–30. https://doi.org/10.1016/j.synthmet.2016.12.001.

  188. Yakuphanoglu, F., Kandaz, M., Yaraşır, M. N., & Şenkal, F. B. (2007). Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Physica B: Condensed Matter, 393, 235–238. https://doi.org/10.1016/j.physb.2007.01.007.

    Article  CAS  Google Scholar 

  189. Murdey, R., Katoh, K., Yamashita, M., & Sato, N. (2018). Thermally activated electrical conductivity of thin films of bis(phthalocyaninato)terbium(III) double decker complex. Thin Solid Films, 646, 17–20. https://doi.org/10.1016/j.tsf.2017.11.024.

    Article  CAS  Google Scholar 

  190. Cook, L., Brewer, G., & Wong-Ng, W. (2017). Structural aspects of porphyrins for functional materials applications. Crystals. https://doi.org/10.3390/cryst7070223.

    Article  Google Scholar 

  191. Meikhail, M. S., Oraby, A. H., El-Nahass, M. M., Zeyada, H. M., & Al-Muntaser, A. A. (2018). Electrical conduction mechanism and dielectric characterization of MnTPPCl thin films. Physica B: Condensed Matter, 539, 1–7. https://doi.org/10.1016/j.physb.2018.03.045.

    Article  CAS  Google Scholar 

  192. Zhai, X., Arachchige, N. M. K. K., Derosa, P., & Garno, J. C. (2017). Conductive-probe measurements with nanodots of free-base and metallated porphyrins. Journal of Colloid and Interface Science, 486, 38–45. https://doi.org/10.1016/j.jcis.2016.09.039.

  193. Kuzmin, S. M., Chulovskaya, S. A., & Parfenyuk, V. I. (2020). Highly conductive polyporphyrin films obtained by superoxide-assisted electropolymerization of para—Aminophenyl porphyrin. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2019.122394.

    Article  Google Scholar 

  194. Koposova, E. A., Ermolenko, Y. E., Offenhäusser, A., & Mourzina, Y. G. (2018). Self-assembly and photoconductivity of binary porphyrin nanostructures of meso-tetrakis(4-sulfonatophenyl)porphine and Co(III) meso-tetra(4-pyridyl) porphine chloride. Colloids and Surfaces, 548, 172–178. https://doi.org/10.1016/j.colsurfa.2018.03.053.

    Article  CAS  Google Scholar 

  195. El-Nahass, M. M., Zayed, H. A., Elgarhy, E. E., & Hassanien, A. M. (2017). Effect of γ-irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin thin films. Radiation Physics and Chemistry, 139, 173–178. https://doi.org/10.1016/j.radphyschem.2017.05.008.

    Article  CAS  Google Scholar 

  196. Wróbel, D., Boguta, A., & Mazurkiewicz, P. (2003). Non-radiative deactivation pathways of subphthalocyanine and subnaphthalocyanine dyes and of their mixture. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 59, 2841–2854. https://doi.org/10.1016/S1386-1425(03)00083-0.

    Article  CAS  Google Scholar 

  197. Poddar, M., & Misra, R. (2020). Recent advances of BODIPY based derivatives for optoelectronic Applications. Coordination Chemistry Reviews. https://doi.org/10.1016/j.ccr.2020.213462.

    Article  Google Scholar 

  198. Durantini, A. M., Heredia, D. A., Durantini, J. E., & Durantini, E. N. (2018). BODIPYs to the rescue: Potential applications in photodynamic Inactivation. European Journal of Medicinal Chemistry, 144, 651–661. https://doi.org/10.1016/j.ejmech.2017.12.068.

    Article  CAS  Google Scholar 

  199. Andrianov, D. S., Farré, Y., Chen, K. J., Warnan, J., Planchat, A., Jacquemin, D., Cheprakov, A. V., & Odobel, F. (2016). Trans-disubstituted benzodiazaporphyrin: A promising hybrid dye between porphyrin and phthalocyanine for application in dye-sensitized solar cells. Journal of Photochemistry Photobiology A, 330, 186–194. https://doi.org/10.1016/j.jphotochem.2016.07.026.

    Article  CAS  Google Scholar 

  200. Nguyen, N. T., Verbelen, B., Leen, V., Waelkens, E., Dehaen, W., & Kruk, M. (2016). Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate. Journal of Luminescence, 179, 306–313. https://doi.org/10.1016/j.jlumin.2016.06.043.

    Article  CAS  Google Scholar 

  201. Dumanoğulları, F. M., Tutel, Y., Küçüköz, B., Sevinç, G., Karatay, A., Yılmaz, H., Hayvali, M., & Elmali, A. (2019). Investigation of ultrafast energy transfer mechanism in BODIPY–Porphyrin dyad system. Journal of Photochemistry and Photobiology A, 373, 116–121. https://doi.org/10.1016/j.jphotochem.2019.01.007.

    Article  CAS  Google Scholar 

  202. Kaya, E. N., Köksoy, B., Yeşilot, S., & Durmuş, M. (2020). Purple silicon(IV) phthalocyanine axially substituted with BODIPY groups. Dyes and Pigments. https://doi.org/10.1016/j.dyepig.2019.107867.

  203. Yanık, H., Yeșilot, S., & Durmuș, M. (2017). Synthesis and properties of octa-distyryl-BODIPY substituted zinc(II) phthalocyanines. Dyes and Pigments, 140, 157–165. https://doi.org/10.1016/j.dyepig.2017.01.024.

    Article  CAS  Google Scholar 

  204. Osati, S., Ali, H., & van Lier, J. E. (2015). Synthesis and spectral properties of phthalocyanine–BODIPY conjugates. Tetrahedron Letters, 56, 2049–2053. https://doi.org/10.1016/j.tetlet.2015.02.128.

    Article  CAS  Google Scholar 

  205. Zhang, J., Jiang, C., Longo, J. P. F., Azevedo, R. B., Zhang, H., & Muehlmann, L. A. (2018). An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta pharmaceutica sinica B, 8, 137–146. https://doi.org/10.1016/j.apsb.2017.09.003.

  206. Matshitse, R., Ngoy, B. P., Managa, M., Mack, J., & Nyokong, T. (2019). Photophysical properties and photodynamic therapy activities of detonated nanodiamonds-BODIPY-phthalocyanines nanoassemblies. Photodiagnosis and Photodynamic Therapy, 26, 101–110. https://doi.org/10.1016/j.pdpdt.2019.03.007.

    Article  CAS  Google Scholar 

  207. Fujishiroa, R., Sonoyama, H., Ide, Y., Fujimura, T., Sasai, R., Nagai, A., Mori, S., Kaufman, N. E. M., Zhou, Z., Graca, M., Vicente, H., & T. Ikeue, Synthesis, photodynamic activities, and cytotoxicity of new water-soluble cationic gallium(III) and zinc(II) phthalocyanines. Journal of Inorganic Biochemistry, 192, 7–16. https://doi.org/10.1016/j.jinorgbio.2018.11.013.

  208. Bizet, F., Ipuy, M., Bernhard, Y., Lioret, V., Winckler, P., Goze, C., Perrier-Cornet, J.-M., & Decréau, R. A. (2018). Cellular imaging using BODIPY-, pyrene- and phthalocyanine-based conjugates. Bioorganic & Medicinal Chemistry, 26, 413–420. https://doi.org/10.1016/j.bmc.2017.11.050.

    Article  CAS  Google Scholar 

  209. Çetindere, S., Çoșut, B., Yeșilot, S., Durmuș, M., & Kılıç, A. (2014). Synthesis and properties of axially BODIPY conjugated subphthalocyanine dyads. Dyes and Pigments, 101, 234–239. https://doi.org/10.1016/j.dyepig.2013.10.015.

    Article  CAS  Google Scholar 

  210. Gotfredsen, H., Kilde, M. D., Santella, M., Kadziola, A., & Nielsen, M. B. (2019). Fluorescence switching with subphthalocyanine-dihydroazulene dyads. Molecular Systems Design & Engineering, 4, 199–205. https://doi.org/10.1039/C8ME00075A.

  211. Ömeroğlu, İ, Kaya, E. N., Göksel, M., Kussovski, V., Mantareva, V., & Durmus, M. (2017). Axially substituted silicon(IV) phthalocyanine and its quaternized derivative as photosensitizers towards tumor cells and bacterial pathogens. Bioorganic & Medicinal Chemistry, 25, 5415–5422. https://doi.org/10.1016/j.bmc.2017.07.065.

    Article  CAS  Google Scholar 

  212. Cavalcante, L. L. R., Tedesco, A. C., Takahashi, L. A. U., Curylofo-Zottia, F. A., Souza-Gabriela, A. E., & Corona, S. A. M. (2020). Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: Synthesis, characterization and photoinactivation of Streptococcus mutans Biofilm. Photodiagnosis and Photodynamic. https://doi.org/10.1016/j.pdpdt.2020.101709.

    Article  Google Scholar 

  213. Valenzuela-Valderrama, M., González, I. A., & Palavecino, C. E. (2019). Photodynamic treatment for multidrug-resistant Gram-negative bacteria: Perspectives for the treatment of Klebsiella pneumoniae infections. Photodiagnosis and Photodynamic, 28, 256–264. https://doi.org/10.1016/j.pdpdt.2019.08.012.

    Article  CAS  Google Scholar 

  214. Nesi-Reisa, V., Navasconi, T. R., Lera-Nosone, D. S. S. L., Oliveira, E. L., Barbosa, P. M., Caetano, W., Silveira, T. G. V., Aristides, S. M. A., Hioka, N., & Lonardoni, M. V. C. (2018). Phototoxic effect of aluminium-chlorine and aluminium-hydroxide phthalocyanines on Leishmania (l.) amazonensis. Photodiagnosis and Photodynamic, 21, 239–245. https://doi.org/10.1016/j.pdpdt.2017.12.008.

  215. Kooriyaden, F. R., Sujatha, S., & Arunkumar, C. (2015). Synthesis, spectral, structural and antimicrobial studies of fluorinated porphyrins. Polyhedron, 97, 66–74. https://doi.org/10.1016/j.poly.2015.05.018.

    Article  CAS  Google Scholar 

  216. Shabangu, S. M., Babu, B., Soy, R. C., Oyim, J., Amuhaya, E., & Nyokong, T. (2020). Susceptibility of Staphylococcus aureus to porphyrin-silver nanoparticle mediated photodynamic antimicrobial chemotherapy. Journal of Luminescence. https://doi.org/10.1016/j.jlumin.2020.117158.

    Article  Google Scholar 

  217. da Silveira, C. H., Vieceli, V., Clerici, D. J., Santos, R. C. V., & Iglesias, B. A. (2020). Investigation of isomeric tetra-cationic porphyrin activity with peripheral [Pd(bpy)Cl]+ units by antimicrobial photodynamic therapy. Photodiagnosis and Photodynamic. https://doi.org/10.1016/j.pdpdt.2020.101920.

    Article  Google Scholar 

  218. de Melo, M. T., Piva, H. L., & Tedesco, A. C. (2020). Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2020.110638.

    Article  Google Scholar 

  219. Yalazan, H., Barut, B., Ertem, B., Yalçın, C. Ö., Ünver, Y., Özel, A., Ömeroğlu, İ, Durmuș, M., & Kantekin, H. (2020). DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units. Polyhedron. https://doi.org/10.1016/j.poly.2019.114319.

    Article  Google Scholar 

  220. Kıyak, B., Esenpınar, A. A., & Bulut, M. (2015). Synthesis, characterization, photophysical and photochemical properties of zinc and indium phthalocyanines bearing a vanillylacetone moiety known as an anticarcinogenic agent. Polyhedron, 90, 183–196. https://doi.org/10.1016/j.poly.2015.01.043.

  221. Crous, A., Kumar, S. S. D., & Abrahamse, H. (2019). Effect of dose responses of hydrophilic aluminium (III) phthalocyaninemchloride tetrasulphonate based photosensitizer on lung cancer cells. Journal of Photochemistry and Photobiology B, 194, 96–106. https://doi.org/10.1016/j.jphotobiol.2019.03.018.

    Article  CAS  Google Scholar 

  222. Managa, M., Britton, J., Prinsloo, E., & Nyokong, T. (2018). Effects of Pluronic F127 micelles as delivering agents on the vitro dark toxicity and photodynamic therapy activity of carboxy and pyrene substituted porphyrins. Polyhedron, 152, 102–107. https://doi.org/10.1016/j.poly.2018.06.031.

    Article  CAS  Google Scholar 

  223. Matsumoto, J., Suzuki, K., Yasuda, M., Yamaguchi, Y., Hishikawa, Y., Imamura, N., & Nanashima, A. (2017). Photodynamic therapy of human biliary cancer cell line using combination of phosphorus porphyrins and light emitting diode. Bioorganic & Medicinal Chemistry, 25, 6536–6541. https://doi.org/10.1016/j.bmc.2017.10.031.

    Article  CAS  Google Scholar 

  224. Fakayode, O. J., Kruger, C. A., Songca, S. P., Abrahamse, H., & Oluwafemi, O. S. (2018). Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Materials Science and Engineering C, 92, 737–744. https://doi.org/10.1016/j.msec.2018.07.026.

    Article  CAS  Google Scholar 

  225. Caruso, E., Cerbara, M., Malacarne, M. C., Marras, E., Monti, E., & Gariboldi, M. B. (2019). Synthesis and photodynamic activity of novel non-symmetrical diaryl porphyrins against cancer cell lines. Journal of Photochemistry and Photobiology B, 195, 39–50. https://doi.org/10.1016/j.jphotobiol.2019.04.010.

    Article  CAS  Google Scholar 

  226. Yurt, F., Sarı, F. A., Ince, M., Colak, S. G., Er, O., Soylu, H. M., Kurt, C. C., Avci, C. B., Gunduz, C., & Ocakoglu, K. (2018). Photodynamic therapy and nuclear imaging activities of SubPhthalocyanine integrated TiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 367, 45–55. https://doi.org/10.1016/j.jphotochem.2018.08.004.

    Article  CAS  Google Scholar 

  227. Yurt, F., Ince, M., Er, O., Soylu, H. M., Ocakoglu, K., & Yilmaz, O. (2019). Subphthalocyanine as a fluorescence imaging agent for breast tumor. Photodiagnosis and Photodynamic Therapy, 26, 361–365. https://doi.org/10.1016/j.pdpdt.2019.04.022.

    Article  CAS  Google Scholar 

  228. Önal, H. T., Yuzer, A., Ince, M., & Ayaz, F. (2020). Photo induced anti-inflammatory activities of a Thiophene substituted subphthalocyanine derivative. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2020.101701.

    Article  Google Scholar 

  229. Ayaz, F., Ugur, N., Ocakoglu, K., & Ince, M. (2019). Photo-induced anti-inflammatory activities of chloro substituted subphthalocyanines on the mammalian macrophage in vitro. Photodiagnosis and Photodynamic Therapy, 25, 499–503. https://doi.org/10.1016/j.pdpdt.2019.02.002.

    Article  CAS  Google Scholar 

  230. Ozturk, I., Tunçel, A., Ince, M., Ocakoglu, K., Hoșgör-Limoncu, M., & Yurt, F. (2018). Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli. Journal of Porphyrins and Phthalocyanines, 22, 1099–1105. https://doi.org/10.1142/S1088424618501122.

    Article  CAS  Google Scholar 

  231. Biyiklioglu, Z., Ozturk, I., Arslan, T., Tunçel, A., Ocakoglu, K., Hosgor-Limoncu, M., & Yurt, F. (2019). Synthesis and antimicrobial photodynamic activities of axially 4-[(1E)-3-oxo-3-(2-thienyl)prop-1-en-1-yl]phenoxy groups substituted silicon phthalocyanine, subphthalocyanine on Gram-positive and Gram-negative bacteria. Dyes and Pigments, 166, 149–158. https://doi.org/10.1016/j.dyepig.2019.03.010.

    Article  CAS  Google Scholar 

  232. Pradhan, S., Jityen, A., Juagwon, T., & Sinsarp, A. (2020). Development of electrochemical electrodes using carbon nanotube and metal phthalocyanine to classify pharmaceutical drugs. Materials Today: Proceedings, 23, 732.

    CAS  Google Scholar 

  233. Lourenço, A. S., Nascimento, R. F., Silva, A. C., Ribeiro, W. F., Araujo, M. C. U., Oliveira, S. C. B., & Nascimento, V. B. (2018). Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration. Analytica Chimica Acta, 1008, 29–37. https://doi.org/10.1016/j.aca.2018.01.005.

    Article  CAS  Google Scholar 

  234. Kobayashi, K., Lou, S. N., Takatsuji, Y., Haruyama, T., Shimizu, Y., & Ohno, T. (2020). Photoelectrochemical reduction of CO2 using a TiO2 photoanode and a gas diffusion electrode modified with a metal phthalocyanine catalyst. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2020.135805.

    Article  Google Scholar 

  235. Mohamed, E. A., Zahran, Z. N., & Naruta, Y. (2017). Covalent bonds immobilization of cofacial Mn porphyrin dimers on an ITO electrode for efficient water oxidation in aqueous solutions. Journal of Catalysis, 352, 293–299. https://doi.org/10.1016/j.jcat.2017.05.018.

    Article  CAS  Google Scholar 

  236. Joon, N. K., Barnsley, J. E., Ding, R., Lee, S., Latonen, R.-M., Bobacka, J., Gordon, K. C., Ogawa, T., & Lisak, G. (2020). Silver(I)-selective electrodes based on rare earth element double-decker Porphyrins. Sensors and Actuators, B: Chemical. https://doi.org/10.1016/j.snb.2019.127311.

    Article  Google Scholar 

  237. de Brito, J. F., Irikura, K., Terzi, C. M., Nakagaki, S., & Zanoni, M. V. B. (2020). The great performance of TiO2 nanotubes electrodes modified by copper(II) porphyrin in the reduction of carbon dioxide to alcohol. Journal of CO2 Utilization. https://doi.org/10.1016/j.jcou.2020.101261.

  238. Nikolaeva, N. S., Parkhomenko, R. G., Klyamer, D. D., Shushanyan, A. D., Asanov, I. P., Morozova, N. B., & Basova, T. V. (2017). Basova Bilayer structures based on metal phthalocyanine and palladium layers for selective hydrogen detection. International Journal of Hydrogen Energy, 42, 28640–28646. https://doi.org/10.1016/j.ijhydene.2017.09.129.

  239. Fredj, Z., Ali, M. B., Abbas, M. N., & Dempsey, E. (2019). Determination of prostate cancer biomarker acid phosphatase at a copper phthalocyanine-modified screen printed gold transducer. Analytica Chimica Acta, 1057, 98–105. https://doi.org/10.1016/j.aca.2018.12.058.

    Article  CAS  Google Scholar 

  240. Roslan, N. A., Bakar, A. A., Bawazeer, T. M., Alsoufi, M. S., Alsenany, N., Majid, W. H. A., & Supangat, A. (2019). Enhancing the performance of vanadyl phthalocyanine-based humidity sensor by varying the thickness. Sensors and Actuators, B: Chemical, 279, 148–156. https://doi.org/10.1016/j.snb.2018.09.109.

    Article  CAS  Google Scholar 

  241. Kuprikova, N. M., Klyamer, D. D., Sukhikh, A. S., Krasnov, P. O., Mrsic, I., & Basova, T. V. (2020). Fluorosubstituted lead phthalocyanines: Crystal structure, spectral and sensing properties. Dyes and Pigments. https://doi.org/10.1016/j.dyepig.2019.107939.

    Article  Google Scholar 

  242. Peng, R., Offenhäusser, A., Ermolenko, Y., & Mourzina, Y. (2020). Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sensors and Actuators, B: Chemical. https://doi.org/10.1016/j.snb.2020.128437.

    Article  Google Scholar 

  243. Rushi, A. D., Datta, K. P., Ghosh, P., Mulchandani, A., & Shirsat, M. D. (2018). Exercising substituents in porphyrins for real time selective sensing of volatile organic compounds. Sensors and Actuators, B: Chemical Sensors and Materials, 257, 389–397. https://doi.org/10.1016/j.snb.2017.10.147.

    Article  CAS  Google Scholar 

  244. Karaoğlan, G. K., Gümrükçü, G., Gördük, S., Can, N., & Gül, A. (2017). Novel homoleptic, dimeric zinc(II) phthalocyanines as gate dielectric for OFET device. Synthetic Metals, 230, 7–11. https://doi.org/10.1016/j.synthmet.2017.04.019.

    Article  CAS  Google Scholar 

  245. Jiang, Y., Huang, W., Zhuang, X., Tang, Y., & Yu, J. (2017). Thickness modulation on semiconductor towards high performance gas sensors based on organic thin film transistors. Materials Science and Engineering B, 226, 107–113. https://doi.org/10.1016/j.mseb.2017.08.019.

    Article  CAS  Google Scholar 

  246. Xu, J., Liu, X., Wang, H., Hou, W., Zhao, L., & Zhang, H. (2017). Influence of the morphology of the copper(II) phthalocyanine thin film on the performance of organic field-effect transistors. Solid-State Electronics, 127, 61–64. https://doi.org/10.1016/j.sse.2016.11.003.

    Article  CAS  Google Scholar 

  247. Boukhili, W., Mahdouani, M., Bourguiga, R., & Puigdollers, J. (2015). Experimental study and analytical modeling of the channel length influence on the electrical characteristics of small-molecule thin-film transistors. Superlattices and Microstructures, 83, 224–236. https://doi.org/10.1016/j.spmi.2015.03.045.

    Article  CAS  Google Scholar 

  248. Zhu, H., Yang, Y., Peng, Y., Xu, S., Lv, W., Wei, Y., Sun, L., & Wang, Y. (2020). Bending strain induced photocurrent crossover from positive to negative in the flexible organic phototransistors. Organic Electronics. https://doi.org/10.1016/j.orgel.2019.105614.

    Article  Google Scholar 

  249. Zhang, J., Li, Y., Tanga, Y., Luo, X., Sun, L., Zhao, F., Zhong, J., & Peng, Y. (2016). Airstable near-infrared sensitive organic field-effect transistors utilizing erbium phthalocyanine as photosensitive layer. Synthetic Metals, 218, 27–33. https://doi.org/10.1016/j.synthmet.2016.04.022.

    Article  CAS  Google Scholar 

  250. Lv, W., Tang, Y., Yao, B., Zhou, M., Luo, X., Li, Y., Zhong, J., Sun, L., & Peng, Y. (2015). Red light sensitive heterojunction organic field-effect transistors based on neodymium phthalocyanine as photosensitive layer. Thin Solid Films, 589, 692–696. https://doi.org/10.1016/j.tsf.2015.06.059.

    Article  CAS  Google Scholar 

  251. Trul, A. A., Chekusova, V. P., Polinskaya, M. S., Kiselev, A. N., Agina, E. V., & Ponomarenko, S. A. (2020). NH3 and H2S real-time detection in the humid air by two-layer Langmuir-Schaefer OFETs. Sensors and Actuators, B: Chemical. https://doi.org/10.1016/j.snb.2020.128609.

    Article  Google Scholar 

  252. Lukashkin, N. A., Sagdullina, D. K., Zhidkov, I. S., Kurmaev, E. Z., & Troshin, P. A. (2020). Amine-selective gas sensor based on organic field-effect transistor with the porphyrin monolayer receptor. Synthetic Metals. https://doi.org/10.1016/j.synthmet.2020.116295.

    Article  Google Scholar 

  253. Shvedene, N. V., Otkidach, K. N., Ondar, E. E., Osipova, M. M., Dubinina, T. V., Tomilova, L. G., & Pletnev, I. V. (2017). Phenoxy-substituted boron subphthalocyanine as a ionophore of ion-selective electrodes. Journal of Analytical Chemistry, 72, 95–104. https://doi.org/10.1134/S1061934817010117.

    Article  CAS  Google Scholar 

  254. Gonzalez-Anton, R., Osipova, M. M., Garcia-Hernandez, C., Dubinina, T. V., Tomilova, L. G., Garcia-Cabezon, C., & Rodriguez-Mendez, M. L. (2017). Subphthalocyanines as electron mediators in biosensors based on phenol oxidases: Application to the analysis of red wines. Electrochimica Acta, 255, 239–247. https://doi.org/10.1016/j.electacta.2017.09.168.

    Article  CAS  Google Scholar 

  255. Yasuda, T., & Tsutsui, T. (2007). n-Channel organic field-effect transistors based on boron-subphthalocyanine. Molecular Crystals and Liquid Crystals, 462, 3–9. https://doi.org/10.1080/15421400601009278.

    Article  CAS  Google Scholar 

  256. Demirol, M., Sirka, L., Ҫalıșkan, E., Biryan, F., Koran, K., Görgülü, A. O., & Yakuphanoğlu, F. (2020). Synthesis and photodiode properties of chalcone substituted metallophthalocyanine. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2020.128571.

    Article  Google Scholar 

  257. Gorduk, S., & Altindal, A. (2020). Non-peripherally tetra substituted phthalocyanines bearing carboxylic acid anchoring groups as photosensitizer for high efficient dye sensitized solar cells. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2019.127636.

    Article  Google Scholar 

  258. Missoum, I., Ocak, Y. S., Benhaliliba, M., Benouis, C. E., & Chaker, A. (2016). Microelectronic properties of organic Schottky diodes based on MgPc for solar cell applications. Synthetic Metals, 214, 76–81. https://doi.org/10.1016/j.synthmet.2016.01.004.

    Article  CAS  Google Scholar 

  259. Guo, J., Sun, M., Meng, X., Zhu, H., Ma, C., Hu, S., Shen, J., Wang, Q., & Gao, J. (2020). Impact of peripheral groups on novel asymmetric phthalocyanine-based hole-transporting materials for perovskite solar cells. Dyes and Pigments. https://doi.org/10.1016/j.dyepig.2020.108301.

    Article  Google Scholar 

  260. Khalil, S., Souli, M., Ennouri, M., Tazerki, H., Khiari, J. E., & Kamoun-Turki, N. (2020). Characterization of novel organic low cost solar cell structure: FTO/MoO3/4 Tetra-Tolyl-Sulfonyl Zinc Phthalocyanine (4T4TS:ZnPc)/Al. Synthetic Metals. https://doi.org/10.1016/j.synthmet.2020.116495.

    Article  Google Scholar 

  261. Chen, X., Zhang, L., Xiao, L., Gao, K., Peng, X., & Cao, Y. (2018). Conjugated ionic porphyrins as the cathode interlayer materials in organic solar cells. Organic Electronics, 62, 107–113. https://doi.org/10.1016/j.orgel.2018.07.021.

    Article  CAS  Google Scholar 

  262. Alsharari, A. M., Darwish, A. A. A., & Rashad, M. (2020). Formation of flexible nano-organic films of 2, 7, 12, 17-tetra-tert-butyl-5, 10, 15, 20-tetraaza-21H, 23H-porphine for promising optoelectronic applications. Optical Materials. https://doi.org/10.1016/j.optmat.2020.109870.

    Article  Google Scholar 

  263. Al Mogren, M. M., Ahmed, N. M., & Hasanein, A. A. (2020). Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. Journal of Saudi Chemical Society, 24, 303–320. https://doi.org/10.1016/j.jscs.2020.01.005.

  264. Park, J. M., Lee, J. H., & Jang, W.-D. (2020). Applications of porphyrins in emerging energy conversion technologies. Coordination Chemistry Reviews. https://doi.org/10.1016/j.ccr.2019.213157.

    Article  Google Scholar 

  265. Plint, T. G., Lessard, B. H., & Bender, T. P. (2018). Doping chloro boron subnaphthalocyanines and chloro boron subphthalocyanine in simple OLED architectures yields warm white incandescent-like emissions. Optical Materials, 75, 710–718. https://doi.org/10.1016/j.optmat.2017.11.028.

    Article  CAS  Google Scholar 

  266. Lin, C.-F., Liu, S.-W., Lee, C.-C., Sakurai, T., Kubota, M., Su, W.-C., Huang, J.-C., Chiu, T.-L., Han, H.-C., Chen, L.-C., Chen, C.-T., & Lee, J.-H. (2015). A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 137, 138–145. https://doi.org/10.1016/j.solmat.2015.01.011.

  267. Hang, H., Wu, X., Xu, Q., Chen, Y., Li, H., Wang, W., Tong, H., & Wang, L. (2019). Star-shaped small molecule acceptors with a subphthalocyanine core for solution-processed non-fullerene solar cells. Dyes and Pigments, 160, 243–251. https://doi.org/10.1016/j.dyepig.2018.07.050.

    Article  CAS  Google Scholar 

  268. Takao, Y., Masuoka, T., Yamamoto, K., Mizutani, T., Matsumoto, F., Moriwaki, K., Hida, K., Iwai, T., Ito, T., Mizuno, T., & Ohno, T. (2014). Synthesis and properties of novel fluorinated subnaphthalocyanines for organic photovoltaic cells. Tetrahedron Letters, 55, 4564–4567. https://doi.org/10.1016/j.tetlet.2014.06.069.

    Article  CAS  Google Scholar 

  269. Josey, D. S., Nyikos, S. R., Garner, R. K., Dovijarski, A., Castrucci, J. S., Wang, J. M., Evans, G. J., & Bender, T. P. (2017). Outdoor performance and stability of boron subphthalocyanines applied as electron acceptors in fullerene-free organic photovoltaics. ACS Energy Letters, 2, 726–732. https://doi.org/10.1021/acsenergylett.6b00716.

    Article  CAS  Google Scholar 

  270. Copley, G., Hwang, D., Kim, D., & Osuka, A. (2016). First-generation subporphyrinatoboron(III) sensitizers surpass the 10% power conversion efficiency threshold. Angewandte Chemie, 128, 1–6. https://doi.org/10.1002/ange.201604432.

    Article  Google Scholar 

  271. Kitano, M., Tanaka, T., & Osuka, A. (2017). NCN-type pincer complexes of subporphyrinatoboron(III). Organometallics, 36, 2559–2564. https://doi.org/10.1021/acs.organomet.7b00130.

    Article  CAS  Google Scholar 

  272. Yoshida, K., & Osuka, A. (2018). Pyrrole-modified subporphyrins bearing a sulfur-containing heterocyclic unit. Helvetica Chimica Acta. https://doi.org/10.1002/hlca.201800025.

    Article  Google Scholar 

  273. Guan, H., Zhou, M., Yin, B., Xu, L., & Song, J. (2018). Synthesis and characterization of π-extended “earring” subporphyrins. Beilstein Journal of Organic Chemistry, 14, 1956–1960. https://doi.org/10.3762/bjoc.14.170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Popanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popanda, B., Środa, M. (2023). Porphyrin and Phthalocyanine as Materials for Glass Coating—Structure and Properties. In: Ikhmayies, S.J. (eds) Advances in Glass Research. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20266-7_8

Download citation

Publish with us

Policies and ethics