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Abstract The nonseparable Gneiting covariance has become a standard to model
spatio-temporal random fields. Its definition relies on a completely monotone func-
tion associated with the spatial structure and a conditionally negative semidefinite
function associated with the temporal structure. This work addresses the problem
of simulating stationary Gaussian random fields with a Gneiting-type covariance.
Two algorithms, in which the simulated field is obtained through a combination of
cosine waves are presented and illustrated with synthetic examples. In the first algo-
rithm, the temporal frequency is defined on the basis of a temporal random field
with stationary Gaussian increments, whereas in the second algorithm the temporal
frequency is drawn from the spectral measure of the covariance conditioned to the
spatial frequency. Both algorithms perfectly reproduce the correlation structure with
minimal computational cost and memory footprint.

Keywords Substitution random fields - Spectral simulation + Spectral measure *
Central limit approximation

1 Introduction

The modeling, prediction and simulation of stationary random fields defined on
Euclidean spaces crossed with the time axis, R¥ x R with, in general, k =2 or 3,
is widespread in hydrology, environment, climate, ecology and epidemiology appli-
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cations. The representation of their correlation structure via traditional covariance
models in R¥! is often unsuitable to capture space-time interactions, reason for
which specific models need to be developed. One of these, the Gneiting covariance,
is widely used in climate studies due to its versatility, and is defined as
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where o > 0, v is a variogram (i.e., a conditionally negative semidefinite function)
on R and ¢ is a completely monotone function on R . A subclass originally pro-
posed by Gneiting in [1] is obtained by considering a variogram ~ of the form
~(u) = 1 (u?) — 1, where ) is a Bernstein function, i.e., a positive primitive of a
completely monotone function. The general formulation (1), in which v can be any
variogram on R, is due to Zastavnyi and Porcu in [2]. Hereinafter, without loss of
generality, we assume 0 = 1 and p(0) = 1.

This work deals with the problem of simulating a stationary Gaussian random field
with zero mean and Gneiting covariance on a (structured or unstructured) grid of
R* x R. The following section presents some theoretical results, which will be used
in Sects.3 and 4 to design two simulation algorithms, which will be illustrated on
synthetic examples. Concluding remarks follow in Sect.5.

2 Theoretical Results

The completely monotone function ¢ can be written as a nonnegative mixture of
decreasing exponential functions on R, :

p(1) = (0) ; exp(—rt)p(dr), teRy, 2

where 1 is a probability measure. Also, the continuous Fourier transform of a squared
exponential function in R* is another squared exponential function:
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where (-, -) stands for the usual scalar product in R¥.

Proposition 1 By combining Egs. (2) and (3), one can rewrite the Gneiting covari-
ance (1) as follows:

C(h,u) = /f cos 2r (w, h)) exp( 1 )| |2) g (w)dw p(dr), (4)
Rk
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with I the identity matrix of order k and g, the probability density of a k-dimensional
Gaussian random vector with zero mean and covariance matrix Iy.

The mappings & — cos(+v/2r (w, h)) and u +> exp(—(u) |w|?/2) are covari-
ances functions in R¥ and R, respectively. Their product is therefore a covariance
function in R* x R, and so is C(k, u) as a positive mixture of covariances functions
in R* x R. This result proves that every member of the Gneiting class (1) is a valid
space-time covariance. In particular C is a positive semidefinite function in R* x R.

Proposition 2 One can further decompose the Gneiting covariance as follows:
C(h, u) =E|cos (\/2R (2. h) + Y«/’y(u)|52|)], (5)

where E{-} the mathematical expectation, R a nonnegative random variable with dis-
tribution p, Y a standard normal random variable, 2 a k-dimensional standardized
Gaussian random vector, and where R, Y, 8 are independent.

Proof One uses (3) to write the squared exponential function in (4) as a Fourier
transform on R:

Clh, u) = fR /R k /R cos(v/2r w, 1)) cos(yv/4(0) [wl) & () g, (@) dy dew pu(dr),

where g, is the standard normal univariate probability density function. Owing to
the parity of this function and to the product-to-sum trigonometric identity, this
expression simplifies into

C(h,u) = /R /}; k [R cos(V2r (w. h) + y /() |wl) g,(») &, (w) dy dw pu(dr),

which yields the claim.

3 A Discrete-in-Time and Continuous-in-Space
Substitution Algorithm

Consider a space-time cosine wave of the following form:

Z(x,t)=«/§cos<\/ﬁ(ﬂ,x)+W(t)%+¢>, xeR1eR, (6)

where

e R and £ are a random variable and a random vector as defined in (5);
o {W(t) : t € R} is astrictly intrinsic random field with variogram v and Gaussian
increments;
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e @ is a uniform random variable on ]0, 27[;
e R, 2, W and @ are independent.

Because @ is uniform on ]0, 27[ and is independent of (R, $2, W), this cosine wave is
centered. Moreover, the covariance between Z(x + h, t + 1) and Z(x, t) is found to
be equal to the expectation in (5), thatis, C (h, u) (see [3]). The random field in (6) is a
particular case of substitution random field, consisting of the composition of a station-
ary coding process on R and an intrinsic directing function on R* x R (see [4]).

To obtain an approximately Gaussian random field with zero mean and Gneiting
covariance, one can (i) multiply the cosine by a Rayleigh random variable with scale
parameter 2~!/2, which makes the marginal distribution of Z (x, t) be standard Gaus-
sian, and (ii) sum and standardize many of such independent cosine waves, so that
the finite-dimensional distributions of Z(x, ) become approximately multivariate
Gaussian due to the central limit theorem. The simulated random field thus takes the
form:

Z(x, t)—z —2hnY; os(,/ZRj(ﬂj,x)+W(t)|f|+¢> (7)

where p is a large integer, {(Rj, L, W;,@;):j=1,.., p} are independent
copies of (R, £, W, @), and {U; : j =1, ..., p} are independent random variables
uniformly distributed on ]0, 1[ and are independent of {(R R W, @) j=
1, ..., p}.

As an illustration, consider the simulation of a random field on a regular grid of
R' x R with 500 x 500 nodes and mesh 1 x 0.2, with the following parameters:

k=1,
p(r) = exp(—0.001r)

) =1+ ul—1;
p = 10, 100 or 1000.

The intrinsic random field W is simulated by using the covariance matrix decom-
position algorithm with the nonstationary covariance function (¢, t") — () +
~(") — v(t' — t). The simulation obtained with p = 10 cosine waves exhibits an
apparent periodicity in space, which indicates that the central limit approximation
is poor, which is no longer the case when using 100 or more cosine waves (Fig. 1,
left). In contrast, since the simulated process W is ergodic, the time variations are
well reproduced, irrespective of the number of cosine waves. Note that the simulated
random field has a Gaussian spatial covariance and a gamma temporal covariance
with parameter 0.5, hence it is smooth in space but not in time.
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Fig.1 Simulation of arandom field with Gneiting covariance function (with an exponential function
for ¢ and a square root for ) using 10 (top), 100 (center) and 1000 (bottom) cosine waves. Left:
substitution algorithm. Right: spectral algorithm
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4 A Fully Continuous Spectral Algorithm

The continuous spectral method relies on the fact that the continuous covariance C is
the Fourier transform of a symmetric probability measure F on RF x R. Let (£2, T)
be a spectral vector distributed according to F, and @ a random phase uniform on
10, 27[ and independent of ($2, T). Then, the random field defined by

Z(x, 1) = v2cos((2,x) + Tt + @),  (x,1) e RF x R, (8)

is second-order stationary with covariance C. A standard approach for simulating
the spectral vector is to simulate at first the spatial component £2, then the temporal
component T given 2, which requires explicitly knowing the spectral measure.
For instance, consider the covariance function with ¢(r) = exp(—ar) (a > 0) and
v(u) = /1 + |u| — 1. In this case, it can be shown (see [3]) that £2 is a Gaussian
random vector with independent components and that T given £2 = w follows a
Cauchy distribution whose scale parameter follows an inverse Gaussian distribution,
all these distributions being simulatable.

In practice, the multiplication of the cosine wave (8) by a Rayleigh random variable
and the independent replication technique of (7) provide arandom field with Gaussian
marginal distributions and approximately multivariate Gaussian finite-dimensional
distributions. Figure 1 (right) displays realizations obtained by using between p = 10
and p = 1000 cosine waves. The spatial variations are similar to those observed with
the substitution algorithm. However, the temporal variations differ when using few
cosine waves, exhibiting a smooth and periodic behavior when p = 10 or p = 100.
This suggests that the convergence to a multivariate-Gaussian distribution in time is
slower with the spectral algorithm than with the substitution algorithm.

5 Concluding Remarks

The two presented approaches construct the simulated random field as a weighted
sum of cosine waves with random frequencies and phases. Their main difference lies
in the way to simulate the temporal frequency: from its distribution conditional to the
spatial frequency (spectral approach), or from an intrinsic time-dependent random
field (substitution approach). Both algorithms have a computational complexity in
O(n), considerably cheaper than generic algorithms such as the covariance matrix
decomposition and sequential algorithms, are parallelizable and require minimal
memory storage space, which makes them affordable for large-scale problems. The
substitution approach is general and only requires the knowledge of the temporal
variogram  and the probability measure p specifying the completely monotone
function ¢ (2) associated with the spatial structure. In contrast, the spectral approach
is more specific, as it also requires the knowledge of the time frequency distribution
conditional to the spatial frequency, which has to be solved on a case-by-case basis.
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