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Preface

The world was a much simpler place on that sunny day in Valencia in September
2016 when the geostat community chose to meet in Toronto for the next meeting in
the Geostatistics Congress series. We lined up wonderful meeting space at Victoria
College on the University of Toronto grounds, had an engaging group of invited
keynote speakers and a beautiful location for the conference dinner on the lakefront…
what a great meeting it would have been, but for a new bundle of genetic material
that is surrounded, like a crown, with spike proteins.

When Oy Leuangthong and I met in February 2020 to make the final selection of
papers for oral and poster presentations, we knew what the “novel coronavirus” was
but we had no idea that barely a month later, the world would shut down and that we
would all learn to adapt to working from our kitchen tables, become familiar with
Zoom meetings and with terms like “social distancing”, “anti-vaxx”, “flattening the
curve” and “asymptomatic transmission”.

As the lead organizer for the 11th Geostatistics Congress, I faced a tough deci-
sion when the global pandemic was declared in March 2020: run the conference as
planned, postpone it or cancel it. As the weight of a global pandemic was being felt
everywhere, some counseled me to stay the course: the wave of infections would
clear by May, I was told, and the world would be suitably back to normal by July…
yeah, right. Even in the week of the declaration of the pandemic, that rosy opti-
mism seemed unwarranted, and postponing the conference to 2021 seemed like the
only viable option. But by the late Spring of 2021, even with vaccines available, we
were starting to learn about Delta variants. Travel was still severely restricted and,
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vi Preface

in Toronto, large indoor meetings were not yet permitted, leaving no good choices
for the meeting we wanted to have.

Postponing yet again, to 2022, wasn’t a happy thought. With 16 months having
passed under pandemic restrictions, it was not at all clear that the passage of another
year would make an in-person meeting possible. If we missed 2022, and rolled
forward to 2023, it would be seven years since the previous Geostatistics Congress,
and my concern was that the relevance of the series would come into question. This
has been a remarkable series, not only for its longevity…coming up to 50 years…and
the quality and breadth of its contributions to geostatistics, but also for its ability to
create a sense of a community. For many of us, meeting with colleagues once every
four years was an important piece of social glue. For young professionals these
meetings have been an opportunity to network and to present their work to future
employers and colleagues. For those of us who remember all the way back to Frascati
and Lake Tahoe, these were a chance to reconnect, over drinks and meals, with the
many bright and stimulating people who choose to call themselves geostatisticians.
And for everyone, these meetings have been a chance to share ideas, to learn new
tricks and to share our thoughts on the successes and failures we’ve encountered on
the bridge from theory to practice.

As geostatistics has proven its value inmany fields, the breadth of applications has
widened, leaving us in the situation of often not understanding what other geostatisti-
cians are doing. Specific knowledge necessary to understand problem-solving in one
area of application is often a complete mystery to people who focus on a different
area. Mining geostatisticians go glassy-eyed when petroleum geostatisticians talk
about relative permeability curves or hysteresis. The petroleum folks have a hard
time making sense of grade-capping or open-pit production optimization. And the
others who ply their trade as geostatisticians in environmental studies, or epidemi-
ology, or agriculture or animal census studies… they just shake their head andwonder
if they’re in the right room. This increasing disparity in domain-specific knowledge
continues and leaves many geostatisticians feeling that maybe the next Geostatistics
Congress is not the best use of their conference time. It was against this backdrop
that I worried about allowing seven years to go by since we last met in Valencia.
If we did fine for seven years without a Geostatistics Congress, maybe the series
had reached its logical end and we should all scatter into specialized geostatistics
sessions in other conferences. For me, having begun my professional career around
the time this series began, that was a sad thought. Perhaps it is inevitable, but I didn’t
want it to be on my watch.

If I wasn’t going to delay to 2022, and risk perhaps delaying again to 2023, the
only alternative was to hold the conference online as a virtual conference, an option
that had its own clear drawbacks. During the pandemic, we all learned to dislike
Zoom-style conferences with their techno-glitches, their lack of direct contact, the
loss of opportunities for socialization and thewrangling of appropriatemeeting times
for people in 24 time zones. But even though an online meeting was not what any
of us looked forward to, I believed that an online conference could work well for
several reasons:
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• Presenters could be told to prepare their presentations beforehand, as videos,
which gave everyone a chance to rehearse and polish their presentations.

• Pre-recorded presentations also made time-management a lot easier … we just
sped up the clip speed for those few people who did not make their 20-minute
mark.

• Anyone interested in a particular talk could review the presentations ahead of
time, freeing up the time in the week of the live online conference for extended
question-and-answer discussion sessions.

• People from around the world could participate, including those who do not have
the means to travel to a distant conference venue for a week.

• We wouldn’t have to split presentations into oral and poster sessions.
• Everyone could participate in the same sessions; there would be no need for

parallel break-out sessions.

Although many people who had heir abstracts accepted decided to opt out, about
60 decided to participate as presenters in the online version. And they did very well,
not only with their presentations but also with stimulating discussions during the
live Zoom meetings, and with their answers to questions posted to a bulletin board.
The live discussion sessions were held at times that might work for many of the
participants, from morning on the west coast of North America to late afternoon in
Europe. But there were also several presenters and participants who were up in the
wee hours of the morning in Australia and Asia.

Command central was my kitchen table, and my aide-de-camp in the ground war
of registrations, video editing, websites, bulletin boards and Zoom troubleshooting
was my teenage son, Ravi. We had no idea what to expect when we went live on the
morning of Monday, July 12, 2021. At that point, we had just over 100 registrations,
but they were still trickling in... so Ravi and I tag-teamed on making sure that new
registrants had access to the pre-recorded talks, the abstracts and the bulletin board.
And we also had to monitor live sessions, sort out the mid-day invited speakers and
make sure that a couple of online workshops ran correctly.

Between the two of us, Ravi and I managed to launch onMonday morning but we
hadn’t counted on a wave of new registrations that soon turned into a tidal wave. At
first, I was surprised because I expected that anyone who would want to participate
as a spectator, without being involved in any presentation, would have registered
before the start of the conference. But as the registrations started to climb quickly on
Monday, it was apparent that wewere gettingword-of-mouth recommendations from
people spreading the word to others in their same organization.Multiple registrations
came in from the same companies, or the same research centers. My best guess on
what happened was that a lot of people took a wait-and-see attitude, waiting to see
if this online meeting was as painful as most others that we’ve suffered through. As
the morning sessions unfolded, and participants realized that the discussions were
well-organized, interesting and informative, they passed on the word that this was
worth spending time on and suggested to their colleagues that they join in. Within a
couple of days, the number of registrations climbed to over 200, which is about the
number of people who have typically registered for past congresses in this series.
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We still missed out on the drinks and the meals together, but we did manage a
bit of social activity: an online “5k race” done using Google Maps, and an art show.
And the discussions were lively, with some long and insightful exchanges about the
philosophy of modeling, and that tug-of-war between computer power and human
reason. My sense is that the online format actually encouraged participation in the
Q&A sessions, not only because some people are more comfortable when they’re not
standing up in front of the world’s elite geostatisticians but also because many of the
people who participated were those who do not have the resources to travel to attend
major international conferences. There are graduate students, young practitioners,
teachers and researchers around the world who are using geostatistics but who have
never had the chance to talk with people who write the papers they’ve read. They
thirst for knowledge, both practical and theoretical, and have a keen curiosity about
why some things work well and some things don’t. The online format gave many
people a chance to exercise their curiosity and, for the first time in their professional
careers, to speak with geostatisticians from around the world. Having worried that
this seriesmight be reaching the end of its relevance, Iwas pleased to see that it hadn’t.
For many people who normally would not be able to attend, the 11th International
Geostatistics Congress filled a need.

These proceedings include all of the presentations that were made. The presenters
had several choices for what to include in this volume. Many chose to stick with their
original abstract, which gives a quick overview of the work they presented. Some
chose to submit an extended abstract, a few pages that allow them to expand on their
original one-page abstract by expanding on the discussion and adding some figures
and tables. Some chose to submit a full paper that was peer-reviewed.

The journal Mathematical Geosciences has, in the past, devoted one of its Special
Issues to selected papers from previous Geostatistics Congresses. They are doing so
again, with six of the papers fromGeostats 2021 having been adapted to their journal
format, and peer-reviewed again to meet their requirements for scientific quality. For
these papers, the proceedings contain an abstract or extended abstract; the full papers,
updated to include additional content, will appear in a Mathematical Geosciences
Special Issue later this year.

The videos of the presentations are all still accessible on the geostats2021.com
website. The registration requirement has been removed, and anyone who wants to
see the full original presentations can access the videos.

The range of topics covered in these proceedings is a testament to the value of
geostatistics. A quick skim of the table of contents will confirm that the theoretical
tools that first found application in themining industry have evolved and been adapted
to the needs of many other applications. And, as happens with flexible tools that have
enjoyed success in practice, geostatistics now overlaps with other disciplines. There
aremany presentations here, for example, that explore the use of artificial intelligence
and machine learning in geostatistical studies.

One of the traditions that has survived through eleven Geostatistics Congresses is
that the structure is remarkably informal. There is no professional body that oversees
this series. The peoplewho participate in eachmeeting choose the next venue and turn
over the organization to a volunteer committee. At the end of the Toronto meeting,
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the participants voted for the next in the series to be held in the Azores in 2024. I
know that we will all look forward to getting back to an in-person meeting, but I also
hope that we again find a way to be accessible to those who cannot afford to attend.
I know from that week-long blur in mid-July last year that many people find value
in geostatistics as a body of knowledge in its own right, and not merely as a useful
toolkit in specific areas of practical application.

I am grateful to the many who made the 11th International Geostatistics Congress
a success, through their participation as presenters, as session chairs and as active
participants in the discussion sessions. Despite the many difficulties imposed by a
global pandemic, we succeeded in coming together once again to exchange ideas,
and to enjoy the intelligence, wisdom and laughter of this community. Many thanks
to all.

Toronto, Canada R. Mohan Srivastava
Chairman, 11th International

Geostatistics Congress
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Remembering Dr. Harry M. Parker (1946–2019)

Shortly before the time when the 11th International Geostatistics Congress was
originally scheduled, the world of geostatistics lost one of its pillars: Harry Parker.
The plans for Geostats 2020 included a session focused on Harry’s many contribu-
tions, much as we did in 2016 when we noted the passing of Danie Krige. It’s a gentle
and thoughtful tradition: remembering the giants on whose shoulders we stand.

The success of geostatistics owes much to Harry, who actively advocated its use
in his mining consulting work and who was instrumental in the careers of many
geostatisticians. When André Journel moved to North America in the mid-1970s to
take up a visiting professor position at Stanford University, Harry secured André a
half-time consultancy with Fluor Mining and Metals where Harry ran the Geology
and Geostatistics group. This gave André reason to stay until Stanford offered him
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xiv Remembering Dr. Harry M. Parker (1946–2019)

a position as a full professor. In the late 1970s, Harry interviewed a young Mo
Srivastava in his senior year at MIT and convinced him that geostatistics, which Mo
had never heard of, included the possibility of kriging on the coral beaches of Cebu
in the Philippines.

He promoted the use of conditional simulation years before it became widely
accepted, and is a big part of the reason it did become widely accepted. Harry was
using geostatistical methods for the estimation of recoverable reserves whenmuch of
the mining industry remained content with polygons and inverse distance interpola-
tion. Even though he was, in a sense, decades ahead of his time, Harry cultivated the
image of the old-school geologist, pretending to be skeptical of equations and statis-
tics even though he had mastered geostatistics during his Ph.D. work. His doctoral
thesis was the second Ph.D. awarded in geostatistics in the United States.

Even though he liked to play the role of the gruff geologist, Harry was completely
at home in the world of geostatistics. He was one of the last people to have attended
every Geostatistics Congress since Frascati. Harry authored and co-authored more
than 40 technical papers and presentations over the course of his career. His papers
touched on many of the most important aspects of resource estimation, including
geological controls, outliers, analysis of spatial continuity, recoverable reserves,
conditional simulation, production reconciliation, risk analysis and quantification
of uncertainty. His 1978 paper on the volume-variance relationship remains one of
the clearest explanations for why a mineral deposit’s grade and tonnage above a
cutoff grade have to depend on the level of selectivity.

In addition to his many contributions to the theory and practice of geostatistics,
Harry was known for his generous spirit. He was glad to spend time with juniors
and peers, helping others better understand advanced methods and passing on his
philosophy that incorporating geological controls was the key to building reliable
numerical models of the subsurface. He was meticulous in checking data and in
checking the correctness of software implementations, skills that he passed on to a
generation of geologists and resource estimation specialists who were mentored by
him.

He was awarded the AusIMM’s Institute Medal in 2019, the SME’s President’s
Citation in 2017, the SME’s Award for Competence and Ethics in 2012, and the
Southwest Mining Foundation’s American Mining Hall of Fame Medal of Merit
in 2007. He was made an Honorary Life Member of the Geostatistical Association
of Australia, an Honorary Fellow of the Professional Society of the Independent
Subsoil Experts of Kazakhstan, and an Honorary Representative of CRIRSCO, the
international organization that oversees and is the harmonization of international
reporting standards for mineral resources and reserves. He also was conferred the
Mongolian Best Geologist Award in 2015, and given APCOM Recognition Awards
in 2015 and 2017. He was posthumously awarded the Harry M Parker Excellence
Award and AIME/SME Saunders Award.
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A Geostatistical Heterogeneity Metric
for Spatial Feature Engineering

Wendi Liu, Léan E. Garland, Jesus Ochoa, and Michael J. Pyrcz

Abstract Heterogeneity is a vital spatial feature for subsurface resource recovery
predictions, such as mining grade tonnage functions, hydrocarbon recovery factor,
and water aquifer draw-down predictions. Feature engineering presents the opportu-
nity to integrate heterogeneity information, but traditional heterogeneity engineered
features like Dykstra-Parsons and Lorenz coefficients ignore the spatial context;
therefore, are not sufficient to quantify the heterogeneity over multiple scales of
spatial intervals to inform predictive machine learning models. We propose a novel
use of dispersion variance as a spatial-engineered feature that accounts for hetero-
geneity within the spatial context, including spatial continuity and sample data and
model volume support size to improve predictive machine-learning-based models,
e.g., for pre-drill prediction and uncertainty quantification. Dispersion variance is
a generalized form of variance that accounts for volume support size and can be
calculated from the semivariogram-based spatial continuity model. We demonstrate
dispersion variance as a useful predictor feature for the case of hydrocarbon recovery
prediction, with the ability to quantify the spatial variation over the support size of
the production well drainage radius, given the spatial continuity from the variogram
and trajectory of the well. We include a synthetic example based on geostatistical
models and flow simulation to show the sensitivity of dispersion variance to produc-
tion. Thenwe demonstrate the dispersion variance as an informative predictor feature
for production forecasting with a field case study in the Duvernay formation.
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4 W. Liu et al.

Keywords Feature engineering · Machine learning · Heterogeneity ·
Geostatistics · Unconventional reservoir

1 Introduction

Feature engineering is the formulation and compilation of a set of informative
predictor features from raw data features to improve the performance of the predic-
tive machine learning and other statistical models [1, 2], which includes selecting
the most relevant available predictor features, removal of redundant features and
constructing new predictor features. For example, the engineered predictor features
based on local gradient filters are effective at highlighting data trends, and edge detec-
tion filters are effective at finding critical boundaries or transitions in data; therefore,
it is common to use these engineered features in applications such as computer vision.
Raw features may be combined to construct new features, for a specific subsurface
case consider rock quality index as a combination of rock permeability and porosity
[3]. The rapid development of deep learning shifts the burden of feature engineering
to its underlying learning system [4], such as convolutional neural networks that
learn local image transformations represented as weighted filters known as kernels.

Spatial feature engineering is critical for subsurfacemachine learning applications
because deep learning captures spatial features learned from dense data representa-
tions like images or time series but the spatial hard data available for understanding the
subsurface volume of interest (e.g., a hydrocarbon/water reservoir or mining deposit)
are sparse, such as core measurements or well logs. Also, the spatial context of the
subsurface data, such as sampling manner, spatial continuity and multiple scales,
known as support size, of data andmodels, obscure the relationships between subsur-
face predictor features (e.g., rock type, porosity, and permeability) and response
features (e.g., flow rates and mineral grade) for data-driven prediction model perfor-
mance, andmust be dealt with prior to feature engineering. Efforts have beenmade to
address the spatial sampling issues for spatial machine learning model construction,
including spatial sampling bias [5], spatial anomalies [6], spatial training and testing
data splitting [7] and spatial statistical significance [8]. It is essential to capture other
aspects of the spatial context, i.e., the spatial feature heterogeneity and the scale,
volume support size of the data, in model predictions. Heterogeneity is the variation
in subsurface features as a function of spatial location and is a vital factor to predict
subsurface resource recovery [9]. Also, subsurface datasets and models span a large
range of scales from well and drill hole cores, core plugs, well logs, remote sensing
and production or recovery data sources. A practical heterogeneity metric can be
applied as a spatial-engineered feature for inputs into predictive models to improve
the integration of the spatial context to potentially improves the model performance.

Common non-spatial heterogeneity metrics include Dykstra-Parsons and Lorenz
coefficients [10–12], which are relatively easy to estimate without much computa-
tional power. However, these metrics may be calculated from the permeability and
porosity data table and ignore the spatial context like location, spatial continuity
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and support size. There are proposed heterogeneity metrics that attempt to integrate
spatial correlation in, including Polasek and Hutchinson’s heterogeneity factor [13]
or Alpay’s sand index [14], but thesemetrics require extrapolation of the local hetero-
geneity measurements based on fence diagram or sand isopach map, which is too
smooth. There are various research efforts focusing on the comprehensive analysis
of heterogeneity characterization that is informative for the specific support size or
type of reservoir [15–17] but lack the flexibility and computational efficiency to be
generalized as a spatial feature for predictive machine learning models.

Dispersion variance is a generalized form of variance that accounts for the volume
support size of data samples andmodels [18, 19]. It is relatively fast to calculate based
on well or drill hole measurements while integrating spatial continuity. Dispersion
variance is denoted as D2(a, b), representing the variance of the feature of interest
measured at volume support size a in the larger volume b. Dispersion variance honors
the additivity of variance relation, which is the foundation of the analysis of variance
(ANOVA) in statistics. For example, the scale change from core scale to geological
modeling scale, consider as the volume support of the spatial sample data (denoted
as ·), as the support size of the geological modeling cells (denoted as v), while the
volume of interest is denoted as V . Then the dispersion variance can be decomposed
into the following based on the additivity rule, known as Krige’s relation:

D2(·, V ) = D2(·, v) + D2(v, V ) (1)

the total variance of the samples in the volume of interest is equal to the sum of
the variance of the samples in the geological model cells and the variance of the
geological model cells in the volume of interest.

The dispersion variance of different volume support sizes can be estimated from the
volume integrated semivariogram γ (h), denoted as γ (h) and stated as ‘gamma bar’,
where one extremity of the vectorh describes the domain v(u) and the other extremity
independently defines domain V (u∗). Semivariogram γ (h), under the assumption of
stationary of the mean and variogram, is defined as:

2γ (h) = E
{
[Z(u + h) − Z(u)]2

}
,∀u,u + h ∈ AOI (2)

where 2γ (h) is the variogram, u is the coordinate location vector, h is the lag distance
vector separating all pairs of data, Z(u) and Z(u + h)ofZ variable andAOI is the area
of interest. Semivariogram is half of the variogram.Herewe adopt the common short-
hand of variogram to represent the semivariogram. In order to calculate dispersion
variance from volume integrated variogram, a permissible, positive definite, para-
metric nested variogram model informed by the experimental variogram is needed
to provide a continuous function that is valid for all distances and directions, as:

γ (h) =
nst∑

i=1

Ci�i (h) (3)
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where nst is the number of nested variogram functions,Ci is the variance contribution
of each nested structure and �i (h) is the variogram function for each variance contri-
bution acting over all distances and directions modeled in the major and minor conti-
nuity directions and interpolated for all other directions with a geometric anisotropy
model. Then the volume integrated variogram, gamma bar γ (h), is calculated by:

γ
(
v(u), V (u∗)

) = 1

v · V
∫

v

∫

V
γ
(
y − y∗)dydy∗ (4)

where v and V are volumes of v(u) and V (u∗). Then the dispersion variance can be
estimated from γ as:

D2(v, V ) = γ (V, V ) − γ (v, v) (5)

This volume-variance relation has been proven powerful in reconciling feature
variance across multiple scales and volume support sizes while accounting for spatial
continuity [20, 21]. Therefore, it is a reasonable hypothesis that dispersion variance
could be a good spatial feature for predictive models by integrating heterogeneity
for different volume support sizes.

We propose a novel utilization of dispersion variance as a heterogeneity metric for
spatial feature engineering for subsurface predictive machine learning. The proposed
heterogeneitymetric is not only practical to calculate as common static heterogeneity
metrics, but also integrates the spatial continuity and the volume support size of
the predictor features, which are critical aspects of the spatial context [22]. We
demonstrate that our proposed engineered feature is sensitive to variations over a
variety of spatial settings while remaining easy to compute and that application as
a new predictor feature improves machine learning prediction performance for the
case of hydrocarbon recovery from a heterogeneous reservoir. The sensitivity of the
proposed engineered feature (i.e., dispersion variance within well drainage radius) is
shown by changing with possible variables, such as well length, well drainage radius,
and well trajectory. Then we model variogram, map the volume of the data from
the varying well trajectories and investigate the hydrocarbon recovery information
informed by dispersion variance.

In the next section, we explain the methodology for practical calculation of our
proposed dispersion variance-based heterogeneity spatial-engineered feature. In the
results section, firstly, we show the sensitivity analysis results from the possible
factors that affect dispersion variance calculation from the perspective of geolog-
ical stratigraphy and well parameters. Secondly, we investigate the relation between
dispersion variance and hydrocarbon production based on black-oil simulation while
controlling other simulation parameters to be constant. Lastly, we conduct a case
study with data from the Kaybob field, Duvernay Formation, where we use disper-
sion variance as a spatial feature with other completion and petrophysics features for
machine learning models to demonstrate that dispersion variance is an informative
spatial-engineered feature for hydrocarbon recovery predictive model.
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2 Methodology

Our proposed method assumes stationary mean, μz , variance, σ 2
z , and variogram

γz(h) of spatial features over the area of interest (AOI). Given this assumption of
stationarity, for the calculation of the variogram, we omit the dependence on location
and only consider the dependence on the lag vector, h.

γ (h;u) = γ (h) (6)

In the presence of non-stationarity, we can model a local trend model and work
with a stationary residual or segment the area of interest into multiple stationary
regions with domain expertise.

The steps to calculate the dispersion variance-based heterogeneity spatial-
engineered feature are:

1. Calculate the representative feature distribution variance at data support. Declus-
teringmethods can be utilized to achieve the goal of statistical representativity by
assigning each datum a weight [23, 24]. The representative feature distribution
variance σ 2

z can be approximated from sample variance s2z by:

s2z =
∑n

i=1
wi (zi − z)2 (7)

where weight wi , i = 1, 2, . . . , n are between 0 and 1 and add up to 1, zi is
the sample datum, z is the representative sample mean calculated from:

z =
∑n

i=1
wi zi (8)

2. Calculate and model the variogram integrating all available spatial data, analog
information and trend model.

3. Establish the volume support size of the sample data, or imputed data, v, volume.
For the case of predicting hydrocarbon or water recovery from awell, the volume
support size is based on thewell drainage radius and thewell length. The variance
of data within the well volume is denoted as D2(·, v), where · is the volume
support of the spatial sample data, v is the volume within well drainage radius,
i.e., D2(data, well). According to Eq. 1:

D2(data, reservoir) = D2(data, well) + D2(well, reservoir) (9)

The dispersion variance can be calculated from a volume-integrated vari-
ogram, γ (h) according to Eq. 4. The dispersion variance within the volume of
drainage radius of a horizontal well is calculated with γ (h) according to Eq. 5
as follows:

D2(data, well) = γ (well, well) − γ (data, data) (10)
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4. Apply numerical integration to calculate the dispersion variance of the feature
over the volume support v of the sample data and apply it as a new engineered
feature. The numerical approximation for γ (h) can be estimated as:

γ
(
v(u), V

(
u∗)) ≈ 1

m · m∗
∑m

i=1

∑m∗

j=1
γ (ui − u∗

j ) (11)

where the m points ui , i = 1, 2, . . . ,m discretize the volume v(u) and
the m∗ points u j , j = 1, 2, . . . ,m∗, discretize the volume V (u∗). For calcu-
lating γ (well, well) with a given volume support of the well, the volume
support size v(u) = V (u∗), which is the volume within the well drainage
radius. In γ calculation, we assume the variogram of the feature average linearly
within area of interest. If the original feature is standardized, and under the
standardized scale with the stationary assumption, γ (data, data) = 0, and
γ (reservoir, reservoir) = σ 2

z = 1. So, the standardized dispersion variance is
between 0 and 1. We will use standardized dispersion variance throughout our
demonstrations.

From this workflow, we calculate the proposed dispersion variance of the volume
support size and then apply it as a spatial-engineered feature with improved
integration of the spatial context.

3 Results and Discussion

Based on the above workflow steps of calculating the spatial engineering features,
dispersion variance at a given support volume size, the possible factors that affect
dispersion variance are well length, well drainage radius, well trajectory (i.e., dip
and azimuth deviating from the major direction of the spatial continuity model). We
demonstrate the impact of each factor on dispersion variance within well drainage
radius D2(·, v) through a sensitivity analysis first. Then we demonstrate D2(·, v) as a
spatial-engineered feature for hydrocarbon production prediction models. Note, the
features are standardized for standardized dispersion variance that is bound between
0 to 1.

To demonstrate the proposed heterogeneity metric as an engineered feature, we
build a 3-dimension 590 m × 590 m × 90 m heterogeneous hydrocarbon reservoir
model as a truth model based on sequential Gaussian simulation for primary variable
porosity andwith collocated cokriging for secondary variable logarithm permeability
[25, 26]. Both porosity and permeability in the logarithm scale have the same vari-
ogram model and a 0.7 correlation coefficient. The variogram model parameters are
in Table 1. The truth reservoir model is shown in Fig. 1.

We demonstrate the sensitivity of the spatial-engineered feature with respect
to well length, drainage radius and well trajectories. Figure 2 shows a schematic
indicating the spatial-engineered feature volume support size and variogram model
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Table 1 Variogram model parameters to generate heterogeneous reservoir model

Nugget effect
= 0

Number of nested
structures = 2

Azimuth = 45o Dip = 0o

Structure Type Variance
contribution of
each nested
structure

Major direction
range (m)

Minor
direction range
(m)

Vertical
direction range
(m)

First Spherical 0.5 400 200 10

Second Spherical 0.5 800 500 40

Fig. 1 Truth reservoir model sections including (a) porosity and (b) permeability in logarithm
scale

parameters for the corresponding well trajectories. The volume support size is quan-
tified by well drainage radius and well length. For well trajectories, we are inter-
ested the dip angle and azimuth deviating from major directions of the geological
spatial continuity specified in the variogram model. Figure 3 shows an illustration of
the proposed spatial-engineered feature, dispersion variance over the well drainage
volume, as a function of the deviation of the well trajectory from the major spatial
continuity azimuth and dip direction with fixed well length and well drainage radius.
The well trajectory that is alignedwith themajor direction and the stratigraphic layer,
i.e., when� dip= 0 and� azimuth= 0, has theminimum dispersion variance within
drainage radius D2(·, v), as larger variogram range decreases D2(·, v) and increases
D2(v,V), dispersion variance between wells. When well trajectory aligns with the
major direction and � dip = 0, the variogram range within well drainage radius is
maximized. Figure 4 demonstrates the sensitivity of standardized dispersion vari-
ance within well drainage radius with respect to well length, well drainage radius
and well trajectories. Table 2 shows the factors values for the base case and their
range for test cases applied to calculate the sensitivity shown in Fig. 4. The base case
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Fig. 2 Schematic illustration indicating the spatial-engineered feature volume support size and
variogram parameters for the corresponding well trajectories

parameters and test case ranges are picked based on the major and minor direction
range of the variogram model. The base case has a standardized dispersion variance
value D2(·, v) = 0.696. Well length has the largest impact on dispersion variance
value in comparison with all other factors.

Next, we demonstrate the ability of the spatial-engineered feature to predict
subsurface hydrocarbon production behavior with flow simulation. We construct
a black-oil, finite difference, implicit pressure explicit saturation (IMPES) numer-
ical simulation model with the truth reservoir model in Fig. 1. The production relies
on pressure depletion only, to simplify the production forecast simulation so that we
can focus on the impact of heterogeneity.

Since well length and well drainage radius have an obvious impact on production,
to investigate the impact of the dispersion variance as the proposed spatial feature on
hydrocarbon production, we assume the constants for well length and well drainage
radius as the base case values; therefore, dispersion variance only changes with
respect to well trajectories. We iterate over realizations of varying dip and azimuth
of well trajectory and calculate the corresponding dispersion variance within well
drainage radius while controlling other simulation parameters to be the same for each
realization. Then for each well trajectory in the realization, there is a corresponding
cumulative production curve over time. We group the cumulative production curves
using the base case D2(·, v) value as cut-off for high and low D2(·, v). Figure 5 shows
the 95%confidence interval of the production curve conditional to the dispersion vari-
ance within the drainage radius of the well, which indicates the significantly different
cumulative oil production with low and high D2(·, v). Therefore, the dispersion vari-
ance is informative as a spatial-engineered feature to be utilized in the data-driven
predictive model for production.

Additionally, a sensitivity analysis is conducted to investigate the flow perfor-
mance over various permeability magnitudes and permeability heterogeneity quan-
tified by the Dykstra-Parsons coefficient. We use the relative cumulative production
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Fig. 3 Illustration of dispersion variance within well drainage radius changing with azimuth and
dip angle of the well trajectory deviating from major direction with well length = 100–300 m, well
drainage radius = 10–50 m, as examples

change (%) between the group with high D2(·, v) and the group with low D2(·, v)
to evaluate the sensitivity of the proposed metric for production. Figure 6 shows the
cumulative oil production change under different Dykstra-Parsons coefficients and
permeability magnitudes. Overall, the impact of dispersion variance is more sensi-
tive when Dykstra-Parsons coefficient is high and the permeability mean is low. The
sensitivity of the dispersion variance metric to cumulative production change per
unit length increases as Dykstra-Parsons coefficient increasing.

When the permeability mean is low, i.e., close to the magnitude of tight oil/shale
reservoir, the dispersion variance within well drainage radius is informative, indi-
cating high and low cumulative production. When permeability mean is high, well
drainage radius is no longer a fixed value near-wellbore anymore, extending to the
whole reservoir. That explains why dispersion variance reflects less information for
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Fig. 4 Tornado plot for the result of sensitivity analysis of the proposed spatial-engineered feature,
standardized dispersion variance within well drainage radius, for different well length, drainage
radius, well trajectories (i.e., dip and azimuth deviating from major direction of the geological
spatial continuity model)

Table 2 Base case and test
case range of the sensitivity
analysis for standardized
dispersion variance within
well drainage radius with
different well length, drainage
radius, well trajectories (i.e.,
dip and azimuth deviating
from major direction of the
geological spatial continuity
model)

Base case Test case range

Well length (m) 218.75 50~500

Drainage radius (m) 21.88 5~50

� dip (o) 10 0~20

� azimuth (o) 45 0~180

Well length (m) 218.75 50~500

Fig. 5 Cumulative oil
production expectation curve
(solid line) and 95%
confidence interval (dash
line) grouped by high and
low dispersion variance
feature values with
Dykstra-Parsons coefficient
= 0.8, permeability mean =
0.08 mD
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Fig. 6 Cumulative oil production change between the group curves with high D2(·, v) and the
group with low D2(·, v) under different Dykstra-Parsons coefficient and permeability magnitudes
(solid: permeability mean = 0.08 mD; dash: permeability mean = 0.8 mD; dot: permeability mean
= 8 mD)

production, as dispersion variance within well drainage radius now converges to the
reservoir volume support size, which is equal to 1 in standardized scale.

4 Case Study

Based on the analysis from the previous section, we can infer the dispersion variance
could be an informative predictor feature for tight oil or shale reservoirs. Therefore,
we further demonstrate the dispersion variance as a spatial feature for the predictive
machine learning model with a case study in the Kaybob field, Duvernay formation.

The Duvernay formation was deposited in a sub-equatorial epicontinental seaway
in the late Devonian, Frasnian time, this corresponds to the maximum transgression
of this late Devonian sea into the western Canadian craton. The shale is deposited in
the paleo-lowswithin the confines of the surrounding Leduc reefs in a slope and basin
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Fig. 7 Duvernay formation
map with vertical G&G
wells (red) and horizontal
producers (green)

environment. The results in a series of sub-basins deposits from the west shale to east
shale basins. The depth ranges from 2000–3700m and the formation produces across
the oil, condensate and gas windows. The greater Kaybob area locates in the West
shale basin. The formation is at greatest thickness in the Kaybob area thinning to
the east. The mineralogy also changes fromWest to east. The Kaybob area is a more
silica-rich shale passing into the less quartz-rich, higher clay and higher carbonate
content East shale basin [27, 28]. The West shale basin, Kaybob area is the most
developed, where the majority of Duvernay production comes from (see Fig. 7).

For this case study, we use 110 horizontal wells with features and response listed
in Table 3. We choose to use production per unit length as the response feature to
remove the direct impact from well length and use barrel of oil equivalent (BOE)
as a convenient summarization of production response for oil, gas and condensate
volumes in the same units. The dispersion variance within well drainage radius is
calculated based on the porosity variogram model and the maximum drainage radius
for each well is approximated based on well spacing. A non-parametric conditional
expectation plot of production given the dispersion variance is shown in Fig. 8.
To further investigate the impact of our proposed spatial-engineered feature on a
predictive machine learning model, we test the dispersion variance feature in random
forest and gradient boosting models. By grid search and k-fold validation where k =
5, we find the optimal hyperparameters and the average of themetrics calculated from
the k-fold cross-validation testing sets of the optimal model with standard deviation
shown in Fig. 9, where the optimal models in Fig. 9a use all the features in Table 3
while the optimalmodels in Fig. 9b exclude the dispersion variance feature. Including
the proposed spatial feature reduces the mean absolute error (MAE) and rooted
mean squared error (RMSE) for random forest. While for gradient boosting model,
adding the spatial-engineered feature only reduces MAE. Since both random forest
and gradient boosting are stochastic models, we iterate over 100 realizations with
different random seeds to check if the performance is stable. The relative difference
of metrics (MAE, RMSE) is defined as the metric for the model with the spatial-
engineered feature minus that without the spatial-engineered feature, over the metric
valuewith the spatial-engineered feature.The relative differencedistribution is shown
in Fig. 10. In the majority of cases, including the proposed spatial-engineered feature
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improves the model performance, judging from a smaller MAE for both random
forest and gradient boosting. This work demonstrates that our proposed dispersion
variance feature may, in some cases, improve predictions and should be considered
as a new spatially informed feature in building predictive models. Demonstrating the
rank of feature importance of dispersion variance for predicting production relative
to all other possible geological and engineering parameters would require a much
more comprehensive study and is not the goal of this work.

Table 3 Summary of available data for the predictive machine learning model

Type Name Field unit SI unit

Response Production First 12-month production BOE/1000ft m3/305 m

Predictor features Completion Fracture stages count count

Average stage spacing ft m

Total fluid pumped bbl m3

Amount of proppant lbs kg

Proppant intensity lbs/ft kg/m

Fluid intensity lbs/ft kg/m

Petrophysics Water saturation fraction fraction

Porosity fraction fraction

Spatial feature Dispersion variance fraction fraction

Fig. 8 Conditional P10 (dash line), expectation (solid line), and P90 (dash line) of first 12-month
cumulative production to dispersion variance within well drainage radius over 110 wells (scatter)
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Fig. 9 Measured and predicted first 12-month cumulative production (scatter) along the 45-degree
line (dash line) with average metrics (mean absolute error and root mean squared error) ± the
corresponding standard deviation via k-fold validation, k = 5 (a) using random forest and gradient
boosting with all the features in Table 3 (b) without dispersion variance feature

5 Conclusion

The proposed spatial-engineered heterogeneity feature, well dispersion variance,
integrates the impact of spatial continuity and data volume support size and is compu-
tationally efficient to calculate. Dispersion variance is sensitive to various spatial
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Fig. 10 Relative difference distribution of the metrics, mean absolute error and root mean squared
error, over 100 realizationswith different randomseeds for (a) random forestmodels and (b) gradient
boosting models

factors, such as well trajectories with respect to major direction, and to the response
feature for flow through porous media. Integrating spatial, scale information into
a single, spatially aware feature also helps to reduce dimensionality for predictive
machine learning models and improve the model performance. We demonstrate the
spatial-engineered feature could be specifically useful for unconventional or tight
oil reservoirs. We suggest the augmentation of predictive machine learning models
with the proposed spatially engineered feature for improving subsurface resource
prediction.
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Iterative Gaussianisation
for Multivariate Transformation

A. Cook, O. Rondon, J. Graindorge, and G. Booth

Abstract Multivariate conditional simulations can be reduced to a set of indepen-
dent univariate simulations through multivariate Gaussian transformation of the drill
hole data to independent Gaussian factors. These simulations are then back trans-
formed to obtain simulated results that exhibit themultivariate relationships observed
in the input drill hole data. Several transformation techniques are cited in geostatis-
tical literature for multivariate transformation. However, only two can effectively
simulate high dimensional drill hole data with complex non-linear features: Flow
Anamorphosis (FA) and Projection Pursuit Multivariate Transformation (PPMT).
This paper presents an alternative iterativemultivariate Gaussian transformation (IG)
along with a multivariate simulation case study of a large Nickel deposit. Our find-
ings show that IG is computationally faster than FA and PPMT which makes the
technique more appealing for most practical and time-sensitive applications.

Keywords Multivariate Gaussian transformation · Conditional simulation ·
Projection pursuit

1 Introduction

Traditional univariate conditional simulation techniques transform the data to Gaus-
sian space via quantile–quantile transformation [1] where the simulation proceeds
and the results back-transformed to input data space via the corresponding back-
transformation. Conventional multivariate simulation techniques like Cosimulation
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[2], PCA [3, 4] and MAF [4] transform each attribute separately using the quantile–
quantile approach and the simulation proceeds by assuming the transformed data
have multivariate Gaussian distribution. This assumption is not realistic because
having marginal Gaussian distributions does not necessarily ensure the transformed
data has multivariate Gaussian distribution. This is no longer an issue for truly multi-
variate techniques like stepwise conditional transformation (SCT) by Leuangthong
et al. [5], Projection Pursuit Multivariate Transformation (PPMT) by Barnett et al.
[6] and Flow Anamorphosis (FA) by van den Boogaart [7].

SCTworkflow is cumbersome and often difficult to apply with increasing number
of attributes [8] which has limited its used in practical applications. FA has the ability
to handle a large number of attributes but depends on two parameters, both of which
require significant fine-tunning to ensure convergence to a multivariate Gaussian
distribution. Further to this, in its current form, FA is impractical for large data sets
due to the significant computational processing time required for processing the data.
Conversely, PPMT’s lower overall processing time and minimal tunning parameters
have made the technique more appealing for most practical.

This paper presents a multivariate simulation case study of a large Nickel deposit
using an iterative multivariate Gaussian transformation developed by Laparra et al.
[9] for image processing. The technique does not require any tunning parameters,
nor does it need to search for the most non-Gaussian projection, which is key to
PPMT. Furthermore, its direct and back transformations are faster and convergence
to a standard multivariate Gaussian distribution is proven. This position IG as a
technique that may supplant PPMT and FA for time-sensitive applications.

2 Iterative Multivariate Gaussianisation

IG is simply a sequential application of univariate marginal Gaussianisation using
the quantile–quantile approach followed by a rotation using an orthonormal trans-
formation [9]. An important aspect of IG is that the type of rotation is not critical
because the algorithm convergence is proven for any orthonormal transformation.

Let X (0) be the multivariate input data and �
(
X (0)

)
the marginal Gaussianisation

of each dimension of X (0). Then the iterative process is defined as

X (k+1) = Rk�
(
X (k)

)
(1)

where Rk is a generic rotation matrix for�
(
X (k)

)
[9]. A simple choice is set Rk to be

thematrix of eigenvectors of�
(
X (k)

)
. This provides an easily programmable closed-

form for the direct and back-transformations. Furthermore, Srivastava’s skewness
and kurtosis multivariate normality test [10] can be seamlessly integrated to derive
appropriate stopping conditions. As pointed out by Laparra et al. [9], using the
eigenvectors also guarantees the algorithm convergence except for the case of a
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multivariate input data having all its univariate marginal distributions equal to the
standard Gaussian distribution. This case can rarely be found in real data sets.

3 Nickel Laterite Case Study

3.1 Overview

This case study presents the validation results for a multivariate conditional simula-
tion utilising IG for a large nickel laterite deposit. The simulation was generated as
part of a Drillhole Spacing Analysis (DSA) with the aim of quantitatively assessing
the economic cost vs risk at varying sample densities, based on the quality of the grade
estimation and potential formisclassification.Due to the correlated nature of the input
variables (Ni, Co, MgO, SiO2 and Al2O3), the simulation required a multivariate
approach to ensure that the correlations were reproduced and maintained.

The nickel laterite study area is approximately 2 km2 and is informed by 97,682
samples with variable spacing as shown in Fig. 1. For each sample, multielement data
is available from which 5 key elements have been analysed, due to their economic
interest to the mine operator. A single lithological domain was identified as the
target of the study and warranted basic unfolding techniques to minimise variations
in mineralisation orientation.

Fig. 1 Plan section of the
case study area showing all
sample locations
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3.2 Workflow

The high-level steps followed to generate the multivariate simulations from the input
data for the study area is outlined below.

1. Perform multivariate and compositional exploratory data analysis to confirm
variable correlations and validate the composition.

2. Transform coordinates to unfolded space using basic z-only transform for
flattening.

3. Perform compositional transformation using an appropriate log-ratio technique
In this case, the additive log-ratio (ALR) transformation was used.

4. Perform multivariate normal transformation using IG.
5. Validate statistical properties and spatial decorrelation of independent Gaussian

factors.
6. Simulate in Gaussian space using sequential gaussian.
7. Back-transform assays to compositional space, then to raw space.
8. Refold simulations to raw coordinate space.
9. Validate simulation results with input data.

3.3 Multivariate Transformation and Simulation

Multivariate techniques are suitable for element compositions which exhibit corre-
lations and form a composition, or sub-composition. Bivariate analysis of the
chosen input variables demonstrated complex non-linear relationships which must
be preserved in the simulation results, as shown in Fig. 2.

Fig. 2 Hexbin plot showing
the input correlation between
SiO2 and Al2O3
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When the variables under study form a sub-composition, i.e. several variables
jointly describe the relative weight with respect to a whole, a form of completing is
required to ensure the constant sum constraint, which is the case for the multivariate
simulation of Ni, Co, MgO, SiO2 and Al2O3. This is achieved by defining a filler
variable which represents all other variables not being considered that make up
the remainder of the sample composition. In this case, additive log-ratio (ALR) was
selected as the transformationmethod to be used to unconstraint the sub-composition
formed by Ni, Co, MgO, SiO2 and Al2O3. Furthermore, ALR is simple and suited
to work with conditional simulations [11].

The IG method was used to further transform the ALR data into equivalent inde-
pendent factors with multivariate standard Gaussian distribution. IG was chosen
because PPMT produced artifacts in the resulting factors regardless of the number of
iterations used during the transformation. An example is shown in Fig. 3. The scatter-
plot between two factors computed using the PPMT transform exhibit linear stripes
that do not correspond to the expected scatterplot between independent Gaussian
attributes with multivariate Gaussian distribution. Furthermore, IG’s simplicity and
reasonably low runtime compared to PPMT and FA were considered major benefits.

Although IG theoretical properties ensure that factors have multivariate standard
Gaussian distribution, it is not possible to know in advanced howmany iterations are
required to achieve convergence. In this study, 60 iterations were used but as shown
in Sect. 3.4 much less iterations could have been used. Figure 4 shows all scatterplots
between the derived four factors.

The degree of spatial correlation between factors was assessed visually by
computing omnidirectional cross variograms for up to 400 m (Fig. 5). The results
show that spatial correlation between factors can be considered negligible with an
absolute maximum value of 0.14.

Factors were simulated using the Sequential Gaussian Simulation [1]. The simu-
lations informed a 2.5 mN × 2.5 mE × 2 mRL grid of nodes and were considered

Fig. 3 Scatterplots between factors for PPMT (left) and IG (right)
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Fig. 4 Scatterplots between factors derived using the IG transformation.Data is shown in grey along
with the confidence ellipses for the 95th (red), 50th (blue) and 15th (green) percentiles according
to a standard multivariate Gaussian distribution

Fig. 5 Omnidirectional cross variograms between factors derived using the IG approach
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the point support simulations. Scatterplots were generated for each of the element
pairs to ensure that the data correlations were reproduced in the simulation results.
Figure 6 demonstrates that the IG technique has successfullymaintained the complex
non-linear correlations in the input data.

Trend plots of the average naïve and de-clustered composites and a single simu-
lation of nickel are presented in Fig. 7. The simulated grades in the trend plots
demonstrate minor deviation from the input drillhole data; however, this is primarily
influenced by local variability introduced by the simulation process and irregular
sample distribution compared to the cell volumes. Globally, the difference amounts
to an 8–10% difference; however, majority of simulated cells generally exhibit much
lower differences. Visual inspection across the model shows good correlation to
immediately surrounding samples and the overall trends of the grades across the
deposit.

Figure 8 illustrates east–west profiles for three realisations at point support (2.5mE
×2.5mN×2mRLspacing) of simulatednickelmineralisation,with the conditioning
drillhole data, in unfolded space. The simulations show good reproduction of the
input data and reflect the mineralization trends and continuity that were evident in

Fig. 6 Hexbin plot showing the correlation betweenSiO2 andAl2O3 for a single, randomly selected
realization
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Fig. 7 Trend plot for nickel comparing the naïve (red) and declustered (blue) sample data to a
randomly selected simulation (black)

the spatial analysis. Additionally, there is good alignment between the simulations
with the greatest variability occurring where data is sparser, and the grade data is
less continuous.

The conclusions from the validation of the simulations, are:

• Visual comparison of the simulated grades and the corresponding drillhole grades
showed reasonable correlation.

• A comparison of the global drillhole and simulated domain grades for Ni, Co,
SiO2 and Al2O3 shows that the mean grades of the simulations were typically
within 5%.

• Comparison of the variance of the input composite data against the simulations
shows that the simulations adequately reproduce the variance of the input data.

• Analysis of the correlation coefficients between Ni, Co,MgO, SiO2 and Al2O3 for
each deposit shows that the correlations of the input composite data are reproduced
in the simulated grades. Furthermore, the compositional closure is preserved, as
demonstrated in Fig. 6.

• The input data contains some outlying correlations which the simulations attempt
to reproduce and may appear to be artefacts in the scatterplots. These samples are
considered to be real and therefore included in the dataset without no top cutting
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Fig. 8 Northeast-southwest cross-section showing three point support (2.5 m × 2.5 m × 2 m)
realisations of nickel mineralisation, with conditioning data, in unfolded space

or filtering so that the variability of all aspects of the dataset were reproduced.
The number of records which make up these outlying correlations amount to less
than 1% of the total dataset.

• Except for poorly sampled regions, the grade trend plots show a good correlation
between simulated and drillhole grades.

The simulations are therefore considered a suitable representation input charac-
teristics observed in the drill hole data.

3.4 Benchmarking

PPMT and IG were compared by analysing the run time as function of increasing
number of samples and by testing the rapidness of the convergence to a standard
multivariate Gaussian distribution using the Energy test [12]. Flow anamorphosis
was not considered during the benchmark due to the long run time required to get
the results.

Two run-time tests were conducted to directly compare the total processing time
required for each of the IG and PPMT methods. For sample numbers between
10,000 and 50,000 there is a significant time saving when using IG of approximately
90% with an average of 953 samples processed per second compared to PPMT’s
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Fig. 9 Comparison of total run-time for both IG and PPMT for multiples of 10,000 samples

94 samples per second (Fig. 9). Further testing for increasing numbers of samples
between 10,000 and 10,000,000 samples indicate that the ratio further increases with
greater populations (Fig. 10). In addition, PPMT was unable to complete the ten
million sample run in the test environment analysed.

Results for the Energy test are shown in Fig. 11. For each iteration, the test was
carried out using a 95% confidence level and the resultant P-value reported. The
results show that IG requires a fraction of the iterations used by PPMT to converge
to a standard multivariate Gaussian distribution.

3.5 Artifacts

As with many techniques, a core difficulty is the reproduction of under-represented
features and extreme values. An artifact in the data is considered to be where the
technique fails to reproduce geological features and relationships in a manner that
would be expected in the geological setting. Comparison of IG, PPMT and FA tech-
niques and their ability to minimise artifacts in the presence of extreme values are
illustrated in Fig. 12, Fig. 13 and Fig. 14 respectively. Between the three techniques,
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Fig. 12 Comparison of input data versus backtransformed values for the IG method

only FA significantly minimises the effect of extreme values. PPMT provides a few
key benefitswhen compared to the IG results, while retaining some issueswith values
in regions uninformed by the input data.

Comparison of the drillhole data correlationswith the simulation results are shown
in Fig. 15. These graphs highlight areas where artifacts are most significant due
to the values being extreme for the dataset and the compositional transformation
ensuring closure. While these features are not typical of a raw geological dataset,
the relationships are acceptable within the context of the deposit. In addition, these
artifacts are generally pervasive where gaps in the relationships occur and could
be improved through additional sampling if they were considered material to the
interpretation of the results.

4 Conclusions

The validationwork demonstrates that the simulations generated using compositional
and iterative Gaussianisation techniques are valid and accurately represent the input
data. In addition to the requirement for a valid technique, many mine production
settings require further criteria for long-term uptake of newmathematical techniques
and must:

1. Produce results within a timely manner to meet time-sensitive targets for large
populations of samples.
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Fig. 13 Comparison of input data versus backtransformed values for the PPMT method

Fig. 14 Comparison of input data versus backtransformed values for the FA method
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Fig. 15 Comparison of input data (left) correlations compared to simulation results (right) for
SiO2–Al2O3 (top) and Co–Al2O3 with artifacts highlighted

2. Be usable in multiple settings, on a range of compositions with a low failure-rate.
3. Be easy to understand and utilise, as well as being openly available for the general

resource estimator.

IG meets these criteria as the convergence to a gaussian distribution is always
guaranteed, the matrices are always invertible and the technique is fast and simple.
These benefits make the technique highly practical for the mining industry where
time is precious and datasets exhibit complex relationships.
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Comparing and Detecting Stationarity
and Dataset Shift

Camilla da Silva, Jed Nisenson, and Jeff Boisvert

Abstract Machine learning algorithms have been increasingly applied to spatial
numerical modeling. However, it is important to understand when such methods
will underperform. Machine learning algorithms are impacted by dataset shift; when
modeling domains of interest present non-stationarities there is no guarantee that
the trained models are effective in unsampled areas. This work aims to compare the
stationarity requirement of geostatisticalmethods to the concept of dataset shift.Also,
workflow is developed to detect dataset shift in spatial data prior to modeling, this
involves applying a discriminative classifier and a two sample Kolmogorv-Smirnov
test tomodel areas. And,when required a lazy learningmodification of support vector
regression is proposed to account for dataset shift. The benefits of the lazy learning
algorithm are demonstrated on the well-known non-stationary Walker Lake dataset
and improves root mean squared error up to 25% relative to standard SVR approach,
in areas where dataset shift is present.

Keywords Dataset shift · Locally weighted learning · Stationarity

1 Introduction

Machine learning (ML) algorithms have gained space in the mineral resource’s
modeling process [4, 9, 12]. One motivational aspect of such increase in data-driven
models use is the claim that MLmethods generate non-stationary estimates and help
solve the issue of non-stationary domains ([12, 14]), but caremust be taken inmaking
such claims. If a model is developed to predict block values from blast area A, can
the model be used with confidence on blast area B? The answer to this question is not
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obvious and highlights practical issues that stem from data-drivenmodels.WhenML
is used, specifically supervised learning, the goal is to infer an underlying relation-
ship between input variables and target variables [13] so that values at unsampled
locations are predicted from the modeled relationship. Nonetheless, it is assumed
that the multivariate distributions of the training stage and the test stage are identical.
In geological settings non-stationarity leads to changes within modeling domains
and can generate a phenomenon known as dataset shift in ML, which compromises
model performance. Therefore, to obtain an accurate and representative model, the
presence of dataset shift should be verified [1, 3, 5, 11] and, if present, accounted
for. To that end, two algorithms are proposed: the first detects and maps the dataset
shift present in geological settings,the second is proposed to handle dataset shift and
provide accurate final predictions. The results demonstrate the sub-optimality of ML
methods in non-stationary geological domains when dataset shift is not accounted
for.

2 Materials and Methods

Herein, two algorithms are developed to detect and handle dataset shift in geospatial
context. The proposed algorithm to detect dataset shift is based on the assumptions
presented by Gözüaçik et al. [7]. It considers a variable of interest Y in domain A,
with a local neighborhoodW of fixed size. The samples contained inW are compared
to (1) the global data distribution and (2) local samples in an adjacent neighborhood,
K . The algorithm is performed in two steps: first, the algorithm compares the data
from two adjacent neighborhoods (W and K ). Samples within W are classified as
0 and samples within K as 1. The size of the neighborhoods can be defined as a
fixed radius from an anchor point. Samples from both neighborhoods are merged
to create a binary slack variable (ζ ). Classification of the merged data is attempted
using logistic regression, where Y is used to classify ζ , the classifier is fit to predict
the class (0 or 1) based on the sample values. The classifier’s ability to distinguish
between classes is measured with the area under the receiver operator characteristic
curve (AUC). AUC ≈ 0.5 indicates that the classifier is unable to separate the two
classes, samples in the two neighborhoods are not shifted. AUC ≈ 1.0 indicates that
the classifier can separate the two classes, the data distributions do not overlap and
are shifted. Intermediate AUC values indicate the distributions partially overlap;
typically, a threshold of AUC > 0.7 is used to determine if the distributions are
shifted [7]. The second step of the algorithm considers a two sample Kolmogorv-
Smirnov test (2 K-S test) [10] on samples inW and K. The nonparametric 2 K-S test
verifies if two samples come from the same distribution. The common way to report
and interpret the 2 K-S test is through the P-value. A critical region is calculated
such that the probability of wrongfully rejecting the hypothesis that the samples
originate from the same distribution is not more than a predetermined threshold (α).
If the P-value is lower than the threshold (α), the distinctions are significant, and the
hypothesis is rejected. To detect shift relative to the global distribution, the rational
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is the same as with two neighborhoods,however, a random sampling of the global
distribution is considered to obtain a representative subset with a similar number
of samples as the local neighborhood to avoid affecting classifier performance due
oversampling one class. For the 2 K-S test, the local neighborhood must contain
enough samples to reliably estimate the distributions. Combining the results of the
discriminative classifier and the 2 K-S test results in 3 possible scenarios:

⎧
⎪⎨

⎪⎩

2, i f AUC > τ1 and p − value < τ2, agreement and shi f t is likely

1, i f AUC > τ1 and p − value > τ2 or AUC < τ1 and p − value < τ2, disagreement and shi f t is possible

0, i f AUC < τ1 and p − value > τ2, agreement and shi f t is unlikely

where τ1 is the threshold on AUC for the discriminative classifier, and τ2 is the
P-value for the 2 K-S test.

The algorithm proposed to account for dataset shift is locally weighted support
vector regression (LWSVR), aiming to adjust the training process to specific prop-
erties of sub-regions in the input space [2]. This is performed by assigning different
importance to data most relevant to the location being predicted. Based on the prin-
cipals of local models and weighting training data based on relevance, Ellatar et al.
[6] proposed an algorithm in which the SVR risk function is modified to account for
data relevance. In SVR traditional formulation C is a fixed regularization parameter
defined a priori by the user, however, generalization error changes if C is modified
according to a metric of relevance. The LWSVR risk function becomes:

min
1

2
‖ω‖2 + Ci

∑N

n=1

(
ξn + ξ ∗

n

)
,Ci = �(d)C (1)

�(d) is the weight calculated for each local neighborhood according to function
dependent on the Mahalanobis distance considered inside each search neighborhood
and a smoothing factor that controls the generalization range.

3 Results and Discussion

Theworkflow is demonstrated on theWalker Lake sample set containing 470 samples
from variable V [8]. First the database is inspected for dataset shift, then the standard
SVR approach and the proposed LWSVR algorithm are applied to make spatial
predictions and quantify improvement in the presence of dataset shift. Then, simple
kriging (SK) and SK with locally varying means (SK with LVM) are considered
to draw a parallel analysis to the ML approaches. The shift detection algorithm is
applied to theWalkerLake sample set to detect regionswhere dataset shift occurs. The
global shift analysis compares local windowed distributions to the global distribution
while the local shift analysis compares local windowed distributions to other nearby
local windowed distributions. To that end, consider a set of local neighborhoods,
Wi , i = 1, . . . , n, of fixed size of 60 m and n samples,compare this distribution to
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either the global distribution or an adjacent subregion (K )with 30 m overlap. Choice
of threshold to determine a binary, shift versus no shift, decision is dataset specific.
In this case study, a sensitivity analysis leads to a threshold for the AUC of 0.8 and
P-value of 0.05. The dataset shift detection algorithm demonstrated regions where
the dataset shift occurs between local and global distributions. Such regions may
benefit from trend modeling in case of a geostatistical approach, or a lazy learning
algorithm in ML context. Given that dataset shift is detected, the LWSVR and SVR
algorithms are applied and evaluated. The SVRmodel is optimized with a grid search
considering 1e−5 < C < 100; 1e−5 < ε < 0.1 and 1e−5 < γ < 10. Optimal SVR
parameters are: C = 0.53, γ = 6.57 and ε = 0.0017. For LWSVR, the C parameter
is dependent on the closest data samples to the location being predicted. The number
of samples retained for the LWSVR model is 5, while γ and ε are held constant
at 1.0 and 0.1, respectively. For both LWSVR and SVR the input variables for the
predictions are the X and Y sample coordinates and the target variable is V.

The results show SVR obtained a smoother estimate than the LWSVR algorithm
which reduced bias in the under sampled low valued regions (Table 1). Similarly, SK
does not explicitly account for non-stationarity and produces a smoother estimate
than SK with LVM. Bias in the predicted mean is evaluated using the exhaustive
database, statistics are compared to the true statistics rather than the declustered data
(Table 1); SK with LVM and LWSVR have lower bias in the mean as they better
honor local features. As expected, SK with LVM is more variable than SK, similarly
LWSVR is more variable than SVR (Table 1). Models’ performance is evaluated
with a 10-fold cross validation considering root mean squared error (RMSE) for
each fold. Both local methods, LWSVR and SK with LVM, outperform their global
counterparts. LWSVR results in a 25% RMSE improvement over SVR. It would be
tempting to compare LWSVR to SK with LVM, but that comparison is inappropriate
as SK honors data and provides a different modeling paradigm than ML algorithms.
Because SK honors data, the impact of non-stationarity on geostatistical algorithms
(3% improvement in RMSE) is much less than the impact of dataset shift on ML
algorithms (25% improvement in RMSE) (Table 2).

Table 1 Comparison of model statistics relative to the true exhaustive statistics

True exhaustive SK with LVM SK LWSVR SVR

Mean 278.0 272.6 293.4 290.9 300.6

Std. Dev 249.8 218.5 187.0 206.2 188.7

CV 0.89 0.80 0.64 0.71 0.63

% Deviation relative to
true mean

−1.94% +5.53% +4.64% +7.91%

Table 2 Ten–fold cross validation

Fold SK with LVM SK LWSVR SVR

Average RMSE 185 190 208 275



Comparing and Detecting Stationarity and Dataset Shift 41

The case study analysis reflects the nature of supervised ML algorithms, and
objectively demonstrate the impact of dataset shift generated from non-stationarities
in geospatial data. If the statistics change significantly between the training locations
and where the modeling is deployed to obtain predictions, the relations previously
learned are inefficient and lead to a final model that is not representative of the
true geological phenomena. In this case, non-stationarities have to be explicitly (i.e.
a trend model) or implicitly (i.e. local learning) accounted for; one such model,
LWSVR, was proposed to consider this. The algorithm proposed to map dataset
shift helps improve the modeling framework by identifying areas of interest where
global algorithms are likely to underperform. However, some limitations persist.
Applying the automated shift detection algorithm in sparse settings is sensitive to
neighborhood search parameterization and the number of samples. The discrimina-
tive classifier is optimized for local neighborhoods, requiring that each labeled class
have sufficient samples to form a training and test set. The choice of number of
samples for LWSVR to generate a prediction is important and impacts conditional
bias. The weighting function used in LWSVR also impacts performance. If sampling
is dense, the penalty C applied on LWSVR is higher and can lead to overfit local
models; while the search strategy and weight function can be easily modified, it may
require tuning. Another aspect that must be considered is 3-dimensional data; the
search strategy, anisotropy, and the implementation of the weight function should be
modified accordingly. Finally, the impact of local optimization of γ and ε should be
considered, this study focused on local optimization of C.

4 Conclusions

Clear benefits of data-driven algorithms include reduced parameterization and fewer
subjective modeling decisions; however, non-stationary spatial features often result
in dataset shift within spatial modeling domains of interest. In this case, the impact
of dataset shift on spatial modeling shows the importance of local learning. Prac-
titioners must account for nonstationary spatial features of interest and understand
how algorithms learning processes are affected by dataset shift and sparse sampling.
Many algorithms do not have analogous lazy learning spatial implementations, as
presented herein for SVR; it is the responsibility of the practitioner to understand the
limitations of the chosen algorithm and investigate the appropriateness of associated
lazy learning implementations.
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Simulation of Stationary Gaussian
Random Fields with a Gneiting
Spatio-Temporal Covariance

Denis Allard, Xavier Emery, Céline Lacaux, and Christian Lantuéjoul

Abstract The nonseparable Gneiting covariance has become a standard to model
spatio-temporal random fields. Its definition relies on a completely monotone func-
tion associated with the spatial structure and a conditionally negative semidefinite
function associated with the temporal structure. This work addresses the problem
of simulating stationary Gaussian random fields with a Gneiting-type covariance.
Two algorithms, in which the simulated field is obtained through a combination of
cosine waves are presented and illustrated with synthetic examples. In the first algo-
rithm, the temporal frequency is defined on the basis of a temporal random field
with stationary Gaussian increments, whereas in the second algorithm the temporal
frequency is drawn from the spectral measure of the covariance conditioned to the
spatial frequency. Both algorithms perfectly reproduce the correlation structure with
minimal computational cost and memory footprint.

Keywords Substitution random fields · Spectral simulation · Spectral measure ·
Central limit approximation

1 Introduction

The modeling, prediction and simulation of stationary random fields defined on
Euclidean spaces crossed with the time axis, Rk × R with, in general, k = 2 or 3,
is widespread in hydrology, environment, climate, ecology and epidemiology appli-
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cations. The representation of their correlation structure via traditional covariance
models in R

k+1 is often unsuitable to capture space-time interactions, reason for
which specific models need to be developed. One of these, the Gneiting covariance,
is widely used in climate studies due to its versatility, and is defined as

C(h, u) = σ2

(
1 + γ(u)

)k/2 ϕ

( |h|2
1 + γ(u)

)
, h ∈ R

k, u ∈ R, (1)

where σ > 0, γ is a variogram (i.e., a conditionally negative semidefinite function)
on R and ϕ is a completely monotone function on R+. A subclass originally pro-
posed by Gneiting in [1] is obtained by considering a variogram γ of the form
γ(u) = ψ(u2) − 1, where ψ is a Bernstein function, i.e., a positive primitive of a
completely monotone function. The general formulation (1), in which γ can be any
variogram on R, is due to Zastavnyi and Porcu in [2]. Hereinafter, without loss of
generality, we assume σ = 1 and ϕ(0) = 1.

This work deals with the problem of simulating a stationary Gaussian random field
with zero mean and Gneiting covariance on a (structured or unstructured) grid of
R

k × R. The following section presents some theoretical results, which will be used
in Sects. 3 and 4 to design two simulation algorithms, which will be illustrated on
synthetic examples. Concluding remarks follow in Sect. 5.

2 Theoretical Results

The completely monotone function ϕ can be written as a nonnegative mixture of
decreasing exponential functions on R+:

ϕ(t) = ϕ(0)
∫

R+
exp(−r t)μ(dr), t ∈ R+, (2)

whereμ is a probabilitymeasure. Also, the continuous Fourier transform of a squared
exponential function in Rk is another squared exponential function:

∫

Rk

cos
(〈ω, h〉) exp

(−a |ω|2)dω =
(π

a

)k/2
exp

(
−|h|2

4a

)
h ∈ R

k, a > 0,

(3)
where 〈·, ·〉 stands for the usual scalar product in R

k .

Proposition 1 By combining Eqs. (2) and (3), one can rewrite the Gneiting covari-
ance (1) as follows:

C(h, u) =
∫

R

∫

Rk

cos
(√

2r 〈ω, h〉) exp

(
−γ(u)

2
|ω|2

)
gIk (ω) dω μ(dr), (4)
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with Ik the identitymatrix of order k and gIk the probability density of a k-dimensional
Gaussian random vector with zero mean and covariance matrix Ik .

The mappings h �→ cos
(√

2r 〈ω, h〉) and u �→ exp
(−γ(u) |ω|2/2) are covari-

ances functions in R
k and R, respectively. Their product is therefore a covariance

function in Rk × R, and so is C(h, u) as a positive mixture of covariances functions
in R

k × R. This result proves that every member of the Gneiting class (1) is a valid
space-time covariance. In particular C is a positive semidefinite function in Rk × R.

Proposition 2 One can further decompose the Gneiting covariance as follows:

C(h, u) = E

{
cos

(√
2R 〈Ω, h〉 + Y

√
γ(u) |Ω|

)}
, (5)

whereE{·} the mathematical expectation, R a nonnegative random variable with dis-
tribution μ, Y a standard normal random variable, Ω a k-dimensional standardized
Gaussian random vector, and where R,Y,Ω are independent.

Proof One uses (3) to write the squared exponential function in (4) as a Fourier
transform on R:

C(h, u) =
∫

R

∫

Rk

∫

R

cos
(√

2r 〈ω, h〉) cos
(
y
√

γ(u) |ω|) g1(y) gIk (ω) dy dω μ(dr),

where g1 is the standard normal univariate probability density function. Owing to
the parity of this function and to the product-to-sum trigonometric identity, this
expression simplifies into

C(h, u) =
∫

R

∫

Rk

∫

R

cos
(√

2r 〈ω, h〉 + y
√

γ(u) |ω|) g1(y) gIk (ω) dy dω μ(dr),

which yields the claim.

3 A Discrete-in-Time and Continuous-in-Space
Substitution Algorithm

Consider a space-time cosine wave of the following form:

Z(x, t) = √
2 cos

(√
2R 〈Ω, x〉 + W (t)

|Ω|√
2

+ Φ

)
, x ∈ R

k, t ∈ R, (6)

where

• R and Ω are a random variable and a random vector as defined in (5);
• {W (t) : t ∈ R} is a strictly intrinsic random field with variogram γ and Gaussian
increments;
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• Φ is a uniform random variable on ]0, 2π[;
• R,Ω,W and Φ are independent.

BecauseΦ is uniform on ]0, 2π[ and is independent of (R,Ω,W ), this cosinewave is
centered. Moreover, the covariance between Z(x + h, t + u) and Z(x, t) is found to
be equal to the expectation in (5), that is,C(h, u) (see [3]). The randomfield in (6) is a
particular case of substitution randomfield, consisting of the composition of a station-
ary coding process onR and an intrinsic directing function onRk × R (see [4]).

To obtain an approximately Gaussian random field with zero mean and Gneiting
covariance, one can (i) multiply the cosine by a Rayleigh random variable with scale
parameter 2−1/2, which makes the marginal distribution of Z(x, t) be standard Gaus-
sian, and (ii) sum and standardize many of such independent cosine waves, so that
the finite-dimensional distributions of Z(x, t) become approximately multivariate
Gaussian due to the central limit theorem. The simulated random field thus takes the
form:

Z(x, t) =
p∑

j=1

√
−2 lnUj

p
cos

(√
2R j 〈Ω j , x〉 + Wj (t)

|Ω j |√
2

+ Φ j

)
, (7)

where p is a large integer,
{
(R j ,Ω j ,Wj , Φ j ) : j = 1, ..., p

}
are independent

copies of (R,Ω,W, Φ), and {Uj : j = 1, ..., p} are independent random variables
uniformly distributed on ]0, 1[ and are independent of

{
(R j ,Ω j ,Wj , Φ j ) : j =

1, ..., p
}
.

As an illustration, consider the simulation of a random field on a regular grid of
R

1 × R with 500 × 500 nodes and mesh 1 × 0.2, with the following parameters:

• k = 1;
• ϕ(r) = exp(−0.001r)
• γ(u) = √

1 + |u| − 1;
• p = 10, 100 or 1000.

The intrinsic random fieldW is simulated by using the covariance matrix decom-
position algorithm with the nonstationary covariance function (t, t ′) �→ γ(t) +
γ(t ′) − γ(t ′ − t). The simulation obtained with p = 10 cosine waves exhibits an
apparent periodicity in space, which indicates that the central limit approximation
is poor, which is no longer the case when using 100 or more cosine waves (Fig. 1,
left). In contrast, since the simulated process W is ergodic, the time variations are
well reproduced, irrespective of the number of cosine waves. Note that the simulated
random field has a Gaussian spatial covariance and a gamma temporal covariance
with parameter 0.5, hence it is smooth in space but not in time.



Simulation of Stationary Gaussian Random Fields … 47

Fig. 1 Simulation of a randomfieldwithGneiting covariance function (with an exponential function
for ϕ and a square root for γ) using 10 (top), 100 (center) and 1000 (bottom) cosine waves. Left:
substitution algorithm. Right: spectral algorithm
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4 A Fully Continuous Spectral Algorithm

The continuous spectral method relies on the fact that the continuous covarianceC is
the Fourier transform of a symmetric probability measure F on Rk × R. Let (Ω,T)

be a spectral vector distributed according to F , and Φ a random phase uniform on
]0, 2π[ and independent of (Ω,T). Then, the random field defined by

Z(x, t) = √
2 cos

(〈Ω, x〉 + Tt + Φ
)
, (x, t) ∈ R

k × R, (8)

is second-order stationary with covariance C . A standard approach for simulating
the spectral vector is to simulate at first the spatial component Ω , then the temporal
component T given Ω , which requires explicitly knowing the spectral measure.
For instance, consider the covariance function with ϕ(r) = exp(−ar) (a > 0) and
γ(u) = √

1 + |u| − 1. In this case, it can be shown (see [3]) that Ω is a Gaussian
random vector with independent components and that T given Ω = ω follows a
Cauchy distribution whose scale parameter follows an inverse Gaussian distribution,
all these distributions being simulatable.

In practice, themultiplicationof the cosinewave (8) by aRayleigh randomvariable
and the independent replication technique of (7) provide a randomfieldwithGaussian
marginal distributions and approximately multivariate Gaussian finite-dimensional
distributions. Figure1 (right) displays realizations obtained by using between p = 10
and p = 1000 cosine waves. The spatial variations are similar to those observed with
the substitution algorithm. However, the temporal variations differ when using few
cosine waves, exhibiting a smooth and periodic behavior when p = 10 or p = 100.
This suggests that the convergence to a multivariate-Gaussian distribution in time is
slower with the spectral algorithm than with the substitution algorithm.

5 Concluding Remarks

The two presented approaches construct the simulated random field as a weighted
sum of cosine waves with random frequencies and phases. Their main difference lies
in the way to simulate the temporal frequency: from its distribution conditional to the
spatial frequency (spectral approach), or from an intrinsic time-dependent random
field (substitution approach). Both algorithms have a computational complexity in
O(n), considerably cheaper than generic algorithms such as the covariance matrix
decomposition and sequential algorithms, are parallelizable and require minimal
memory storage space, which makes them affordable for large-scale problems. The
substitution approach is general and only requires the knowledge of the temporal
variogram γ and the probability measure μ specifying the completely monotone
function ϕ (2) associated with the spatial structure. In contrast, the spectral approach
is more specific, as it also requires the knowledge of the time frequency distribution
conditional to the spatial frequency, which has to be solved on a case-by-case basis.
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Spectral Simulation of Gaussian Vector
Random Fields on the Sphere

Alfredo Alegría, Xavier Emery, Xavier Freulon, Christian Lantuéjoul,
Emilio Porcu, and Didier Renard

Abstract Isotropic Gaussian random fields on the sphere are used in astronomy,
geophysics, oceanography, climatology and remote sensing applications. However,
to date, there is a lack of simulation algorithms that reproduce the spatial covariance
structure without any approximation and, at the same time, are parsimonious in
terms of computation time and memory storage requirements. This work presents
two such algorithms that rely on the spectral representation of isotropic covariances
on the sphere. Both algorithms are illustrated with synthetic examples.

Keywords Isotropic random fields · Spherical harmonics · Legendre
polynomials · Schoenberg sequence

1 Introduction

Random fields defined on the unit sphere S2 = {s ∈ R
3 : |s| = 1} are used in astron-

omy, geophysics, geotechnics, oceanography, climatology and remote sensing appli-
cations, where it is frequent to deal with multivariate data. Under an assumption of
isotropy and multivariate normality, the only parameters to infer are the first-order
moment (expectation vector), constant over the sphere and hereafter assumed to be
zero, and the second-order moment (scalar or matrix-valued covariance function),
which only depends on the geodesic distance δ between any two points on the sphere.
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Regrettably, although many computationally efficient algorithms are available to
accurately simulate Gaussian random fields in Euclidean spaces, the same does not
occur with randomfields defined on the sphere. Simulation achieved through approx-
imations into cosine waves or into spherical harmonics often reproduce the spatial
correlation structure approximately. The objective of this work is to present two algo-
rithms to simulate isotropic Gaussian random fields on S2 that exactly reproduce the
target covariance and are efficient from a computational standpoint. Both algorithms
rely on the spectral representation of isotropic covariances on the sphere, which is
reminded in the next section.

2 Mathematical Background

According to Yaglom in [1], the covariance function of an isotropic vector random
field on the sphere can be expanded as follows:

C
(
δ(s, s ′)

) =
+∞∑

k=0

Bk Pk(s · s ′), s, s ′ ∈ S
2, (1)

where · is the usual scalar product in R
3, Pk is the Legendre polynomial of degree

k and (Bk : k ∈ N) is a sequence of real-valued, symmetric, positive semidefinite
matrices, called Schoenberg matrices, that are componentwise summable, i.e., such
that C(0) = ∑+∞

k=0 Bk exists.
For any s ∈ S

2 with colatitude θ ∈ [0, π ] and longitude φ ∈ [0, 2π ], the spherical
harmonics of degree k ∈ N and order m ∈ {−k, . . . , k} is defined as:

Yk,m(s) = (−1)m

√
(2k + 1)(k−)

4π(k+)
Pk(cos θ) ×

⎧
⎪⎨

⎪⎩

√
2 sin(φ) if m < 0

1 if m = 0√
2 cos(φ) if m > 0

(2)

where Pm
k is the associated Legendre function of degree k and orderm. The spherical

harmonics satisfy the following two properties.

(1) Addition theorem:

4π

2k + 1

+k∑

m=−k

Yk,m(s)Yk,m(s ′) = Pk(s · s ′), k ∈ N. (3)

(2) Orthogonality:

4π
∫

S2
Yk,m(s)Yk ′,m ′(s)U (ds) =

{
1 if k = k ′ and m = m ′

0 otherwise,
(4)



Spectral Simulation of Gaussian Vector Random Fields on the Sphere 53

where k, k ′ ∈ N,m ∈ {−k, . . . ,+k},m ′ ∈ {−k ′, . . . ,+k ′}, andU is the uniform
distribution on S

2.

3 Simulation Algorithms

3.1 Random Mixture of Spherical Harmonics (RMSH)

Let f be a probability mass function on N such that f (k) > 0 whenever Bk is not a
zero matrix. If K ∼ f , then Schoenberg’s formula (1) becomes

C
(
δ(s, s ′)

) = E

{ BK

f (K )
PK (s · s ′)

}
. (5)

Moreover, if M is uniform over {−K , . . . ,+K }, then the addition formula (3) gives

PK (s · s ′) = 4π E
{
YK ,M(s) YK ,M(s ′)

∣∣ K
}
. (6)

Then, combining Eqs. (5) and (6), one obtains

C
(
δ(s, s ′)

) = 4π E

{ BK

f (K )
YK ,M(s) YK ,M (s ′)

}
.

Letting Ak be a symmetric square root of Bk (k ∈ N) and Ak(·, J ) be the J -th column
of Ak , with J an integer uniform over {1, . . . , p}, one furthermore has:

E

{
Ak(·, J )Ak(·, J )�

}
= 1

p

p∑

j=1

Ak(·, j)Ak(·, j)� = 1

p
Bk .

The previous equations suggest the following construction for simulating a ran-
dom field on S2 with covariance C :

Z̃(s) = ε

√
4π p

f (K )
AK (·, J ) YK ,M (s), s ∈ S

2, (7)

with ε a random variable with zero mean and unit variance independent of (K , M)

and J an integer uniform over {1, . . . , p} and independent of (ε, K , M).
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3.2 Random Mixture of Legendre Waves (RMLW)

The second simulation algorithm rests on the following identity:

∫

S2
Pk(ω · s) Pk(ω · s ′)U (dω) = 1

2k + 1
Pk(s · s ′), k ∈ N, (8)

which can be derived from the addition theorem (3) and the orthogonality of spherical
harmonics (4). Equation (8) can be rewritten in probabilistic terms:

1

2k + 1
Pk(s · s ′) = E

{
Pk(Ω · s) Pk(Ω · s ′)

}
, k ∈ N, (9)

where Ω is a random point (pole) uniformly distributed on S2. The covariance func-
tion (5) of an isotropic vector random field Z becomes:

C
(
δ(s, s ′)

) = E

{2 K + 1

f (K )
BK PK (Ω · s)PK (Ω · s ′)

}
, s, s ′ ∈ S

2,

where K is a random integer with probability mass function f , independent of Ω .
Following the same reasoning as in the previous section, a random field Z̃ sharing
the same first two moments as Z is obtained by putting

Z̃(s) = ε

√
(2 K + 1)p

f (K )
AK (·, J ) PK (Ω · s), s ∈ S

2, (10)

with ε a random variable with zero mean and unit variance independent of (K ,Ω),
J an integer uniform in {1, . . . , p} and independent of (ε, K ,Ω), and AK (·, J ) the
J -th column of a symmetric square root AK of the Schoenberg matrix BK . The
construction (10) has been named “turning arcs” by Alegría et al. in [2], as it is the
exact analogue of the turning bands method in which a random field defined along
a straight line is spread to the multidimensional Euclidean space; here, a Legendre
wave PK (Ω · s) that is constant over the arcs perpendicular to Ω is spread to the
sphere.

3.3 Discussion

The two previous proposals can be classified as continuous spectral algorithms, in
which the simulated field is a basic random field (harmonic) defined continuously
on the sphere, consisting of a spherical harmonic with random degree and order or a
Legendre wave with random degree and pole. This basic harmonic is weighted by a
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random vector that ensures the reproduction of the target spatial correlation structure,
which reminds of importance sampling techniques.

Both algorithms provide continuous representations of isotropic random fields on
S
2 with finite-dimensional distributions that are not multivariate Gaussian. A central

limit approximation can be used to obtain a Gaussian random field, based on L inde-
pendent copies of Z̃ defined either by (7) or (10). The computational complexity is
proportional to the number L and the number n of locations targeted for simulation,
i.e., O(n × L); this compares favorably with the covariance matrix decomposition
algorithm,whose numerical complexity is proportional ton3. Interestingly, both algo-
rithms can be adapted to the simulation of isotropic random fields on the d-sphere,
with d > 2, by replacing the spherical harmonics by hyperspherical harmonics in the
RMSH algorithm, or the Legendre polynomial by a Gegenbauer polynomial in the
RMLW algorithm. The validity of these adapted algorithms stems from the addition
theorem and the orthogonality of hyperspherical harmonics.

4 Examples

As a first example, consider the univariate multiquadric covariance on the sphere:

C
(
δ(s, s ′)

) = 1 − μ
√
1 − 2μ cos δ(s, s ′) + μ2

, s, s ′ ∈ S
2,

whose Schoenberg sequence is the geometric probability mass function (1 − μ)μk

(see [3]). In the following we set μ = 0.7 and discretize the sphere into 500 × 500
points with regularly-spaced colatitudes and longitudes. Both algorithms are applied
to generate one realization using L = 10 and 100 basic random fields, with ε follow-
ing a Rademacher distribution and K + 1 having a zeta distribution with parameter
2. The latter distribution is long tailed and allows sampling high degree harmonics
(K large) with a non-negligible probability. The realizations obtained by both algo-
rithms look the same when the number of basic random fields is high (L ≥ 100),
which suggests that the central limit approximation is acceptable for such a number
of basic random fields (Fig. 1).

The second example is the univariate Chentsov covariance:

C
(
δ(s, s ′)

) = 1 − 2δ(s, s ′)
π

, s, s ′ ∈ S
2.
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Fig. 1 Realizations of a scalar random field with a multiquadric covariance (parameter μ = 0.7),
constructed with the RMSH (left) and RMLW (right) algorithms, for L = 10 and 100 basic random
fields.

The associated Schoenberg sequence is (see [4]):

bk =
{
0 if k is even
2k+1
4π

	2(k/2)
	2((k+3)/2) if k is odd.

Again, the two algorithms are applied to generate one realization using L = 1000 and
10,000 basic random fields, and considering the same discretization of the sphere and
the same distributions for K and ε (Fig. 2). The convergence to normality turns out
to be slower here, which is explained because the Chentsov covariance corresponds
to a random field that is continuous but not differentiable, whereas the spherical
harmonics and Legendre waves are smooth functions: many such functions (L ≥
10,000) are necessary to sample the tail of the zeta distribution sufficiently to repro-
duce the short-scale behavior of the target random field. With fewer functions, a
striation effect is perceptible in the realizations.
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Fig. 2 Realizations of a scalar random field with a Chentsov covariance, constructed with the
RMSH (left) and RMLW (right) algorithms, for L = 1000 and 10,000 basic random fields.

The last example is a bivariate (p = 2) spectral Matérn covariance, defined
through its Schoenberg matrices (see [3]):

Bk =
[
S(v11)

−1(1 + k2)−v11−1/2 ρS(v12)
−1(1 + k2)−v12−1/2

ρS(v12)
−1(1 + k2)−v12−1/2 S(v22)

−1(1 + k2)−v22−1/2

]
, k ∈ N,

with v11 > 0, v22 > 0, v12 = v11+v22
2 , |ρ| ≤ 1 and S(v) = ∑+∞

k=0(1 + k2)−v−1/2.
We set ρ = −0.9, v11 = 0.75 < 1 and v22 = 1.25 > 1, so that the second ran-

dom field component is mean-square differentiable, while the first component is
not. Figure3 shows one realization obtained with the RMLW algorithm by using
a zeta distribution for K + 1 and a Rademacher distribution for ε, for L = 10,000
(similar results are obtained with the RMSH algorithm and are not displayed here).
As expected, the first component is irregular whereas the second is smooth, both
components being negatively correlated (ρ = −0.9). The striation effect is hardly
perceptible, suggesting that the chosen number of basic random fields is sufficient
for the central limit approximation to be acceptable.
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Fig. 3 One realization of a bivariate random field with a spectral Matérn covariance (parameters
v11 = 0.75 and v22 = 1.25), constructed with the RMLW algorithm and L = 10,000 basic random
fields.

5 Conclusions

Two algorithms have been proposed to simulate vector Gaussian randomfields on the
two-dimensional sphere. Both rest on the spectral decomposition of the covariance
function. They provide continuous simulations, in the sense that they start by building
basic ingredients that subsequently allow computing the value of the simulated field
at any point on the sphere. Moreover, they can be generalized to perform simulations
on hyperspheres. Convergence to multivariate normality is reached with fewer basic
random fields when using the RMSH algorithm in comparison with the RMLW
algorithm, because spherical harmonics are comparativelymoremultichromatic than
Legendrewaves.Compensatorily, it takes less time to computeLegendre polynomials
than spherical harmonics.
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Geometric and Geostatistical Modeling
of Point Bars

Ismael Dawuda and Sanjay Srinivasan

Abstract Point bar reservoir geology is frequently encountered in oil and gas devel-
opments worldwide. Furthermore, point bar geology is encountered in many sites
being considered for large scale CO2 injection for sequestration. A comprehensive
modeling method that adequately preserves point bar internal architecture and its
associated heterogeneities is still not available. Traditional geostatistical methods
cannot adequately capture the curvilinear architecture of point bars. Even geostatis-
tical simulation techniques that can be constrained to multiple point statistics cannot
capture the architecture of the point bars because they use regular grids to represent
the heterogeneity. If heterogeneities like the thinly distributed shale drapes within the
point bar are represented using an extremely fine mesh, the computational cost for
performing flowmodeling escalates steeply. This paper proposes a modeling method
that preserves the point bar internal architecture and heterogeneities, without these
limitations. The modeling method incorporates a gridding scheme that adequately
captures the point bar architecture and heterogeneities, without huge computational
costs.

Keywords Simulation · Reservoir modeling · CO2 sequestration · Local
anisotropy

1 Introduction

Point bars (Fig. 1) are fluvial sediments that accumulate at the inner bends of channel
meanders by deposition of eroded sediments as the channel migrates outwards [1, 20,
37]. Point bars have great economic significance [7], as they can serve as large storage
reservoirs [14, 24]. The McMurray Formation in Alberta, Canada, which hosts large
accumulations of bitumen is predominantly composed of point bar deposits [36].
Other examples are those of the Widuri Field [6] and the Little Creek Field in
southwestern Mississippi [35].
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Fig. 1 Point bar deposit, formed by erosion of sediments from the outer bend (cutbank), and
deposition of the eroded sediments at the inner bend, adapted from [15]

However, point bars exhibit complex spatial distribution of heterogeneities [12, 24,
33]. As an example, [34] identified different forms of depositional trends in different
directions within point bar deposits. Some of these directional trends include fining
upwards, fining along downstream direction and fining in the direction perpendicular
to the inclined layers (called inclined heterolithic stratification (IHS)). These trends
can affect the exploitation of the subsurface for hydrocarbon production and geolog-
ical storage of CO2. For example, point bar heterogeneities like shale drapes along
the IHS surfaces act as flow barriers, compartmentalize the reservoir and decrease
storage capacity [16, 17]. Therefore, developing modeling methods for representing
point bars is of economic consequence.

Several studies have used different methods to develop point bar models. Some
of these methods are process-based (e.g., [29, 32], object-based (e.g., [4, 11, 39],
surface-based (e.g., [26, 30], and geostatistical simulation methods like sequen-
tial indicator simulation (e.g., [9]. The geostatistical-based methods remain popular
among researchers and modelers. More recently, [8] combined geometric modeling
with geostatistical computations to represent point bar geometries and their petro-
physical property distribution. This included the use of sine generation function
(SGF) to model the aerial dimension of the point bar, to capture the lateral accre-
tions. The main drawback of their study is that the use of the SGF may not yield
realistic approximations for point bars with asymmetric geometries.

In this study, a cubic spline function is used to develop a smooth geometric
model of the point bar that captures the lateral accretions, while a sigmoidal function
is used to model the inclined heterolithic stratifications (IHS). A key element of
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Fig. 2 Point bar schematic, showing a the lateral accretions and b the inclined heterolithic
stratifications (IHS). Adapted from [31, 34]

the modeling approach is the incorporation of a computationally inexpensive grid
generation scheme that preserves the point bar curvilinear architecture.

2 An Overview of Point Bar Geometry

The main heterogeneities in the point bars are the lateral accretions and the inclined
heterolithic stratifications (IHS).These heterogeneities are formedbyepisodicmigra-
tion of meandering channels, due to the erosion of sediments from the outer bend of
the channel, and deposition of the eroded sediments into the inner bend. If one moves
along section AB in Fig. 2a, a channel is first encountered. A further progression
towards point B shows some curvy structures. Those are the lateral accretions, which
are traces of past channel migrations, the vertical component of which is the IHS as
captured in Fig. 2b.

3 Modeling Approach

The workflow for modeling the point bar is as summarized in Fig. 3. This would be
discussed in detail in subsequent sections.

4 Channel and Point Bar Facies Identification

Channel and point bar facies can be identified using well log information. Previously,
Spontaneous Potential (SP) logs have been used to accomplish this task (e.g., [25,
27], where a bell shape signal has been interpreted to be a point bar while a blocky
or cylindrical shape has been interpreted as a channel (Fig. 4).
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Interpret facies

Establish channel 

flow direction

Condition channel path 

to cubic spline function

Migrate channel path to 

recreate initial channel path
Model inclined 

heterolithic stratifications

Generate 3D curvilinear grids 

separately for the initial and 

current channel path

Grid the region bounded by 

the two 3D gridded surfaces

Fig. 3 Proposed workflow for modeling the point bar reservoir

5 Channel Path Recreation

The workflow for channel path recreation is as summarized in Fig. 5. We begin by
identifying facies and classifying them as either point bars or channels, usingwell log
information (Fig. 5a). Since this is a synthetic workflow for demonstration purpose,
we assume that all the blue points are channel well locations and the red ones are
point bar locations. We then establish the direction of channel progression. This can
be done either by using Gamma ray log readings, which increases in the downstream
direction (because of increasing clay content), or by inferring from the variation
in channel thickness, which decreases in the downstream direction [5, 28]. In this
synthetic workflow, the facies have been sorted from left to right (Fig. 5b), because it
has been assumed that the channel progresses easterly. The channel path recreation
begins in Fig. 5c, where we honor the geological phenomenon of point bars forming
at the concave side of a channel meander. This is done by conditioning the channel
path to go through the channel nodes sequentially, and bend to accommodate the
point bar nodes on the concave side of the bend. This process continues until the
entire well data is accommodated (Fig. 5d).

The channel meander path is approximated by a parametric natural cubic spline
which passes through a given sequence of channel nodes. The basic form of a cubic
spline, with coefficients a, b, c, and d is defined as:
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Fig. 4 SP log profiles for point bar and channel identification. Blocky or cylindrical shape is an
indication of a channel while a bell shape is an indication of a point bar. Adapted from [38]

P(t) = at3j + bt2j + ct j + d (1)

The parameter value t for the j th channel node, denoted t j is the cumulative sum
of the square root of chord length defined according to the centripetal scheme by
[18], and it is expressed as:

t j =
∑

i< j

√‖channel nodesi+1 − channel nodesi‖2 (2)

The coefficients (a, b, c, d),which areweights for interpolating the channel nodes,
could be determined from [22].
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Fig. 5 Synthetic procedure for channel path recreation. a Identifying facies and classifying them
into channels (blue) and point bars (red), b Sorting facies in the direction of channel flow (East–West
direction), cChannel path recreation begins. Channel path goes through channel nodes sequentially,
andbend to accommodate the point bars on the concave side, anddFull channel path accommodating
all the well data

6 Channel Path Migration

The migration process basically involves using today’s channel meander path (i.e.,
the current channel meander path) to recreate the ancient channel path (i.e., initial
channel meander path). This process allows us to capture the entire aerial extent of
point bar and its lateral accretions.We can conceptually explain this process by using
any of the concave regions of the channel meander path in Fig. 5d. Assuming the
point bar associated with the first concave region in Fig. 5d is of interest, we isolate
the channel path in that portion. This extracted channel meander path becomes the
current channel path (Fig. 6a). Perturbing the spline coefficients to recreate this
initial channel meander path is problematic, because ensuring that the spline coef-
ficients exhibit consistency among themselves is extremely difficult. Instead, we
accomplish the migration task by defining a focal point that controls n possible
channel meander paths as shown in Fig. 6b. That is, if there are p points along the
current channel path (with coordinates xi , yi , i = 1, 2, . . . p, then n possible points(
xi j , yi j , j = 1, 2.., n

)
can be generated corresponding to each of these p points and

the focal point
(
x f , y f

)
, using Eq. 3:

(
xi j , yi j

) =
(
xi + ( j − 1) ·

(
xi − x f

)

n − 1
, yi + ( j − 1) ·

(
yi − y f

)

(n − 1)

)
(3)
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Fig. 6 Migration of current channel path to recreate initial channel path. a Current channel path, b
Current channel path migrated backwards to recreate possible initial channel meander paths, (arrow
indicates the direction of backward migration, i.e., migration starting from today’s channel path to
the ancient path), c Area covered by the Current channel path and the pre-migration path and d
Current channel path and the most probable initial channel path

where i = 1, 2, 3 . . . p; j = 1, 2, 3 . . . n; xi and yi are respectively, the x and y
coordinates of each point at node i along the current channel path, and

(
x f , y f

)
are

defined as:

(
x f , y f

) =

⎧
⎪⎪⎨

⎪⎪⎩

(
x | dy

dx =0,max(yi , i = 1, . . . , p)
)
, i f channel concaves up

(
x | dy

dx =0,min
(
yi,i = 1, . . . , p

))
, i f channel concaves down

(4)

x | dy
dx =0 is the x-coordinate at the bend where the slope of the channel path is zero.

Please note that in all our discussions, it is assumed that the channel progresses in
the E-W direction. In a case where the channel path is oblique, a coordinate rotation
is necessary for the formulations discussed herein to work.

Applying Eq. 3 and 4 yields the focal point (red point) and the possible initial
channelmeander paths in Fig. 6b. To select themost probable initialmeander path,we
make use of the concept of erosion coefficients for each of the possible initial channel
meander path. The use of erosion coefficients is guided by the observation that before
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lateral migration of the channel, the channel path is linear. The channel begins to
bend when erosion begins to occur. Therefore, the extent of channel curvature is an
indication of the degree of erosion. Thus, we can capture the extent of curvature or
erosion coefficient (α), by using the area bounded by the curves (i.e., the channel
paths), as shown in Eq. 5. If knowledge or field data about the erosion co-efficient
is available, we can select the initial meander path as the one that yields the closest
match to the erosion coefficient from field data, after applying Eq. 5. Otherwise, one
can assume equal likelihood of occurrence for each of the paths and randomly select
one of the generated initial channel meander paths. In this demonstration, we used
the latter to obtain the initial meander path (see Fig. 6d).

α = 1 − A′

A
(5)

where A is the area bounded by the pre-migration channel path and the current
channel path (Fig. 6c), and A′ is area bounded by the initial meander path and the
current channel path (Fig. 6d).

As the channel migrates, it leaves behind lateral accretion surfaces that extend
from the initial channel position to the current location of the channel. The encircled
portion in Fig. 7 illustrates a point bar deposit that extends up to the banks of the
current channel. To capture the full extent of the point bar, we need to account for
this lateral extension. If the channel has a width W , then the distance d to which the
point bar laterally extends can be computed as [2]:

d = W

1.5
(6)

As an approximation, [19] demonstrated that W can be computed as:

W = 1.01

√
λm

10.9
(7)

The parameter λm is the wavelength of the channel (units in m), which is the
distance between point T and K as illustrated in Fig. 7. In our case, it is equivalent
to the length of the pre-migration path in Fig. 6c.

Using these pieces of information, we can delineate the full lateral extent of the
initial and current channel meander paths, by computing the coordinates at the points
of extension for the initial and current channel paths. If there are p points on each
channel path, then for each point i on the initial or current channel path, we can
compute these coordinates

(
xpb,i , ypb,i

)
, using Eq. 8.

(
xpb,i , ypb, i

) = ((
xch,i ± d · cosβi

)
,
(
ych,i ± d · sin βi

))
(8)

where i = 1, 2, 3 . . . p, βi is the angle between a point at node i on the channel path,
and the focal point discussed earlier. The focal point is illustrated as F in Fig. 7. The
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Fig. 7 Illustration of the of point bar deposit extending into the channel, adapted from [23]

signs in Eq. 8 depend on whether βi is positive or negative. Applying Eq. 8, yields
the path extensions for the current and initial channel meanders paths in Fig. 8.

7 Modeling the IHS Geometry

As described by [34], the inclined heterolithic surfaces (IHS) are approximately
sigmoidal. These surfaces represent the vertical sequence of sediments that are
deposited as the channel migrates. We modeled the geometry of the IHS by solving
the sigmoidal equation along the IHS surfaces, using Eq. 9.

z◦ = ◦ h

1 + e−as
(9)

where h is the vertical thickness of the point bar (see Fig. 7) and a is the slope of an
IHS over a horizontal distance s. As illustrated in this Fig. 7, s = d for the current
channel path. Applying Eq. 9 for the current channel path yields Fig. 9.

8 Grid Generation

The task of gridding the complex 3Dgeometry of a point barwas simplified somewhat
by first discretizing the initial and current channel paths, and later combining them
with their corresponding IHS grids, to generate 3D gridded surfaces. Finally, the
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Fig. 8 Demarcation of the lateral extents of a the current channel path, and b the initial channel
path

Fig. 9 Sigmoidal representation of the IHS for the current channel path

region between the 3D gridded surfaces for the current and initial meander paths are
infilled to complete the gridding of the entire point bar.

The procedure is such that, a domain of interest is initially defined, as depicted
in Fig. 10a as the region between the current channel path and the migrated path.
Assuming the number of grid nodes along each channel path is nx , and L is the
length along the channel, we can compute the cumulative distance l at every node
i along the channel path using Eq. 10, and use it determine the coordinates of the
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grid nodes at every division along the channel path (see Fig. 10b). To generate the
coordinates of the grid nodes across the channel, Eq. 11 is used by specifying the
number of grid nodes across the channel (ny), to produce Fig. 10c. The equivalent
curvilinear grid for the current channel is displayed in Fig. 10d.

l◦i = ◦ L

nx
◦ ·(i − 1) (10)

(
ui, j , vi, j

) =
(
xi, j + ( j − 1) · xi, j − x ′

i, j

ny − 1
, yi, j + ( j − 1) · yi, j − y′

i, j

ny − 1

)
(11)

where i = 1, 2, 3 . . . nx ; j = 1, 2, 3 . . . ny;
(
ui, j , vi, j

)
is the coordinate of the grid at

node i, j across the channel. (xi, j , yi, j ) and (x
′
i, j , y

′
i, j ) are the respective coordinates

of the grid nodes generated along the channel paths (Fig. 10b).
For a point bar of constant vertical thickness, h, as illustrated previously, if

we know the z-coordinates of the grid nodes for a section across the channel(
Zi=constant, j,k

)
, the remaining z-coordinates of the grid nodes at the other locations(

zi, j,k
)
can be easily replicated. Thus, by specifying nz (i.e., the number of grid nodes

along the z-axis), we can repeat the procedure used to generate grid nodes along the
channel to generate grid nodes along the IHS at a particular section (Fig. 11).

Fig. 10. 2D Grid generation process for the current channel path. a Domain to be gridded, b grid
nodes generated along the channel, c grid nodes generated across the channel and d equivalent
curvilinear grid for the current channel path



74 I. Dawuda and S. Srinivasan

Fig. 11 a Current channel path, and section taken across it (red line), and b Grid nodes generated
for the IHS across this section for the current channel path

We are now ready to project the gridded channel paths into 3D gridded surfaces.
Figure 12a shows the 3D gridded surface for the current channel path. Repeating
the above procedure for the initial channel path yields Fig. 12b. To generate a grid
for the entire point bar, the overlap region between the two 3D gridded surfaces, as
illustrated in Fig. 12c is gridded, using Eq. 12. Figure 12d represents the 3D grid for
the entire point bar.

(
Xi jk, Xi jk, Zi jk

) =
(
ui, j,k + ( j − 1) · ui, j,k − u′

i, j,k

ny − 1
, vi, j,k

+( j − 1) · vi, j,k − v′
i, j,k

ny − 1
, zi, j,k + ( j − 1) · zi, j,k − z′

i, j,k

ny − 1

) (12)

where
(
ui, j,k, vi, j,k, zi, j,k

)
and (u′

i, j,k, v′
i, j,k, z

′
i, j,k) are the coordinates of the grid

nodes along the 3D gridded channels in Fig. 12a and b respectively.
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Fig. 12. 3D Grid generation process for the entire point bar. a 3D grid for the current channel, b
3D grid for the initial channel, c overlap of the 3D grids for the current and initial channel paths,
showing the overlap region to be gridded d equivalent 3D curvilinear grid for the entire point bar

9 Preservation of Point Bar Architecture and Its Internal
Heterogeneity

Generating a grid that preserves the point bar reservoir architecture is important,
as it is critical to the preservation of the internal heterogeneities in geostatistical
simulation. As can be seen in Fig. 13, horizontal (Fig. 13a) and vertical sections
(Fig. 13b) taken across the point bar show that the curvilinear architecture of the
reservoir is preserved by the gridding scheme implemented.

While geostatistical simulation methods like multiple point statistics (MPS) [13,
21] can offer excellent approximation of reservoir architecture and its internal prop-
erties, the grid resolution required to capture some of the fine scale variations in a
point may render the MPS approach computationally burdensome. As can be seen
in Fig. 13, the gridding scheme incorporated in the workflow does not necessarily
require many grid cells to sufficiently approximate the point bar curvilinear geom-
etry. The proposed approach is therefore a less computationally expensive method
for modeling point bar reservoirs.

To model the point bar properties, the direct use of the conventional geostatistical
simulation methods like the Sequential Gaussian Simulation [10] may yield subop-
timal results. This is because these methods are implemented within a rectilinear
grid system and cannot capture the curvilinear continuity of the point bar proper-
ties. Therefore, implementing a grid transformation scheme is necessary. In the grid
transformation, the curvilinear grid can be transformed into an equivalent rectilinear
grid within which the properties can be modeled, after which the properties can
be mapped back into the original curvilinear grid. The idea is to ensure that esti-
mates of the properties proceed in a manner that preserves the point bar reservoir
heterogeneity.



76 I. Dawuda and S. Srinivasan

Fig. 13 a horizontal slice, and b vertical slice taken arbitrarily across the point bar to demonstrate
the preservation of the curvilinear architecture of the point bar

10 Concluding Remarks

A systematic method for modeling asymmetric point bar geometries has been
proposed. The method incorporates a computationally inexpensive gridding scheme
that accounts for the point bar curvilinear architecture. The inexpensive gridding
scheme incorporated in the workflow makes the proposed method a promising tech-
nique for modeling point bars, especially when a flow simulation study is to be
conducted on a large ensemble of point bar models.
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Application of Reinforcement Learning
for Well Location Optimization

Kshitij Dawar , Sanjay Srinivasan , and Mort D. Webster

Abstract The extensive deployment of sensors in oilfield operation and manage-
ment has led to the collection of vast amounts of data, which in turn has enabled
the use of machine learning models to improve decision-making. One of the prime
applications of data-based decision-making is the identification of optimum well
locations for hydrocarbon recovery. This task is made difficult by the relative lack of
high-fidelity data regarding the subsurface to develop precise models in support of
decision-making. Each well placement decision not only affects eventual recovery
but also the decisions affecting future wells. Hence, there exists a tradeoff between
recovery maximization and information gain. Existing methodologies for placement
of wells during the early phases of reservoir development fail to take an abiding
view of maximizing reservoir profitability, instead focusing on short-term gains.
While improvements in drilling technologies have dramatically lowered the costs of
producing hydrocarbon from prospects and resulted in very efficient drilling oper-
ations, these advancements have led to sub-optimal and haphazard placement of
wells. This can lead to considerable number of unprofitable wells being drilled
which, during periods of low oil and gas prices, can be detrimental for a company’s
solvency. The goal of the research is to present a methodology that builds machine
learning models, integrating geostatistics and reservoir flow dynamics, to determine
optimum future well locations for maximizing reservoir recovery. A deep reinforce-
ment learning (DRL) framework has been proposed to address the issue of long-
horizon decision-making. The DRL reservoir agent employs intelligent sampling
and utilizes a reward framework that is based on geostatistical and flow simulations.
The implemented approach provides opportunities to insert expert information while
basing well placement decisions on data collected from seismic data and prior well
tests. Effects of prior information on the well placement decisions are explored
and the developed DRL derived policies are compared to single-stage optimization
methods for reservoir development. Under similar reward framework, sequential well
placement strategies developed using DRL have been shown to perform better than
simultaneous drilling of several wells.
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1 Introduction

In recent decades, there has been a renewed interest in the decision-making process
for optimal well placement. The reasons for this are twofold. First, there has been a
proliferation in the amount of data collected during reservoir development that can
help guide the decision-making process. Second, improvement in transistor tech-
nology has enabled the use of artificial intelligence algorithms for utilizing data
collected to maximize recovery. These improvements in computer technology have
led to faster and computationally cheaper flow simulations leading to the considera-
tion of various scenarios that represent uncertainty in underlying reservoir properties.
In addition, the faster computers also facilitate the training process that is intrinsic
to most machine learning methods.

Due to improvements in horizontal drilling technologies, several unconventional
reservoir plays have been rendered profitable. The optimal method to maximize
economic return from these assets is through the strategic placement of wells in
high productivity zones, minimizing the number of wells required for the efficient
recovery of hydrocarbons from the reservoir. Optimal well placement also empha-
sizes strategic extraction of knowledge about the subsurface which in turn promotes
the development of superior reservoir models, reducing the uncertainty in future well
placement decisions.

Early methods for well location optimization focused on considering wide vari-
eties of constraints for adjoint ormixed-integer optimization.These constraintswould
include geologic uncertainties, cost estimates, fluid properties, facilities etc.Methods
such as mixed-integer programming have been used to optimize the placement of
well locations [1–3] by expressing the objective function as a linear combination of
the variables. These methods have the advantage of being fast and give an easily
interpretable solutions to the problem. But these optimization techniques fail to
characterize the highly non-linear relationships between reservoir variables, and
between these variables and the dynamic response. Gradient-based optimization
methods allow for the inclusion of non-linear relationships between variable and
rely on the computation of the gradient of a prespecified optimization function. The
adjoint-based formulations for gradient-based optimization allows for the simpler
interpretation of the constraints and allows for the identification and isolation of the
interesting well regions in the reservoir [4]. It has the added advantage of leading
to faster convergence as compared to other gradient methods while being highly
versatile and interpretable. These methods allow for the inclusion of diverse deci-
sions variables and are usually combined with conventional flow simulation. As the
well placement problem is inherently a dynamic programming problem, any increase
in the range of decision-variables leads to an exponential increase in the range of
choices that need to be considered for the placement problem. This also leads to an
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increase in the number of flow simulations that need to be considered for the opti-
mization problem. Due to the computational costs, these methods utilize ingenious
approaches to reduce the search space, but they are heavily reliant upon the definition
of the adjoint equation.

One of the most popular methods for well location optimization is the use
of population-based optimization algorithms, more specifically Genetic algorithms
(GA). GA based optimization aims to replicate the process of natural selection in
a control environment. They function by initializing a population of candidate well
locations and evaluating the value of the objective function (also known as deter-
mining the fitness of the population). The ‘fittest’ wells are then selected for the
reproduction step in which new wells will be determined by utilizing ‘mutations’
and ‘crossovers’. Bittencourt and Horne [5] introduced GA to the oil and gas domain
for the purpose of well location optimization. Their approach aimed to reduce the
search space by using Tabu search [6, 7]. To include geostatistical inputs into the GA
formation, several authors [8, 9] have included kriging into their framework. This
helped improve the interpretability of GA results at the cost of increased computa-
tional requirement. Other authors have conducted studies into the explanatory power
of GA and on the effect of hyper-parameters [10], extensions to horizontal wells [11]
and gas-condensates [11, 12] etc. GA-based algorithms rely on sampling-based opti-
mization, but the approach is plagued by issues, such as, non-optimality of solutions,
vast number of hyper-parameters, high computational costs for evaluating candidate
well locations.

Metrics such as productivity potential maps [13] can be extremely useful in
speeding up the evaluation of the well locations. In addition, research into use of
neural networks for forecasting production [14] and developing earth models [15,
16] can be included in the proxy model formulation to develop a holistic view of
the uncertainty in the reservoir properties while doing away with the need for full
flow simulations. These deep learning models enable the use of transfer learning [17]
accelerating the training process. In addition, these transfer learning models can be
built independently by private oil and gas companies in conformance to their policy
of data privacy.

The field of reinforcement learning is uniquely positioned to address dynamic
programming problems. With recent advancements in the use of deep learning for
functional approximations of reinforcement learning solutions, the applicability of
the DRL methods have skyrocketed. Some of the popular uses include playing chess
[18], controlling robots [19], improving cybersecurity [20] etc. A key insight into the
use of reinforcement learning for well location optimization is that these methods
have been extensively utilized for addressing multi-stage decision-making under
uncertainty. Recent application of reinforcement learning to the field of geosciences
include slope stability analysis for landslide prevention [21] and for determination of
the first arrival for seismic image processing [22]. Extensive research into improving
the sampling [23], memory buffers [24], addressing biases [25, 26] etc. has led to
improved applicability of DRL for problems previously perceived to be too large and
too complex to be addressed by reinforcement learning.
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Here, we show the application of reinforcement learningmethods to the well loca-
tion problem. In Sect. 2, we take an in-depth look into the theory of the reinforcement
learning algorithms applied in the research. Section 3 discusses the well location
problem and highlights the applicability of the reinforcement learning approach
to addressing the problem. Section 4 demonstrates the application of reinforcement
learning to two case studies. The first case studies address the optimization of wells in
a 2-D reservoir while Case 2 addresses the optimization of a 3-D reservoir. Sections 5
and 6 focus on the discussions on the case studies and provide concluding remarks.

2 Theory

Reinforcement learning involves an agent (or a decision maker) interacting with
its environment E , usually formulated as a Markov decision process (S,A, T, r, γ )

[27] with state space S, action space A, reward r , transition function T (s ′|s, a) and
discount factor γ ∈ [0, 1]. At each time step t , the agent takes an action a ∈ A in
state s ∈ S and transitions to state s ′ while receiving a reward r

(
s, a, s ′) ∈ R. The

goal of the agent is the maximize the expected cumulative discounted future reward,
or return, Rt = ∑T

t ′=tγ
t ′−t rt , where T is the time-step at termination. The maximum

expected return achievable by following any strategy, after being in state s, and then
taking some action a is defined as the optimal action-value function Q∗(s, a). It can
be mathematically represented as,

Q∗(s, a) = max
π

E[Rt |st = s, at = a, π ] (1)

where, π : S → A is a policy mapping states to actions. It defines the mechanism
by which the agent selects an action at state s. If Q∗(s ′, a′) has been determined for
all possible action a′, then the optimal policy would be to select the a′ that would
maximize the expected value of the future reward, r + γ Q∗(s ′, a′). The optimal
action-value function obeys the Bellman equation [28].

Q∗(s, a) = Es ′

[
r + γmax

a′ Q∗(s ′
, a

′)|s, a
]

(2)

The γmax
a′ Q∗(s ′, a′) term in the equation highlights the consideration of future

actions in future states on the determination of the value of the current action.

max
s ′,a′ Q

∗
(
s

′
, a

′) ≥ 0 → Es′

[
r + γmax

a′ Q∗
(
s

′
, a

′)|s, a
]

≥ E[r] (3)

This differentiates DRL from conventionally employed optimization tech-
niques which instead focus on the maximization of immediate expected
reward. We can then determine the action-value function iteratively, Qi+1 =
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E

[
r + γmax

a′ Qi
(
s ′, a′)|s, a

]
. When the action-value function converges to Q∗, the

optimal policy can then be determined, π∗ = argmax
a′ Q∗(s ′, a′). This convergence

usually takes place when the state-action space has been thoroughly sampled. One
way to determine a new policy from an action-value function is to act ε-greedy with
respect to the action-values i.e., taking an action with the highest action value with
a probability of 1 − ε, and taking a random action with a probability of ε. By intro-
ducing ε component, exploration is introduced i.e., a sub-optimal action-value may
be selected with the objective of sampling the action-value space more broadly. The
expectation is that the agent will then be able to improve upon its value function
estimates. During the initial training of the DRL algorithm, a high ε allows for better
exploration of the state-action space. As the RL algorithm learns more about the
environment, a lower ε would allow for fine-scale refinement to the action-value
function. Q-learning, a form of temporal-difference (TD) [29] learning, is frequently
used to estimate the optimal action values. Usually, due to the computational require-
ments associated with sampling each state-action pair, functional approximators are
utilized to estimate the action-value function, e.g., Deep Q-Network (DQN) algo-
rithm [30] uses neural networks as functional approximators. The action-value func-
tion is approximated using the neural network (or Q-network) with parameters θ .
The Q-network is trained by minimizing the loss function Li (θi ) at every iteration i ,
described by the following equation:

Li (θi ) = Es,a

[(
Es ′

[
r + γmax

a′ Q
(
s ′, a′; θi−1|s, a

)] − Q(s, a; θi )

)2
]

(4)

To optimize the performance of the neural network, mini batch stochastic gradient
descent can be conducted [31]. Under this approach, the NN parameters are updated
considering a stochastic approximation (using vectorization) of the gradient of the
loss function. To improve convergence with the functional approximator, an experi-
ence replaymemory can be generated inwhich agent’s experience (st , at , rt , st+1) are
stored at every time step. The Q-learning updates are then conducted using random
mini-batch samples from the memory. The mechanism for the update of the neural
network parameters θ is given as:

�θ = α

[
r + γmax

a′ Q
(
s ′, a′; θ ′)

]
∇θ Q(s, a; θ) (5)

The target in the loss function is dependent on the trained neural network weights
from the previous iteration and can change over multiple iterations. Hence, as the
neural network minimizes the loss after every training step, there is an update to
the neural network parameters θ which leads to the target, Q(s, a; θi ), changing or
‘moving’ as well. This problem of moving targets can be addressed by dissociating
the training of the target and the estimate by using separate neural networks. In the
above equation, the learning rate, α, controls the change in the model weights to the
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estimated error. Hyperparameter tuning is conducted to control the learning rate, but,
usually, a smaller α leads to convergence to optimal weights, this comes at the cost
of longer training time.

Another issue with the DQN formulation is the overestimation bias in the maxi-
mization step. This can lead to poor learning. One way this issue can be addressed
is by decoupling the selection of the action from its evaluation. This is known as
Double DQN or DDQN [25] and the new target is,

Yi = r + γ Q

(
s ′, argmax

a′ Q
(
s ′, a′; θi

); θ ′
i

)
(6)

The selection of the action is due to the online weights θi and the second set of
weights θ ′

i is used to evaluate the value of the policy. The weights θ ′
i are updated by

switching the roles of the target and the value network. The updates to the weights
θ ′
i are conducted after every τ steps to prevent the problem of moving targets.

3 Well Location Problem

During the early phases of reservoir development minimal information regarding the
reservoir properties is available leading to decision-making for reservoir develop-
ment under uncertainty. This problem of placing wells sequentially in an uncertain
environment can be formulates as be a Markov decision process. A reservoir DRL
agent can be trained to solve the problem of the optimal exploitation of the reservoir
resources.

In the early phases of reservoir development, well data is not available and seismic
data forms the basis for any decision-making. Existing geostatistical techniques such
as stochastic simulation can be utilized to generate multiple reservoir realizations
using seismic data as secondary data. These reservoir realizations reflect the uncer-
tainty in the reservoir properties that are simulated conditioned to little to no hard data.
Also, inmany cases the semi-variogram inferred andmodeled based on the secondary
data does not accurately represent the spatial trends in the reservoir property being
simulated. In these situations, inputs from geologists, petro-physicists and reservoir
engineers are critical for accurately identifying trends in reservoir properties.Usually,
the reservoir models guide the well placement decisions and the additional informa-
tion derived, after conducting well surveys, is used to update the reservoir models.
With additional data regarding the reservoir becomes available, the uncertainty in
reservoir properties reduce which in turn allows for better decision-making.

This forms the framework for training the reservoir DRL agent (see algorithm in
[25]). The agent starts in an unexplored state, i.e., in a state where no well data is
available, with the goal of maximizing the cumulative hydrocarbon production after
the placement of N wells. This ensures that the problem is of the fixed-horizon type
i.e., the end-state is well defined. At any given time, the reservoir DRL agent can act
by placing a well at a valid location. After the action selection, the reservoir DRL



Application of Reinforcement Learning for Well Location Optimization 87

agent receives information regarding the petrophysical properties at the drilled point
and a reward reinforcing the goodness of the action selected.

The paper presents a simplified approach for addressing uncertainty in reservoir
properties by focusing on the lithofacies as an indicator of the goodness of a selected
action. The reason for this is two-fold: first, there have been several studies conducted
emphasizing the relationship between lithofacies and other petrophysical properties
such as porosity and permeability [32–38]; second, categorical variables like litho-
facies can dramatically reduce the state-space in the DRL formulation. The reservoir
DRL agent attempts to placewells in high productivity regions and balances the addi-
tional information gained by placement of a well against the economic profitability
due to the hydrocarbon resources extracted from the selected regions.

Several case studies have been conducted to test the efficacy of the recommended
policies and the robustness of the policies to initial assumptions about the reservoir.
The goal of the DRL agent is not to present the best policy for all given combinations
of assumptions regarding the geo-spatial distributions of the lithofacies. Training
an DRL agent requires several assumptions regarding the development of reservoir
models and the role that experts in the field of geology, petroleum engineering and
earth science play in the decision-making process. Errors in the decisions taken to
build the ensemble of reservoir models will affect the developed policies.

4 Case Studies

Case 1A focuses on the application of DRL for determination of optimal policy using
Double Deep Q Network (Double DQN or DDQN). Cases 1B, 1C and 1C_alternate
focus on the applicability of the developed policy in cases where the initial assump-
tions regarding the reservoir were flawed. The neural network architecture and the
hyperparameters for the simulations can be found in the appendix. The process flow is
demonstrated in Fig. 1 considering various pathways for simulating the environment.
The update to the prior probabilities of pay-facies is crucial to the determination of
the optimal policy. There are several methodologies to conducting this update.

1. Using fast-variogram computations and generating an updated ensemble of reser-
voir realizations. This method is the slowest but would yield the most statistically
accurate updates.

2. Using initial ensemble to derive correlation between locations and using data
assimilation tools, such as Ensemble-based Kalman filtering (EnKF) to update
reservoir realizations. This method requires some preprocessing to derive
necessary statistics and relies on a multi-Gaussian assumption.

3. Using individual realizations for DRL training in each episode. This is the most
computationally efficient method of training the DRL agent. This presumes that
the initial ensemble has within it a set of models that are consistent with the
extracted new information. Thus, updates of the initial ensemble of reservoir
realizations would be not required. This is the most computationally efficient
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Fig. 1 Workflow for determination of optimal policy for exploiting the reservoir using reinforce-
ment learning

method for deriving the policy though it relies on the exhaustive characteris-
tics of the initial set of reservoir realizations. This approach also allows for the
parallelization of the learning process (Table 1).

For the case studies, the dynamics of the environment is simulated by considering
a randomly selected reservoir realization for every episode (one pass through the
training process, from the initial unexplored state to the terminal state) from the

Table 1 Single stage optimization algorithm

Place first well in location with highest ensemble pixel-wise average (maximum 

probability) of pay-facies;

for = 2 do
= locations where, pixel-wise average of pay facies at location =

Max ((pixel-wise average of pay-facies from remaining possible well locations)-

(well constraint penalties));

if card(A)=1, then
Place well in location ;

else 
Place well in location ( ) where sum of pixel-wise average of pay-facies of 

grids surrounding ( ) is maximum card(A)=1 card(A)=1 ;

end
end
Conduct gradient descent by perturbing well locations until converges
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initial ensemble generated using seismic data. Using a lookup table (with the facies
values stored for the selected realization) allows for fast computation of the next state
and reward that is delivered to the reservoir DRL agent. The encoding of the state
and the determination of the reward function are vital to the implementation of the
deep reinforcement learning algorithm. The state encodes new information gained
by placing a well in a reservoir. This information can be well log data, production
data, core analysis information etc. Information regarding the lithofacies at the drilled
location has been considered for the case studies presented here. This information
can be encoded as a vector in two ways.

1. As a vector consisting of facies information at all grid points including place-
holders for grid points where the information is not available. This formulation
is efficient in cases where the reservoir is discretized into few grid points.

st = ( f1, f2, . . . , fn) (7)

where fi represents the facies at the ith grid point.
2. As a vector consisting of well location and determined facies at drilled well loca-

tions. This formulation works better for large reservoirs discretized into several
grid blocks.

st = (x1, x2, . . . , xN , y1, y2, . . . , yN , f1, f2, . . . , fN ) (8)

where xi , yi and fi represent the x-coordinate, y-coordinate, and facies at the ith
grid point.

The latter formulation has been considered for the case studies. Recent research
into deconvolutional neural networks [39] have shown their efficacy for the exten-
sion of point information in multi-dimensions to regions where the information is
unavailable and/or uncertain [40, 41]. Though this has not been explored in the
current research, the authors aim to explore this in future work.

The agent receives a reward determining the desirability of placing the well at
the grid location and as described earlier the reservoir DRL agent’s sole goal is to
maximize the cumulative expected reward over N well placement decisions. The
definition of the reward function dictates the key criterion that the reservoir DRL
agent will focus upon to optimize the well location. Though running full physics
flow simulations to compute the reward is most accurate with perfect information
regarding the subsurface, it is computationally infeasible after the placement of every
single new well in an episode. Hence, a proxy linear regression model has been
developed to return a reward to the reinforcement learning agent.

Several factors affect the desirability of well location, such as the facies at the
well location, facies of surrounding grid blocks, distance to other wells, distance
to the reservoir boundary etc. The proxy model was developed by conducting flow
simulations for several reservoir models keeping the fluid properties constant and
varying the prespecified parameters. The correlation between the variables and the
target variable, the total hydrocarbon output, has been shown in Fig. 2.
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Fig. 2 Correlation heat map between well location and facies connectivity parameters and well
production

The following regression equation is used as a proxy for the flow.

C0 + Cw f ac Xw f ac + Cnh f ac Xnh f ac + CbXb + CwPPM XwPPM = reward (9)

w f ac = facies of grid at well location,
nh f ac = facies of grids in the neighborhood grids,
b = distance to the reservoir boundary,
wPPM = productivity potential metric to account for well spacing.

It is to be noted that the developed proxy model assumes a linear relationship
between the variables. This allows for the faster computation of the reward function.
Non-linear reward functions accounting for the non-linear relationships between
reservoir properties and fluid production will provide more refined reward results
and such relationships can be accounted for with the use of deep learning models,
though this has been left for future research. Also, the reward function lends to
the addition of expert information regarding the reservoir into the reinforcement
learning framework. Expert information can be incorporated into the reward function
by modifying the relationships between the input variables (facies in the case studies
considered in this paper) and the reward derived, for e.g., well pattern constraints
can be enforced by penalizing wells that are not in desired pattern.

The effect of overlapping influence of neighborhood wells on the production of
a placed well is included in the proxy model in the form of Productivity Potential
Maps (PPM). The regression equation for reward is developed by conducting flow
simulations considering various well locations across various reservoir realizations
conditioned to the initial seismic data. Reinforcement learning based methods allow
for infinite customization of the optimization of well location through the modifica-
tion of the state definition, action space and most importantly the reward function. In
this research, we have implemented the ε-greedy policy which involves the selection
of the action associated with the highest action-value function with a probability
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of 1 − ε and a random action with a probability of ε. Other choices for the explo-
ration (or behavioral) policy include Boltzmann policy, Boltzmann Gumbel policy
[42], SoftMax policy [43] etc. Our selection of the ε-greedy policy is based on its
ease of application and low memory requirements as compared to other choices of
behavioral policy.

The reward function optimization of a 2-D reservoir needs to account for informa-
tion from surrounding grid points, but the formulation of the state vector includes the
facies and coordinates of the well location only. For the optimization of a 3-D reser-
voir, the state formulation needs to account for the facies of individual grid points
across the vertical section of the reservoir as a simple aggregation of the facies along
the well path will lead to loss of vital information regarding the distribution of facies
across the horizontal layers and the correlation of facies between reservoir layers.
Another point to consider is the greater variety of potential well paths that can be
drilled in a 3-D reservoir (inclined and lateral wells), but the inclusion of non-vertical
well paths leads to a combinatorial explosion and has been discussed in [44] but is
not included here for the sake of brevity.

The choice of number of decision-stages can also have an adverse effect on the
computational time. In case of singlewell placement decision-stages, theRLproblem
will have to account for the value function of nPk grid points where k is the total
number of wells and n is the total number of possible initial well locations. For
the case studies considered, the number of wells selected has been set to 5 (placed
in sequential decision-making stages) which allows for an interesting comparison
of DRL with single-stage optimization techniques while being computationally
efficient.

Case 1A considers a 2D reservoir (25× 25 grid points) shown in Fig. 3 with initial
seismic impedance map shown in Fig. 4. The regions in red represent pay facies
regions (encoded as 1 in the DRL state function) and the ones in purple represent
the non-pay facies (encoded as 0). As evident from the figures, the base reservoir
realization has 3 distinct pay facies regions (represented by the three red bands). The
upper channel is not well represented in the seismic impedance map while the lower
2 channels are slightly displaced in the seismic map. The issue of lack of precision
of seismic data is frequently encountered in reservoir characterization and reservoir
modeling methods need to be able to identify such translations and diffusions of
features.

The goal of the reservoir DRL agent is to maximize the cumulative rewards for
the placement of 5 wells sequentially. An initial ensemble of 1000 reservoir realiza-
tions is generated using sequential indicator simulation using locally varying mean
by utilizing the seismic data as secondary data. The size of the ensemble used to train
the agent is a compromise between processing time and realized reward (as discussed
in [44]). Recognizing that and adequate ensemble is necessary to reach an optimum
reward, we selected an ensemble size of 1000 realizations. The suite of reservoir
models generated are unconditional (no hard data is available) but, importantly, the
reservoir realizations generated adhere to the distribution of pay facies probabili-
ties developed using the seismic impedance maps. The reservoir realizations can
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Fig. 3 Original reservoir
lithofacies for Case 1A

Fig. 4 Seismic impedance
map for Case 1A

be made geologically realistic, and this process can be further improved by consid-
ering expert information regarding the subsurface. This would then enable the use of
training images for multi-point simulation using locally varying mean data [45]. As
mentioned earlier, the assumptions governing the ensemble generation process can
have dramatic effects on the policy that the DRL agent eventually converges to. The
DRL agent attempts to identify the trends in channel connectivities in the reservoir
models assuming that the channels are the preferred pay facies in the reservoir.

The pixel-wise average of pay-facies across reservoir realizations is shown in
Fig. 5. The reservoir DRL agent is trained following the methodology shown in
Fig. 1 and is then compared to a single-stage optimization policy. The single-stage
policy maximizes the reward over the placement of the 5 wells by placing wells
in the grid points with the highest probability of locating a pay-facies region (the
same reward function formulation is considered for both single-stage optimization
technique and the DRL technique) and is shown in Fig. 6. As evident by this simul-
taneous well placement policy, general trends in the seismic impedance are used to
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build a mechanism to exploit the reservoir. In the case where the initial assumptions
regarding the reservoir are incorrect (due to imprecision and translation of features),
this short-horizon policy would suggest well placements that are not profitable and
can skew the expectation of optimality (as evident by the placement ofWell 4 in non-
pay facies region). In addition, due to the incremental nature of geospatial analysis,
future information is not considered for present decision making.

Figure 7 demonstrates the manner in which the reservoir DRL agent is trained
to address the problem. The figure shows the increase in the cumulative return with
increasing number of episodes the agent is trained. The expected return tapers off

Fig. 5 Pixelwise average of reservoir facies for the ensemble of models generated using sequential
indicator simulation using locally varying mean

Fig. 6 Representation of the single-stage optimization policy (following conventional geostatistical
well placement methodologies which involve the selection of the most probable well location under
well spacing and productivity constraints) on the ground reality
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asymptotically and at this stage the policy is assumed to have converged. The asymp-
totic nature of the convergence also depends on the exploration hyperparameter ε and
requires the annealing of the parameter to transition from exploration to exploita-
tion. The trained policy has been demonstrated on the ground reality and several
reservoir realizations in Fig. 8 and Fig. 9 respectively. The sequential placement of
wells contingent upon prior wells placed can clearly be seen in the figures. Across all
reservoir realizations, the first well placed is in the same location. This is because the
initial well placement solely depends on the prior seismic data and the state encoding
contains no information regarding the reservoir facies. After the first well, the addi-
tional information from that well influences the reservoir models and the subsequent
well is placed according to the developed model.

In addition to the placement of wells in the true reservoir, it is interesting to
visualize the performance of the DRL agent on the ensemble of reservoir realizations
(as demonstrated in Fig. 10). The agent is not able to suggest perfect placement
of wells across all realizations. In most cases, the DRL agent can generate high
rewards. In a few realizations, the wells are placed sub-optimally (for ~12% of the
realizations). The placement of subsequent wells depends upon the results of the

Fig. 7 Moving average
cumulative reward per
episode for Case 1A

Fig. 8 Well placement
based upon policy generated
by DRL agent
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Fig. 9 Policy demonstrated on selection of realizations from the ensemble generated using indicator
simulation

reservoir property analysis at the given well location. For a 2D binary facies case
with the objective of placing 5 wells, there are at most 16 facies combinations at

the well locations
(
nnwells−1
f acies

)
generated and the developed policy must account for

the same. The process for determination of the optimal policy is similar to pruning
the leaf nodes in a decision tree. Figure 11 demonstrates the process for developing
the policy and the well configuration developed for the ground truth case has been
highlighted. As the major channel is aligned at 45◦ with respect to the horizontal,
successful wells are placed with coordinate where x ≈ y. When the DRL agent
initially fails to place wells in pay regions, it moves towards exploring regions where
x deviates from y (the downward facing branches of the tree).

Parameters that govern the performance of the deep Q-learning process such as
the learning rate (α), mini-batch size, replay buffer size and the exploration param-
eter can alter the learning rate and eventual policy convergence. The effects of the
hyperparameters on the developed policy, assuming the same neural network model
configuration and computational resources (2.5 GHz Intel Xeon Processor, 2 Nvidia
Tesla K80 computing modules, FDR InfiniBand, 10 Gbps Ethernet), is shown in
Table 2. With increase in batch size, there is a decrease in the number of episodes
required to convergence and an overall improvement in the final converged policy.
The time taken for the convergence of the policy scales nearly hyperbolically with
respect to τ , which is the number of episodes between updates to the target network
under a DDQN approach, with no dramatic reduction in the reward at convergence
of the policy.
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Fig. 10 Histogram of cumulative rewards from the developed DRL policy, tested on the ensemble
of reservoir realizations (for Case 1A)

Case 1B aims to demonstrate the dependence of the developed policy and the
training of the agent on the initial seismic information and modeling assumptions.
A diffused seismic impedance map, generated via dilation of the seismic impedance
map for Case 1A, is now considered leading to a greater uncertainty in the developed
ensemble of reservoir realizations. The seismic impedance map and the pixel-wise
average of pay-facies is shown in Fig. 12. With the ground truth the same as in Case
1A, the pay facies probability map shows an increase in the uncertainty of pay facies
probability at all locations (demonstrated by probability values being closer to 0.5).
The reservoir DRL agent is trained on the ensemble of realizations developed using
the diffused seismic impedance map and is then tested on the ground model.

The histogram of the reward distribution for this case is shown in Fig. 13. The
result shows that the newmodel performs worse than the other ensemble of reservoir
realizations generated using the more precise seismic map. As the DRL agent bases
the policy on reservoir realizations generated by modelers and attempts to mimic
human decision-making, with the increase in uncertainty regarding the position of
channels there is a reduction in the quality of policy developed.

Another significant difference is the computational speed that results from consid-
ering more precise information. There was a 19.8% increase in computational time
required for convergence of the policy when considering the ensemble of models
generated conditioned to less precise seismic information. This is because the DRL
trains on markedly different realizations from one case to the next (high uncertainty
in the pay facies probability). Figure 14 shows the developed policy tested on the
ground truth. The wells are placed further apart as they were trained considering
realizations in which the pay facies are aligned roughly in the 45◦ azimuth direction.
However, there is no guarantee that the wells are placed in regions of high channel
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Fig. 11 Policy for exploitation of the reservoir (NP representing that the placed well is a non-pay
facies region and P represents pay facies region). The coordinates of the next well have been shown
within the boxes

connectivity in individual realizations due to the high uncertainty associated with the
realizations.

Cases 1C and 1C_alternate considers the robustness of the training to faulty inter-
pretations of channel orientation from seismic data. The goal in this case is to demon-
strate the variation in the generated policy with increasing uncertainty associated
with detected seismic features. The seismic impedance map from Case 1A is consid-
ered along with two other seismic impedance maps (shown in Fig. 15). These maps
contain the main channel oriented at 35◦ and 15◦ with respect to the x-axis (the
original seismic has the main channel oriented at 45◦ with respect to the x-axis)
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Table 2 Effect of
hyperparameters on the
convergence of the final
policy in terms of the quality
of the developed policy
(demonstrated using the
converged cumulative reward)
and the computational time

Batch size τ Convergence time (s) Reward at
convergence

64 1 2157.5 4873.5

4 677.3 4868.9

16 308.4 4430.8

128 1 2211.8 4953.4

4 684.7 4887.0

16 309.4 4681.5

256 1 2246.0 5011.1

4 683.1 4977.2

16 307.9 4906.4

Fig. 12 Seismic impedance map for Case 1B showing diffused channel case and the pixel-wise
average of pay-facies across the ensemble of reservoir realizations. Consider this against the crisper
channel description in Case 1A

Fig. 13 Histogram of
cumulative rewards from the
developed deep DRL policy
trained using the ensemble of
reservoir realizations
generated using the diffused
channel seismic impedance
map, tested on the ensemble
of reservoir realizations (for
Case 1B)
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Fig. 14 Well placement on
ground truth suggested by
DRL agent trained using the
ensemble of realizations
generated conditioned to the
diffused seismic data

and will be used to generate two distinct sub-cases labeled 1C for the 35◦ seismic
and 1C_alternate for the 15◦ seismic. The seismic impedance maps for Cases 1C and
1C_alternatewere generated by rotating individual sections of the seismic impedance
map for Case 1A by the prescribed angle followed by diffusion to blend in the gaps.
The pixel-wise average of the pay facies across the ensemble of generated realizations
have been shown in Fig. 16. By training the DRL agent on these variations of pay
facies map, the effect of initial assumptions on the developed policy is demonstrated.
In addition to demonstrating the developed policy on the ground truth model (shown
in Fig. 17), the histogram of episode rewards for the application of the DRL agent
on the realizations developed using the seismic impedance maps has been shown in
Fig. 18. As the channel orientation starts deviating significantly from the orienta-
tion in the “ground truth” model (from 10◦ deviation in Case 1C to 30◦ deviation
in Case 1C_alternate), the developed policy performs worse. The wells may end up
getting placed in the non-pay regions. In both the sub-cases the reservoir DRL agent
attempts to place the wells in the orientation of the major channel in their trained
ensemble. Though the policy developed for Case 1C enables the agent to place wells
in pay facies regions, these wells are placed in the periphery of the major channel.
In Case 1C_alternate, the first well is placed in a non-pay facies location followed
by 3 wells placed in pay facies regions. This leads the agent to falsely ‘believe’ that
Well 1 was an anomaly and the major channel may yet be found at 15◦ orientation
with respect to the x-axis. This is ultimately proven false with the 5th and final well.
Hence, the initial assumptions upon which the ensemble of reservoir realizations are
built can have a dramatic effect on the eventual policy developed with the associated
error increasingly significantly if models are conditioned to incorrectly interpreted
information. This is crucial to demonstrate that the DRL agent attempts to mimic
human decision-making and falls to the same pitfalls as decision-makers would if
poor reservoir models are used to guide the decision-making.

Case 2 considers the placement of vertical wells in a 3D reservoir (100×120×10).
The 3D case considers the Stanford V reservoir with the goal of placing 5 vertical
wells in anuncertain environment. To extend the 2Dcase to a 3Done, amodification is
made to the state vector representation. The facies at thewell location can represented
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Fig. 15 Seismic impedancemaps for Cases 1C on the left and 1C_alternate on the right considering
imprecise seismic data that incorrectly identifies the channel angle

Fig. 16 Pixel-wise average of pay facies across the ensemble of reservoir realizations generated
using seismic data that do not reflect the correct channel orientation for Case 1C (left) and Case
1C_alternate (right)

Fig. 17 Developed policy demonstrated on the ground truth for Cases 1C and 1C_alternate
respectively
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Fig. 18 Histogram of cumulative rewards from the developed DRL policy trained using the
ensemble of reservoir realizations generated using the rotated channel seismic impedance map,
tested on the ensemble of reservoir realizations generated using the original seismic data for Cases
1C and 1C_alternate, respectively

as an aggregate of facies encoding at all grid blocks contacted by the vertical well.
While treating the 3D model as a stack of 2D models require less computational
resources for the determination of the optimal policy, that assumption may result
in the failure to capture the facies spatial correlations between different z-slices.
The 3D formulation addresses this deficiency albeit at the expense of additional
computational resources.

The ground truth and the pixel-wise ensemble of reservoir realization are shown
in Figs. 19 and 20. Using the process workflow shown in Fig. 1, the DRL agent
efforts to maximize the cumulative expected reward. The 3D formulation converges
to a better policy than the case with multiple stacked 2D layers. This is due to the
better representation of spatial correlation between reservoir layers. It is clear from
the ensemble average map in Fig. 20 that the stochastic realizations conditioned only
to the seismic impedance information do not depict the channel trends in the ground
truth model accurately. The major channel features are displaced to the northern part
of reservoir in Fig. 20 and several key high productivity regions are also consistently
missing in the generated ensemble. Though in real-world cases experts add infor-
mation to the ensemble generation process in the form of prior geologic constraints,
the current work has deliberately not attempted to do so, to not introduce bias in the
generated ensemble. Constraints such as well productivity, reservoir boundary and
channel connectivity have been considered in this formulation.

Figures 21 and 22 demonstrate the well locations corresponding to the optimum
DRL policy and single-stage optimization policy respectively on the ground truth.
Due to the uncertainty represented in the ensemble, the second and third wells in the
optimum DRL policy are placed in an unproductive region (in high probability pay-
facies region in the ensemble as seen in Fig. 20). Thewell placement policy generated
using DRL shows a gradual update to the beliefs regarding the pay facies location.
TheDRL algorithm learns about the non-existence of high productivity regions at the
location ofwells 2 and 3 and applies that knowledge to the placement ofwells 4 and 5.
These wells are located well within channel regions. In the single-stage optimization
policy (implementing the gradient-based optimization considering the same reward
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Fig. 19 Pixel-wise addition
of the ground truth for Case 2

Fig. 20 Pixel-wise average
of pay facies (standardized
by dividing the number of
layers) across layers
averaged over the ensemble
of reservoir realizations
generated for Case 2

formulation as the DDQN method), every single well placement has an exaggerated
effect on the beliefs regarding the location of channels and well placement oscillates
wildly from one region of the reservoir to the next. In real-world scenarios, field
development decisionsmay involve the initial drilling of an exploratorywell and then,
depending on the observation of reservoir properties at the well location, decision
would be taken to either step out and drill an offset well near the first well or, in
case the first well happens to be dry, to explore a different region of the reservoir.
While the single-stage optimization policy and theDRL policy derivewell placement
strategies with similar overall reward, DRL policy demonstrates a policy that mimics
this human decision-making process. As mentioned in Sect. 2, RL techniques are
guaranteed to deliver the optimal well placement policy and outperforms techniques
that do not account for future actions when applied to multi-stage well location
optimization problems only when the value functions for all state-action pairs are
accurately quantified. The similarity of performance between the single-stage and
DRL policies can be attributed to the early termination and incomplete exploration
of the state-action space by the DRL agent. Future research will attempt to quantify
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the variation in the total reward with increasing well placement decision-stages. This
will aid in the quantification of the advantages/disadvantages of human-mimicry in
well placement policies. The efficacy of the DRL model has been also demonstrated
in another 3-D case study which can be found in [44].

To extend the formulation to continuous state properties, such as permeability,
porosity etc., and continuous action properties, such as well operating conditions,
greater granularity in well location, optimization of horizontal well trajectory etc.,
the existing reservoir formulation can be modified to include such features into
the reward function. Proxy model to evaluate such actions can also be developed.
Another avenue forward is to utilize policy gradient methods [46] to directly estimate
the optimal policy without evaluating the value functions. These extensions would
speed up theDRLprocess albeit at the cost of some loss in optimality of the developed
policy. These improvements will be the areas of study for future research.

Fig. 21 Demonstration of
the developed DRL policy on
the ground truth in the 3-D
reservoir case

Fig. 22 Demonstration of
the single-stage optimization
policy on the ground truth in
the 3-D reservoir case
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5 Discussion

Through the case studies presented in this paper, the authors aim to demonstrate
the applicability of reinforcement learning for well location optimization. The paper
also presents the pitfalls of poor modeling assumptions that result in sub-optimal
well placements. It is evident that, through intelligent sampling, DRL agent can
identify high-productivity reservoir regions accounting for constraints in well place-
ment. The effectiveness of reinforcement learning as compared to other well location
optimization techniques include,

1. The ability to consider expert information and ease of integration with existing
procedures for well location optimization.

2. Taking a long-term view to the well placement problem. Algorithms for well
optimization studied in literature take a short horizon view to tackling the well
problem, not accounting for the information gained fromplacing awell.Doing so,
in the traditional workflows would require retraining after every well placement
action.

3. The ease of integration of optimization methods with existing deep learning
infrastructure. The field of reinforcement learning is one of the biggest benefi-
ciaries of the improvements in research into deep learning.

4. Policy gradient methods can aid in the consideration of continuous state-action
spaces leading to consideration of diverse set of reservoir properties. Though
this comes at the expense of the loss of guarantee of an optimal solution, policy
gradient approximations can deliver excellent solutions to the problem at hand
if computational resources are scarce.

The authors plan to study policy gradient methods and extend the current formu-
lation to account for the placement of horizontal wells. A comparison between the
results developed using temporal difference (TD) methods (as shown in the current
work) and policy gradient methods can lay the path for further studies into the use
of reinforcement learning for well location optimization.

Reinforcement learning is not a panacea and would not solve all issues associated
with the well placement problem. Some of the limitations of reinforcement learning
include,

1. Its inherent dependence on the assumptions behind the modeling of the envi-
ronment (which dictates the transition probabilities, T (s ′|s, a), leading to
the development of sub-optimal policies if based on unrealistic modeling
assumptions.

2. Its high computational expense. It is suitable formulti-step optimizationproblems
but not recommended for single-stage optimization problems.

3. Its need for proxies for the reward to speed up evaluation of candidate wells (or
actions in a particular state). This is because full reservoir simulation for each
well placement decision can be computationally expensive.

4. Its low interpretability due to the utilization of deep learningmodels as functional
approximators.
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6 Conclusion

Reinforcement learning is useful to find the optimal solutions of multi-stage decision
problems, especially those for which there are feedforward effects of decisions i.e.,
future decisions are affected by decisions taken in past stages. Due to the compu-
tational intensity of the application of RL, it may not be useful for single-stage
optimization problems or for problems with extremely low uncertainty regarding the
state-action space.

The problem of placement of wells in an uncertain environment can be formu-
lated as a Markov decision process. The authors have demonstrated a novel approxi-
mate dynamic programming framework for addressing the problem. Reinforcement
learning provides a unique framework for automating decision-making by consid-
ering several scenarios and extending the optimal solution to the sub-problems (i.e.,
location of each well) to generate a comprehensive solution to exploit the reservoir.
Also, due to the ease of integration of expert information and reutilization of existing
tools, the policies developed using reinforcement learning provide a geostatistically
and petrophysically consistent framework for addressing the problem of optimiza-
tion of well location. By the addition of intelligent sampling techniques and the use
of approximately greedy methods for policy determination, the process of locating
wells for exploiting reservoir resources can be sped up. The work also utilizes proxy
models developed using regression and deep learning models that allow for the faster
evolution of optimum well locations. The selection of the reward function dictates
the convergence of the DRL algorithms and poor reward formulation may lead to the
development of non-optimal policies to solve the optimization problem. The paper
also presents cases that demonstrate that the policies developed using reinforcement
learning are superior to existing single-stage optimization techniques, but the quality
of solutions developed is dependent on the accuracy and precision of the priormodels
in the ensemble and on the parameters that drive the DRL process.

Appendix

Neural Network Architecture for Different Case Studies

For Case 1, themulti-perceptron consists of two hidden dense layers with 1000 nodes
each (bias excluded) and uniform Glorot uniform initializer. The activation for both
the hidden layers was rectified linear units (ReLU). The output layer had a linear
activation with the number of nodes equaling the size of the action-space i.e., 625.

For Case 2, the multi-layer perceptron consisted of three hidden layers with
1000, 3000 and 6000 nodes respectively and an output layer with 12000 nodes with
Glorot uniform activation. Activations in hidden layers were ReLU and the output
layer had linear activation and no bias.
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For all cases, the layers are fully connected. The memory buffer size is 1000
for the first case while for Case 2, the memory buffer size considered is 10,000. The
hyperparametersα, the learning rate, and τ , interval between updates, is set to 5∗10−4

and 4 respectively. Hyperparameter tuning was conducted to determine the optimum
values of α (

[
5 ∗ 10−4, 5 ∗ 10−3, 0.05, 0.1

]
) and τ ([1, 4, 16]); the respective lists

show the discrete values considered during hyper-parameter tuning. The selection
of the values for the hyperparameters was considered by trading off computational
time with the optimality of the developed policy. The exploration component ε is
annealed according to the following equation.

εN = 1

N

where N is the episode number.

Visualization of Convergence

See Figs. 23, 24, 25, 26 and 27.

Fig. 23 Learning trend for DRL agent trained on ensemble of reservoir realizations generated from
the diffused channel seismic map (Case 1B)
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Fig. 24 Learning trend for DRL agent trained on ensemble of reservoir realizations generated from
the rotated channel seismic map for Case 1C (left) and 1C_alternate (right)

Fig. 25 Convergence of the
final policy for Case 2

Fig. 26 Histogram of
rewards for testing the
developed policy on the
ensemble of reservoir
realizations for Case 2
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Fig. 27 Policy demonstrated on selection of realizations from the ensemble for Case 1B
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Compression-Based Modelling
Honouring Facies Connectivity
in Diverse Geological Systems

Tom Manzocchi , Deirdre A. Walsh , Javier López-Cabrera,
Marcus Carneiro, and Kishan Soni

Abstract In object- or pixel-based modelling, facies connectivity is tied to facies
proportion as an inevitable consequence of the modelling process. However, natural
geological systems (and rule-based models) have a wider range of connectivity
behaviour and therefore are ill-served by simplemodellingmethods inwhich connec-
tivity is an unconstrained output property rather than a user-defined input property.
The compression-based modelling method decouples facies proportions from facies
connectivity in the modelling process and allows models to be generated in which
both are defined independently. The two-step method exploits the link between the
connectivity and net:gross ratio of the conventional (pixel- or object-based) method
applied. In Step 1 a model with the correct connectivity but incorrect facies propor-
tions is generated. Step 2 applies a geometrical transform which scales the model
to the correct facies proportions while maintaining the connectivity of the original
model. The method is described and illustrated using examples representative of a
poorly connected deep-water depositional system and a well-connected fluid-driven
vein system.

Keywords Facies connectivity · Amalgamation ratio · Compression algorithm

1 Introduction

The objectives of this contribution are to demonstrate an important limitation in
object- and pixel-based facies modelling with respect to facies connectivity, and to
highlight the main features of the compression-based modelling method developed
to overcome this limitation. Further details of the method can be found elsewhere
[1–3].
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2 Connectivity in Facies Models and Natural Systems

Two different ways of considering facies connectivity are important to this work
(Fig. 1). Global connectivity refers to characteristics of the largest connected
cluster of objects and have been examined for object-based models (OBM) in the
context of percolation theory using the net:gross ratio (NTG). The simplest models
consisting of aligned cuboids have a well-defined connectivity threshold at NTGC ≈
28% [4]. Connectivity thresholds for OBM containing geometrically representative,
stationary, three-dimensional systems of more geometrically diverse [5] or geolog-
ically realistic [1, 6] elements show similar or lower thresholds (Fig. 2a), with the
lowest NTGC for systems of more anisotropic and misaligned objects. Pixel-based
models (PBM)built using the sequential indicator (SIS), or truncatedGaussian (TGS)
methods have similar thresholds as OBMs, with NTGC ≤ 28%, as do models built
using the pixel-based SNESIM multiple point (MPS) method even if the training
images used to create the models have much lower connectivity (Fig. 2b, [7]). The
inability of the SNESIM MPS method to honour the connectivity of the training
image is seldom acknowledged but is a recognised restriction of the method [3,
8–10].

These consistent thresholds at NTGC ≤ 28% in OBM or PBM have led some to
conclude that they are transportable to natural geological systems [6]. It is hard to test
this generalisation directly since it is impossible to estimate global 3D connectivity
from limited outcrop data, and very difficult to do so from subsurface data. Therefore,
local measures of connectivity such as the amalgamation ratio (AR, Fig. 1b) are
useful. AR can be measured in OBM or natural systems but not in PBM. Cross-
plots of AR versus NTG for numerous natural depositional systems show that AR
� NTG (Fig. 3a, [1, 11, 12]). This contrasts with object-based models, for which
AR = NTG if all objects are of constant thickness, or is slightly lower for variable
sized objects ([1, 2, 7], Fig. 3b). Hence, the local connectivity behaviour of OBM and
natural systems are not the same, and so it is unlikely that their global connectivity
behaviour is.

(a) (b)

Fig. 1 Local and global connectivity. a Global connectivity is determined as a function of the
properties of the largest connected cluster of objects. Here, that cluster occupies ca. 60% of the
total volume of objects, and spans entirely across the model. b The simplest definition of local
connectivity is amalgamation ratio (AR) measured in a 1D vertical sample. In this example, one of
the four object bases sampled is amalgamated with a lower object, and hence AR = 0.25
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Fig. 2 Global connectivity as a function of NTG or AR for: a object-based models. Red line:
trend line for high resolution models of aligned cuboids [4]. Black points: individual sinuous
channels models [6]. b Pixel-based models generated with different methods and assumptions.
Black: SIS. Red: TGS. Blue: SNESIM [7]. c Rule-based models. Gross trend and individual points
for lobate models generated with different erosion rules. All these models have NTG ≈0.8 [14]. d
Compression-based models with different compression factors (cF) [1]

Rule-based facies models (RMB) are created by stacking objects in stratigraphic
order using geometrical rules that mimic the depositional processes, and are recog-
nised from a qualitative perspective as being more geologically realistic than object-
or pixel-based models [13]. Both local and global connectivity can be measured in
rule-based models. Different rules governing erosion and aggradation of the deposi-
tional elements provide models with a diversity of local connectivity representative
of natural systems ([14], Fig. 3c). Like OBMs and PBMs, RBMs have a well-defined
global connectivity threshold. However, this occurs at a critical amalgamation ratio
(ARC ≈ 28% [15], Fig. 3c) rather than at a critical NTG, since RBMs can remain at
low connectivity to very highNTG. The RBMs examined [14, 15] had approximately
circular bodies, but by analogywithOBM, it is likely thatARC for channelizedRBMs
will be lower.

Taken together, these observations of global and local connectivity in natural
systems and in OBMs, PBMs and RBMs suggest that they all have a connectivity
threshold at ARC = 28% (flat lying circular elements) or lower (variably oriented
elongate elements). In OBM, AR ≈ NTG, so object-based models have NTGC ≈
ARC. Rule-based models have more degrees of freedom than object- or pixel-based
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(c) Rule-based models
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(d) compression-based models

Fig. 3 Local connectivity (AR) as a function of NTG. a Compilations of non-hierarchical (red,
[1]) and hierarchical lobe (black, [11]) and channel (blue, [12]) systems. b Multi-facies hierar-
chical OBM. The points show effective values for the 2D cross-sectional model shown, using
the same colours as the model. c 1D measurements through two different hierarchical rule-based
models generated with different erosion rules. The curves show representative model cF values
[15]. d Multi-facies hierarchical compression-based OBM. Symbols as b. The curves show cF
values representative of the different facies

models and no link between AR and NTG. Therefore, RBM have no intrinsic value
of NTGC, and in this respect natural systems are likely to behave similarly to RBM.

3 Compression-Based Facies Modelling

The considerations above imply that object- and pixel- methods (including pixel-
based MPS) are incapable of creating models with realistically diverse relationships
between connectivity and NTG. The compression method was developed to over-
come this by providing a means of modifying object-based models so that can have
low connectivity at high NTG ([1, 2], Fig. 2d). Compression-based models can
be created with user-defined trends of local connectivity representative of natural
systems (Fig. 3d). The compression-based geometrical transformation can be applied
to pixel-based as well as object-based models, implying that it can be used to
create facies models which are both conditioned to well data, and constrained by
user-defined facies connectivity [3, 7, 10].

Compression-based facies modelling is a two-step process (Fig. 4, [1, 7]). In Step
1, a conventional object- or pixel-based model is created with a net:gross value equal
to the targetARvalue (Fig. 4a, b). In Step 2 the thickness of cells of the different facies
are expanded or compressed vertically by particular factors. This grid transformation
modifies the facies proportions but does not alter the grid topology, and therefore
the facies connectivity (e.g. AR) is unchanged (Fig. 4a). Compression-based models
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Fig. 4 The compression algorithm for a two facies OBM (foreground facies yellow, background
facies grey). a The Step 1 models (blue squares) have AR = NTG (cF = 1). These are transformed
to Step 2 models (red circles) with lower (cF < 1, e.g. system B) or higher (cF < 1, e.g. system D)
connectivity than the original Step 1 models. Example Step 1 (b) and Step 2 (c) models

can have higher or lower connectivity than would be present in a conventional model
at the same NTG (Fig. 4c). The extent to which connectivity and NTG differ can be
expressed by a facies-specific compression factor (cF, Figs. 3d, 4a), which can be
estimated by reference to natural system analogues (Fig. 3a).

The two simple systems generated in this example (Fig. 4) are shown alongside
photos of the geological systems that inspired them in Fig. 5. Depositional systems
(particularly deep marine ones) often consist of laterally extensive sand bodies often
entirely enclosed by shale (Fig. 5a, b). They are characterised byAR�NTG (Fig. 2a)
and are modelled with cF < 1. (Fig. 4a). Other geological systems such as fluid driven
injectite or diagenetic vein system can be more connected than a random system at
the same NTG value (Fig. 5c, d), and must be modelled with cF > 1 (Fig. 4a).

4 Conclusions

The amalgamation ratio in object-based models is an unconstrained output property
that is approximately equal to the model net:gross ratio, and object- and pixel-based
facies models have connectivity thresholds at NTGC = ARC ≤ 28%. In natural
geological systems and rule-based facies models NTG �= AR, but ARC takes similar
values andhas similar sensitivities as it does in object-basedmodels. The compression
algorithm is a geometrical grid transformation which exploits these relationships
to provide object- and pixel-based models with user-defined connectivity that is
independent of NTG.
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(a) 

(c) 

(b) 

(d) 

Fig. 5 2D cross-sectional compression-based models and the geological systems that inspired
them. a Model of poorly connected sands (yellow) in shale. b Deepwater lobe deposits of the
Ross Formation, Loop Head, Ireland. c Model of a network of well-connected veins (yellow) in
mudstone. d Diagenetic gypsum veins in the Mercia Mudstone Formation, Watchet, England. The
red rectangles in a, c are representative of the system sizes photographed in b, d
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Abstract Accurate pore pressure models in wells are essential for ensuring the
lowest cost and operational safety during exploration/development projects. This
modeling requires the integration of several sources of information such as well
data, formation pressure tests, geophysical logs, mud weight, geological models,
seismic data, geothermal and sedimentation rate modeling. An empirical relation-
ship between overpressure and compressional wave velocity is commonly applied
to model the pore pressure. This deterministic approach does not allow uncertainty
quantification and ignores other variables related to pore pressure. This paper presents
a case study with real data to evaluate and quantify spatial pore pressure uncertainty.
The exhaustive secondary variable came from the combination of seismic velocity
and geothermal models. The methodology uses Sequential Gaussian Cosimulation
with Intrinsic Collocated Cokriging. The results demonstrate the usefulness and
applicability of the workflow proposed.

Keywords Pore pressure · SGSim · Intrinsic Collocated Cokriging

1 Introduction

The evaluation of pore pressure in an area of exploratory interest is important for opti-
mizing the well design, such as correctly programming the casings, shoe setting, and
appropriate well completion, to not waste resources and preserve safety all involved.

In these predictions, the oil industry applies the Eaton’s Method [1], an empirical
and deterministic method that infers the formation overpressure from compressional
wave velocity, resistivity logs or even drilling parameters.
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This modeling is interpretative since the modeler should propose a normal
compaction trend, needed to detect overpressure zones. In many cases, the dataset
needed to confirm the models is unavailable. Besides that, there is no way to quantify
the variance or uncertainty of a model easily.

In order to reduce part of this interpretative aspect, and to be able to use more
available data and give a statistical weight to the models, it was proposed to esti-
mate the pore pressure in a portion of the eastern margin of the Brazilian coast via
Sequential Gaussian Cosimulation [2, 3] with Intrinsic Colocated Cokriging [4].

2 Theoretical Foundations and Definitions

The used geostatistical modeling basically involves three steps that must be care-
fully evaluated to correctly calculate its probabilities. They are the variogram, the
supersecondary variable [5] and the geostatistical simulation.

3 Data Presentation and Interpretation

As a region for the modeling, a recent exploratory frontier area was chosen due to
its high-pressure domains and plane-parallel seismic facies.

Eight hundred eighty-three static pressure data from 24 wells were obtained,
generating post-drilling models built frommeasured pressures, well logs and drilling
reports.

To reduce the computational effort, we have delimited the modeling interval
between the top of the Upper Campanian and the top of the Aptian. The histogram
can be seen in Fig. 1.

Fig. 1 Pressure data (in psi)
histogram from selected
wells
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The experimental variograms, as shown in Fig. 2, were obtained in the 0° and 90°
azimuth directions and in the vertical direction respectively and were modeled from
the Table 1. These variograms seem to be non-stationary, so the maximum search
radii were limited.

Some 3D data from petroleum systems modeling were tested, such as sedimen-
tation rate, organic matter transformation rate and porosity. Although some of these
three-dimensional models correlate well with the primary data, their low resolution
negatively impacted our final model. Therefore, these data were not included.

The supersecondary variable (Fig. 3) was obtained from the composition of the
most recent models of seismic velocity (v) and temperature (T) according to the
equation

Ss = −0.2v + 0.9T (1)

Fig. 2 Experimental andmodeled variograms.On the left, 0° azimuthwith 35,000m range. Centred
is 90° azimuth with 50,000 m range and on the right, vertical with 900 m range

Table 1 Modelled variogram
parameters

Model Exponential

Nugget effect 1%

Azimuth 0° (range) 35,000 m

Azimuth 90° (range) 50,000 m

Vertical (range) 900 m

Fig. 3 Sectional views of the supersecondary variable in-depth, on the left, and the x-axis, on the
right
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Fig. 4 Depth slices of realizations 1 and 2, showing higher pressures in the NW region

Fig. 5 CDF reproduction over all realizations

Sixteen realizations were calculated in the Sequential Gaussian Co-Simulation
with Intrinsic Collocated Cokriging. Some of these realizations can be seen in Fig. 4.

Figure 5 is possible to compare histograms of each realization, showing good
agreement with the well data.

It was possible to obtain a basic statistic from all realizations, like mean values
and standard deviation (Fig. 6) and percentiles like 10, 50 and 90 (Fig. 7) of the pore
pressure in each cell grid.

Finally, the workflow presented permits extraction of the pressure log in any
desired coordinate for a detailed evaluation Fig. 8.

4 Conclusions

Themotivation of this work is to use cosimulation with intrinsic collocated cokriging
to model a pore pressure–volume in a region of the Brazilian coast.

Post mortem pore pressure values in 24 recently drilled wells, limited between the
Upper Campanian and Aptian horizons, were used as primary data. The secondary
data were obtained from a composition of two variables: temperature modeled via
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Fig. 6 Mean value (left) and standard deviation (right) of the modeled pore pressure over all
realizations

Fig. 7 Percentiles 10, 50 and 90 of the modeled pore pressure

calibrated finite elements and the seismic velocity updated until the last well drilled
in the area.

After the cosimulation, 16 realizations were obtained, and it was possible to see
the wide spatial variability of pore pressure, with values within the range usually
found in the region. These achievements honored the histogram and the original data
and the modeled variogram, demonstrating the usefulness and applicability of the
proposed workflow.

The presented geostatistical workflow demonstrates its applicability in future
studies of pore pressure modeling, as they can generate different scenarios that are
likely to be obtained at each realization, using a wider range of data available, and
different well design strategies can be probabilistically defined.
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Fig. 8 Modeled pressure log
after simulation in a pair of
coordinates. All realizations,
percentiles 10 (blue), 50
(orange) and 90 (green) and
their standard deviation are
displayed

5 Benefits Promoted by This Work

One of the main issues in using the Eaton’s method is determining a normal
compaction trend. This trend is quite interpretive, varying according to the modeler.
In order to reduce this subjectiveness, and mainly to include, in a statistical way,
other variables that may be related to pore pressure, the workflow in this article was
proposed using different exhaustive variables, from different models.
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The Suitability of Different Training
Images for Producing Low Connectivity,
High Net:Gross Pixel-Based MPS Models

Deirdre A. Walsh , Javier López-Cabrera, and Tom Manzocchi

Abstract Pixel-based multiple-point statistical (MPS) modelling is an appealing
geostatistical modelling technique as it easily honours well data and allows use
of geologically-derived training images to reproduce the desired heterogeneity. A
variety of different training image types are often proposed for use inMPSmodelling,
including object-based, surface-based and process-based models. The purpose of the
training image is to provide a description of the geological heterogeneities including
sand geometries, stacking patterns, facies distributions, depositional architecture and
connectivity. It is, however, well known that pixel-based MPS modelling has diffi-
culty reproducing facies connectivity, and this study investigates the performance
of a widely-available industrial SNESIM algorithm at reproducing the connectivity
in a geometrically-representative, idealized deep-water reservoir sequence, using
different gridding strategies and training images. The findings indicate that irrespec-
tive of the sand connectivity represented in the training image, the MPS models
have a percolation threshold that is the same as the well-established 27% percolation
threshold of random object-based models. A more successful approach for gener-
ating poorly connected pixel-based MPS models at high net:gross ratios has been
identified. In this workflow, a geometrical transformation is applied to the training
image prior to modelling, and the inverse transformation is applied to the resultant
MPS model. The transformation is controlled by a compression factor which defines
how non-random the geological system is, in terms of its connectivity.
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Connectivity · Reservoir modelling
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1 Introduction

Many deep-water lobe depositional sequences are characterized by laterally exten-
sive, but finite, sand beds interbedded with continuous low permeability shales. Non-
random geological processes such as compensational stacking result in these systems
often having poor sand connectivity at high net:gross ratios (NTG). It is challenging
to reproduce this low connectivity in reservoir models, but it is important to do so if
the models are to be used to predict reservoir performance.

The advantage of using a pixel-based method to model these sequences is that it
reproduces geological patterns while honouring conditioning well data. The connec-
tivity of a number of training image (TI) inputs including object- and surface-based
models (OBM and SBM respectively) are investigated in this study and compared
to the connectivity of output MPS models built using the SNESIM algorithm [1].
The findings from these models, along with the connectivity characteristics of OBM
models, aided in the development of workflow for generating poorly connectedMPS
models using a simple object-based TI followed by a grid transformation using the
compression algorithm.

2 Pixel-Based MPS Modelling with Common Training
Images

The dimension of the model is 45 km × 45 km and 20 m thick. The target system
to be reproduced contains sand beds which are about 4.5 km wide and 0.5 m at their
thickest, NTG equal to about 40% and amalgamation ratio (AR) equal to about 10%.
ThisAR implies that 10%of the total area of sand bed bases should be connected to an
underlying sand bed. AR cannot be measured in an MPS model, so the connectivity
measure used to compare models is the proportion of total sand that is connected to
a vertical well at the centre of the model, which is about 5% in this case (Fig. 1).

An unconditioned OBM is easily generated and works by placing user defined
objectswithin themodel volume until the targetNTG is reached.Adownside ofOBM
modelling is that are no under-defined constraints on the sand connectivity, and it is
clear in Fig. 1a that the object-based TI does not have the target low connectivity
since about 95% of the sand beds are connected to the well, either directly or via their
connections with different beds. Therefore, although theMPSmodel has reproduced
the connectivity of the TI, it does not have the low connectivity of the target system.
The second TI is a SBM generated using a number of depositional rules. These rules
control the placement of sand elements and shale interelements in a stratigraphic
order, and the probability that an element is capped by an interelement controls the
degree of sand amalgamation. An important feature of the TI that impacts the MPS
modelling is that the TI contains an irregular grid structure since each sand or shale
element is contained within an individual layer which is one grid cell thick. Hence,
although the TI represents the target system (Fig. 1b), the MPS algorithm produces
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Fig. 1 Summary of the various TIs (a OBM, b irregularly gridded SBM, c regularly gridded SBM)
and the corresponding MPS models. The graphs show the connectivity in each case of the target
system , the training image (x) and the MPS model

very different model characteristics consisting of thin sand and shale layers resulting
in complete sand connectivity. The final TI is a SBM constructed in a regular grid
(Fig. 1c). This TI is a simple model generated with the same object-dimensions and
90% probability of shale drapes and therefore has low connectivity representative of
the target model. However, again the MPS algorithm is unable to reproduce the low
connectivity represented in the TI, and all of the sand is connected.

These results indicate that a simple workflow of constructing an accurate TI and
applying this directly in MPSmodelling is inappropriate for geological systems with
non-random connectivity, such as the deep-water deposits considered. The onlyMPS
model which reproduced the connectivity of the TI was the object-based case. The
connectivity of MPS models generated by both OBM and SBM models are investi-
gated in much greater detail [2] and it was found that these models follow the well-
known percolation threshold seen in OBM whereby models with sand proportion
greater than about 27% are well connected.
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3 Pixel-Based Modelling with Low Connectivity

There are many modelling methods which allow the user to have control over the
output connectivity including surface- or rule-based modelling, process-based and
object-based methods. One such method, compression-based modelling, was devel-
oped originally in conjunction with OBM [3] and is based on the observation that the
NTG and AR are equal in these models if all sand elements are of equal thickness.
The compression method is a two-step process where modelling is undertaken with
an initial low NTG (equal to the target AR) and cells containing sand and shale are
expanded and compressed using the compression algorithm to reach the target NTG
but preserved the low connectivity.

Combining the compression method with the MPS workflow requires that a low
NTG OBM model is used as the TI input and, for the case considered here, it must
equal the target low AR of 10% (Fig. 2a). The resulting MPS model reproduces the
low connectivity of the TI (Fig. 2b). Then the compression algorithm is applied to
the MPS model to rescale its NTG to the target value of 40% (Fig. 2c).

The properties of the training image, such as the thickness of the objects, are
defined by the compression algorithm. This means that the decompression algorithm
[4] is applied to the conditioning data prior to modelling. This is the inverse of the
compression algorithm and ensures that the conditioning well data will be honoured
when the compression algorithm is applied to the final model (Fig. 2d).

Fig. 2 The compression-based MPS workflow
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4 Summary

Several commonly used TIs have been investigated to examine both the suitability
the TI to honour low connectivity at high NTG, and the ability of the MPS algorithm
to reproduce the connectivity represented in the TI (Table 1). Although the object-
based TI does not contain low connectivity at NTG values greater than 27%, MPS
models based on these TIs reproduce accurately their connectivity. In contrast, the
two surface-based TIs have the target low connectivity, but this connectivity is not
reproduced in the MPS models. A detailed investigation indicates that MPS models
follow the same relationship between NTG and connectivity as object-based models
when built using surface- or object-based TIs [2]. This equivalence provides the basis
for a newworkflow inwhichMPSmodels are built usingOBMTIs, and then rescaled
to the target NTG using the compression algorithm. The conditioning well data is
incorporated by using the inverse transformation prior to the MPS modelling step.
The final MPS model honours the well data and contains independently user defined
NTG and connectivity.

Table 1 Summary of the connectivity of a number of TIs (OBM and SBM) and the resulting MPS
models generated with or without the compression algorithm (CA)

Type of TI Modelling
workflow

TI has target NTG TI has target
connectivity?

Final model
honours target
connectivity?

Comments

OBM MPS Yes No No The MPS model
reproduced the TI, but
this does not have the
target low
connectivity

SBMa MPS Yes Yes No The MPS algorithm
cannot resolve the
irregular grid
structure of the TI and
therefore is unable to
reproduce its
connectivity

SBM MPS Yes Yes No The MPS algorithm
does not reproduce
the low connectivity
of the TI

OBM MPS then
CA

No Yes Yes The target low
connectivity at high
NTG is achieved via a
geometrical
transformation of a
low NTG MPS model
using the CA

a This TI has an irregular grid structure
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Probabilistic Integration
of Geomechanical and Geostatistical
Inferences for Mapping Natural Fracture
Networks

Akshat Chandna and Sanjay Srinivasan

1 Introduction

Estimation of a reservoir’s production potential, well placement and field devel-
opment depends largely on accurate modeling of the existing fracture networks.
However, there is always significant uncertainty associated with the prediction of
spatial location and connectivity of fracture networks due to lack of sufficient data
to model them. Therefore, stochastic characterization of these fractured reservoirs
becomes necessary.

Two-point statistics-based algorithms are inadequate for describing complex spa-
tial patterns such as branching and termination of fractures described by the joint
variability at multiple locations at a time [7]. Constraining the models to multiple
point statistics (MPS) is necessary for producing maps that are able to accurately
predict termination and intersection of the fractures without having to separate the
fracture sets on the basis of their chronological evolution that may be difficult due to
sparse data [5, 7]. In general, MPS is fast and robust, and superior to the traditional
two point statistics while realistically reproducing the complex curvilinear geologic
structures as well as integrating different data sets [6]. Conventional MPS algorithms
depend on a well-defined spatial template to capture multi-scale features. Gridded
domains are inefficient and tend to interrupt the spatial connectivity of the fractures.
The ideas of non-gridded TIs, templates and simulated images put forth by Erzeybek
(2012) are extended in a fast, robust and easily scalable MPS algorithm that utilizes
self-adjusting and automatic template selection based on the configuration of con-
ditioning data around the simulated node [1]. At the initial stages of modeling, the
template identifies the coarse scale pattern and as the modeling progresses, patterns
over fine and finer scales are reproduced.
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Geomechanical modeling of fractures is another widely popular approach to map
fracture networks constrained to the physics of the reservoir such as far field stress
conditions, presence of faults and other geological structures and local stress effects
of nearby fractures. However, development of full reservoir scale physics model
involving material heterogeneities beyond a length scale of 1km involves extensive
computation costs and time. It is also imperative that the uncertainties in reservoir
parameters are accounted for in the prediction of reservoir performance [5]. Inferring
geomechanical rules for fracture propagation in a probabilistic sense is necessary to
represent the uncertainty. This is achieved usingMachine Learning (ML) approaches
trained on high-fidelity small scale FDEM models that predict fracture propagation
pathways given a set of physics-based parameters [2].

A statistics based approach does not consider the physical processes guiding frac-
ture propagation and a geomechanics based approach may not honor the fracture
statistics observed from other auxiliary sources such as outcrop images. Therefore,
amalgamation of the MPS and geomechanics based approaches is ideal for produc-
ing fracture networks, constrained to both reservoir physics and reservoir statistics.
This research presents a paradigm for integration of information obtained from a
stochastic simulation algorithm and geomechanics based algorithm using the Tau
model proposed by Journel [4] that utilizes the concept of permanence of ratios.

2 MPS Algorithm in Classification Framework

A new and improved stochastic simulation technique based on MPS presented by
Chandna (2019) is shown to improve upon the shortcomings of the classical MPS
algorithms [1]. It is able to generate the desired fracture patterns without relying on
any grid, either for the template or simulated image. This algorithm employs self-
manipulating templates to include the specified maximum number of nodes in the
vicinity of the simulation node, thereby eliminating the need to predefine templates
based on visual observation and initial analysis of the training image (TI) that gen-
erally fail to capture either the small or the large-scale features unless multi-grid
simulations are performed. It also circumvents calculating multiple point histograms
since the algorithm operates on the principle of direct sampling [3]. In direct sam-
pling, the pattern identified using the data configuration around the simulation node
(rather than using a fixed spatial template) is searched in the TI and corresponding
to the first instance of a match, the outcome at the simulation location in the TI is
directly extracted and applied to the simulation. This results in more computational
efficiency as the entire TI need not be searched for the calculation of the number of
occurrences of the desired pattern.

The ML based geomechanical simulation algorithm outputs probabilities of the
propagation of a fracture tip in each of 8 angles classes formulated by dividing the
circular region around the fracture tip in 8 equal sectors of angle π/4 centered at the
fracture tip (Fig. 1a). But the MPS algorithm presented by Chandna [1] is regression
based and outputs discrete angles of propagation for each simulated fracture tip. For
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(a) A propagating fracture (b) An existing fracture in a TI showing
conjugate angle classes (for example class
0 and 4)

Fig. 1 Angle classes 0–7, around a fracture denoted by a thick black line [2]

integrating the probability obtained from geomechanical modeling and that from
MPS simulation, multiple angles of propagation are simulated for the same fracture
tip, which can be binned together in these angle classes and their counts can be used to
estimate the probability of simulation of each angle class. The firstmodificationmade
to the algorithm constitutes outputting probabilities of angle classes of propagation
for the node being simulated (P(θi )where i can range from 0 to 7) instead of discrete
angles. Since, the MPS algorithm is based on direct sampling of the propagation
angle from the TI, one option is to sample the same TI multiple times using the
same template pattern to obtainmultiple propagation angle classes. Each propagation
angle could be different due to random order of simulation of initial flaws. These
propagation angles can then be used to calculate the probability of observing a
particular angle class. This can be represented as:

P(θi ) = Number of times θi i s sampled f rom the T I

T otal number of T I samplings
(1)

A better option would be to sample multiple TIs using the same template to account
for the uncertainty in the TI itself i.e.:

P(θi ) = Number of T I s f rom which θi i s sampled

Total number of T I s
(2)

The second approach is adopted in this research.
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3 Combination of Probabilities

The combination of contributions of data events B and C from different sources to
predict the probability of a desired event A is one of the most common issues faced in
data sciences and most importantly in earth sciences. This conditional probability of
an unknown event A occurring given two data events B and C from different sources
can be expressed as P(A|B,C). Commonly, this conditional probability is estimated
assuming some level of independence of the data events B and C. However, such an
assumption leads to non-robust algorithms with questionable prediction accuracy.
Journel (2002) proposed an alternate probability integration paradigm based on the
permanence of ratios which assumes that the relative contribution of any one data
event to the occurrence of an outcome is independent of the relative contributions of
all other data events [4]. This integration algorithm is used in the current research
as a means to combine probabilities of simulated angle classes generated from the
two sources: the MPS algorithm and the geomechanical simulation algorithm. The
underlying assumptions of the probability integration algorithm are that the prior
probability of the outcome data event (P(A)) and the probability of the outcome
data event given the source data event for each of the source data event, (P(A|B)

and P(A|C)) can be evaluated. The permanence of ratio hypothesis breaks down the
information from each source but recombines these elemental probabilities using a
tau (τ ) parameter(s). The tau parameters actually explore the redundancy between
different data.

For every step of propagation of a fracture tip, probabilities of propagation along
all angle classes 0 to 7 are obtained from two different sources: MPS based algorithm
(Sect. 3) and geomechanics based algorithm (Sect. 2). Let P(θ) be the probability of
the data event: simulation of angle class θi where i ranges from 0 to 7. Let P(θi |B) be
the probability of simulation of angle class θi obtained from the MPS simulation and
P(θi |C) be the probability of angle class θi obtained from geomechanical simulation.
The desired probability of occurrence of angle class θi given the probabilities of its
joint occurrence from theMPS and geomechanical simulations, P(θi |B,C) can then
be evaluated using the concept of permanence of ratios:

P(θ |B,C) = 1

1 + b( c
a )

τ
(3)

a = 1 − P(θ)

P(θ)
= P(θ̃)

P(θ)
∈ [0,+∞] (4)

b = 1 − P(θ |B)

P(θ |B)
= P(θ̃ |B)

P(θ |B)
∈ [0,+∞] (5)

c = 1 − P(θ |C)

P(θ |C)
= P(θ̃ |C)

P(θ |C)
∈ [0,+∞] (6)
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(a) Simulated image using geomechanics
algorithm

(b) Simulated image using MPS algo-
rithm

(c) Simulated image using integration al-
gorithm

Fig. 2 Comparison of final simulated images using the geomechanics, MPS and integration algo-
rithms. Blue circles indicate highlighted areas of interest.

The contribution of data event C is manipulated and tuned using the τ parameter.
For τ = 0, the contribution of data event C is completely ignored and the contribution
is increased or decreased depending on if τ > 1 or < 1 respectively.

For demonstrating themodel for integration of probabilities obtained fromMPS in
classification framework and reduced order machine learning based geomechanical
simulation model, for propagation of every node, the integrated probability distribu-
tion over the angle classes is obtained and the node is propagated in the direction of
the angle class with maximum probability of occurrence. The prior uncertainty P(θ)

that results in the ratio a over angle class θi is assumed to be uniform and is updated
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based on the incremental contribution from the MPS and geomechanical simulation
algorithm.

Figure2 shows a comparison of the final simulated fracture maps generated using
the geomechanics, the MPS and the integration algorithm. τ is assumed to be 1 for
this simulation, implying that the relative contributions of the MPS and geomechan-
ics algorithm to the knowledge of final predicted propagation angle, are assumed to
be independent of each other. Few areas are highlighted by blue circles that show
the effect of the integration algorithm on the simulated fracture maps after com-
bining information from the two individual sources: MPS and geomechanics. Most
of these correspond to hooking like pattern of the fractures. In three of the high-
lighted areas, statistics derived from the TIs by the MPS algorithm facilitate hooking
of the fractures. However, due to the stress regimes developed around these frac-
tures, the geomechanics algorithm predicts propagation of these fractures without
any hooking with a high probability. After combining the probabilities over all pos-
sible angle classes that can be simulated, the integration algorithm simulated an
angle propagation class that did not favor hooking of the fractures. Similarly, in one
of the highlighted areas, hooking is favored by the integration algorithm due to a
stress regime caused by possibly significant fracture interactions. In general, due to
the coarse angle classes used in geomechanical simulation, a number of kinks are
observed in geomechanically simulated fractures. These kinks arise as fractures tend
to merge or diverge from other fractures according to the progressively changing
stress states around propagating fracture tips. However, if such phenomena is not
observed in the TIs, the MPS algorithm does not simulate these features. It then
depends on the incremental contribution of the MPS and the geomechanical infor-
mation to the knowledge of the final predicted propagation angle class to determine
if such features would be observed in the final simulated images. In this case, such
features are not simulated by the integration algorithm due to lower contribution of
the geomechanics algorithm towards generation of propagation angle classes that
may describe the development of these features.
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Artifacts in Localised Multivariate
Uniform Conditioning: A Case Study

Oscar Rondon and Hassan Talebi

Abstract Localised Multivariate Uniform Conditioning (LMUC) is a technique
designed for spatially locating Selective Mining Unit (SMU) grades derived using
Multivariate Uniform Conditioning (MUC) for the assessment of recoverable
resources. LMUC has the advantage of producing SMU estimates conforming to the
MUCpanel-specificgrade-tonnage curveswhile preserving the spatial gradedistribu-
tion at the selective mining level. However, LMUC results have two severe artifacts.
This paper documents both artifacts using four grades from a large nickel–cobalt
laterite deposit in Western Australia.

Keywords Multivariate uniform conditioning · Recoverable resources ·
Multivariate grade localisation

1 Introduction

Uniform Conditioning (UC) uses a set of predetermined cut-offs to estimate the
grade, metal and tonnage of SMUs inside a panel using the estimated panel grade
[1, 2]. These estimates are often not practical for many mining studies because of
the limited capacity for visualising the likely spatial grade distribution at the SMU
scale. Post-processing using localised uniform conditioning (LUC) allows to localise
the SMU grades in such a way that SMU blocks have grade-tonnage relationships
matching the UC results [3]. This is useful, for instance, for open pit mining studies
that require evaluating the economics of a project.

Deraisme et al. [4] extended the concept of LUC to the multivariate case. The
key idea is to analogously use the panel-specific recovery curves derived fromMUC
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[5] to localise the results. The process is straightforward and has practical merits.
However, it produces two artifacts that suggest themultivariate localisation is flawed.
The first one corresponds to unrealistic linear-like patterns in the scatterplots between
localised attributes. This artifact can be partially detected in Fig. 7 of [4] and it is
clearly seen in Fig. 8 of [6]. The second artifact relates to the discrepancy between
the expected theoretical correlation at the SMU support derived from MUC and
the corresponding one between localised attributes. In this article, both artifacts are
discussed using data from a large nickel–cobalt laterite deposit in Western Australia
as a case study.

The article is organised as follows: firstly, a summary of MUC and LMUC
are presented where the concepts and notations used are introduced. Secondly, a
summary of the nickel–cobalt laterite deposit characteristics along with details of
the LMUC application are presented. Thirdly, the case study results are discussed.
Lastly, conclusions and recommendations are drawn on the bases of the findings.

2 Multivariate Uniform Conditioning and LMUC

MUC represents a most challenging problem in Geostatistics. For a set of multi-
variate attributes (Z1, Z2, . . . , ZN ) the problem consists in estimating recoverable
resources inside amining panel V using the set ofmultivariate estimated panel grades(
Z∗
1(V ), Z∗

2(V ), . . . , Z∗
N (V )

)
where each estimate is assumed to be conditionally

unbiased.
The MUCmodel proposed by Deraisme et al. [5] proceeds first by independently

applying the discrete Gaussian method [2] to each attribute Zi , i = 1, . . . , N which
allows expressing the grades Zi (x) at point support, Zi (v) at SMU support, and the
estimated grades Z∗

i (V ) at panel support as functions of standard Gaussian variables
Yi (x), Yiv and Y ∗

iV respectively given by

Zi (x) = �i (Yi (x)) =
∑

n≥0

φin Hn(Yi (x)), (1)

Zi (v) = �iv(Yiv) =
∑

n≥0

φinr
n
i Hn(Yiv), (2)

and

Z∗
i (V ) = �∗

iV

(
Y ∗
iV

) =
∑

n≥0

φins
n
i Hn

(
Y ∗
iV

)
, (3)

where Hn are the Hermite polynomials and φin are the corresponding coefficients
with ri and si the variance correction factors for SMU and panel support respectively.
Here, the same number of Hermite polynomials is being used for all attributes. This
is just a minor restriction required for computation of theoretical values duringMUC
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such as the covariance between the SMU support grades in Eq. 6. The MUC model
is entirely specified once the variance correction factors ri and si and the correlations
between the equivalent Gaussian variables are calculated. The former is obtained by
inverting Eqs. 4 and 5

Var(Zi (v)) =
∑

n≥1

φ2
inr

2n
i (4)

Var
(
Z∗
i (V )

) =
∑

n≥1

φ2
ins

2n
i (5)

while the latter at the SMU support v by inverting Eq. 6

Covar
(
Zi (v), Z j (v)

) =
∑

n≥1

φinφ jnr
n
i r

n
j ρ

n
i j , (6)

where ρi j corresponds to the correlation between Yiv and Y jv . This implies that the
Corr

(
Zi (v), Z j (v)

)
between any two different attributes Zi and Z j at the SMU v

support can be explicitly computed using Eqs. 4 and 6. Through a set of conditional
independence assumptions and the use of a master or anchor attribute for identifying
whether or not a given SMU is above a cut-off, the MUC model effectively reduces
the multivariate case to a bivariate one and the values of the remaining parameters
required to completely specify the model can be calculated. Selection of the master
attribute is of prime importance because theMUCmodel is driven by the correlations
between the master and all other attributes while other correlations can, at most, be
partly inferred through their corresponding relations with the main attribute. The
reader is referred to Deraisme et al. [5] for further details.

Deraisme et al. [4] extended the concept of LUC to the multivariate case. Using
the panel-specific tonnage curve of the master attribute along with the panel-specific
metal curves of all attributes derived from MUC, the corresponding grades can be
localised as done in LUC. The ranking is though entirely based on the direct estimate
of the master attribute at the SMU support.

3 Case Study Presentation and Results

The data used for the case study comes from the Murrin Murrin East (MME) nickel–
cobalt laterite deposit in Western Australia. The main mineralised body is approxi-
mately 1,500 m long, 600 m wide, and 30 m thick (Fig. 1). Surficial chemical weath-
ering of ultramafic rocks resulted in the formation of nickel–cobalt laterites. Miner-
alisation occur as laterally extensive and undulating blankets with strong vertical
zonation [7]. The attributes of interest include Co(%), Fe(%), Mg(%), and Ni(%)
which was used as the master attribute. In total, 20,690 samples of 1 m length from
926 RC holes comprise the database for this study. The RC holes are approximately
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Fig. 1 Plan view of the MME deposit, RC drillings (black dots), SMUs (red squares), and panels
(black squares)

Table 1 Classical descriptive statistics (left) and correlation matrix (right) of the selected attributes

Min Max Mean Var Fe Mg Ni Co

Fe 0.400 61.500 20.463 159.510 1.000 −0.755 0.008 0.198

Mg 0.015 26.800 6.818 43.230 −0.755 1.000 0.119 −0.168

Ni 0.004 4.070 0.715 0.250 0.008 0.119 1.000 0.583

Co 0.001 2.270 0.054 0.010 0.198 −0.168 0.583 1.000

located on a square grid of 25 m× 25 m. The panel and SMU dimensions are 25 m×
25m× 2m and 5m× 5m× 1m respectively. Consequently, each panel contains 50
SMUs (Fig. 1). Descriptive statistics and correlations between attributes are shown
in Table 1.

3.1 Global and Local Scatterplots

Figure 2 shows the global scatterplot between localised Ni and Co grades along with
the same scatterplot for SMUs inside five different panels selected randomly across
the deposit. Globally, the localised grades at the SMU support seem to reproduce the
input correlation between Ni and Co. However, locally, i.e., for SMUs in a panel, the
results are drastically different. The correlation of 0.583 between Ni and Co becomes
almost perfect for SMUs inside the five panels with clear linear-like patterns. This
artifact is a direct consequence of using a master attribute to localise the SMU grades
as it will be shown next.
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Fig. 2 Scatterplot between
input Ni and Co grades (top)
and corresponding localised
grades (bottom). Coloured
lines are the scatterplots
between localised grades for
SMUs inside a panel for five
panels selected randomly
across the deposit

3.2 Correlation Between Localised Attributes

The multivariate localisation imposes relationships between attributes that do not
necessarily guarantee the reproduction of the global expected theoretical correlations
Corr

(
Zi (v), Z j (v)

)
given by the MUC model.

Without loss of generality, let Z1 be the master attribute and (Z1, Z2, . . . , ZN )

the localised attributes inside a panel V . The average grade Mi for Zi is the ratio of
the amount of metal Qi and tonnage T1 for i = 1, 2, . . . , N . Therefore, the average
grades Mii ≥ 2 are related to M1 by Eq. (7)

Mi = Qi

Q1
M1 (7)
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Table 2 Comparison of expected theoretical (low diagonal) and localised attributes (upper
diagonal) correlations at the SMU support

Co Fe Mg Ni

Co 0.228 −0.038 0.735

Fe 0.214 −0.825 −0.046

Mg −0.167 −0.772 0.321

Ni 0.583 −0.003 0.148

Equation (7) implies that when the master attribute Z1 falls within a grade class
[a, b) during the localisation, the secondary attribute Zi is calculated as

Zi = Qi (a) − Qi (b)

Q1(a) − Q1(b)
Z1 i ≥ 2 (8)

where Qi (a) and Qi (b) are the panel-specific metal curves for attribute Zi evaluated
ata andb respectively .This showswhyafter the localisation, the scatterplots between
the master and all other localised attributes exhibit linear-like patterns. Equation (8)
also shows that localised secondary attributes are implicitly related by

Zi = Qi (a) − Qi (b)

Q j (a) − Q j (b)
Z j i �= j (9)

A comparison of the expected theoretical and localised attributes correlations is
provided in Table 2.

Moreover, localised secondary attributes may have spurious results. For instance,
although Fe and Mg have negative correlation, the scatterplot between the corre-
sponding localised grades inside a panel exhibit positive correlations (Fig. 3).

4 Conclusions

The current implementation of MUC reduces a multivariate problem to a bivariate
one through the nomination of a master or anchor attribute for identifying SMUs
that are above a cut-off of interest. Although this seems reasonable for MUC appli-
cations, localising the MUC results produces two severe artifacts. These are a direct
consequence of using the master attribute along with the MUC results to guide the
localisation.

LMUC results exhibit linear-like patterns not consistent with the characteristics
of the input data. Those correspond to the scatterplots of localised attributes within
a panel. The consequence of this is that the correlation between localised attributes
is drastically different at the global, i.e., across the mineralised domain under study,
and local scale, i.e., inside a mining panel.
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Fig. 3 Scatterplot between
input Fe and Mg grades (top)
and corresponding localised
grades (bottom). Coloured
lines are the scatterplot
between corresponding
localised grades for SMUs
inside the same panels used
in Fig. 2
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Methodology for Defining the Optimal
Drilling Grid in a Laterite Nickel Deposit
Based on a Conditional Simulation

Claudia Mara Sperandio Neves, João Felipe Coimbra Leite Costa,
Leonardo Souza, Fernando Guimaraes, and Geraldo Dias

Abstract In mining projects, the confidence in an estimate is associated with the
quantity and quality of the available information. Thus, the closer the data to the
targeted location, the smaller the error associated with the estimated value. In the
advanced stages of a project (i.e. the pre-feasibility and feasibility phases), it is usual
to take samples derived from drillings. Since sampling and chemical analysis involve
high costs, it is essential that these costs contribute to a reduction in the uncertainty of
estimation. This paper presents aworkflow for a case study of a lateritic nickel deposit
and proposes a methodology to address the issue of optimising the drilling grid based
on uncertainty derived from Gaussian conditional geostatistical simulations. The
usefulness of the proposed workflow is demonstrated in terms of saving time and
money when selecting a drill hole grid.

Keywords Conditional simulation · Optimal drill spacing · Estimation uncertainty

1 Introduction

Although infill drilling is mandatory to reduce the uncertainty in estimated figures,
the drilling grid is frequently selected without reference to any geostatistical criteria
to support or optimise the locations of these additional drill holes. It is also important
to determine the point at which these additional drillings become irrelevant in terms
of reducing the associated error, since in this case, infill drilling will only result in
temporal and financial losses.

C. M. S. Neves (B)
Vale, Rio de Janeiro, Brazil
e-mail: sebastian.avalos@queensu.ca; claudianeves82@gmail.com

J. F. C. L. Costa
Mining Engineering Department, Federal University of Rio Grande, Rio Grande Do Sul, Brazil

L. Souza
Talisker Exploration Services, Toronto, Canada

F. Guimaraes · G. Dias
Anglo American, Belo Horizonte, Minas Gerais, Brazil

© The Author(s) 2023
S. A. Avalos Sotomayor et al. (eds.), Geostatistics Toronto 2021, Springer Proceedings
in Earth and Environmental Sciences, https://doi.org/10.1007/978-3-031-19845-8_13

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19845-8_13&domain=pdf
mailto:sebastian.avalos@queensu.ca
mailto:claudianeves82@gmail.com
https://doi.org/10.1007/978-3-031-19845-8_13


152 C. M. S. Neves et al.

The use of geostatistics can assist in the construction of models that have more
than one variable, which can be estimated using ordinary kriging [1] or any other
technique derived from it. However, this procedure does not make it possible to
access the correct uncertainty associated with the estimated value, since the variance
in the interpolated values is less than the variance of the original data. The limitations
related to the use of krigingvariance as ameasure of uncertainty havebeen extensively
discussed in the literature [2, 3]. The kriging variance considers only the spatial
distribution of the samples, and does not take into account their values and local
variability [4, p. 189]. Thus, for a given spatial continuity model, the kriging variance
is not affected by the original data variance, and there may be equal kriging variances
in situations where the data variance is completely different.

This article proposes a methodology for defining the optimal drilling grid in a
lateritic nickel deposit based on the measurement of uncertainty, using the technique
of conditional geostatistical simulation [5]. Thismethod aims to reproduce the spatial
continuity and intrinsic variability of the original data, and to combine multiple
equally probable models in order to determine the associated uncertainty in the
variables under study, thus enabling the appropriate sampling pattern for a given
mineral deposit to be found.

2 Sequential Gaussian Simulation

The first sequential simulation methodology used in this study is sequential Gaus-
sian simulation (SGS). This is an extension of the sequential conditional simulation
algorithm, and is based on a Gaussian random function model. According to Pilger
[6], the SGS method proposed by Isaaks [7] is characterised by the application of a
sequential algorithm to the local univariate conditional distributions resulting from
the decomposition of a particular Gaussian multivariate probability density function,
controlled by a Gaussian multivariate model characterised by a covariance function
C(h).

In the SGS method, the local conditional probability distribution is determined
using simple kriging, which defines the mean and variance of the distribution. This
method assumes that the distribution is stationary and follows the form of a normal
distribution, that is, with a mean of zero and variance of one. The element of interest
(Ni in this case) rarely has values following this type of distribution, with the most
common being asymmetric distributions with a few extreme values (positive asym-
metry). It is therefore necessary to transform the distribution of the original data
to a normal distribution [4] to enable sequential Gaussian simulation to be used. A
process called data normalisation is used to assign a corresponding value to each
original data item in the normal space. After SGS has been applied, it is then neces-
sary to re-transform the normal values to their corresponding values in the original
space.

Normalisation of the distribution of the original data is carried out using a transfor-
mation based on an increasing monotonic function. This function is called Gaussian
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anamorphosis [8], and can be written as follows:

z = f(�)

where:
z = original data;
φ = transformation function;
y = normalised data for the respective value of z.
As described by Rivoirard [8], for each value of Z, the corresponding value in

normal space is obtained from the accumulated distribution function of Z values
(F(z)) and the accumulated distribution function of a standard normal variable
Y(G(y)). Figure 1 shows this transformation. In addition, themathematical translation
of this methodology can be expressed as follows:

y = G−1(F(z))

where:
y = normalised data for the respective value of Z;
G(y) = accumulated distribution function of a standard normal variable y;
F(z) = accumulated distribution function of Z values;
G−1(F(z)) = standard normalised value whose cumulative probability is equal to

F(z).
The reverse transformation process consists of transforming the values obtained

from SGS in the normal space into their respective values in the original space. This
reverse transformation can be performed by the inverse of normalisation; that is, for
each value in the normal space (y), a value in the original space (z) is assigned that
has the same accumulated probability (F(z) = G(y)).

Fig. 1 Example of transformation of an original distribution into a normalised equivalent (modified
from [4])
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3 Sequential Indicator Simulation

The second methodology used in this study is sequential indicator simulation (SIS)
[9]. SSI is widely used to model categorical variables, and is based on a nonlinear
kriging algorithmcalled indicator kriging [10].UnlikeSGS, this simulation algorithm
is classified as nonparametric. Models of categorical variables are commonly created
to represent weathering profiles or rock types, and it is during themodelling stage that
important decisions are made such as the definition of the volume to be estimated and
the stationarity of the data within the modelled domains for the different categorical
variables. The models of these categorical variables are usually constructed explic-
itly, and depend on the interpretation and judgment of the specialist responsible for
modelling the deposit. In many cases, there is insufficient data to allow for reliable
(explicit) deterministic modelling, and a stochastic modelling algorithm is therefore
used to build multiple realisations.

There are some drawbacks associated with SIS; for example, the variograms of
the indicators control only the spatial relationship between two points in the model.
SIS can also lead to geologically unrealistic or incorrect transitions between the
simulated categories, and the cross-correlation between multiple categories is not
explicitly controlled.

Despite these criticisms, there are many good reasons to consider SIS, such as the
fact that the necessary statistical parameters are easy to infer from limited data. In
addition, the algorithm is robust and provides a simple way to transfer uncertainty
into categories using the resulting numerical models.

According to Journel [10], an indicator can be defined as follows:

i(u, Zk) =
{
1, for z(u) ≤ Z
0, other cases

K = 1, . . . , K

This model uses K different categories that are mutually exclusive and exhaustive;
that is, only one category can exist in a particular location.

4 Optimisation of a Drilling Grid

Geostatistical simulation is an excellent tool for assessing the uncertainty in the values
of a given attribute or the probability of these values being above a given limit. This
is because geostatistical simulation algorithms allow several possible scenarios to
be constructed for the distribution of attribute values, i.e. the distribution of possible
values at each simulated grid node.

Using geostatistical simulation, Pilger [11] quantified the uncertainty at each
location using different uncertainty indices. In this way, each additional drillhole
was located according to the values of the uncertainty indices. Pilger et al. [12]
added sampling in regions of high uncertainty, after the insertion of each additional
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piece of information, a new simulation was performed, and the uncertainty indexes
were recalculated.

The reduction of uncertainty to a theoretical and operational limit was observed
after the addition of each piece of information related to the resources of a coal
deposit.According to the authors, the theoretical limit is that abovewhich the addition
of new drilling sites becomes ineffective in terms of reducing uncertainty, and the
operational limit is related to the cost of an extra drill hole.

Koppe [13] used geostatistical simulation to analyse the efficiency of different
configurations of additional samples in terms of reducing uncertainty about a func-
tion and the factors that influence this efficiency. In her thesis, Koppe [13] presented
the algorithm for the automatic construction of sample configurations and the compu-
tational workflow created to speed up the approximation of the uncertainty value on
the transfer function obtained for each tested configuration.

5 Case Study

5.1 Methodology

The geometry of the ore body is defined by a non-continuous axis, approximately
18 km along its main direction (N12° E), and 0.9 to 2.4 km perpendicular to this
direction (N102° E). The thickness varies from 0.5 to 34 m, with an average of 3.8 m.
Due to this geometry, in which the horizontal dimensions are significantly larger than
the vertical, the ore body was treated as being 2D.

The technique involves generating 100 simulations of the grade of the nickel, the
thickness and the type of ore at a 90% confidence level, i.e. taking values between
the 5th and 95th percentiles to measure the dispersion over the average, and hence
finding the error for the blockwith a volume equivalent to threemonths of production.

5.2 Geostatistical Simulation with Original Database

Using the original drilling database distribution, 100 simulations were performed
for the variables of ore type, thickness and nickel grades. For the ore type indicator
simulation, the gslib program blocksiswas used, whereas for the other two variables,
the sgsim program was used.

The results from the 100 ore type simulations were used to condition the thick-
ness and nickel grade simulations, so that the thickness and nickel grade were only
simulated in cases where the presence of ore was predicted by the ore type indicator
simulation. The simulations were carried out using grid of dimensions 5 × 5 × 1 m,
and were divided into five files due to space limitations.

Figure 2 shows the parameter files for the blocksis and sgsim programs.
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Fig. 2 Parameter files for a blocksis and b sgsim programs

In order to guarantee the adherence of these simulations to the original data, it
was necessary to validate the variograms, histograms and averages. Figure 3 shows
the validation of the variograms for 100 simulations of the nickel grade, thickness
and ore type variables.

The results of the simulation for the nickel grade and thickness over a grid of 5
× 5 × 1 m were reblocked to a scale of 350 × 350 × 1 m, representing the mass
over three months of production. For this, we used the program modelrescale from
GSLib, and at this scale, the uncertainties in the nickel grade and thickness variables
were assessed using the rule of 15% of error with 90% confidence.

To obtain the results in terms of the metal content, the results for the nickel and
thickness were multiplied directly, since the area and density used in this study were
treated as constant and the intention was to assess only the error in the metal content
and not its absolute value.

Figure 4 shows the errors for the metal content versus the number of drillholes
within each panel for three months of production. The red horizontal line shows
an error of 15% with 90% confidence, the blue cross represents the error in each
panel for three months versus the number of drill holes, and the red squares show
the average error for the panels for the same numbers of holes. The solid black line
represents a logarithmic adjustment function.

It can be concluded that the current drilling distribution in the project is not
sufficient to determine the optimal drilling grid, since the number of drillholes and
the error shown by the blocks for three months of production are not sufficient to
reach the ideal value of 15% error with 90% confidence (the red line in Fig. 4).

Hence, a virtual drilling grid was created with additional drillholes in order to test
the methodology and to define an appropriate grid.
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Fig. 3 Validation of variograms for 100 simulations of nickel grade, thickness and ore type

5.3 Geostatistical Simulation with a Virtual Drilling Grid
Database

The virtual drilling grid used for this test was 25 × 25 m. To create this grid, the
entire process described above was applied, although only one simulation involving
the ore type, nickel and thickness was performed.

5.4 Geostatistical Simulation of 100 Realisations
of Thickness, Nickel and Ore Type

Using the results derived for the ore type, thickness and nickel simulations in the
previous step, a new database was created for these variables over a grid of 25 ×
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Fig. 4 Error in the metal content versus the number of drillholes within the panels for 3 months of
production. The red horizontal line shows an error of 15% with 90% confidence

25 m (a simulated virtual database). This database was then used in a new simulation
based on a 5 × 5 m grid with 100 realisations.

As in all stages of this study, it was necessary to validate the simulations with the
data for the 25 × 25 m, which is referred to in the following as the original grid.
Figure 5 shows the validation of the histograms for the nickel grade and the thickness.
Note the small range of variation between the simulation histograms. Figure 6 shows
the validation of the averages and proportions, where the average for each realisation
is calculated and compared with the average from the database.

Figure 7 shows the validation of the variograms. The 100 realisations variogram
ergodic fluctuations for the three variables represent the data in the original 25 ×
25 m grid along the main directions.

The grid scale of 5 × 5 × 1 m was reblocked to 350 × 350 × 1 m, using the
modelrescale program from gslib.

Fig. 5 Histogram validation for a nickel grade and b thickness
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Fig. 6 Validation of averages for a thickness, b nickel and c rock proportions

Fig. 7 100 realisations variogram ergodic fluctuations for ore type, thickness and nickel grade
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6 Results and Discussion

Figure 8 shows the panels for three months of production with their respective errors,
where the red blocks indicate an error of less than 15% at a confidence level of 90%.

Since panels with less than 50% chance of being ore may be defined as waste,
only panels with a probability of greater than 50% of being ore were considered in
this study. A graph of the relationship between the error and ore percentage is shown
in Fig. 9.

Note that the error is reduced as the proportion of ore in the panel increases. This
gives rise to the possibility of optimising the drilling grid in the regions with a higher
probability of ore.

Fig. 8 Three months of
production panels with a
probability of being ore of
higher than a 50%
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Fig. 9 Error in metal content versus ore percentage for each panel. The red horizontal line shows
15% error with 90% confidence

7 Conclusions

The applicability of the proposedmethodologywas evaluated, and the results indicate
that the 25 × 25 m grid meets the requirements of an error of less than 15% with
90% confidence in the panels selected as ore.

An important aspect of the methodology proposed in this study is that it does
not depend on the existence of a geological model, since the existence or otherwise
of a mineralised zone is defined using SIS. This technique can also therefore be
recommended for applications involving mineral deposits where there is no detailed
knowledge, i.e. during the intermediate stages of exploration.
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and financial support.

References

1. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)
2. David, M.: Geostatistical Ore Reserve Estimation. Developments in Geomathematics, vol. 2,

364p. Elsevier Scientific Publishing Company, Amsterdam (1977)
3. Isaaks, E.H., Srivastava, M.R.: An Introduction to Applied Geostatistics, 561p. Oxford

University Press, New York (1989)
4. Goovaerts, P.: Geostatistics for Natural Resources Evaluation, 483p. Oxford University Press,

New York (1997)
5. Journel, A.G.: Geostatistics for conditional simulation of ore bodies. Econ. Geol. 69(5), 673–

687 (1974)
6. Pilger, G.G.: Aumento da Eficiência dos Métodos Sequenciais de Simulação Condicional,

229p. Universidade Federal do Rio Grande do Sul, Tese de Doutorado (2005)



162 C. M. S. Neves et al.

7. Isaaks, E.H.: The application of monte Carlo methods to the analysis of spatially correlated
data, 213p. Ph.D. thesis, Stanford University, USA (1990)

8. Rivoirard, J.: Introduction to Disjunctive Kriging and Nonlinear Geostatistics, 89p. Centre de
Géostatistique, Ecole des Mines de Paris (1990)

9. Alabert, F.G.: Stochastic imaging of spatial distributions using hard and soft information.M.Sc.
thesis, Stanford University, California (1987)

10. Journel, A.G.: The indicator approach to estimation of spatial distributions. In: Proceedings of
the 17thAPCOM(International Symposiumon theApplication of Computers andMathematics
in the Mineral Industry), SME-AIME, Golden, Colorado, EUA, pp. 793–806 (1982)

11. Pilger,G.G.: Critérios para LocaçãoAmostral Baseados emSimulaçãoEstocástica.Dissertação
de Mestrado, 127p. Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de
Materiais (PPGEM). Universidade Federal do Rio Grande do Sul (2000)

12. Pilger, G.G., Costa, J.F.C.L., Koppe, J.C.: Optimizing the value of a sample. In: Application of
Computers and Operations Research in the Mineral Industry, Phoenix, Proceedings of the 30th
International Symposium, vol. 1, pp. 85–94. Society for Mining, Metallurgy and Exploration,
Inc. (SME), Littleton (2002)

13. Koppe, V.C.: Metodologia para Comparar a Eficiência de Alternativas para Disposição de
Amostras, 236p. Tese de Doutorado. Programa de Pós-Graduação em Engenharia de Minas,
Metalúrgica e de Materiais (PPGEM). Universidade Federal do Rio Grande do Sul (2009)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


LSTM-Based Deep Learning Method
for Automated Detection of Geophysical
Signatures in Mining

Mehala Balamurali and Katherine L. Silversides

Abstract The mining of stratified ore deposits requires detailed knowledge of the
location of orebody boundaries. In the Banded Iron Formation (BIF) hosted iron ore
deposits located in the Pilbara region of Western Australia the natural gamma logs
are useful tool to identify stratigraphic boundaries. However, manually interpreting
these features is subjective and time consuming due to the large volume of data.
In this study, we propose a novel approach to automatically detect natural gamma
signatures. We implemented a LSTM based algorithm for automated detection of
signatures. We achieved a relatively high accuracy using gamma sequences with and
without added noise. Further, no feature extraction or selection is performed in this
work. Hence, LSTM can be used to detect different signatures in natural gamma
logs even with noise. So, this system can be introduced in mining as an aid for
geoscientists.

Keywords Long short-term memory · Deep learning · Natural gamma signals

1 Introduction

In the Banded Iron Formation (BIF) hosted iron ore deposits located in the Pilbara
region ofWestern Australia, natural gamma logs are frequently used to determine the
location of stratigraphic boundaries [1]. The location of these boundaries is required
for accurate modelling of the deposit. These deposits consist of layers of BIF and
shale, with sections of the BIF enriched to create a minable high grade ore [2]. This
paper studies a typicalMarraMamba type iron ore deposit, with iron ore in theMount
Newman Member overlain by the shale in the West Angelas Member.

The natural gamma logs are one of several geophysical logs that are typically
collected in exploration holes, along with density and magnetic susceptibility. As
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thousands of holesmay be drilled for a single deposit, manually interpreting them can
be an arduous process. Additionally, it is prone to inconsistencies between different
interpreters as well as errors. Therefore an automatic method that can assist the
interpretation is greatly desired. A computer-aided method is a better option as it can
provide a fast, objective, and reliable analysis. Many studies have been conducted on
the development of automatically identified boundaries based on machine learning
applications, including several studies on these types of deposit [3, 4]. However,
the process of choosing a set of optimal features to classify a signature from the
signal is very difficult. Therefore, a deep learning technique is presented in this
study to overcome the challenges faced by conventional automated systems. A deep
learning network involves several stages of learning processes, including an input
layer, hidden layers, and an output layer [5]. The network takes unprocessed data as
the input and learns the representative features that needed for classification without
user input. The network is trained using the backpropagation algorithm.

In this study we investigated the capability of a long short-term memory (LSTM)
network to classify several geological signatures from a gamma log. LSTM is a type
of recurrent neural network mostly used to analyse time series sequence data [6].
In this study the authors investigated the capability of a LSTM network to classify
several geological signatures from a gamma log sequence data along the down hole
samples. The work demonstrates a classifier with three different outputs that can
differentiate AS1-AS2 signals and NS3-NS4 signals from long gamma sequence.

2 Data Used

Natural gamma logs from a typical Marra Mamba style iron ore deposit were used.
This deposit contains two natural gamma signatures of particular interest. The first
signature is produced by theAS1-AS2 shales at the base of theWestAngelasMember
(Fig. 1a) and marks the transition between the shale and the Mount Newman ore
below. The second signature comes from the NS3-NS4 shale bands (Fig. 1b) that
mark a transition between two geological units within the Mount Newman Member.
42 examples of each of these signatures were chosen, along with 42 examples of
other signatures from different parts of the natural gamma logs.

3 Methodology

3.1 Long Short-Term Memory (LSTM)

In order to train a deep neural network to classify each signal along the depth of
sequence data, a sequence-to-sequence LSTM network was used as proposed in
Matlab R2019a [7]. The existing method was used to make prediction for each time
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Fig. 1 Typical examples of the natural gamma signatures for a AS1-AS2, and b NS3-NS4. c, d
Contain two examples of other signatures, there is a large variety of signatures in this group

step of the sequence. However, in this study, the method was used to make prediction
of depth sequence data.

The proposed method consists of a LSTM layer, with tanh as the activation func-
tion. LSTM layer was set to have 200 hidden units and output the full sequence. The
final layer, which is a fully connected (FC) layer with a softmax activation function,
is used as the classifier with three classes. The classifier uses the output from the
LSTM as the input and predicts the class label of the gamma signatures for a given
sequence. The ‘adam’ optimizer was used and training was happened with different
number of epochs.

3.2 Training and Validation

In order to analyze the capability of the LSTM architecture for identifying gamma
signatures, a range of tests were performed. Out of 42 sequences, 30 sequences were
used as training samples and rest were used as test samples. Two training libraries
were used. In the first library all samples had the same signal order. The other library
had two different sequence sets: AS1-AS2, other and NS3-NS4 in order, NS3-NS4,
AS1-AS2 and other in order.

Figure 2 shows twelve test samples each containing a combination of AS1-AS2
and NS3-NS4 signatures along with signatures from other sections of the logs. The
test sequences have the AS1-AS2, NS3-NS4 and other signals in different order. The
first six test sequences have the signals in the order AS1-AS2, other and NS3-NS4,
and the other six sequences have the order NS3-NS4, AS1-AS2 and other. To test
the robustness of this method to noise, the test was re-run with random noise added
to the test samples.

In total four tests were completed. Case 1 and Case 2 were trained using libraries
1 and 2 respectively and were both stopped at epoch 200. Case 3 was trained with
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(a)

(b)

Fig. 2 Test sequences with the combination of AS1-AS2 (orange), NS3-NS4 (purple) signatures
and other (yellow). Sampleswith (a) no noise and (b) noise added. Blue lines show the joins between
the different signatures
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library 2 and stopped at epoch 228. Case 4 used the same training as Case 3, but
predicted the signature classes of samples with added noise.

4 Results and Discussion

The accuracy and loss of the proposed method from the training as a function of
epochs can be seen in Fig. 3. Each plot is associated with different training library
and different epochs. In case one library 1 was used to train the net. Then the net was
used to predict the signatures in the original test samples (no noise added) (Fig. 2a).
In other cases, library 2 was used in the training process with epochs 200 and 228.
Prediction accuracy was tested on both original and noisy samples (Fig. 2). In all
scenarios a high accuracy were achieved during the training process (Fig. 3). The
performance is summarized in Figs. 4 and 5.

In Fig. 4a it can be seen that the classification accuracies are significantly higher in
the first 6 sequences compared to the remaining six sequences. This is because the net
used in prediction was trained with library 1, which has all signals in the same order.
Without the inclusion of different signal orders in the training process, the LSTM
method failed to identify signals where the order was different. In comparison, when
training with mixed order samples the LSTM closely predicted the signals in 11 out
of 12 samples (Fig. 4b). The accuracy of the predictionwas further improved at epoch
228, where the author stopped the training where accuracy of the network peaked
(Fig. 4c). The same trained network obtained relatively good accuracy in the noisy
test samples as well (Fig. 4d.). In all scenarios test sample 7 yielded a much lower
accuracy. This is because the AS1-AS2 signature in that sample is quite different to
the other AS1-AS2 signatures.

5 Conclusion

In this paper, a deep learning based solution using LSTM is developed for natural
gamma signature identification. The proposed method learns patterns from gamma
sequences, and could successfully identify the significant AS1-AS2 and NS3-NS4
signatures. With only a few training samples it generally achieved a relatively high
accuracy. However, the accuracy was dependent on the signal order present in the
training samples. Further evaluation is needed with increasing training samples with
different sequence lengths.
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(a) 

(b) 

(c)

Fig. 3 Performance from the proposed LSTM method. Left: accuracy versus epochs; Right: Loss
versus epochs; a Training with library 1: AS1-AS2, Other, NS3-NS4, training accuracy at epoch
200. b Training with library 2: order 1: AS1-AS2, Other,NS3-NS4; order2: NS3-NS4, AS1-AS2,
other at epoch 200. c Training with library 2 manually terminated at epoch 228
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(a) (b)

(c) (d)

Fig. 4 Comparing predicted class labels (blue) with given class labels (red) for different scenarios:
a Training with library 1, epoch 200, b Training with library 2, epoch 200, c Training with library 2,
epoch 228, d Training with library 2, epoch 228 and prediction on noisy samples. X axis: depth; Y
axis: class labels, 1:3 represent the AS1-AS2 signatures, other signatures and NS3-NS4 signatures
respectively
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Fig. 5 Summaries of the prediction accuracy on 12 samples for each case. Case1: Training with
library 1, epoch 200, Case 2 Training with library 2, epoch 200, Case 3 Training with library 2,
epoch 228, Case 4 Training with library 2, epoch 228 and prediction on noisy sample
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Applying Clustering Techniques
and Geostatistics to the Definition
of Domains for Modelling

Gabriel de Castro Moreira, João Felipe Coimbra Leite Costa,
and Diego Machado Marques

Abstract Machine learning is a broad field of study that can be applied in many
areas of science. In mining, it has already been used in many cases, for example, in
the mineral sorting process, in resource modeling, and for the prediction of metallur-
gical variables. In this paper, we use for defining estimation domains, which is one of
the first and most important steps to be taken in the entire modeling process. In unsu-
pervised learning, cluster analysis can provide some interesting solutions for dealing
with the stationarity in defining domains. However, choosing the most appropriate
technique and validating the results can be challengingwhen performing cluster anal-
ysis because there are no predefined labels for reference. Several methods must be
used simultaneously to make the conclusions more reliable. When applying cluster
analysis to the modeling of mineral resources, geological information is crucial and
must also be used to validate the results. Mining is a dynamic activity, and new infor-
mation is constantly added to the database. Repeating the whole clustering process
each time new samples are collected would be impractical, so we propose using
supervised learning algorithms for the automatic classification of new samples. As
an illustration, a dataset from a phosphate and titanium deposit is used to demon-
strate the proposed workflow. Automating methods and procedures can significantly
increase the reproducibility of the modeling process, an essential condition in eval-
uating mineral resources, especially for auditing purposes. However, although very
effective in the decision-making process, the methods herein presented are not yet
fully automated, requiring prior knowledge and good judgment.
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Keywords Machine learning · Cluster analysis · Estimation domains ·Mining

1 Introduction

1.1 Machine Learning in Mining

Machine learning (ML), a term introduced by [31], enables computers to learn from
data to perform tasks then and make decisions based on the mathematic models that
were built, without giving specific commands to these computers. It has been heavily
applied in many fields of science and industry. Although not a new subject, it has
enjoyed high popularity and a sharp increase in development over the last decades,
thanks to the growth of computer power and easy access to the public.

ML is a complex and broad scientific field and must be used with caution. It can
offer interesting solutions, especially regarding complex problemswith big databases
and high dimensionality, when properly applied. In themining industry, it has already
been applied in several tasks, for example in the definition of domains for resource
modeling (e.g., [12, 18, 19, 27]), in the mineral analysis and sorting process (e.g.,
[6, 14, 33]) and for the prediction of metallurgical variables (e.g., [16, 22, 23]).

This paper specifically addresses the matter of defining domains for modeling
using cluster analysis. We compare different algorithms and elaborate on the formal
validation of the spatial distribution of the resulting clusters using correlograms of
the indicators, as suggested in [21].

Additionally, we discuss and apply supervised learning algorithms for the auto-
matic classification of new samples. Consequently, incorporating new data into the
database respects the same rules used to define those domains, which has been
suggested by [27] and is now applied in a real case scenariowith a phosphate-titanium
illustration case.

1.2 Stationarity in the Context of Mineral Resource Modeling

The concept of stationarity is closely related to the homogeneity of geological bodies.
We will assume that a phenomenon is stationary when it shows constant expected
values, covariance moments, and autocorrelation structures across the study area in
any given location, a simplified definition based on [15]. However, these charac-
teristics are rarely present over large volumes of in situ natural materials. There-
fore, it becomes necessary to distinguish more homogeneous portions inside mineral
deposits, the so-called “modeling domains”. Hence, the geologic block models are
more accurate to the reality that they intend to represent.

Proper data statistics and a good understanding of the geological context are essen-
tial for an adequate segmentation of a mineral deposit into domains for modeling.
Unsupervised machine learning techniques, specifically cluster analysis algorithms,
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can be especially suited for this matter. These methods can divide the available data
into groups based on similarities and dissimilarities.

1.3 Types of Clustering Algorithms and Background

Traditionally, cluster analysis uses the relationships that are present in the data based
only on statistical parameters, that is, the relationships in the attribute (multivariate)
space (e.g., [7, 17, 34]), without considering the spatial connectivity or the geolog-
ical aspects [29]. Thus, using such traditional algorithms on geostatistical datasets
encounters considerable limitations, as statistical similarity does not necessarily
imply geographic continuity.

In the last decades, new methods were introduced to analyze the clustering of
spatial data. These algorithms offer the possibility of grouping data into spatially
contiguous clusters and, at the same time, respect the statistical relationships between
the variables (e.g., [3, 8, 18, 24, 27, 32]).

The method presented by Oliver and Webster [24] uses spatial analysis to deter-
mine the scale of spatial variation. This is then applied for clustering the samples into
spatial contiguous groups. Ambroise et al. [1] introduced a technique where spatial
constraints are applied to the expectation–maximization algorithm [5]. Scrucca [32]
presented a method based on the autocorrelation statistics developed by Getis and
Ord [13] and Ord and Getis [25].

Romary et al. [28] applied spatial clustering based on the traditional agglomerative
hierarchical method and, later, Romary et al. [27] added a new approach, inspired
on the spectral clustering algorithm. Fouedjio [8, 9] applied a non-parametric kernel
estimator, developing an algorithm also based on the spectral approach. Fouedjio
[10] then extended the spectral clustering approach presented by Fouedjio [8] to be
applied to large scale geostatistical datasets.

Martin and Boisvert [18] introduced a method that involves: (i) introduction of
a new algorithm based on clustering ensembles and (ii) a metric that combines the
spatial and the multivariate character of the data.

D‘Urso andVitale [3] proposed amodification of the technique that was presented
by Fouedjio [9], aiming at neutralizing eventual spatial outliers. [11] reviewed
many of the spatial clustering techniques, categorizing them according to their
characteristics.

1.4 Discussions on the Validation Process

All unsupervised techniques aim at finding patterns in unlabeled data, allowing the
definition of groups based on their similarities/dissimilarities. This fact is what brings
up one of themost significant challenges in cluster analysis: validation. Because there
are no true values for reference, validation is a subjective task.
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Some specific validation techniques, such as the Silhouette [30], the Davies-
Bouldin [4], and the Calinski-Harabaz [2] methods can aid in this task, but only
access the effectiveness of the clustering process in the multivariate space. Martin
and Boisvert [18] proposed an alternative approach for measuring the clustering
quality in the multivariate and geographic spaces simultaneously: the “dual-space
metrics”.

An additional challenge is to choose the most appropriate number of clusters.
An excessive number of domains can unnecessarily complicate the subsequent
steps in the modeling workflow (e.g., contour modeling, estimation, simulation).
On the other hand, very few domains can imply the mixing of statistical populations,
compromising the accuracy of the resulting models.

Therefore, there is no ultimate methodology for cluster analysis when applied to
geostatistical datasets. The results have to be tested and different scenarios compared
in both multivariate and geographic spaces. Nevertheless, what is being tested is not
the veracity of the clusters, but their relative quality, their practical sense, in other
words, whether or not it was possible to group the data satisfactorily.

1.5 Supervised Learning Applied to the Classification of New
Samples

Mining is a dynamic activity, and new information is constantly added to the database
in every operation. Performing the entire cluster analysis each time that new samples
are collected would be somewhat impractical. Furthermore, as the clustering tech-
niques are based on the search for complex relationships in the data, other configura-
tions could arise, slightly different from those already defined, which would require
the revision of the whole modeling process, including the definition of contours and
the analysis of the spatial continuity (i.e. variography).

At the same time, the new samples must be labeled according to the previously
conducted cluster analysis [27]. In other words, they are classified according to the
same rules so that a new sample, when assigned to a particular group, is more similar
to the other samples of the same cluster than to samples from other clusters. As these
designations do not follow simple rules, classifying new samples is not a trivial task,
and supervised machine learning techniques are especially suitable for this matter.
This can be achieved with algorithms such as decision trees, random forests, support
vector machines, and artificial neural networks.

Figure 1 presents a flowchart with the proposed steps for the integrated cluster
analysis and automatic classification of samples in a mineral resource modeling
context [20]. Sporadically, as the database grows in number, the definition of groups
can be updated, as indicated by the dashed line in the flowchart of Fig. 1, using
samples that had not been previously used in the cluster analysis. The supervised
classifier must then be updated so that it incorporates the new information to be used
in the classification of new samples in a continuous process.
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Fig. 1 Proposed workflow for the integrated use of supervised and unsupervised machine learning
methods in defining domains for modeling and classifying new samples in a mineral resource
modeling process

2 Methods and Workflow

2.1 Clustering Algorithms

In order to observe the behavior of different types of clustering approaches, four
algorithms were applied in this study. Two of them do not consider the spatial distri-
bution of the samples. The other two are of the spatial type, which account for the
relationships of data in the attribute space as well as for the position of the samples
in the geographic space:

(i) k-means [17]—one of the most traditional and widely used clustering algo-
rithms;

(ii) Agglomerative hierarchical [34]—another widely used technique, firstly intro-
duced in the field of taxonomy, and later adopted in many fields of science;

(iii) Dual-space clusterer [18]—a specially designed method to deal with spatial
data, herein referred to as dsclus,

(iv) Autocorrelation-based clusterer [32]—another algorithm for handling spatial
data, basedon the clusteringof local autocorrelation statistics, hereinmentioned
as acclus.

2.2 Validation Methods

The following validation methods were applied to evaluate the results and help to
choose the best clustering algorithm and configuration:

(i) The Silhouette [30], the Calinski-Harabasz [2], and the Davies-Bouldin [4]
scores;
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(ii) The dual spacemetrics [18], which comprehends spatial entropy (H) andwithin
clusters sum of squares (wcss);

(iii) Indicators correlograms to assess the geographic continuity of the clusters (as
suggested in [21]);

(iv) Visual inspection of the spatial distribution and statistical evaluation of the
clusters.

The metrics indicated on item (i) measure how well the elements are clustered
inside the respective groups using Euclidean distances in the multivariate space.
Higher values of both Silhouette and Calinski-Harabasz scores and lower Davies-
Bouldin scores are desired, indicating more organized clusters.

Martin and Boisvert [18] proposed the dual-space metrics for simultaneously
verifying multivariate and spatial cohesion of clusters. H and wcss are calculated
independently but simultaneously evaluated, so the goodness of the clusterings are
evaluated in geographic and multivariate spaces.

Generally, the best configurations for spatial data clustering are not those with the
lowest multivariate scores nor those with the lowest spatial entropy, but ones with
intermediate values. Lower H and wcss are desired. However, a tradeoff between
these two metrics is usually observed. As already pointed out by Oliver and Webster
[24] andwas later empirically confirmedbyMartin andBoisvert [18], higher cohesion
in themultivariate space usually leads to the geographic fragmentation of the clusters.
The solution is to combine both metrics and evaluate the results comparatively.

In order to further analyze and validate the geographic connectivity of the clusters,
we used themapping of the spatial continuity of the indicators based onModena et al.
[19]. However, those authors used variograms, whichmay be noisy in short distances.
Here we use correlograms, as these are standardized, which gives more stability to
the results, especially regarding short distances. In this method, a binary variable is
defined, assuming value 1 for samples within the cluster being evaluated and 0 for
all others. The correlogram for this binary variable is then plotted for different lags.
Continuous clusters will result in structured correlograms and, fragmented clusters,
in noisy correlograms and/or high nugget effects.

Choosing the adequate clustering configuration is a very subjective task. It is
important to observe the statistical distributions of the clusters using tools such
as histograms, boxplots, and scatter plots. Additionally, comparisons between the
defined clustering domains and some geological aspects of the samples (e.g., rock
type, alteration patterns) are essential.

2.3 Automatic Classification of New Samples

In order to perform the automatic classification, first the clustering-labeled dataset
must be used to calibrate (test and define the parameters) the classifier. Differently
from what happens in unsupervised techniques, validating the performance of a
supervised algorithm is straightforward, as the data is already labeled, as it will be
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demonstrated in the illustration case that follows. In order to do so, the datasetmust be
divided into the training and test subsets. The quality of the classifier can be assessed
with confusion matrices and with the examination of global metrics such as recall,
precision, and accuracy. A prevalent and proper validation technique for supervised
learning applications is the k-fold cross-validation, which splits the dataset into train
and test sets several times, each of thesewith different sets of data to avoid overfitting.

2.4 Workflow

For a better understanding, the proposed workflow can be organized as follows:

(i) Exploratory data analysis;
(ii) Data standardization according to

Z = (X − m)

s
(1)

where Z is the standardized value, X is the original value, m is the mean, and
s, the standard deviation of the original values;

(iii) Computation of themean scores of the Silhouette, Calinski-Harabasz, Davies-
Bouldin, wcss, and H;

(iv) Selection of the best scenarios based on the resulting scores from step (iii);
(v) Verification of the geographic contiguity of the clusters, using the correlo-

grams of the indicators defined by the classes;
(vi) Visual inspection and statistical analysis of the scenarios selected in step (v);
(vii) Selection of the best-suited scenario based on the previous steps;
(viii) Calibration of a supervised classifier and automatic classification of new

samples.

All methods were run using a Jupyter Notebook, under Windows 10, 64 bit with
Python 3.6.5 installed via Anaconda; processor Intel® i7-3.20Ghz, with 24.0 GB
RAM.

3 Case Study

3.1 Exploratory Data Analysis

The techniques mentioned in the previous sections were applied to a three-
dimensional isotopic dataset from a phosphate-titanium deposit, containing 19.344
samples assayed for 12 oxides (P2O5, Fe2O3, MgO, CaO, Al2O3, SiO2, TiO2, MnO,
Na2O, K2O, BaO, and Nb2O5) and loss on ignition (LoI). The samples also carry
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two categorical attributes: weathering patterns (Fig. 2a) and rock types (Fig. 2b).
Figure 3 shows the histograms of the continuous variables, and Fig. 4, the bar charts
with the sample counts of the two categorical variables. Tables 1 and 2 show brief
descriptions of each of the typologies.

The distributions of each continuous variable are quite different, and some of
them show considering asymmetry. Besides, it can be observed that complex rela-
tionships are present from the scatterplots of the most relevant variables (Fig. 5).
These complexities and the differences in the scale of the raw variables can lead

(a)

(b)

Fig. 2 Cross-section (N30E) showing samples symbolized by weathering (a) and rock type (b)

Fig. 3 Histograms of the continuous variables
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(a) (b)

Fig. 4 Bar charts with the sample counts of the categorical variables

Table 1 Rock type
typologies

Typology Description

COB Soil cover

ZTI Titanium zone

BEB Bebedourites

FCR Foscorites

FET Foscrete

CBN Carbonatite

SIE Syenites

Table 2 Weathering
typologies

Typology Description

ALO Soils, clays and laterites

ISAT Saprolite generally mineralized in titanium

ISAB Saprolite generally mineralized in phosphate

RSI Semi-altered rock

RSA Fresh rock

to inconsistencies when applying machine learning algorithms, so all continuous
variables were standardized according to Eq. 1.
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(a) (b)

Fig. 5 Scatter plots of the most relevant continuous variables, with the points colored according to
the weathering code and rock type

3.2 Applying Cluster Analysis and Verifying the Results

The four clustering algorithms (k-means, hierarchical, dsclus and acclus) were
applied in seven different scenarios, each corresponding to a different number of clus-
ters, from two to seven. The validation methods mentioned in the previous sections
were applied in order to evaluate the clustering configurations.

To run the hierarchical and k-means techniques, we used the algorithms available
on the Scikit-learn library [26]. For the first, we used the ward’s proximity distances
and for the latter, the k-means++ option for the centroid initialization, which seeks to
maximize the separation between the initial centroids, increasing speed and accuracy.

For dsclus and acclus, we used the algorithms available on GitHub, hosted in
the account mentioned in Martin and Boisvert [18]. The dsclus being a clustering
ensemble technique, we used 100 realizations, with 20 nearest neighbors and search
volume= (0, 0, 0, 400, 400, 12). For acclus, 30 nearest neighbors were set, also with
a search volume = (0, 0, 0, 400, 400, 12).

Figure 6 shows the results of the multivariate metrics and the spatial entropy for
all four algorithms in all scenarios. It becomes evident that the traditional algorithms
produce better results than the spatial techniques in the multivariate space, with k-
means outperforming the hierarchical method. On the other hand, spatial techniques
show better results in the geographic space, with dsclus outperforming acclus in
almost every case. Therefore, it is noticeable that dsclus is preferable, as it shows
more balanced results between the multivariate and the geographic aspects.

To verify geographic connectivity and multivariate organization simultaneously,
the dual space metrics of [18]—wcss and spatial entropy—can be plotted in a scatter
plot (Fig. 7). As already stated, low values for both H and wcss, are desirable.
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Fig. 6 Plots showing the variations for Davies-Bouldin, Silhouette, Calinski-Harabasz, wcss and
spatial entropy (H) scores, applied to the clustered data as the number of clusters (k) increases

However, it is apparent in the figure that these twometrics are inversely proportional.
The solution is to look for intermediate configurations that present a better balance
between multivariate and geographic cohesion.

As for choosing the adequate number of clusters (k), intermediate values of all
metrics are also preferable. Thus, even though the scenarios with two or three clusters
show good scores, these configurations can lead to the statistical mixing of popula-
tions, which must be avoided, especially concerning a complex situation with high
dimensionality. On the other hand, grouping the data in seven, eight, or even six

Fig. 7 Spatial entropy andwcss plotted against each other to simultaneously evaluate the clustering
configurations in multivariate and geographic spaces. The color indicates the clustering algorithm,
the icon, the number of clusters
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(a)

(b)

Fig. 8 Cross-sections are showing part of the dataset, with samples colored by clustering domain
(dsclus), on the four (a) and five-cluster (b) scenarios

clusters can take unnecessary complications in the following steps of the modeling
process, such as the definition of contours and estimation, as some groups will be
somewhat redundant. Therefore, the dsclus-clustered data with four or five groups
seem to be better options and will be the only scenarios to be considered from now
on.

Figure 8 shows the spatial distribution of the samples, colored by clustering code,
to understand the clusters’ layout better. It becomes clear that the distribution in each
case is comparable to the distributions of the weathering patterns and rock type (see
Fig. 2), with a dominant horizontal layout.

A statistical evaluation of samples was also performed, and, as can be seen in
the boxplots of Figs. 9 and 10, both scenarios show different statistical distributions,
depending on the considered variable.

Finally, a sample count was performed to compare clusters and the categorical
variables—weathering and rock type—and Fig. 11 presents the bar charts with the
results.

3.3 Discussions on the Results of the Cluster Analysis

From the statistical analysis and the comparisons between clusters, weathering
patterns, and rock types, a description of each cluster can be drawn so that they
can compose modeling domains (Tables 3 and 4).

The scenario with four domains can be compared to the model used at the mine
site in the case study. What is considered phosphate and titanium ores are saprolite
materials comprised in our domains 0 and 2, respectively. The overburden waste,
composed of soil, clay, and laterite, corresponds to our domain 3. Altered and fresh
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Fig. 9 Boxplots with the statistical distributions of samples per group in the four-cluster dsclus
scenario

rocks from the base of the deposit are grouped in our domain 1. In the mine, semi-
altered rocks can also be mined as phosphate ore, depending on P2O5 grades and
CaO/P2O5 ratios.

Although the four-cluster scenario is the most similar to the model practiced in
the mine, this resemblance shows some inconsistencies, mainly regarding the rocky
materials (RSA andRSI). In themine, fresh and altered rockmaterials are included in
different modeling domains. This is due to a technical artifact: this way, particularly
low grades of P2O5 and/or high grades of CaO will not contaminate the estimates of
blocks classified as an altered rock in the model, which can be mined as ore in certain
areas. In the global perspective of the cluster analysis, as conducted in this study,
there is no evidence that RSA and RSI should constitute different modeling domains.
Besides, the four-cluster configuration implies considerable losses of materials that
could be mined as ore (included in our domain 1).

In the five-domain scenario, domain 0 comprises the rocky waste and phosphate-
bearing rocks with high carbonate contents. Domain 1 is the phosphate ore, domain
4 is the titanium ore, and domain 2 is the overburden. Domain 3, although mainly
composed of overburden, can be an alternate source of titanium. We conclude that
this configuration is adequate compared to the four-domain scenario.

Another important observation is that these comparisons between the clustering
results and theminemodel are subjective evaluations because the geologic classifica-
tions (weathering patterns and rock types) are products of the personal interpretations
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Fig. 10 Boxplots with the statistical distributions of samples per group in the five-cluster dsclus
scenario

(a) (b)

Fig. 11 Bar charts comparing weathering and rock types to the clusters in the four and five-cluster
scenarios obtained with de dsclus algorithm
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Table 3 Characterization of each cluster of data in the four-cluster dsclus scenario

Cluster/domain Description

0 The main source of phosphate ore. Locally, it can show considerable grades of
TiO2, Fe2O3, CaO and MgO

1 Rocky materials (altered or fresh) in the base of the deposit. Locally can contain
materials with interesting grades of P2O5 as a possible source of phosphate ore

2 The main source of titanium ore. May locally contain high grades of Fe2O3,
Al2O3, MnO and BaO

3 Overburden (soil, clay, etc.). High grades of Al2O3 and LoI

Table 4 Characterization of each cluster of data in the five-cluster dsclus scenario

Cluster/domain Description

0 Rocky materials (altered or fresh) in the base of the deposit. Locally can
contain materials with interesting grades of P2O5, but also CaO, MgO
(carbonates), Na2O, and K2O (syenite)

1 The main source of phosphate ore. Locally, can show considerable grades
of TiO2, Fe2O3, Na2O, K2O (syenites), CaO and MgO (carbonates)

2 Overburden (soil, clay, etc.). High grades of Al2O3 and LOI

3 Mainly composed of overburden materials, but can contain considerable
grades of TiO2

4 The main source of titanium ore. May locally contain high grades of P2O5,
Fe2O3, MnO and BaO

of the company’s personnel. Thus, those classifications should not be taken as true
data labels, although the matches with the clustering domains show a remarkable
similarity.

3.4 Supervised Learning Applied to the Automatic
Classification of New Samples

Once the most suitable scenario is chosen, the clustered data can be used to train
a supervised classifier to be applied in the classification of new samples. Many
algorithms can be used, such as k-nearest neighbors, decision trees, and random
forests. In this paper, the latter was chosen.

First, the 19.344 labeled dataset was segmented into stratified training and testing
sets in a proportion of 85%–15% (17.252 and 2.902 samples, respectively). As this
is a case where the spatial configuration is important in defining clusters, the xyz
coordinates were also used as input variables, along with all continuous attributes.
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Fig. 12 Confusion matrices from each of the five folds from the stratified fivefold cross validation
applied to evaluate the Random Forest classifier

The input variables were standardized according to Eq. 1. The ‘Randomized
Search CV’ (Pedregosa et al., 2012) method was used to define the best parame-
ters of the Random Forest classifier. Fivefold stratified cross-validation was applied,
and results are shown in Figs. 12 and 13.

The model was run with the 2.902-sample test set. It was verified that the results
(Fig. 14) are consistent to those observed in the fivefold stratified cross validation,
attesting that there is no under or overfitting in the model. The statistical affinities
between some groups lead to somemisclassifications, but results are acceptable, with
a 92% overall accuracy.

As a final evaluation, the statistical distribution and the visual inspection of the
automatically classified samples from the test set were checked. Figures 15 and 16
show that the results are consistent (see Figs. 8b and 10 for comparison).

4 Conclusions

Although very efficient in many cases, the application of traditional clustering algo-
rithms is quite limited in modeling mineral resources since they only consider
data relationships in the multivariate space, neglecting their geographic distribu-
tion. Thus, techniques that also consider the geographic distribution of samples are
more appropriate, as demonstrated in the case study.

Parameterization and the validation of the clustering results are still complex deci-
sions and entirely subjective. Therefore, despite being very effective in the decision-
making process, those methods are not yet fully automated, requiring specialized
knowledge and good judgment.

The geological characteristics of a mineral deposit should guide the classification
of the samples. However, traditionally, these characteristics lead to subjective clas-
sifications, resulting from personal interpretation in the data acquisition phase. Such
classifications should therefore not be given as unquestionable labels, and differences
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Fig. 13 Global metrics for
each of the five folds from
the stratified fivefold
cross-validation

Cluster Precision Recall F1-score Support
Cluster 0 0.93 0.96 0.94 1132
Cluster 1 0.85 0.83 0.84 659
Cluster 2 0.97 0.97 0.97 645
Cluster 3 0.78 0.78 0.78 255
Cluster 4 0.90 0.87 0.88 599

Cluster 0 0.94 0.96 0.95 1132
Cluster 1 0.86 0.87 0.86 659
Cluster 2 0.97 0.96 0.96 645
Cluster 3 0.82 0.82 0.82 255
Cluster 4 0.92 0.90 0.91 599

Cluster 0 0.96 0.95 0.95 1132
Cluster 1 0.84 0.89 0.86 659
Cluster 2 0.98 0.98 0.98 645
Cluster 3 0.85 0.80 0.82 255
Cluster 4 0.91 0.88 0.89 599

Cluster 0 0.94 0.94 0.94 1132
Cluster 1 0.85 0.86 0.85 659
Cluster 2 0.95 0.98 0.96 645
Cluster 3 0.87 0.77 0.82 255
Cluster 4 0.91 0.92 0.91 599

Cluster 0 0.95 0.97 0.96 1132
Cluster 1 0.88 0.87 0.87 659
Cluster 2 0.96 0.97 0.96 645
Cluster 3 0.81 0.76 0.78 255
Cluster 4 0.90 0.89 0.89 599
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Domain Precision Recall F1-score Support
0 0.95 0.96 0.95 956 0 1 2 3 4
1 0.89 0.89 0.89 637 0 918 38 0 0 0
2 0.97 0.97 0.97 593 1 49 565 0 1 22
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Fig. 14 Global metrics and confusion matrix for the validation of the Random Forest classifier
when applied to the 2.902-sample test set

should arise compared to the results of clustering algorithms. It is evident that the
geological characteristics must be reflected in the clusters in some way.

Once the best scenario has been defined, the codes of each group can be fed
as labels in supervised learning algorithms (e.g., decision trees, random forests,
k-nearest neighbors) for the calibration of mathematical models for the automatic
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Fig. 15 Boxplots show the statistical distributions of the 2.902 samples labeled with the Random
Forest classifier

(a) (b)

Fig. 16 Cross sections show the spatial distributions of some of the 2.902 samples labeled with
the Random Forest classifier

classification of new samples. Periodically, the complete analysis should be revisited
with all samples, and the supervised classifier, updated.

One of the most significant advantages of applying machine learning to mining
problems is their ability to make measurements in a multidimensional space, using
complex mathematical relationships, which is practically impossible for a human
analyst. Apart from the subjectivity of the validation and final decision, this automa-
tion significantly increases reproducibility in the modeling processes, which is
essential in evaluating mineral resources, especially for audition purposes.



Applying Clustering Techniques and Geostatistics to the Definition … 217

Acknowledgements The authorswould like to thank theMineral Exploration andMining Planning
Laboratory (LPM) at the Federal University of Rio Grande do Sul (UFRGS), for providing the
necessary conditions for developing this work. Luiz Englert Foundation (FLE), the Coordination
for the Improvement of Higher Education Personnel (Capes) and the National Council for Scientific
and Technological Development (CNPq) are acknowledged for their financial support. We would
also like to thank Dr. Ryan Martin for giving access to his codes and Mosaic Fertilizantes for
providing the data.

References

1. Ambroise, C., Dang, M., Govaert, G.: Clustering of spatial data by the EM algorithm. In:
Proceedings of GEOEV I—Geostatistics for Environmental Applications, pp. 493–504 (1997).
https://doi.org/10.1007/978-94-017-1675-8_40

2. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory
Methods 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101

3. D‘Urso, P., Vitale, V.: A robust hierarchical clustering for georeferenced data. Spatial Stat., 35
(2020)

4. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell. 2, 224–227 (1979). https://doi.org/10.1109/TPAMI.1979.4766909

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977). https://doi.org/10.
1111/j.2517-6161.1977.tb01600.x

6. Drumond, D. A.: Estimativa e classificação de variáveis geometalúrgicas a partir de técnicas
de aprendizado de máquinas. Universidade Federal do Rio Grande do Sul (2019). Retrieved
from https://www.lume.ufrgs.br/handle/10183/202480

7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, pp. 226–231 (1996). https://www.aaai.org/Papers/
KDD/1996/KDD96-037.pdf

8. Fouedjio, F.: A hierarchical clustering method for multivariate geostatistical data. Spatial Stat.
18, 333–351 (2016). https://doi.org/10.1016/j.spasta.2016.07.003

9. Fouedjio, F.: A spectral clustering approach for multivariate geostatistical data. Int. J. Data Sci.
Anal. 4(4), 301–312 (2017). https://doi.org/10.1007/s41060-017-0069-7

10. Fouedjio, F.:A spectral clusteringmethod for large-scale geostatistical datasets. In: Proceedings
of the Thirteenth International Conference in Machine Learning and Data Mining in Pattern
Recognition, vol. 10358LNAI, pp. 248–261 (2017). https://doi.org/10.1007/978-3-319-62416-
7_18

11. Fouedjio, F.: Clustering of multivariate geostatistical data. Wiley Interdiscip. Rev. Comput.
Stat. 1–13 (2020). https://doi.org/10.1002/wics.1510

12. Fouedjio, F., Hill, E.J., Laukamp, C.: Geostatistical clustering as an aid for ore body domaining:
case study at the Rocklea Dome channel iron ore deposit, Western Australia. Appl. Earth Sci.
Trans. Inst. Mining Metallurgy 127(1), 15–29 (2018). https://doi.org/10.1080/03717453.2017.
1415114

13. Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics. Geogr.
Anal. 24(3), 189–206 (1992). https://doi.org/10.1111/j.1538-4632.1992.tb00261.x

14. Gülcan, E., Gülsoy, Ö.Y.: Performance evaluation of optical sorting in mineral processing—A
case studywith quartz,magnesite, hematite, lignite, copper and gold ores. Int. J.Miner. Process.
(2017). https://doi.org/10.1016/j.minpro.2017.11.007

15. Journel, A.G., Huijbregts, C.: Mining geostatistics. Academic Press Limited, London (1978)

https://doi.org/10.1007/978-94-017-1675-8_40
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://www.lume.ufrgs.br/handle/10183/202480
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://doi.org/10.1016/j.spasta.2016.07.003
https://doi.org/10.1007/s41060-017-0069-7
https://doi.org/10.1007/978-3-319-62416-7_18
https://doi.org/10.1002/wics.1510
https://doi.org/10.1080/03717453.2017.1415114
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://doi.org/10.1016/j.minpro.2017.11.007


218 G. de Castro Moreira et al.

16. Lishchuk, V., Lund, C., Ghorbani, Y.: Evaluation and comparison of different machine-learning
methods to integrate sparse process data into a spatial model in geometallurgy. Miner. Eng.
134, 156–165 (2019). https://doi.org/10.1016/j.mineng.2019.01.032

17. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol.
1, pp. 281–296 (1967).

18. Martin, R., Boisvert, J.: Towards justifying unsupervised stationary decisions for geostatistical
modeling: Ensemble spatial and multivariate clustering with geomodeling specific clustering
metrics. Comput. Geosci. 120, 82–96 (2018). https://doi.org/10.1016/j.cageo.2018.08.005

19. Modena, R.C.C., Moreira, G. de C., Marques, D.M., Costa, J.F.C.L.: Avaliação de técnicas
de agrupamento para definição de domínios estacionários com o auxílio de geoestatística. In:
Proceedings of the Twentieth Mining Symposium at the Fifth ABMWeek, pp. 91–100 (2019).
São Paulo. https://doi.org/10.5151/2594-357x-33405

20. Moreira, G.C.: Análise de agrupamento aplicada à definição de domínios de estimativa para a
modelagemde recursosminerais. Universidade Federal doRioGrande do Sul (2020). Retrieved
from https://lume.ufrgs.br/handle/10183/212457

21. Moreira, G.C., Costa, J.F.C.L., Marques, D.M.: Defining geologic domains using cluster anal-
ysis and indicator correlograms: a phosphate-titanium case study. Appl. Earth Sci. 129(4),
176–190 (2020). https://doi.org/10.1080/25726838.2020.1814483

22. Nakhaei, F., Mosavi, M.R., Sam, A., Vaghei, Y.: Recovery and grade accurate prediction of
pilot plant flotation column concentrate: Neural network and statistical techniques. Int. J.Miner.
Process. 110, 140–154 (2012). https://doi.org/10.1016/j.minpro.2012.03.003

23. Niquini, F.G.F., Costa, J.F.C.L.: Mass and metallurgical balance forecast for a zinc processing
plant using artificial neural networks. Nat. Resour. Res. (2020). https://doi.org/10.1007/s11
053-020-09678-4

24. Oliver, M.A., Webster, R.: A geostatistical basis for spatial weighting in multivariate
classification. Math. Geol. 21(1), 15–35 (1989). https://doi.org/10.1007/BF00897238

25. Ord, J.K., Getis, A.: Local spatial autocorrelation statistics: distributional issues and an
application. Geogr. Anal. 27, 286–306 (1995). https://doi.org/10.1111/j.1538-4632.1995.tb0
0912.x

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-
learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

27. Romary, T., Ors, F., Rivoirard, J., Deraisme, J.: Unsupervised classification of multivariate
geostatistical data: two algorithms. Comput. Geosci. 85, 96–103 (2015). https://doi.org/10.
1016/j.cageo.2015.05.019

28. Romary, T., Rivoirard, J., Deraisme, J., Quinones, C., Freulon, X.: Domaining by clustering
multivariate geostatistical data. In: Geostatistics Oslo, pp. 455–466 (2012). https://doi.org/10.
1007/978-94-007-4153-9_37

29. Rossi, M.E., Deutsch, C.V.: Mineral resource estimation. Mineral Resource Estimation.
Springer Science & Business Media (2014). https://doi.org/10.1007/978-1-4020-5717-5

30. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster anal-
ysis. J. Comput. Appl. Math. 20(C), 53–65 (1987). https://doi.org/10.1016/0377-0427(87)901
25-7

31. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev.
3(3), 210–229 (1959)

32. Scrucca, L.: Clustering multivariate spatial data based on local measures of spatial autocorre-
lation. Quaderni del Dipartimento di Economia, Finanza e Statistica 20(1), 1–25 (2005). http://
www.ec.unipg.it/DEFS/uploads/spatcluster.pdf

33. Shu, L., Osinski, G.R.,McIsaac,K.,Wang,D.:An automaticmethodology for analyzing sorting
level of rock particles. Comput. Geosci. 120, 97–104 (2018). https://doi.org/10.1016/j.cageo.
2018.08.001

34. Sokal, R.R., Sneath, P.H.A.: Principles of numerical taxonomy. J. Mammal. 46(1), 111 (1965).
https://doi.org/10.2307/1377831

https://doi.org/10.1016/j.mineng.2019.01.032
https://doi.org/10.1016/j.cageo.2018.08.005
https://doi.org/10.5151/2594-357x-33405
https://lume.ufrgs.br/handle/10183/212457
https://doi.org/10.1080/25726838.2020.1814483
https://doi.org/10.1016/j.minpro.2012.03.003
https://doi.org/10.1007/s11053-020-09678-4
https://doi.org/10.1007/BF00897238
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1016/j.cageo.2015.05.019
https://doi.org/10.1007/978-94-007-4153-9_37
https://doi.org/10.1007/978-1-4020-5717-5
https://doi.org/10.1016/0377-0427(87)90125-7
http://www.ec.unipg.it/DEFS/uploads/spatcluster.pdf
https://doi.org/10.1016/j.cageo.2018.08.001
https://doi.org/10.2307/1377831


Applying Clustering Techniques and Geostatistics to the Definition … 219

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Addressing Application Challenges with
Large-Scale Geological Boundary
Modelling

Adrian Ball, John Zigman, Arman Melkumyan, Anna Chlingaryan,
Katherine Silversides, and Raymond Leung

Abstract For banded iron formation-hosted deposits accurate boundary modelling
is critical to ore-grade estimation. Key to estimation fidelity is the accurate separation
of the different domains within the ore body, requiring modelling of the boundaries
between domains. This yields both theoretical and application challenges.We present
a series of solutions for application challenges that arise when modelling large-scale
boundaries employing a composition of Gaussian Process models on exploration and
production hole data.We demonstrate these in the banded iron formation-hosted iron
ore deposits in the Hamersley Province of Western Australia. We present solutions
to several challenges: the inclusion of information derived from a geologist-defined
boundary estimate to incorporate domain knowledge in data sparse regions, the incor-
porationof unassayedproductionholes that are implicitly defined aswaste to augment
production hole assay data, and a more holistic method of defining regional bounds
and spatial rotations for Gaussian Process modelling of local spaces. Solution are
evaluated against a range of metrics to show performance improvements over the
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manually performed estimation by an expert geologist of the boundaries delineating
the ore body domains. Reconcilliation scores are used for evaluating the quality of
predicted domain boundaries against measured production data. The predicted and
in situ surfaces are also qualitatively evaluated against production data to ensure
that the models were evaluated to be geologically sound by an expert in the field. In
particular, better fidelity is shown when separating mineralised and non-mineralised
ore, consequently improving the estimation of the ore-grades present in the mine
site.

Keywords Geologic domains · Sparse data · Resource estimation

1 Introduction

When mining, accurate ore grade estimation is critical as it influences mine planning
[1], logistics, and product reliability. In stratified ore deposits—such as banded iron
formation (BIF) hosted iron ore deposits—accurate boundary estimation is a pre-
requisite for high fidelity, accurate ore grade estimations. Poor boundary modelling
can result in the inclusion of ore into a waste region or vice versa. This has a delete-
rious effect on ore grade estimates, due to either lower ore recovery or ore dilution
and is the equivalent of the inclusion of bad/incorrect data into the model. Reduced
fidelity can result from either poor boundary position estimates or by too coarse a
tessellated model surface. The coarseness of the tessellation introduces a trade-off
between computational costs and model fidelity.

While much work has been done on implicit modelling methods for geological
boundaries [2, 3], considerably less work has been done on probabilistic methods
for modelling boundaries. Neves et al. [4] also considered using geochemical data
rapidly obtained from portable XRF devices to update potentially out-of-date grade
estimates in what is termed as real-time mining. Their proposed method models
the uncertainty of XRF measurements by considering their conditional distribution
using confident laboratory assays (hard and sparse data) that derive from exploration
holes. A distinguishing feature of our paper is that we focus on the location of geo-
logical boundaries rather than grade estimation per se; additionally our approach
is based on Gaussian Processes rather than stochastic simulation. This study builds
on previous work related to the creation of probabilistic boundaries generated from
multiple data types (each having a different levels of noise). The creation of easily
updatable boundaries as more data becomes available, builds on the foundation of
the Gaussian Processes (GP) probabilistic boundary estimation framework described
in [5, 6] and proposes several changes to address issues that arise from a tile-based
implementation. The main issues to be resolved are the tendency of GP overfitting
and tiling artefacts. The former produces contorted surfaces (unreasonable boundary
estimates) particularly in region devoid of input or labelled data. This paper demon-
strates that supplying a priori data that properly constrains the solution space (e.g.
conservatively indicating where a boundary should not occur) can alleviate boundary
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distortion. The latter is a manifestation of boundary effects, which occurs when local
inference regions have different rotations due to variations in the overall directional
trend of the surface and there is no smoothness guarantee for adjacent tile-regions.
There are many possible solutions to this problem, one is to introduce a form of
weighted transition between adjacent regions. While we focus on one boundary esti-
mation process in this work, some processes (defined below) can be applied to other
boundary estimation and update models [7, 8]. These contributions are demonstrated
on the banded iron formation-hosted iron ore deposits in the Hamersley Province of
Western Australia.

The specific contributions of this work are as follows: (1) The inclusion of a priori
data, allowing for the incorporation of domain expertise into the boundary modelling
process, preventing the generation of some surface artefacts. (2) A heuristic for the
labelling of unassayed production holes, improving boundary modelling accuracy.
This further increases the incorporation of domain expertise into the modelling pro-
cess through the augmentation of available data. (3) The conversion of a set of local
rotation calculations defined in [5] to a global rotation model. This allows for the
interpolation and extrapolation of rotation transformations across locally modelled
sub-regions, providing correlation between sub-region rotations, and preventing arte-
facts from being introduced by the modelling process.

2 Geology

The data used in this study is from two typical Brockman style BIF hosted iron
ore deposits from the Hamersley Region in Western Australia. The Brockman Iron
Formation contains two sequences of interbedded BIF and shale bands, the Joffre
and Dales Gorge Members, as well as two sequences dominated by shale, chert,
and/or carbonate bands, the Yandicoogina and Whaleback Shale Members [9, 10].
In some localised areas the BIF in the Joffre and/or Dales Gorge Members has
been enriched to form a high grade iron ore [9, 11, 12]. These deposits contain
two distinct types of boundaries, stratigraphic and mineralisation. The stratigraphic
boundaries are those that follow the bedding of the sequences, either between two
members or internal boundaries between sub-units within a member. These are often
designated as occuring at specific shale bands. These boundaries define regions with
different source rock, which controls the type of ore produced and therefore some of
its physical properties. The other type of boundary is related to the mineralisation.
These boundaries indicate the areas that have been impacted by geological events
after the source rocks were deposited. Examples include where sections of the BIF
have been enriched to form iron ore, or where ore quality has been reduced by a
hydration overprint. In this study, the stratigraphic boundary is an internal boundary
within the Dales Gorge Member, and the mineralisation boundary is located at the
base of the ore where it transitions into unenriched BIF.

The data available consisted of exploration drill holes and production blast holes.
The exploration holes are spaced ∼50m apart, and are labelled in 2m intervals.
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These labels were added manually by geologists based on the chemical assays and
geophysical logging. The labels provided information on both the stratigraphy and
themineralisation, and therefore these holes were used for both boundaries. The blast
holes are much more closely spaced, 5–10m apart, and 10–12m deep. Each blast
hole was given a grade label based on a single chemical assay. This only provided
information for the mineralisation boundary, not the stratigraphic boundary. As there
was only a single label, it was assigned to the midpoint of the hole.

3 Gaussian Processes

In thiswork,GaussianProcesses are used as a probabilistic non-parametric regression
technique. Formally, GPs are a collection of random variables, any finite number of
which have a joint Gaussian distribution [13]. A GP is completely defined by its
mean function, m(x), and covariance function, k(x, x′), of a real process f (x) as

m(x) = E[ f (x)],
k(x, x′) = E[( f (x) − m(x))( f (x′) − m(x′))T ],

allowing for the GP to be written as

f (x) ∼ GP(m(x), k(x, x′)).

In this implementation, GPs are used to compute the mean and variance for each
point within a regular 3D mesh of points that cover the region of interest. Details
relating to the implementation of GPs to this work will be covered in the relevant sec-
tions. We encourage the interested reader to refer to [6, 13] for a deeper explanation
of GPs.

4 A Priori Data

Automated boundary estimation models are generally data driven [14] and contain
minimal information that exploits geological domain expertise. Examples of domain
expertise include the understanding of the relationship between different surfaces—
especially stratigraphic surfaces—and the trend of surfaces outside of the data range
[15, 16]. By including a priori data, that is, data that encapsulates geological exper-
tise, it is possible to incorporate domain knowledge about the underlying surface
being modelled, and its relationship to other surfaces. This knowledge is in the form
of a constraint defining where regions are above the surface and below the surface,
rather than where the surface is. Perez et al. [17] define high-order training images
and present a way of evaluating those against the data seen, here we derive constraint
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data positioned above or below the data that defines the transition from below to
above the surface. The inclusion of this data informs the boundary modelling pro-
cess and assists in the generation of a boundary estimate that has an appropriate trend
in the absence of data.

Further to this, the presence of a priori data will also prevent surface artefacts
that can result from GP based boundary estimates [5]. These surface artefacts arise
when inferring model values at data sparse locations, due to the tendency of the
GP mean function to trend towards zero in these spaces. A manifestation of surface
artefacts and the management of it is shown in Fig. 1. In Fig. 1a, the boundary has
been estimated without the inclusion of any a priori data. Marching cubes is used
to approximate a surface separating the estimates above 0.5 (considered above the
surface) from those below 0.5 (below the surface). Using a GP estimation points that
are significantly far from data will drift back to the mean, in this case 0. This can
result in the introduction of a fictitious isosurface sufficiently far from data where
the estimation drifts back below the 0.5 contour level. This tendency causes artificial
structures to be introduced in the absence of data, which is a serious problem. The
appearance of false surfaces can lead to erroneous interpretations as it incorrectly
indicates the location of the boundary. Inclusion of the a priori data prevents the GP
mean from tending towards zero in the modelling space at some distance from the
provided data. This prevents the generation of surface artefacts, as shown in Fig. 1b.

These a priori points are not included when training a model, only when infer-
encing from the model across the region of interest. The a priori points represent
geological expertise, not actual data, and so are useful in indicating where a sur-
face is not (which complements the spatial region of where the surface may be). By
only including the a priori data in the inferencing step, deference is given to physical
observations of the region through exploration hole (or other) data. When modelling,
the a priori data is placed ‘sufficiently far’ from the actual data, so as to only guide
the generation of a boundary estimate, rather than specify it. The a priori data is
dithered to reduce ripple like effects and the associated noise is increased from that
of the measured observations.

The a priori data can be defined either through a computational policy mechanism
or by utilizing a geological estimate of the boundary. In the case of a computational
policy used in the results shown in this paper the introduced data covers gaps above
or below real labelled data amount a surface can diverge is constrained. Where a
pre-existing surface is used points substantially above or below the surface are used
so influence mesh estimations where there is no close by actual data. In either case
this data serves as a guide between which a surface is approximated. How close
the a priori data need be is a function of the length scales learnt in each sub-region
modelled.

The examples shown in this paper contain auto-generated data, where the distance
from the actual data is based on the length scales after the section rotation has
been applied. However, the distance between the a priori and actual data, and the
density, shape, and regularity of the a priori point cloud are all parameters tunable
by a geologist, based on the type of information that they wish to encode into the
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(a) No a priori data. (b) A priori data included.

Fig. 1 A comparison of two boundary estimates. a without using a priori data. bwhen a priori data
is included (see Fig. 2). Blue points indicated data labelled as being above the boundary, while red
points are labelled as below the boundary

Fig. 2 Example a priori point clouds can be seen above (blue) and below (red) the available
exploration hole data. The a priori is extended to the upper limit of the modelled section and beyond
the easting and northing limits of the region to reduce artifacts near the edges

modelling process. An example set of a priori data is shown in Fig. 2. This is a subset
of the a priori data that was used to generate the improved surface shown in Fig. 1b.

5 Model Building

5.1 Spatial Rotations

In the boundary modelling method proposed by Ball et al. [5], a global region (with
coordinates in ENU) is divided into an overlapping set of local sub-regions. Each
local sub-region has an approximate trend direction for the boundary computed for
that region. That local mine-space region is rotated into an estimation space so that
the nominal trend direction of the surface within that estimation space is horizontal.
Each estimation space is a separate local GP model. A rotation matrix for each sub-
region was obtained via principal component analysis (PCA). These matrices were
calculated from the ore-to-waste transition points provided in exploration hole data
within some defined neighbourhood of each local sub-region.
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Fig. 3 Proposed change to
the boundary modelling
process presented in [5].
Steps listed outside of the
blue box are performed once
for the entire modelling
space. The steps listed inside
the blue box are performed
once per local sub-region.
We propose to move the
calculation of local rotation
transformations from the
local sub-region level to the
global model level

Learning local rotations in the above manner can lead to significant changes
between regions due to the inclusion or exclusion of a small number of data points.
It is not possible to use PCA for localized rotations using the entire set of data.
In comparison, a GP can model rotations where the dependence on the data is a
function of the distance from the point of interest and the learnt parameters, i.e.
all data is considered by the local data has a greater impact. The consequence is
that the inclusion or exclusion of a transition point from determining PCA rotation
introduces a stepwise change in the computed rotation. That stepwise change can
be significant. To address this the method presented in [5] using PCA is replaced
with a GP model for rotations the deflection of the normal from vertical is modelled
using the computed normals for the surface at the transition points. This allows a
continuously varied estimate of the normal in the mining space being modelled, see
Fig. 3.

While PCA rotations can provide significant rotation changes based on inclusion
and exclusion of data, it is also true that there may be significant rotation direction
differences produced by a GPmodel of the rotations. Those effects are due to extrap-
olation of the data (rather than interpolation in the inner regions), the overlap of the
regions and how regions and the function used to produce the values for each of the
mesh points from the overlapping regions, discussed in Sect. 5.2.

5.1.1 Rotational Model Construction

Observation pointsENU(Easting,Northing,Up) for themodel occurred at the bound-
ary transition point down each exploration hole. At each down-hole transition point,
ti , the closest n transition points were used to calculate a rotation matrix, Ri , using
PCA. The difference in the transition point, ti , of mining sub-region, and the point
resulting from the inverse transform of the corresponding point in the estimation
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space plus an upward unit vector approximates the normal in the mining sub-region,
yield an approximate normal in the mining space:

ti − R−1
i (Ri ti + (0, 0, 1))

Note that as n increases, the smoothness of this rotation space also increases. The
x-, y-, and z-component vectors of the surface normal unit vector were then used as
observation values for three different GP models.

A GP model was fitted for each Easting, Northing and Up of the unit normals at
each transition point in the mining space (ENU). This allowed the estimation of a
normal at an point within the mining space. The estimates for Easting, Northing and
Up parts of the normal are normalized to ensure a unit normal. Given a normal vector
of (e j , n j , u j ) a rotation matrix is computed such that (e j , n j , u j ) = R j (0, 0, 1), i.e.
the vertical unit normal in themodelling spacewhen rotated into back into themining
space matches the mining space normal. Modelling unit normal rotations using polar
coordinates were discounted as those introduce multiple values and, consequently,
training ambiguities at angles near multiples of 2π .

5.2 Region Overlap

Each sub-region is nominally of fixed size andmesh resolution. A region is computed
with an overlapping set of transition and a priori data and 3D mesh of estimation
points (in ENU mining space). However, the rotations applied in adjacent regions
may differ. Furthermore, the length scales learnt for each regions model based on
transition data may vary. The 3D mesh of estimation points computed that overlap
between regions are merged into single values at each of those points. There are
several approaches to computing the merged value of different regions. The methods
explored include variousmethods of weighted averagingwhere theweights are based
on:

• Scaled distance from start to edge of the overlap, i.e. the first point over overlap
starting from the centre of a region is given a weighting of close to 1, the furthest
point of overlap starting from the centre of a region is given a weighting close to
0.

• Inverse distance between an estimation point for sub-region and the centre of that
estimations sub-region.

• Inverse Manhattan distance between an estimation point for sub-region and the
centre of that estimations sub-region.

• Inverse variance computed for a estimation point within sub-region by the GP for
modelling that sub-region.

Other methods are possible. The first method is generally the more robust and
much less susceptible to dramatic variation between adjacent sections.
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5.3 Mesh Resolution

The modelling of the surface is done indirectly by a set of points, where each esti-
mation point has a value representing which side of the surface that point likely lay
on, see [5]. The Lewiner et al. [18] marching cubes algorithm is then used to find the
surface that cuts between the two sections.

Mesh granularity affects accuracy of the surface produced. The finer the mesh
the more accurate the surface. In this case the surface fidelity is affected both by the
accuracy of the estimates, and also by the coarseness of the tessallation demarcating
the estimates using marching cubes. As the mesh becomes coarser the accuracy
declines and additional artifacts become noticeable, in particular what appears to be
stair casing which can be seen in the centre sections of Fig. 4c, d. We can for instance
visualize a mesh resolution of one full bench height, at this resolution surfaces that
run at a shallow angle to the benchwill run horizontally for a while then step up/down
to the next bench and run horizontally for a while. This can be controlled by varying
the resolution of the mesh (at the cost of computation). It is also worth noting that
in a geological model the space is often turned into blocks of varying sizes. The
minimum viable size for a block will be related to the physical characteristics of the
diggers employed at a site and the amount of material movement that is normally
seen during blasting. While improving mesh resolution may look nice, it will reach
a point in which it has little/no practical value.

5.4 Model Evaluation

Results from the use of a global rotation model on a mineralised boundary and a
stratified boundary are compared to boundaries generated using the original local
rotation calculations (Fig. 4). The two different boundary types are modelled in two
spatially different locations within the Pilbara region of Western Australia.

By having a global rotation model, the rotation transformations for local sub-
regions are now spatially correlated. From Fig. 4 we can see that this has ensured a
level of similarity between neighbouring sub-regions, less dramatic artifacts between
neighbouring sub-regions, as can be seen when comparing Fig. 4c, d.

To compare model performance, we calculated reconciliation values for tonnes
for two relevant portions of the mine. Reconciliation values are a comparison of
what a particular model predicted vs what was extracted. In this case we produced
three GP estimation models for the area. The first model (Fusion) was created using
the boundaries produced by this work, including both the apriori data and the GP
rotation. The second model (Warping) was created using boundaries produced by
Bayesian surface warping which reduces inaccuracies in a modelled boundary with
respect to new assay observations via displacement likelihood estimation [7]. The
third model (Exploration) was created using the original exploration based boundary
surfaces. The reconciliation values were calculated by comparing estimates from the
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(a) Local PCA rotation
Region 1

(b) GP rotation model
Region 1

(c) Local PCA rotation
Region 2

(d) GP rotation model
Region 2

Fig. 4 Comparison of boundary estimates frommodelling pipelines that use two different methods
for determining local region rotational transformations. This comparison was performed on two
different underlying surfaces in two spatially different regions. Figures a and c presents a boundary
estimate where each local regions rotation was calculated through PCA. Circled are regions where
the surface looks ‘step-like’ as a result of neighbouring local regions having drastically different
rotation functions. Figures b and d presents a boundary estimate with a trained GP model for
inferring the rotation function across the global space. We can see that the boundary estimate is
smoother and the ‘steps’ from a are not present

GP models to the values calculated for the same region using the production hole
data. More details on the reconciliation procedure and differences between bench
within and bench below prediction are illustrated in [7]. A value closer to 0 indicates
a better prediction. At the bench within level, where the composition of the lowest
bench containing blast hole data is predicted, the proposed model outperforms the
other models on all grade block categories (Tables 1 and 2). When predicting on
the bench below the available data, our model consistently outperforms the original
model based on the exploration holes and has a comparable performance to the
surface warping model (Tables 3 and 4).

6 Unassayed Production Holes

In an operational open-pit mine, production holes are holes drilled into mining
benches in preparation for their blasting. Samples from production hole drillings
are routinely collected for assaying [19], allowing for updated boundary models to
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Table 1 Bench within reconciliation results for site 1

Grade block Tonnage Mean absolute difference

Fusion Warping Exploration

High grade 434196 0.023 0.036 0.100

Low grade 74865 0.010 0.029 0.118

Waste 963091 0.057 0.068 0.131

Table 2 Bench within reconciliation results for site 2

Grade block Tonnage Mean absolute difference

Fusion Warping Exploration

High grade 656117 0.014 0.018 0.056

Low grade 422379 0.031 0.033 0.054

Waste 10076 0.028 0.060 0.091

Table 3 Bench below reconciliation results for site 1

Grade block Tonnage Mean absolute difference

Fusion Warping Exploration

High grade 129831 0.009 0.006 0.043

Low grade 28820 0.062 0.060 0.173

Waste 534777 0.077 0.089 0.145

Table 4 Bench below reconciliation results for site 2

Grade block Tonnage Mean absolute difference

Fusion Warping Exploration

High grade 85307 0.063 0.062 0.079

Low grade 57334 0.032 0.032 0.049

Waste 861600 0.074 0.072 0.099

be produced from the new data [7, 8]. In mining scenarios where ‘ore’ and ‘waste’
are visually differentiable, production holes in ‘waste’ regions will not be assayed
for temporal and financial reasons. This has a deleterious effect on boundary mod-
els generated through automated processes as the absence of observation data on
the waste side of the ore/waste boundary will reduce the accuracy of the resulting
boundary estimate.

It is therefore desirable to have some estimation method for determining whether
an unassayed production hole is a waste hole omitted from the assaying process, or is
unassayed for some other reason. Some other reasons for not assaying a production
hole are: every n-th hole is assayed (for temporal and financial reasons), for quality
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control (i.e. the values in the assay are not considered correct), or the hole was drilled
for blast control reasons, removing the need for assaying. The omission of only waste
hole observations biases predictive models, resulting in poor model performance.
This makes them non-ideal in deciding whether an unassayed production hole should
be re-introduced into the boundary modelling process.

We therefore present a heuristic for the labelling of unassayed holes from the
assayed production holes with ‘ore’ and ‘waste’ labels. This heuristic is only used
for consideration as to whether an unassayed hole should have a ‘waste’ label. While
we do not assume that all unassayed production holes are waste holes, we do assume
that ‘ore’ regions—regions of interest—are sufficiently represented.

In constructing the heuristic to determine whether unassayed production holes
should be labelled as ‘waste’, we assume that a spread of production holes (com-
bination of assayed and unassayed) is provided, with the assayed production holes
having an associated ’ore’ or ’waste’ label. From here, a series of criteria for labelling
an unassayed production hole with a ‘waste’ label can be formulated. For this paper,
the criteria were:

• The production hole in question must be sufficiently far from all ‘ore’ labelled
production holes. The nearby presence of a ‘waste’ label should not prevent, or
be required for, the labelling of a production hole as waste. In our scenario, the
distance threshold was 10m.

• The production hole must not be one drilled for the purpose of blast control in the
bench. This can be determined by ensuring that the hole is ‘sufficiently’ vertical
and has a depth typical of production holes drilled on site. For our example,
this distance was 9–12m. Some mining operations also assign particular codes
to production holes drilled for the purpose of blast control, which can also be
incorporated into the heuristic.

6.1 Results

Figure 5a presents an area which has several production holes that we would like
to assign a label to. For the purposes of demonstration, the production holes that
we are attempting to label have been assayed and have a total assay percentage of
98–99%. These are production holes that have not been included in the original
modelling process, but have sufficient data to be used in heuristic validation. When
the proposed heuristic was applied, a total of 25 production holes were eligible to be
labelled as a waste hole. Comparing these holes against their recorded assay values
yielded a labelling accuracy of 100%. The newly labelled production holes can be
seen in Fig. 5b.

We can see that there is a trade-off when setting heuristic parameters such as the
minimum distance to a non-waste hole. Reducing this distance will mean that more
unassayed holes will be labelled, but the likelihood of these production holes being
incorrectly labelled increases. If the threshold in our presented example was reduced
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(a) Original Boundary Estimate (b) New Boundary Estimate

Fig. 5 Example of production holes. The red (ore) and blue (waste) dots represent the location of
assayed production holes ready for inclusion in a modelling process. In a the hollow magenta dots
represent unlabelled production holes, while in b the black dots represent unassayed production
holes that will be assigned a waste label

to 9m, 1 out of 34 holes would be incorrectly labelled (97.06% accuracy), while
if the threshold was 8m, 1 out of 44 holes would be incorrectly labelled (97.73%
accuracy).

The boundary estimates resulting from the production hole data in Fig. 5 and
exploration hole data is shown in Fig. 6. Both of the boundary estimates are shown
with the augmented production hole data. When the newly labelled production holes
are omitted from themodelling process (Fig. 6a), the boundary estimate passes under
these holes (centre-right). When these holes are included in the modelling process
(Fig. 6b), the boundary estimate has risen to put these holes in the waste region.

7 Discussion and Conclusions

The inclusion of a priori data and previously unlabelled waste production holes both
provide a mechanism for incorporating expert domain knowledge into a boundary
modelling process, improving boundary estimation models. The inclusion of a priori
data also contributes to the generation of boundary estimates that better align with
geological expectations in data sparse regions, and can prevent the generation of
some artefacts, including false isosurfaces, in the boundary estimates. By using a
global, continuous GP model to determine local sub-region rotation transformations
for a stitched large-scale GP boundary modelling process, a further improvement in
boundary estimates can be realised.
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(a) Original Boundary Estimate (b) New Boundary Estimate

Fig. 6 Comparison of mineralisation boundary estimates for a grade block. The first figure shows
the boundary estimated using the original production hole labelling, while the second figure shows
a boundary estimated using the augmented production hole labels. In both images, the augmented
production hole labels are shown (red = ore, blue = waste, grey = unlabelled). This allows us to see
the change in the boundary estimate near the centre right of the data (circled), where the boundary
estimate from the augmented data has lifted to cover the newly labelled holes

Although the contributions presented in this paper improved the boundary mod-
elling process in the demonstrated regions, some modification of these steps would
be required for application to a different region due to modelling parameters being
scenario specific. This is something of interest that we hope to explore in the future.
Further to this, there is room for exploration into alternate representations for surface
normals for the generation of local sub-region rotation models. Some examples here
include: (1) estimating surface normals from a Delaunay mapping based on explo-
ration hole transition point data, (2) having a more complex inferencing method for
each local sub-region, such as taking the average of the transformation functions
from the corners of the sub-region, rather than just using the inferred rotation from
the centre of the sub-region. As accurate modelling is not typically performed in
waste regions, quantitative assessment of the proxy production hole labels was not
possible in this study. In the future, we plan to work with industry to acquire suitable
data for these metrics.

In conclusion, this paper has presented three application-based solutions to chal-
lenges in the automated generation and updating of boundary estimates: (1) The
inclusion of a priori data, allowing for the incorporation of domain expertise into the
boundarymodelling process. (2)Aheuristic for the labelling of unassayed production
holes, improving boundary modelling accuracy. This further increases the incorpo-
ration of domain expertise into the modelling process through the augmentation of
available data. (3) The incorporation of a global modelling process for the calculation
of rotation transformations for local sub-regions that are used in the generation of a
large-scale probabilistic boundary estimate. For the two sites considered in this work,
the boundary fusion method improved the predicted tonnages for both bench within
and bench below reconciliations when compared to the exploration based boundary
surfaces. When compared to the surface warping model, boundary fusion had com-
parable results on the bench below and improved results on the bench within. These
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solutions allow for the generation of more accurate boundary estimations which in
turn improves the fidelity of ore-grade estimation models. Demonstration of these
solutions has been presented on both stratigraphic and mineralisation boundaries in
the Hamersley Province of Western Australia.
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This appendix encompasses the short abstracts of all works presented in the 11th
International Geostatistics Congress that were not included as extended abstracts or
full articles.

Theory

Regularization and Deregularization of Unidimensional Covariance or Vari-
ograms1

Christian Lantuéjoul∗, D. E. Bush, J. Stiefenhofer and M. L. Thurston
∗christian.lantuejoul@mines-paristech.fr

Back to basics! Regularizing a point covariance or variogram on a segment results
in a linear combination of not less than 9 terms. It is not so easy to understand how
these terms are related. As a consequence, there is a risk of getting an erroneous
result. Moreover, there is also a risk of not spotting it. In this presentation, we show
how these terms are structured and provide a safe and effective procedure to derive
them. An important application of this procedure is the deconvolution problem, that
is the conversion of a regularized variogram to a point one. This problem is known
to be an ill-posed one. It is sorted out using a Bayesian approach that produces a
family of point variograms that are compatible with the initial regularized variogram.

1 A modified and extended version of this work has been submitted to the Geostats 2021 Special
Issue in the journal Mathematical Geosciences.

© The Editor(s) (if applicable) and The Author(s), 2023
S. A. Avalos Sotomayor et al. (eds.), Geostatistics Toronto 2021, Springer Proceedings
in Earth and Environmental Sciences, https://doi.org/10.1007/978-3-031-19845-8
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Subsequently, each point variogram can be regularized at any support, which results
in a fully compatible family of variograms and cross-variograms at different supports.

Keywords: Regularization; Variograms; Cross-variograms

Multivariate Cross-Validation and Measures of Accuracy and Precision2

U. Mueller∗, K. G. van den Boogaart and R. Tolosana-Delgado
∗u.mueller@ecu.edu.au

Cross-validation and jack-knifing are established methods for validating the geosta-
tistical model to be used in either estimation or simulation. The standard outputs,
scatterplots of estimated against true values, (standardised) estimation error against
estimates and error statistics, are suitable for the estimation/simulation of univariate
data or for cases where a clear primary variable with one or more secondary variables
is to be modelled. However, in the case of truly multivariate data (such as directional
or compositional data), there is no hierarchy of variables, in that the entire region-
alised vector needs to be modelled. Thus, geostatistical estimation and simulation in
this case need to be treated as fully multivariate and any appraisal of the goodness
of the geostatistical model needs to take this aspect into account. This concerns not
only cross-validation or jack-knife approaches, but also accuracy and precision of
simulations.

The direct assessment of local accuracy and precision was first discussed in the
context of univariate geostatistical simulation by Deutsch at Wollongong 96. The
assessment was based on the local distributions of simulated data at locations where
the true value was known derived either from cross-validation or jack-knifing. In
either approach the location of the true value relative to the mean of the local dis-
tribution was used assess the widths of the local distributions. For each probability
p and each location u, one considers, whether the value v(u) is contained in the p-

interval
[
F−1
u

(1 − p

2

)
, F−1

u

(1 + p

2

)]
. The function F−1

u denotes the inverse local

CDF. The simulation algorithm then was termed accurate, if the proportion ξ(p) of
locations falling into to the p-interval exceeds p, meaning that the distribution is
“wide enough”. Precision is then defined in terms of the difference between ξ(p)
and p and one would like these to quantities to be close. A useful mechanism for
appraising the accuracy of the simulation is a plot of ξ(p) against p.

In this contribution we consider the evaluation of the suitability of a geostatistical
simulationmodel in the compositional framework, i.e. where each variable is positive
and its values inform of the relative abundance of a certain component forming the
system. Specifically,wewillwork under the assumption of additive logistic normality
and derive validation measures for this scenario. We adopt the principle of working
in coordinates, allowing to define the multivariate random function as Gaussian in

2 A modified and extended version of this work has been submitted to the Geostats 2021 Special
Issue in the journal Mathematical Geosciences.
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log-ratio transformed scores. At each sample location u the log-ratio cokriging esti-
mates and error covariance matrix define a normal distribution Fu (conditioned on
the sample data) with expected value z∗

k (u) and cokriging error covariance matrix
�k(uα). From the estimates and error covariance matrix we may construct univariate
measures (treating each variable as the primary variable at a time) but also vector
valued errors. A suitable error measure is then the Aitchison Mahalanobis norm of
the difference between estimates and true values, which has a χ2(D − 1) distribution
under the hypothesis of additive logistic normality of a D-component random func-
tion. Similarly, the indicator variable used for computing accuracy statistics needs
to be redefined in terms of the Mahalanobis norm. Here the indicator variable mea-
sures whether the true value is contained within a ball of radius p of the estimated
value with respect to the Aitchison Mahalanobis norm. As in the univariate case the
function ξ(p) then defines the proportion of locations for which the true composition
is contained in the ball of radius p about the estimate. We evaluate the usefulness
of this approach via the validation of a simulation model for a high-dimensional
regionalised composition.

Keywords: Simulation cross-validation; Compositional data; Accuracy: Precision

High-Performance Grid-Less Geostatistics with Distributed Computing
Alexandre Boucher∗ and Pericles Machado
∗aboucher@ar2tech.com

Theoretically, variogram-based geostatistical estimations and simulations are inde-
pendent of a grid. The sample locations, their values, the variogram or cross-
variogram models and possibly a trend model are all that is required. All other
parameters are specific to the implementation of kriging estimation and geostatisti-
cal simulation algorithms. Thus, when using algorithms that are non-sequential and
grid-independent, such as kriging and turning bands simulation, there is an implicit
representation of a spatial phenomenon. Any numerical representation on a grid is
simply an on-demand sampling of that implicit model, be it a mineral resource block
model or a flow simulation grid. This grid-less approach of spatialmodelling is partic-
ularly powerful when the geostatistical algorithm is available on a high-performance
platform, such as cloud-based distributed computing. At that point, one can quickly
and consistently create numerical views of the models on different grid types and
supports. For instance, values from an implicit model generated by a set of turn-
ing bands can be consistently extracted with a coarse regular grid, a heterogeneous
unstructured grid or a set of virtual drill holes. Each of these representations has
different scale of support and cell configuration but sample the same implicit model
generated by the parameterized algorithm, therefore enforcing consistency with one
another. Finally, with algorithms designed to run on high-performance computing
platforms, the grid-less approach frees the modeler from predefined grid topologies
and allows adjusting the model numerical representations to the task at hand, such
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as passing arbitrary cross-sections to a visualization engine.

Keywords: Grid-less geostatistics; Simulation; Estimation; Distributed computing

Sequential Simulation of a Boolean Model
Alan Troncoso∗, Xavier Freulon and Christian Lantuéjoul
∗alan.troncoso@mines-paristech.fr

Modeling the heterogeneities within a geological unit is a key issue when assess-
ing the dynamic response of an underground reservoir. Typical applications include
the prediction of oil recovery, the estimation of groundwater contaminations or the
integrity evaluation of a CO2 storage. Many approaches have been developed to cope
with such a task, e.g., gaussian, object and process-based models. In these models,
there is a trade-off between global realism and local consistency with observations.
For instance, the plurigaussian simulations easily honor the facies observed along
wells but fail to reproduce complex geological relationships, whereas object based
or process-based models can better reproduce the conceptual geological model but
may fail to be conditioned to observations. In this study we propose to apply a divide
and conquer strategy to produce conditional simulations of object-based models: the
approach considered consists in decomposing this complex simulation problem into
a series of simpler ones. To do so, Sequential Monte-Carlo techniques or particle
filtering have been adapted to the geostatistical context. This sequential approach
is illustrated with the Boolean model. When subject to pore and grain conditions,
this model can be expressed as the union of two independent random sets: a first
Boolean model made of all objects subject to grain conditions, and a second Boolean
model subject only to pore conditions. This decomposition greatly simplifies the
integration of the constraints. The standard iterative simulation method based on
a birth-and-death process on the random objects is compared with this alternate
sequential approach. Two synthetic cases are used to illustrate both methodologies:
a first one in two dimensions that represents a vertical section of a channelized reser-
voir and a second one in three dimensions that represents the reservoirs. We expect
that this sequential approach will be soon applied to more complex models such as
meandering channels.

Keywords: Sequential simulation; Boolean model; Reservoir modeling

A Non-stationary Linear Model of Coregionalization
Alvaro Riquelme∗ and Julian M. Ortiz
∗alvaro.riquelme@queensu.ca

Multivariate modeling for natural resource characterization requires an underlying
model of coregionalization. Among different tools for simultaneous modeling of
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variables, the linear model of coregionalization (LMC) is the most used as it can
combine a large number of data types measured at different locations and different
data support into the same framework, remaining as a useful and mathematically
flexible tool. The LMC considers k co-regionalized variables as a linear mixture of
nst independent factors, at each location of the stationary domain. A natural exten-
sion for the LMC is to alter the linear mixture, which is assumed fixed on the domain.
This linear mixture can be made locally varying according to the local strength in
the dependency of the co-regionalized variables, leading to a locally varying lin-
ear model of coregionalization (LVLMC). The main challenge, once this relaxation
on the LMC is assumed, is to solve appropriately the interpolation of the different
known correlation matrices throughout the domain, in a reliable and coherent fash-
ion. Correlation matrices belong to the family of symmetric positive definite (SPD)
matrices, which in turn forms a cone shape Riemannianmanifold. Building upon ear-
lier studies that have shown that a Riemannian framework is appropriate to address
the challenge of interpolation between correlation matrices, a brief overview of the
geometric properties of SPD manifold is introduced, together with the properties
that correlation matrices inherit from this SPD manifold. The present work adopts
this non-Euclidean framework to achieve our objective by locally averaging and
interpolating the correlations between the variables, retaining the intrinsic geometry
of correlation matrices and using existing methods that are computationally efficient.

Keywords: Linear model of coregionalization; Eigen-decomposition; Geodesics;
Riemannian manifold; Symmetric positive definite

Gibbs Sampling and Successive Over-Relaxation for Simulating Gaussian Ran-
dom Vectors
Daisy Arroyo∗ and Xavier Emery
∗darroyof@udec.cl

The simulation of Gaussian random vectors and random fields arises in many disci-
plines of the natural sciences. This work presents two iterative algorithms aimed
at simulating a Gaussian random vector Y with zero mean and given variance-
covariance matrix C. This vector can correspond to the restriction at finitely many
locations of a Gaussian random field, without any restriction on its spatial correlation
structure (stationary or not, uni-variate or multivariate) or on the space (Euclidean or
not) in which it is defined. The first algorithm pertains to non-conditional simulation
and is a variant of the Gibbs sampler, in which a relaxation parameter is introduced
in order to improve the rate of convergence to the desired Gaussian random vec-
tor. The second algorithm aims at conditioning the simulation to a set of hard data
and is based on the method of successive over-relaxation. The novelty of both algo-
rithms is that they are formulated in terms of the dual random vector X = C−1Y and
do not require pivoting, inverting or square rooting the variance-covariance matrix
C, hence they are applicable to simulate large random vectors or to condition the
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simulation to a large data set. Numerical experiments are performed to check the
accuracy of the algorithms and to determine the relaxation parameters that optimize
the rates of convergence, based on the deviation between the expectation vector and
variance-covariance matrix of the simulated Gaussian random vector and the target
expectation vector and variance-covariance matrix C, in both the non-conditional
and conditional cases.

Keywords:Gibbs sampler;Non-conditional simulation; Successive over-realization;
Conditional simulation

Quantification of the Space of Uncertainty and Its Applications inGeostatistical
Modelling
Maryam Hadavand∗ and Clayton V. Deutsch
∗mhadavand@slb.com

The current practice of geostatistical modelling of categorical variables considers
K = 2–7 categories and N = 106–108 locations. The maximum possible space of
uncertainty being K N is inconceivably large and cannot be understood from a prac-
tical perspective. This space becomes much smaller and calculable in presence of
unequal category proportions, spatial correlation, and conditioning data. A general
framework is presented to calculate the size of the space of uncertainty. This is very
interesting to appreciate what would be required to understand the space of uncer-
tainty. This becomes practically relevant when rejection sampling approaches are
being used to condition geostatistical models as in the case of stochastic inversion.
The size of the space of uncertainty is shown to be the product of exponential entropy
values. This is corroborated from information theory, but the application of this in
presence of spatial correlation and conditioning data is new. An implementation of
the calculation is used to demonstrate the size of uncertainty for different cases.
Practical consequences of this calculation are discussed.

Keywords: Geostatistical approaches; Multiple realization

Bayesian Inversion into Soil Types with Kernel-Likelihood Models
Selamawit Moja∗ and Henning Omre
∗selamawitserka.get@gmail.com

During construction of the off-shore wind mill foundations, the geotechnical engi-
neers must study the soil properties in the sub-surface. These soil characteristics can
usually not be directly observed, but related variables can be observed fromwell logs
along the vertical profile. In the previous study (Moja et al. 2018), we constructed a
prediction rule for the sub-surface facies characteristics from well-log observations.
This rule is based on a non-stationary prior Markov chain model with a Gaussian
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likelihood model on factorial form. However, the Gaussian likelihood model does
not capture the bimodal nature of our CPT data. The non-stationary prior models are
formulated, hence, the time independent transition matrices and varying marginal
probabilities are obtained. In the current study, we define a non-parametric kernel
model in order to capture the bimodal nature of the observations which offers an
alternative to traditional parametric models. The likelihood model for the observa-
tions is assumed to be in factorial form and they are assessed from a calibration well
by kernel estimators. The prior Markov model are defined to be either a traditional
stationary Markov chain or a trend Markov chain. For prediction of the sub-surface
layer, both circular uniform kernel and Gaussian kernel likelihood model are defined
and evaluated. The model parameter band width in the kernel likelihood is estimated
by a cross-validation pseudo-likelihood estimation criterion. The methodology is
demonstrated on one case study for offshore siting of wind-mills. The result from
the current study provides improvement in the prediction of the subsurface profile.
The sensitivity of the likelihood model to the choice of kernel band width is also
explored. Thereafter, an estimate of the optimal band width based on the maximum
cross-validation pseudo-likelihood criterion is obtained, and the corresponding like-
lihood models and posterior pdfs are presented. We conclude that a suitable choice
of kernel likelihood model is of at most importance, and that using a trend Markov
prior model improve the predictions even more.

Keywords: Sub-surface geotechnical prediction; Circular uniform kernel; Gaussian
kernel; Kernel-likelihood; Bayesian inversion

Generalization Error of Learning Models Under Covariate Shift and Spatial
Correlation
Julio Hoffimann∗, Maciel Zortea, Breno W. S. R. de Carvalho and Bianca Zadrozny
∗julio.hoffimann@gmail.com

Statistical learning (a.k.a. machine learning) models are prone to overfitting: the con-
dition that the empirical risk is much greater in an unseen dataset than in the dataset
used for learning the model. If not assessed nor controlled, overfitting can invalidate
the application of learned models in practice, particularly if model’s results are to
be used for making decisions involving natural resources. Assessing overfitting, or
more broadly generalization error, is especially important when dealing with models
of great expressivity (e.g. neural networks with multiple layers) since these models
can often be fine-tuned to memorize datasets. Statistical learning theory provides
methods for assessing generalization error and the literature is vast on this theme.
However, most existing methods do not take into account the unique challenges of
performing statistical learning in spatial set-tings. In particular, it is well known that
model errors cannot be assumed to be independent and identically distributed in
spatial data due to spatial correlation. Moreover, spatial trends in the data lead to
covariate shifts between the domain where the model was trained and the domain
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where it will be applied, and this issue invalidates the use of classical cross-validation
approaches based on random splits of the data. In this work, we propose a method for
estimating generalization error of learning models under covariate shift and spatial
correlation. By creating synthetic data with known spatial distribution, we com-pare
our method with prior art for increasing shifts and correlation lengths.

Keywords: Machine learning; Statistical learning; Generalization error

ATraining Image FreeHigh-Order Simulation Framework Based on Statistical
Learning3

Lingqing Yao∗ and Roussos Dimitrakopoulos
∗lingqing.yao@mail.mcgill.ca

Multi-point simulation and high-order simulation methods have been pro-posed to
overcome the limitation of the traditional second-order geostatistical simulation
methods in reproducing the complex spatial patterns. However, their applications
are limited due to their reliance on a training image. The present work proposes
a training-image-free high-order simulation framework using a statistical learning
approach. The statistical learning mechanism aims at matching the high-order spa-
tial statistics of the generated realizations to those of the available sample data. This
learning is accomplished by embedding the training data extracted from the origi-
nal samples through a spatial template into a newly designed kernel Hilbert space.
Specifically, the conditioning data in the simulation initiate a so-called data event
associated with a certain spatial template and the replicates of the data event with
the same geometry configuration are extracted from the samples and utilized as the
training data. A spatial Legendre moment kernel is proposed to construct the kernel
Hilbert space so that the high-order spatial statistics of the original data space are
carried to the new elements in the kernel space after feature mapping. Minimizing
the distance of the elements corresponding to the target probabilistic model and the
empirical statistical model in the kernel space leads to reproducing of high-order spa-
tial statistics of the sample data, which amounts to solving a quadratic programming
problem. To address the major challenge of lacking fully matched replicates of the
data event in the case that a training image is not present, an approach of aggregating
statistics in interrelated kernel subspaces is proposed herein to simultaneously utilize
the high-order spatial statistics from the partially matched replicates in the learning
process. Case studies show that the proposed method reproduces the spatial patterns
of the data and is suitable for practical applications without a training image

Keywords: Multiple-point statistics; Training image; Conditional simulation

3 An early version of this work has been published in the journal Mathematical Geosciences: Yao,
L., Dimitrakopoulos, R. & Gamache, M. Training Image Free High-Order Stochastic Simulation
Based on Aggregated Kernel Statistics. Mathematical Geosciences 53, 1469–1489 (2021). https://
doi.org/10.1007/s11004-021-09923-3.
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Inequality Data in Multiple-Point Statistics Simulation
Julien Straubhaar∗ and Philippe Renard
∗julien.straubhaar@unine.ch

Multiple-point statistics (MPS) simulation is an efficient and flexible frame-work
for modeling complex heterogeneous systems with a high realism. MPS simulations
reproduce the spatial statistics given in a training data setwhile honoring conditioning
data—known values at given locations. MPS can account for different types of non-
stationarity: changes of spatial structures, local orientation, local proportions, etc.

Inequality data, consisting in one inequality or a target interval at a set of given
locations, arises often in practice. For example, concentration data in a sample may
be below a detection limit, or the elevation of the base or top of a geological formation
maybe known to be below or above a certain altitude in a spatial domain. To handle
such constraints in MPS simulations, a rejection approach, consisting in simulating
without accounting for the inequalities and keeping the realizations honoring them,
can be a solution when these data are sufficiently sparse, but it becomes inefficient
or even intractable in the presence of a dense inequality data set.

In this work, we present an MPS method based on the Direct Sampling strategy
and implemented in theDeeSse code that is able to account for any inequality data set.
It consists in adapting the computation of the pattern distance (dissimilarity) between
the pattern centered at the current cell in the simulation grid and the patterns scanned
in the training data set. This new distance account for interval of values, instead of
exact values, in a part of the nodes retrieved from the simulation. The technique is
illustratedwith an examplewherewe simulate topography in a two-dimensional area.

Keywords:Multiple-point statistics; Conditional simulation; Inequality constraints;
DeeSse

Petroleum

Electrofacies Classification to Improve Conditioning Data for Integrated Geo-
logical Modeling
David Garner∗
∗david@terra-mod.com

Many hydrocarbon reservoir studies rely on detailed geological modeling as a useful
tool for forecasting flow behaviour and planning development scenarios. Underlying
the integrated models is a geological conceptual model including a form of facies
description and pattern of succession. A key impact on hydrocarbon reservoir studies
is a rigorous strategy around developing facies for modeling purposes. The current
industry best practice formodeling reservoir heterogeneities related to flow is to apply
a hierarchical workflow of simulation of a facies variable first, followed by property
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simulations within each modeled facies. Model facies are a categorical variable,
typically input as facies indicator logs, used for hard conditioning in the geomodelling
process, a “truth” variable. Yet, the facies variable delivered to modelers can often
have ambiguity and imprecision due to the sparse subsurface sampling of information
and from both visual and numerical procedures used to determine them. Classically,
the given facies are a visual interpretation of the face of a rock sample consistent
with the current geological concepts. These concepts may influence many aspects
of the geological modeling procedures. For geostatistical modeling purposes, the
input facies categories are indicator variables assumed to each represent statistically
stationary domains of reservoir properties within the region of interest, the study
area. In practice, the stationarity assumption is violated requiring auxiliary modeling
steps to account for non-stationarities related to trends in facies deposition and/or
properties such as compaction of porosity or fluid gradients. Fluid distributions as
well as flow and mechanical properties are dependent on the characterization by
each facies to effectively model useful changes in the reservoir. Accounting for
realistic physical behavior, such as percolation and capillarity, when distributing
properties by facies ensures reasonable physical responses in fluid flow models and
in direct forecasting methods. Establishing early the petrophysical distinctness of
facies variables input to models through electrofacies classification methods can
mitigate common detrimental issues that ultimately degrade the fidelity of model
verisimilitude. Electrofacies modeling provides a robust and dedicated framework of
methods to impose consistency on facies logs delivered for modeling, thus enhancing
the capabilities for effective integration of multi-scale data for reservoir modeling.

The electrofacies classification processes typically apply multivariate statistics
using wireline logs and visual core or image description for training sets. Electrofa-
cies, because they aremainly derived frompetrophysical curve responses, are close to
being lithological predictions, like lithofacies with distinct rock property ranges and
trends. The classification of lithofacies involves various approaches. Visual methods
are well established combining rock fabric, pore space and petrophysics (e.g. Lucia
1995) within a working concept model. These usually include detailed description
of depositional and diagenetic processes from outcrops, core samples and/or image
log data. Petrofacies classification involves defining rules-based petrophysical cate-
gories, e.g. using log cutoffs or manually defined regions, a somewhat useful method
in lower dimensions of two or possibly three variables. The practical advantage of
electrofacies is consistency provided by statistically combining the visual geological
classifications with a suite of petrophysical log data. The result, which is beneficial
to subsequent geomodelling processes, is to enforce the distinct lithological char-
acteristics at the log curve scale (Garner et al. 2014). This provides flexibility and
options for handling the multiscale data integration to start and during geomodelling.

Visual facies may be used directly for modeling or as a part of a training set (visual
facies and well logs) for numerical classification methods. Arguably, visual facies
are a cognitively biased data type due to their origin. In practice there are errors in
interpretation and in the core, well log and image data used for interpretation. A brief
discussion of five assumptions underlying a linear discriminant analysis provides
practical guidance on the need for checking, cleaning and improving the usefulness
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of facies inputs to models. To establish rules for improving classification training
sets, we discuss assumptions for a parametric method, linear discriminant analysis,
as described by Davis (1986) to highlight common issues. The goal is to improve
the classification results whether using parametric or non-parametric methods. These
five parametric assumptions are all violated to some degree by the training sets (from
Garner 2019):

• The observations in each class were randomly chosen. (Observed facies are not
random samples. They are spatially biased as is the natural variability of deposi-
tional successions and observed stratigraphic sequences).

• The probability of an unknown observation belonging to each class is equal (Facies
proportions are not equal in nature. Facies proportions are initially defined and hon-
oured during modeling. The consequence is we may adjust the final electrofacies
assignment model with weights to reasonably honour inputs).

• Variables are normally distributed within each class. (By-facies distributions of
log variables have various shapes in the hyper-space, especially with depositional
facies concepts).

• The variance-covariance matrices of the classes are equal in size. (The multivari-
ate spread of properties for a given facies may be narrow or wide depending on
lithological characteristics. That is the actual category samples are more or less
densely clustered).

• None of the observations used to calculate the function were misclassified. (Facies
and logs have imprecision with many sources of error leading to erroneous petro-
physical statistics, e.g. depth shifts, interpretive scale used by the geologist, bed
boundary overlap between data types, petrophysical log normalization, interpretive
ambiguities are among the common sources of potential “errors” and uncertainty).

Discriminant analysis, described by Davis (1986) albeit useful to understand for
rules to guide cleaning of a training data set, is a parametric method applicable to
simply organized data distributions, separable clusters and is not optimal for typically
complex geological facies log data distributions. When using visual facies and well
logs as the training sets for supervised electrofacies classifications, non-parametric
methods (Nivlet et al. 2002; Ye and Rabillier 2000) tend to be most effective given
the varied sizes, shapes and overlap of the geologically derived visual facies in the
hyper-space, the multivariate distributions. The non-parametric methods use the data
as given to establish probabilities and likelihoods of membership. Data clean up fol-
lowing these quasi-rules can improve the consistency of electro-facies classification.

To establish the workflow, thorough training set preparation is imperative for elec-
trofacies methods to succeed. The visual facies are regularly defined at a different
resolution and sampling scale than well logs, are prone to systematic errors, and
have overlapping petrophysical property distributions. Cleaning involves inspecting
and trimming input facies based on the outlier tails of the distributions for each log
parameter. These represent measurement error and ambiguous information. Para-
doxically, cleaning the training set entails interpretive judgement, a cognitive bias,
and will alter the statistical measures used to check the results, e.g. during validation,
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increasing the percentage of correct assignments and changing reference facies pro-
portions. However, once the training set is deemed cleaned, subsequent electrofacies
parameter options may be compared consistently to one another. We will discuss and
show the choice of curves to be assessed physically and statistically in a step-wise
manner.

When enough wells are available with core facies, withholding a set for blind tests
and for model validation can be pursued in the workflow. Validation can illustrate the
robustness of methods and consistency with the underlying geological concepts. The
final electrofacies logs will be judged by correct assignment rates, proportions being
honoured, honouring of distinct statistical properties, and will be used to verify
reasonable observance of the desired geological patterns. Assignment errors tend
to be a reclassification to an adjacent quality facies, practically aiding lithological
consistency for future heterogeneity modeling. Thus, the process is a guided one
and not statistically unbiased. Examples from a few fields will be shown along with
aspects of theworkflows (Garner et al. 2009;Garner et al. 2014;Martinius et al. 2017).
These examples will illustrate practical decisions, technical limitations, and options
for modifications of methods as opportunities to further mature the technologies.
Electrofacies modeling workflow steps are not widely established in the industry
practice. There is a lack of best practice guidance, dissemination across technical
disciplines and training. Perceived workflow complexity without these rules may
have lead to misuse or sub-optimal application holding back use of this technology.

Visually interpreted facies must be checked for petrophysical consistency, i.e.
the distinctness of petrophysical distributions, which is never guaranteed. Applica-
tion of electrofacies methods, a multivariate classification can improve consistency
for multi-scale data integration and is beneficial for the hierarchical steps within
geomodeling workflows (Martinius et al. 2017). The electrofacies practice can be
treated as an interpretive tool, a guided machine learning process, to obtain improved
facies logs for input to reservoir models. The industry practices around preparing
facies logs for modeling are diverse, field specific, and can benefit from the appli-
cation of electrofacies classification workflows and the associated thought processes.

Keywords: Facies modeling; Electrofacies; Discriminant analysis; Non-parametric
methods; Petrophysical logs; Data cleaning

References:

• Davis, J. [1986] Statistics and Data Analysis in Geology. 2nd Edition, John Wiley
& Sons, New York, 646 pages.

• Garner, D., Lagisquet, A., Hosseini, A., Khademi, K., Jablonski, B., Strobl, R.,
Fustic, M. andMartinius, A. [2014] The Quest for innovative technology solutions
for in-situ development of challenging oil sands reservoirs in Alberta. 2014World
Heavy Oil Congress, WHOC14-139.

• Garner, D., Woo, A., and Broughton, P., [2009] Applications of 1D Electro-Facies
Modeling (abstract), CSPG Annual Convention, Calgary, May 10–13.



Appendix A: Appendix: Short Abstracts 249

• Lucia, F. J., [1995] Rock-fabric/petrophysical classification of carbonate pore
space for reservoir characterization. AAPG Bulletin, 79, 1275–1300.

• Martinius,A.W., Fustic,M.,Garner,D.L., Jablonski,B.V.J., Strobl,R.S.,MacEach-
ern, J.A. andDashtgard, S.E. [2017] Reservoir characterization andmultiscale het-
erogeneity modeling of inclined heterolithic strata for bitumen-production fore-
casting, McMurray Formation, Corner, Alberta, Canada, Marine and Petroleum
Geology, 82, 336–361.

• Nivlet, P., Fournier, F. and Royer, J.J. [2002] A new nonparametric discriminant
analysis algorithm accounting for bounded data errors.Mathematical Geology, 34,
223–246.

• Ye, S. and Rabiller, P. [2000] A New Tool for Electro-facies Analysis: Multi-
resolution Graph-based Clustering. SPWLA 41st Annual Logging Symposium,
June 4–7.

Stochastic Pix2Pix Method for Conditional and Hierarchical Deepwater Reser-
voir Modeling
Wen Pan∗, Honggeun Jo, Javier E. Santos, Carlos Torres-Verdín andMichael J. Pyrcz
∗wenpan@utexas.edu

Unconfined Lobe depositional system reservoirs are one of the most common tar-
gets in deepwater oil field exploration and production. Seismic data integration is
essential for obtaining accurate stochastic spatial property realizations. However,
geological heterogeneity below seismic imaging resolution may control vertical and
horizontal connectivity of the reservoir, hence affect oil production during develop-
ment. Surface-based methods are commonly used for modeling these hierarchical
structures but conditioning themodels to well logs and geological horizons identified
from seismic amplitude data is still difficult and time-consuming. Current geosta-
tistical algorithms such as variogram- and multiple point-based simulation methods
can easily be conditioned to well data and trends informed from seismic data at and
above seismic resolution. Yet, such models are limited in their ability to reproduce
essential heterogeneities below seismic resolution, including hierarchical structures
and trends within lobes.

To solve the above problems, we develop a new machine learning algorithm,
Stochastic Pix2Pix, to perform conditional stochastic subsurface modeling. This
method extracts patterns from training models at different scales and stochastically
combines them to generate diverse conditional realizations. We validate it using
synthetic deepwater lobe reservoir modeling processes where (1) training models are
efficiently generated with surface-based procedures, (2) seismic data are modeled as
known horizons, and (3) wells with known properties are randomly placed in the
reservoir. The obtained realizations success-fully match both the properties at well
locations and the seismic horizons.



250 Appendix A: Appendix: Short Abstracts

We successfully construct diverse 3D reservoirmodels conditioned to thewell-log
and seismic interpretations. Reproduction of heterogeneity from the training models
is shown to be accurate with measures such as Lorenz coefficient and a new raster-
based compensational index. In addition, model parameterization provided by this
algorithm greatly accelerates the history matching process.

Keywords: Reservoir modeling; Pix2Pix; Data integration

Managing Sparse Data andMissing Values in Unconventional Reservoirs: Clas-
sical Solutions in an Analytics-Driven Digital Tsunami
Jeffrey Yarus∗ and Melanie Adelman
∗jmy41@case.edu

Sparsely available well and seismic data coupled with missing values due to incom-
plete measurements, measurement failure or error, are common challenges when
building reservoir models. This is particularly true when modeling unconventional
resource reservoirs where these specific challenges often go hand-in-hand. Unlike
conventional reservoirs where vertical wells are the norm, pad-drilling coupled with
horizontal wells are common practice in unconventional reservoirs. While this prac-
tice provides local increased well density, it does not necessarily imply borehole
evaluation from logging tools, cores, or seismic acquisition. In fact, these important
data are simply sparse. There are a variety of reasons for this including a confidence
in local experience and more practically, a need to manage costs. As a consequence,
this practice drives models to be more deterministic. They lack the benefit of under-
standing the level of uncertainty and provide little quantitative information on future
well placement and completion strategy.

To further complicate the challenge, available existing data fromboth local vertical
and horizontal wells are subject to missing values. Missing values can be corrected
by petrophysicists who carefully analyze logs, making the appropriate corrections
and interpretations. However, these modifications are time consuming, and in studies
involving log data from many sources, there can be no guarantee that petrophysical
domain expertise has been applied uniformly and appropriately across the entire data
set. As a consequence, not all wells are properly scrutinized for a given study, and
these important details often go unnoticed by modelers. This is particularly true for
missing values.

Understanding how to build unconventional reservoir models in the presence of
sparse data and missing values is critical, particularly as the industry moves toward
high-performance distributed computing, automation, and machine learning. This
study com-pares a variety of statistical and geostatistical methods for managing
sparse data and mitigating the occurrence of missing values. It demonstrates the
strengths, weaknesses, and synergies of both geostatistics and classical statistics
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with respect to the stated challenges, and offers cautious optimism with respect to
the popular data science intervention and the current analytics-driven digital tsunami
we are now experiencing.

Keywords: Sparse data; Unconventional reservoirs; Petrophysical logs
Machine Learning Assisted History Matching for a Deepwater Lobe System

Honggeun Jo∗, Javier E. Santos, Wen Pan and Michael J. Pyrcz
∗honggeun.jo@utexas.edu

Since the 1980s, depositional lobe systems have become important reservoir targets
in the passive continental margin such as the Atlantic coast and the Gulf of Mexico.
However, high exploration costs and complicated geologic structures challenge the
reservoir characterization and modeling workflows. Even though seismic inversion
and geologic interpretation is widely used to map the rock facies spatial distributions
and their associated petrophysical properties, there is important sub-seismic resolu-
tion heterogeneity and geologic features that cannot be fully resolved. In the absence
of sufficient high-resolution data, rule-based modeling has been applied to generate
geostatistical stochastic realizations that quantify the uncertainty.

The stratigraphic rule-based reservoir models approximate sedimentary dynam-
ics to generate realistic spatial distributions of petrophysical properties for reservoir
forecasting and to support development decision making. A few intuitive rules com-
bined with the sequential placement of surfaces bounding reservoir units render
realistic reservoir hetero-geneity, continuity, and spatial organization to petrophysi-
cal property distributions that are difficult to obtain using conventional geostatistical
pixel- and object-based subsurface models. However, as rule-based models incorpo-
rate the conceptual and qualitative information such as temporal deposition sequence
and consequent compensational stacking patterns, integrating quantitative informa-
tion such as production history data into the rule-based model has been one of the
remaining obstacles to broad application.

This study proposes a machine learning assisted history matching workflow for
rule-based models. First, multiple rule-based models are generated as training data
for a Generative Adversarial Network (GAN). Then, the trained GAN is inspected
both visually and statistically to check if it learned the primary geological features
(e.g., depositional element geometries and hierarchical trends) in rule-based models
and its realizations reproduce these features with a reasonable space of uncertainty.
The successfully trained GAN enables exploration of the latent reservoir manifold
to generate an ensemble of models. The initial ensemble models are fed to reservoir
simulation to forecast production. Ensemble Kalman filter tunes the ensembles by
minimizing the misfits between models’ prediction and the given production obser-
vation.

This workflow results in a suite of reservoir models that honor both realistic geo-
logical heterogeneity and production history and provide a reasonable uncertainty
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model for reservoir forecasts. Moreover, this proposed workflow is computationally
efficient as the entire process can be completed within a manageable time on a typ-
ical work station. The flexibility of this methodology of combining rule-based with
generative machine learning models allows this workflow to be expanded to various
depositional systems.

Keywords: Reservoir modeling; Generative adversarial network; Machine learning;
History matching

Single-Loop Geostatistical Seismic Inversion for Facies Prediction Combining
Multiple-Point Geostatistical Simulation and Probability Fields Update
Leonardo Azevedo∗ and Dario Grana
∗leonardo.azevedo@tecnico.ulisboa.pt

Reliable subsurface modelling demands the simultaneous prediction of the spatial
distribution of discrete and continuous properties, such as facies and rock properties.
These models can be obtained by inverting seismic data, usually in a sequential two-
step approach in the discrete or continuous domain. The optimization is generally
performed in one of the two domains, discrete or continuous. Hence, the properties
in the other domain are often simulated conditionally to the optimized variable but
independently of the data mismatch.

In this work we propose a global iterative geostatistical seismic inversion method
that couples stochastic sequential simulation and multiple-point geostatistical sim-
ulation as model generation tools of the continuous and discrete properties, respec-
tively. The mismatch between synthetic and observed seismic data is used to update
simultaneously discrete and continuous properties, ensuring a convergence of the
iterative procedure in the facies and rock property domains.

The proposed method can be summarized in the following sequence of steps: (i)
simulation of a set of facies models with multiple-point geostatistical simulation; (ii)
simulation of a set of rock property models (e.g. porosity) with stochastic sequential
simulation conditioned to the facies models simulated in (i); (iii) calculation of the
elastic properties from the rock property models using a pre-calibrated rock physics
model; (iv) comparison of the synthetic seismic models with the observed seismic
on a trace-by-trace 2 basis; (v) selection of the facies and rock property samples
that ensure the lowest mismatch values; (vi) updating of the probability fields in the
multiple-point geostatistical simulation and conditioning of the stochastic sequential
co-simulation of the continuous rock properties based on data mismatch. These steps
are iterated until convergence.

The method is illustrated in synthetic and real case studies showing the ability to
converge towards the true solution.

Keywords: Seismic inversion; Sequential simulation;Multiple-point statistics; Con-
ditional simulation
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SubsurfaceGeologicalModeling byCouplingGenerativeAdversarialNetworks
with Geostatistical Seismic Inversion
Leonardo Azevedo∗, Arthur Santos and Gustavo Paneiro
∗leonardo.azevedo@tecnico.ulisboa.pt

Acentral step in the geo-modellingworkflow is the generation of a three-dimensional
numerical model of the subsurface geological properties from a set of indirect mea-
surements (e.g. seismic data). However, the relationship between model and data is
highly non-linear and the prediction of the spatial distribution of the subsurface rock
properties, which involves solving an inverse problem, is a challenging problem to
address.

The simultaneous inversion of seismic data for facies and continuous properties is
normally done using two outlines of a sequential approach. We can start by inverting
seismic for facies from where the petrophysical properties are usually perturbed
conditioned to the facies model. In this case, the update of the continuous properties
is detached from the data mismatch. In the second outline, the seismic is inverted for
petrophysical properties and facies are generated by classification after the model
generation and perturbation and therefore not explicitly included in the stochastic
optimization procedure.

The simultaneous inversion of continuous and discrete properties has been
addressed with geostatistical inversion methods (Doyen 1988; Haas and Dubrule
1994; Mosegaard and Tarantola 1995; Coléou et al. 2005). Gonzalez et al. (2008)
use a multipoint geostatistics algorithm for the simulation of facies and optimize the
realization according to the seismic mismatch. Saussus and Sams (2012) propose a
stochastic framework to sample facies and then rock properties in an iterative and
convergent procedure. Connolly and Hughes (2016) propose a pseudo-well method
based on one-dimensional Markov chains for the facies simulations. Aleardi et al.
(2018) propose a method for seismic AVA inversion using Markov 2 chain Monte
Carlo. Larsen et al. (2006) and Fjeldstad and Omre (2017) sample the facies from a
hidden Markov model.

In this work we propose a new method to combine generative adversarial net-
works (GAN) with stochastic sequential simulation as model perturbation technique
for facies and acoustic impedance, respectively. Both domains are simultaneously
updated from a single data mismatch function.

GANs are deep generative models based on the approximation of probabilistic
computations. They are composed by a specific neural network architecture with
two multilayer perceptron models. One of the models corresponds to a differentiable
function designated as generator (G) with inputs, from a prior input Z-vector, and
hyper-parameters. The second model is a discriminator (D) differentiable function
and its input corresponds to real or generated data coming from a training dataset or
from G, respectively. The output of D is a binary scalar that labels the input as real
or fake. Both networks are simultaneously trained in a minimax game between each
other.

The joint use of GAN and geostatistical seismic inversion can be summarized in
the following sequence of steps:
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1. A generative adversarial network is trained to generate facies model using an
ensemble of training images representing the expected geological setting.

2. After training, a latent Z-vector is used to generate facies realizations. Eachmodel
is used as conditioning data for the geostatistical co-simulation of the continuous
property (e.g. P-impedance).

3. Synthetic seismic is computed from each elastic model resulting from the geo-
statistical simulation and compared against the observed seismic data in a trace-
by-trace approach.

4. The resulting data misfit is simultaneously used to update the latent Z-vector and
generate a new set of facies and used as secondary variable when updating the
continuous property.

The proposed method is illustrated in non-stationary and challenging synthetic
datasets with different parameterization. The different examples are used to evaluate
the goodness of the method and its robustness to noise and uncertainties.

Keywords: Seismic inversion; Generative adversarial network; Sequential simula-
tion; Neural network

Geostatistical Seismic AVA Inversion with Self-updating Rock Physics
Roberto Miele∗, Leonardo Azevedo, Amilcar Soares, Luiz Eduardo Varella and
Bernardo Viola Barreto
∗roberto.miele@tecnico.ulisboa.pt

Three-dimensional rock property models of porosity, volume of shale and fluid satu-
ration are fundamental for reliable reservoir characterization and field development.
The spatial distribution of these properties may be predicted in a two-step approach
from inverted elastic models or in a single loop directly from seismic data.

The geostatistical rock physics AVA inversion (Azevedo et al. 2018) is an iterative
method that allows to directly predict the spatial distribution of such properties
directly from seismic reflection data by the integration of well-log data together with
a calibrated rock physics model. The latter is a set of mathematical equations, which
links the petrophysical and the elastic domains. There are many rock physics models
available in literature to describe the relationship between such properties. These
models can be as simple as empirical relations or more complex models, such as the
stiff-sand and the soft-sand models (Mavko et al. 2005).

Thus, the definition and the calibration of the right rock physics model represents
a crucial step for this inversion algorithm and is carried out by manually selecting the
appropriate empirical parameters and models to fit the well log data. Once this step is
completed, the iterative inversion starts by simulating 3Dvolumes ofwater saturation,
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porosity and volume of shale, through stochastic sequential simulation (Soares 2001;
Horta and Soares 2010). Subsequently, a facies distribution volume is obtained from
these simulations using a Bayesian classification approachwith a facies classification
at well location as training data. By applying the calibrated rock physics model to
each facies of the volume, three models for P- and S-wave velocities (Vp, Vs) and
Density are derived. Finally, angle dependent synthetic reflection seismic data can be
calculated and compared against the real seismic volumes. The similarity between
synthetic and real seismic traces drives the convergence of the iterative procedure
both at the local and global scales. In this frame-work, the calibration of the rock
physics model represents a deterministic step. This is a downside of the method that
limits the range of computed Vp, Vs and Density values and therefore might impact
negatively the convergence of themethod and the exploration of themodel parameter
space.

To overcome this problem, we propose to integrate Statistical Rock Physics
(Avseth et al. 2005), into Geostatistical Rock Physics AVA inversion based on the
concept of self-updating joint distributions. In the first iteration a set of possible
elastic responses are computed from statistical rock physics following: (i) definition
of facies from well log data; (ii) rock physics modelling and Monte Carlo simulation
of elastic properties (Vp, Vs and density); and, (iv) pdf estimation.

In the proposed iterative geostatistical seismic inversion, we start by simulating
a set of rock properties (e.g. triplets of porosity, water saturation and volume of
mineral) with geostatistical sequential simulation. Each triplet is used to compute its
elastic response based on the multivariate distribution resulting from the statistical
rock physics. Themismatch between the synthetic seismic, computed from the elastic
models, and the real seismic is used to update the multivariate distribution initially
estimated with statistical rock physics. In this way the multivariate distribution is
update based on the data misfit. We show the application of the method in synthetic
and real examples.

Keywords: Seismic inversion; AVA; Sequential simulation; Self-updating

Ensemble Smoother with Model and Data Reduction Using Machine Learning
Leandro Passos de Figueiredo∗, Rodrigo Exterkoetter, Alexandre Anoze Emer-
ick, Fernando Luis Bordignon, Dario Grana, Bruno Barbosa Rodrigues and Mauro
Roisenberg
∗leandro@ltrace.com.br

Generally, in inverse modeling in geoscience, we aim to predict the values of a group
of model variables from a set of observed data, based on physical relations between
model parameters and data. Specifically, in seismic inversion, the goal is to predict
rock and fluid properties in the subsurface from seismic and well-log data. The
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relation between elastic and petrophysical properties and the distributions of these
properties vary in different facies. For this reason, seismic facies inversion can be
formulated as amixed discrete-continuous problem inwhich the continuous rock and
fluid properties depend on an underlying unobserved discrete variable representing
the facies.

Ensemble-based methods have been successfully applied for data-assimilation in
geosciences. In particular, the Ensemble Smoother with Multiple Data Assimilation
(ES-MDA) performs smaller corrections for each ensemble update, avoiding large
Gauss-Newton corrections, and can be applied to non-linear applications. However,
ES-MDA is generally limited to problems where the model variables are continuous
and cannot be applied, in the original form, to mixed discrete-continuous prob-
lems. Deep learning has been successfully applied in several fields for classification
and pattern recognition problems. In particular, the Generative Adversarial Network
(GAN) has been proposed for unsupervised training of generative models for com-
plex distributions. Recently, the integration of the Variational AutoEncoder (VAE) in
the ES-MDA approach was proposed for the estimation of facies in reservoir models
based on hydrocarbon production data.

We propose to combine ensemble-based methods and deep learning algorithms
for facies inversion from seismic data. In the ES-MDS process, the GAN is used
to predict the discrete property, i.e. the facies classification. In particular, we use a
set of Markov chain simulations to train a GAN for data re-parametrization. This
approach allows generating facies realizations from a set of continuous Gaussian-
distributed properties. The proposed methodology was applied to a synthetic case
generated from a pre-salt reservoir model to validate the method. The application
shows that the proposed methodology provides accurate results for seismic facies
inversion, with data limited signal-to-noise ratio.

Keywords: Generative adversarial network; Seismic inversion; Deep learning

Mining

Application of Multiple-Point Statistics for Stratigraphic Modelling of Coal
Layers
Sultan Abulkhair∗ and Nasser Madani
∗sultan.abulkhair@alumni.nu.edu.kz

Coal deposits frequently represent complex geology comprised of seam layers with
long connectivity, geological modelling of which plays a crucial role in resource
estimation and further mine planning processes. Conventionally, seam layers can
be modelled by wireframing technique, which may be biased as it depends on the
opinion of experts. However, the accuracy of this technique depends on a dense
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sampling pattern of borehole data. Therefore, in a geostatistical modelling context,
one of the challenging issues in the probabilistic description of coal deposits may
involve selecting an optimal algorithm that can characterize the connectivity feature
of the seam layers. Regarding this, variogram-based geostatistical approaches may
be an alternative, yet they are highly dependent on the number of exploration bore-
holes to infer a reliable variogram model for characterizing the spatial continuity of
underlying variables. On the contrary, Multiple-point statistics (MPS) methods have
already proven their effectiveness inmodelling curvilinear geological structures such
as well-connected channels in petroleum reservoir settings. The main difficulty in
this approach may be related to deriving a trustworthy gridded training image (TI)
that should be significantly larger than the target simulated grid and a limited amount
of boreholes. This research constructs a training image for threemain seams based on
the dense sampling pattern of borehole data in a coal deposit located in Kazakhstan.
This 3D image is then applied to inform the stratigraphic layers in a part of the deposit
where only three distant boreholes are available. To do so, the Direct Sampling algo-
rithm (DeeSse) has been used, thanks to its flexibility and less requirement to high
computation resources. Realizations fromMPS simulation are validated by compar-
ing to the TI in terms of reproduction of proportions, variograms and connectivity. In
addition, the results ofMPS are compared with realizations obtained from Plurigaus-
sian simulation, a well-known variogram-based approach for geodomain modelling.
The statistical analysis and visual inspections corroborated that MPS outperforms
Plurigaussian simulation in terms of geometry reproduction of connectivity among
seam layers and can be used for further resource modelling of coal in this particular
sedimentary deposit.

Keywords:Multiple-point statistics; Training image; Coal seam; DeeSse algorithm;
Coal deposit

Geometallurgical Modeling and Deep Q-Learning to Optimize Mining Deci-
sions4

Sebastian Avalos∗ and Julian M. Ortiz
∗sebastian.avalos@queensu.ca

Mining decisions are driven by every step in themine value chain. Integrating predic-
tive models, at different stages of a mining complex, is necessary in order to capture
the maximummine profit, accounting for the intrinsic variability in the ore attributes
and process-es performances.

We analyze how models at different stages of the mining value chain can be
integrated to drive decision-making and optimize the profitability of the mine project
in a closed geometallurgical framework. We compare the resulting values with the
conventional case where decisions are mostly made by simplified regression models.

4 A modified and extended version of this work has been submitted to the Geostats 2021 Special
Issue in the journal Mathematical Geosciences.
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The base case is built by using conventional estimation methods and simplified
regressionsmodels, for different ore processes. Based on a univariate estimated block
model, amine plan and schedule are used to feed the processing plant. Performance at
each processing stage is modeled with conventional metallurgical techniques, based
on regression from geometallurgical test work. The economic performance of the
project is assessed for this case to provide a reference value.

Then we study the case where uncertainty in resources is characterized with geo-
statistical methods. We consider the multivariate feature of the dataset. We compare
the reproduction on grade distributions of two different frameworks for conditional
geostatistical simulation. Accounting for grades variability, a mine plan is obtained
using deep learning architectures trained via deep Q-learning. More sophisticated
predictive models of the mine extraction and ore processing are developed to assess
the production performance. The resulting economic performances are compared
with the reference case, and the main drivers of value are identified and discussed.

Keywords: Schedule optimization; Production planning; Geometallurgy; Machine
learning

Selective Mining Unit (SMU) Study by Simulation of a Copper Deposit, Chile
Antonio Cortés Pizarro∗
∗acortes.mba@gmail.com

At the feasibility stages of amining project various parameters are relevant in relation
to the value of the project and must be confirmed. The selective mining unit (SMU)
is a relevant parameter related to operational constraints and its definition should be
supported by sensitivity analysis regarding its impact on the project value. This study
measures the impact of different SMUs in terms of economic value and projected
operational dilution and ore loss.

Firstly, the study involves the simulation of geology and grades and an economic
assessment is performed for the different SMU’s. From this first stage a given SMU
size is selected, and a dilution study is performed next which involves obtaining a
blast hole (“fictitious”) dataset from simulations, estimating grade control models
from blast holes, and applying diglines on the grade control models to quantify the
projected amount of dilution for the selected SMU.

The deposit used for this study is a porphyry copper located in the AtacamaDesert
in the North of Chile, and coordinates have beenmodified to preserve confidentiality.
The paper presents the procedure and results obtained.

Keywords: Selective mining unit; Dilution; Ore loss; Conditional simulation; Esti-
mation; Grade control
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Chemical Anisotropy Concepts and Stockpile Management Applied for Vari-
ability Reduction in Serra do Sapo Iron Ore Deposit—Brazil
Fernando Rosa Guimaraes∗, Geraldo Sarquis Dias and Cláudia Mara Sperandio
Neves
∗fernando.guimaraes@angloamerican.com

A performance gain on the beneficiation plant was observed in moments when iron
ore was fed with low variability of iron grade and contaminants. This gain is related
mainly to mass and metallurgical recoveries and the pellet feed quality. According
to the variography analysis, the alumina and iron grades are more continuous along
the strike direction than along the dip direction. This means that the Fe variance
along the NS direction is at least 20% lower in comparison with EW direction—in
case a specific geological domain at Serra do Sapo Deposit. Therefore, if the mining
sequence was planned elongated on NS direction, the variability of alumina and iron
grades can be reduced during the mining and plant feeding.

Some researches were carried out based on this natural phenomenon, in order to
demonstrate the variability reduction if mining polygons are suitably oriented. It was
developed an exercise applied inside an area with drillholes spaced by 12.5× 12.5m,
comparing the standard deviation calculated from samples inside a block elongated
on NS direction, against samples selected inside a block elongated on EW direction.
Significant differences in variance of those groups of samples was confirmed. In
addition, the behaviour of the variograms along the thickness demonstrated also
high variances on very short distances, providing a positive effect on the variability
decrease in case of smaller benches mining. Another exercise revealed clear NS
elongated trends of iron grades with narrow ranges (from 45 to 50% Fe), while on
the EW direction longer intervals were demonstrated (from 32 to 50% Fe).

Information from dispatch systems regarding daily and hourly variations in iron
and alumina grades were analyzed for a full month and considering the mining
progress direction for 24h. It was confirmed that during the days when the mining
progress was elongated on NS and NNW-ESE directions, the variance of grades on
plant feeding was significantly smaller than on days when the mining direction was
developed on EW direction or on a spread way.

Some contributions of material coming from stocks have also high influence on
grade variability during the feeding, once some homogenization process occurs there.
During around eleven months in Minas-Rio System, proportions of materials from
stocks ranging from 25 to 62%were used for plant feeding and good correlation with
mass recovery was obtained.

Therefore, the combination of mining elongated on direction of higher continuity
of grades, together to good management of stockpiles may be a good point to explore
in order to reduce the grade variability during the mining and consequently improve
the mass and metallurgical recoveries and pellet feed quality.

Keywords: Ore variability; Variograms; Directional anisotropy
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Dynamic and Interactive Dashboards for Mineral Resources and Ore Reserves
Management and Controls Used on Iron Ore and Nicked Deposits—Brazil
Fernando Rosa Guimaraes∗, A. H. Caires Jr., P. H. Faria, B. S. Conceicao, Geraldo
Sarquis Dias, Cláudia Mara Sperandio Neves, and T. M. Faria
∗fernando.guimaraes@angloamerican.com

Mineral Resources and Ore Reserves documentation and reporting processes involve
a huge number of information and professionals and requires to be carefully man-
aged and controlled. Two full dashboards were designed and developed to assist on
managing all information in single and dynamic workflows. Each necessary step to
develop the resources and reserves estimates and their documentation can be dynam-
ically accessed by direct hyperlinks that must be stored in a cloud provider or in a
specific area on the global server.

All data regarding to mineral resources like drillholes info, assay results, QAQC
reports, photos of drill cores, information of recovery, topography, mineral rights,
land owners and all information about geostatistical analyses can be promptly
accessed by the links. Internal and external controls and documentation are individ-
ually separated according to each stage. Some control gates were also established,
and they are relevant to evaluate the data quality and feasibility of each step. Gates
associated to database and geological model handovers, validation of geological
interpretation, grade and density estimates (swath plots), dataset confidence level,
final figures review among other were defined for step validation.

Regarding ore reserves, the same systemenables the controlled (categorized users)
and hastily access to the modifying factors including economics (costs, price fore-
cast, exchange rate, discount rate, revenue factor and DCF), technical (geotechnical,
dilution, dilution/ore loss, metallurgical process and routes, production plans), envi-
ronmental and social topics, risks and opportunities. Data from the Terms of Refer-
ence to the final report including all traditional steps (cut-off policy, optimization,
design, scheduling) can be queried in the dashboard.

Information of internal and external audits and their associated action plans, CP
reports, standard operational/technical procedures, international mining codes and
general guide lines, risk assessment, value chain reconciliation data, beyond CP
abridged CV, signed off appointment letters, procedures of database back up among
others can also be directed accessed by the links.

Keywords: Data management; Data integration; Ore resource; Ore reserves; Geo-
statistics
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MultivariateAnalyses ofChemical,Geometallurgical,Mineralogical andHyper-
spectral Information to Assist Optimization of Iron Ore Beneficiation Plant
Performance—Brazil
Fernando Rosa Guimaraes∗, G. S. Dias, R. G. Ferreira, F. P. Morais, A. D. da Rocha,
E. F. Castro, B. B. O. Duarte, H. D. G. Turrer, C. M. S. Neves, C. R. S. Filho, D. F.
Ducart and R. Scafutto
∗fernando.guimaraes@angloamerican.com

Multivariate analysis combining geological andmineral processing informationwere
carried out at the Serra do Sapo Iron Deposit—near Conceicao doMato Dentro town
(MG), aiming the optimization of some process inside the beneficiation plant and
increase the mass recovery. An integrated database with quantitative information
about minerals, metallurgy and elemental grades was developed, grouping chemi-
cal, geometallurgical, mineralogical and hyperspectral samples, and analyses from
multiple campaigns of reverse circulation and diamond drilling. A big matrix with
correlation indexes of 74 variables was calculated in order to get a better understand-
ing about the characteristics of the iron formation lithologies related to the plant
behaviour.

The spatial distribution of the all variables, estimated in block models by several
interpolation methods, and the highlighted pairs of key variables with high correla-
tions, enabled to create dashboardswithmultiple features of the ore thatwill bemined
in monthly and weekly scales, providing, in advance, relevant information that will
be useful for the beneficiation plant team manage and calibrate the process controls
related to the specific material that will be fed. In addition, this multiple information
can be useful for blending strategies and storage impact in iron ore quality, focusing
on plant performance improvement. The spatial distribution of some key variables is
also profitable for guiding the mine planning team to establish strategies for mining
sequence focusing in manage specific periods for Direct Reduction or Blast Furnace
production, based on some really key variables and depending of the market strategy.

Some highlighted points were observed and had important influences on plant
performance. In areas with predominance of lamellar hematite provides good mass
recovery on flotation; good correlation between grain size, iron recovery on deslim-
ing and work index; high correlation between selectivity index and iron recovery
on desliming, high negative correlation between kaolinite, calculated by hyperspec-
tral methods, with mass recovery on flotation, etc. Strategies of stockpiles framing
and online blending with material from different mining faces starts to be developed,
considering the spatial distribution of the geometallurgical, mineralogical and hyper-
spectral variables in addition with chemical ones, in a synchronized way according
to periodic demands.

Keywords: Multivariate data analysis; Correlation matrix; Stockpiles; Blending
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Effects ofHigh-OrderSimulations on theSimultaneousStochasticOptimization
of Industrial Mining Complexes
Joao Pedro de Carvalho∗ and Roussos Dimitrakopoulos
∗joao.decarvalho@mail.mcgill.ca

An industrial mining complex or mineral value chain is an integrated business that
includes mines, stockpiles, waste/tailings dumps, processing streams and related
facilities, leading to the generation of products delivered to customers and/or the
spot market. Supply variability and uncertainty of the materials extracted from the
relatedmines are quantifiedwith geostatistical simulations providing the inputs to the
simultaneous stochastic optimization of mining complexes. The effects of utilizing
traditional Gaussian approaches with their maximum entropy properties as opposed
to distribution assumption-free and spatially more informed multiple-point or high-
order approaches on the results of the related optimization is a point of practical
interest. In this paper, the effects of using sequential Gaussian simulation versus the
sequential high-order direct block simulation in the simultaneous optimization of a
gold mining complex are explored. The later complex is composed of a gold mine,
leach-pad, stockpile, waste dump and processing plant. Results show that the high-
order simulation approach, generating realizationswithmore realistic connectivity of
high-grades, results in a more informed optimization process and better life-of-mine
production schedule, with a net present value increase of 5–16%, when compared
to the life-of-mine generated based on the sequential Gaussian simulation. Notably,
the extraction sequence is driven towards areas where the high grades are spatially
better connected, leading to both higher head grades feeding the related processing
plant and a smarter extraction sequence extracting less waste.

Keywords: Sequential Gaussian simulation; Direct block simulation; Connectivity;
Production optimization

MiningDilution andStockpiling StudybySimulation of aGoldDeposit, Canada
Georges Verly∗ and Henry Kim
∗georges.verly@woodplc.com

CoteGold is a largeArchean gold porphyry style deposit amenable to open pitmining
at the development stage. The value of the project depends on stockpile sequencing
during production allowing to process higher grade ore first. The project owners had
the following questions: (1) what the ability of the mine plan is to deliver predicted
tonnes and grades to the mill and stockpiles to meet the production plan; (2) what
the ability of the estimated resource block model is to predict the various recovered
tonnes and grades; and (3) what the impact of different blast hole sample preparation
protocols on the ore/waste misclassification during mining is. These three questions
were addressed with two conditional simulation exercises during prefeasibility and
feasibility stages.
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The simulation and post-simulation procedures used consisted of generating sev-
eral realizations of the gold grade on a tight grid using Sequential Gaussian Simu-
lation, selecting composite values from the realizations and adding a relative noise
to get simulated blast hole datasets, estimating grade control models using the blast
hole datasets, applying dig-lines on the grade control models to segregate the various
waste, stockpile and mill ore categories followed by visual and statistical assessment
aimed at answering the owners’ questions.

This paper present details on the procedure and results obtained, including vali-
dation and rational for the multiple decisions taken during the study.

Keywords: Conditional simulation; Sequential Gaussian simulation; Grade control;
Dilution

Resource Assessment of Copper Mine Tailings
Fabian Soto∗, Felipe Navarro, Brian Townley, Manuel Caraballo, Patricio Martinez
and Rene Martinez
∗fsoto@alges.cl

Several tailingswere built at a timewhen recoverywas focusedonly onone element of
interest, when geological knowledge of the deposit was not aware of oxides-sulfides;
and, even sometimes, where cutting grade was higher than nowadays cutting grade.
These tailings were built from different mine residuals and from years they are in
abandoned sites. During the last few years, they have gained increasing interest due
to technologies for drilling samples, understanding and evaluating chemical stability
and to evaluate the commercial interest of extraction of ore minerals.

A resource assessment approach to address and quantify the available resources
was applied here. Different sampling techniques used to extract drillholes are
explained, and it is illustrated by the estimation of three cases of tailing contain-
ing at least five elements of interest among: copper, magnesium, phosphorus, iron,
cobalt, gold, silver and rare-earth elements.

Keywords: Uncertainty; Resource evaluation; Tailings

AReviewofApplications ofGeostatistical SimulationModels inRemoteSensing
Joao Neves∗, Diogo Cauppers and Amilcar Soares
∗vermelho.neves@tecnico.ulisboa.pt

Mining resources are normally characterized in a block model in which the min-
ing area is discretized. The underlying uncertainty associated with the grade values
of mining blocks (block uncertainty) can be assessed through stochastic simulation
methods, which allow the characterization of local pdfs of grades. After the char-
acterization of mean grades and uncertainty per block/stope, the main role of mine
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planning consists on characterizing the time scheduling of production from reserves
in terms of a mining sequence.

The challenge lies in transferring block uncertainty into a temporal flow of mean
grades, and the consequent grades’ uncertainty at time t . The most straightforward
approach consists of calculating an optimal mining sequence (by minimizing an
objective function) and to apply this to each simulated block model, in order the
uncertainty of each period can be assessed.

However, this approach needs to compute and retain the N simulatedmodels. This
can be a cumbersome task, particularly for very large block models. Also, any time
we have new sample data, taken at the stopes during production, the entire ensemble
of simulated models needs to be re-evaluated.

These are the main reasons why most mines do not use stochastic simulation for
uncertainty assessment in their short and medium-term mining planning routines.

This work proposes to tackle these two issues with simple implementation meth-
ods: integration of uncertainty in dynamic time scheduling, and fast updating of
stochastic resources models. Both methods rely on firstly converting the ensemble
of stochastic simulated models of grades into a few models describing mean grades
and quantiles.

• In the proposedmethodology the shortmining schedule is computed using not only
the mean grades, but also using the uncertainty as a factor in the optimization pro-
cess. This is accomplished by aggregating the uncertainty of several blocks/stopes,
to bemined in a given period, via a non-parametricmethod of interpolation of pdfs.
Once the uncertainty of grades, of a set of stopes, of a given period of the time
scheduling is known, it can be used as an optimization parameter either in the
context of internal blending strategy or in a selective mining.

• As for the fast updating of the models, with new sample data, a new method
of fast stochastic simulation update is proposed, which allows for local update
of the quantiles used by the mine planning for the optimal temporal scheduling
characterization.

Both methods are being implemented in a real case study and preliminary results
are presented.

Keywords: Mine planning; Production scheduling; Conditional simulation

Mineral Resource Classification Using Machine Learning
Ilkay S. Cevik∗, Oy Leuangthong, Antoine Caté, David Machuca-Mory, Julián M.
Ortiz
∗icevik@srk.com

Mineral resource classification is a subjective task, performed near the end of the
mineral resource modeling workflow. Three categories of mineral resources (Mea-
sured, Indicated, and Inferred) are used to distinguish between different levels of
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confidence reflecting the quality of the data, geological interpretation, resource esti-
mation, and the reasonable prospects for eventual economic extraction. There are no
prescribed approaches to assign classification; the criteria and way it is implemented
is left to the discretion of a Qualified or Competent Person, as this term is defined
by regulatory bodies.

This paper presents a methodology that consistently integrates multiple sources
of information that are commonly associated with one of the four factors considered
for classification: data quality, geological confidence, resource estimation metrics,
and reasonable prospects for eventual economic extraction. The aim is to assimilate
both quantitative and qualitative data, often available in the form of a 3D block
model, in a consistent and repeatable fashion. Consistency and repeatability are
both important objectives since mineral resource models are often updated at least
annually, and barring no significant changes in geologic interpretation, there should
be some consistency in how resource confidence is defined from one year to the next.
In addition, the approach should save the modeler professional time, especially in
subsequent model updates.

The general methodology involves two primary steps. The first step is to cluster
blocks with similar parameters or inputs to obtain an initial classification category.
The second step is focused on smoothing of the categories to ensure continuity of
classified blocks, which is particularly important for higher confidence or Measured
blocks.

The first step of defining an initial classification category depends on the type
of data available. Two workflows are presented, depending on whether the factors
considered are solely quantitative or a combination of quantitative and qualitative
metrics.

If all inputs are quantitative, an unsupervised clustering approach can be con-
sidered; however, given the large size of block models today, this direct approach
is both time and memory intensive. A practical solution is to subsample the block
model and run the unsupervised random forest algorithm to obtain a distance matrix,
which is then used to as training data to cluster the block model via a supervised
random forest. This subsampling, and combination of unsupervised and supervised
RF is repeated many times to calculate the probability of belonging to each class at
each location. These class probabilities are used to assign the initial classification
category.

When qualitative information is available, a numeric score is given to both quan-
titative and qualitative criteria where a higher score implies higher confidence level
in the geology interpretation, grade estimation, data quality and/or the reasonable
prospects for the eventual economic extraction. Weights are assigned to each crite-
rion at the discretion of the expert, and a weighted average score is calculated. The
final scores are clustered to obtain an initial classification. The second step in the
process involves smoothing of the boundaries between resource categories to ensure
continuity of classification categories and avoid isolated categorized blocks. For this
purpose, support vector classification (SVC) with a radial basis function kernel is
proposed. The final block classification is obtained by tuning the SVC hyperparam-
eters.
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Two applications for two separate gold deposits are presented to illustrate the
methodology. The first example uses only quantitative data, while the second exam-
ple considers both quantitative and qualitative inputs. In both cases, results are com-
parable to the classification done by the project qualified person using conventional
methods.

Keywords: Resource classification; Random forests; Machine learning; Supervised
learning

Risk Assessment of Mining Dig Lines in a Multivariate Mineral Deposit with
Sum and Fraction Constraints
Jonas Kloeckner∗, Joao Lucas de Oliveira Alves, Marcel Antonio Arcari Bassani and
Joao Felipe Coimbra Leite Costa
∗jonas.kloeckner@ufrgs.br

Mineral deposits often consist of a complex arrangement ofmultiple related variables
and in some cases have non-linear relationships. Further intricaciesmay include frac-
tion and sum constraints. Fraction constraint means that one variable may not exceed
another, and sum constraint means that the sum of some variables may not exceed
a constant. Geostatistical simulation has been widely used for risk analysis in min-
ing planning. In the case of multiple correlated variables that have sum and fraction
constraints, geostatistical simulation is a challenge, as the constraints and relation-
ships among the variables must be reproduced in the final models. This study applies
multivariate geostatistical simulation with constraints to assess the risk associated
to the grades predicted in mining polygons in a real bauxite deposit. The workflow
consists of the following steps: (i) transforming the original variables into log-ratios,
(ii) transforming the ratios into independent Gaussian variables using the Projection
PursuitMultivariate Transform (PPMT), (iii) simulating the Gaussian variables inde-
pendently through sequential Gaussian simulation and (iv) back-transforming to the
original variables. The realizations were checked and reproduced the variograms,
histograms, multivariate relationships and constraints. The realizations were per-
formed at point-support and upscaled to the volumes of the dig lines used in the
mine. Finally, the simulated realizations of the dig lines were used to measure the
dig lines with higher risk of not achieving the required product specifications.

Keywords:Multivariate simulation; Fraction constraint; Sum constraint; Projection
pursuit multivariate transform; Risk assessment
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Combining Indicator Kriging and Geostatistical Simulations to Classify Min-
eral Resources: A Major Bauxite Deposit Case Study
Octavio Rosa de Almeida Guimaraes∗, Flavio Henrique Tavares da Silva and Joao
Felipe Coimbra Leite Costa
∗flavio.silva2@alcoa.com

Mineral resources are usually classified as measured, indicated and inferred accord-
ing to their associated degree of confidence. There are several international codes for
reporting resources and reserves recognized by the committee for mineral reserves
international reporting standards (CRIRSCO)which define and suggest guidelines to
classify the ore. Even though the final criteria adopted is a personal decision defined
by the so-called competent (qualified) person who must have proven experience
related to style of the mineralization. The mineral resource statement includes the
quantity of ore usually expressed in mass and its quality (commonly grades). Geo-
statistical methods provide the means to access the level of uncertainty associated
with these quantities and qualities declared. Various geostatistical frameworks had
been adopted to access the uncertainty regarding these values. This specific paper
presents a possible solution combining indicator kriging (IK) and geostatistical sim-
ulations. The first is used to measure the uncertainties related to the definition of the
ore zone in terms of volume. The second used to quantify the uncertainty regarding
the grades and metal contents. The methodology proved efficient and is used on a
major bauxite mine north of Brazil. The case study illustrates the proposal which is
capable to define parts of the deposit with decreasing levels on confidence related to
each class of mineral resources.

Keywords: Resource classification; Indicator kriging; Conditional simulation

Generative Adversarial Networks for Improving GeostatisticalModels in Com-
plex Orebodies
Helga Jordao∗ and Amilcar Soares
∗helga_jordao@hotmail.com

Mineral resources evaluation is highly dependent on the spatial characterization of
the different ore type domains. In complex geological environments there is still a
need for an expert geological control to perform the characterization of these models
since using quantitative methods remains a challenge. The need for human control
is time-consuming which is an impediment for geological resources to be frequent
updated.

In this paper a deep learning method, Generative Adversarial Network, is pro-
posed to mimic the geological interpretation of one or more geologists. Based on a
set of bore hole samples and the consequent envelope of the different ore types result-
ing from the expert geological interpretation, the model assumes the images of the
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interpreted ore types as reference images and the bore hole samples as a conditioning
starting image.

The proposed method is applied to a real sulphide deposit located in the south of
Portugal. The results have shown the deep learning model was capable of learning
the underlying patterns of a specific complex geological environment and trans-
fer the learned knowledge to generate new geological models. We consider that this
approach presents promising results for its application on real-time geological model
management.

Keywords: Generative adversarial network; Deep neural network; Orebody model-
ing

Using Multiple-Point Statistics Through Estimation to Decide Where to Drill
Oli D. Johannsson∗, Mats Lundh Gulbrandsen and Thomas Mejer Hansen
∗oli.johannsson@geo.au.dk

One of themain goals of applying geostatistical modeling is to allow decisionmakers
to take decisions based on incomplete knowledge of the subsurface. The geostatisti-
cal model itself conveys the expected uncertainty and variability of the subsurface.
In addition, other types of information are available, that can be included in the geo-
statistical model, such information from well logs, and geophysical measurements.

Given a data set based on a geostatistical model and a number of well log mea-
surements, we consider the specific problem of: Where should the next borehole be
drilled, in order to maximize the information in the model? One way to tackle this
problem is to perform conditional geostatistical simulation, in order to generate a
large set of subsurface models. Then the variability in each cell can be computed,
from which one can get a measure of where information is lacking and hence where
to drill next. As 3D geostatistical simulation, and especially multiple-point statistical
(MPS) based simulation, can be computationally challenging, such an approach can
be cumbersome.

We propose an alternative approach, based on two recent developments of MPS
simulation: Well log data are in general uncertain, and typically only co-located
uncertain data are used in MPS based simulation. Here we make use of both co- and
non-co-located uncertain data. Instead of simulating 100s of 3D realizations from
which a measure of variability is computed, we make use of MPS based estimation
that directly estimates such 1D statistics, without the need for runningmultiple costly
MPS simulations.

We suggest a methodology where the point-wise entropy in a 3D model is com-
puted using the recently developedMPS estimationmethod, conditional to the uncer-
tainwell log data. The entropy is computed directly froma1Dconditional distribution
obtained from the estimation and provides a local estimate of information. The infor-
mation at any X-Y location is obtained by vertically integrating the 1D entropy at
each X-Y location. From the constructed 2D map of cumulative information content
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the location with least information content is chosen as the optimal location for the
next borehole location.

We demonstrate the methodology and simulate an optimal strategy to position a
number of new bore holes.

We also compare to the traditional, and computationally much more demanding
approach, of using MPS simulation as opposed to MPS estimation.

Keywords: Estimation; Entropy; Multiple-point statistics; Optimal drilling

Earth Science

AReviewofApplications ofGeostatistical SimulationModels inRemoteSensing
Fatemeh Zakeri∗ and Gregorie Mariethoz
∗fatemeh.zakeri@unil.ch

Observations of our planet using reflected or emitted electromagnetic energy provide
in-formation to be used in different subjects such as soil, vegetation, topography, and
atmospheric science. Although the number of satellites has been increased during the
last decades, these data sets are often spatially incomplete, or temporal/spatial reso-
lutions are insufficient. As geostatistical simulation models allow data uncertainty to
be propagated by generating realizations, they are practical tools to fill these gaps. In
this study, we review geostatistical simulationmodels that have been applied to satel-
lite images, and we categorize their applications in mapping, accuracy assessment,
downscaling, sampling design, and gap filling.

Mapping and classification are essential for managing natural resources. Because
of their time consumption and expense, traditional mapping methods such as field
surveys cannot be used for large spatial and temporal scales. However, remotely
sensed data provide a practical and economical way to study different land covers.
The spatial variability of observed variables can be reproduced using geostatisti-
cal simulations by generating multiple realizations, conditional to available data.
Accordingly, simulations have been used in mapping a wide variety of variables
such as vegetation and soil cover maps using satellite information.

The validity of the information obtained by satellite is called accuracy assessment.
For instance, the fitness of a classified map derived from satellite data to the actual
class label is essential for resourcemanagement. Geostatistical simulation algorithms
have been used to infer uncertainties regarding landcover patterns obtained from
satellite and field data by generating conditional realizations.

The subpixel information (i.e., downscaling) is needed in geoscience applications,
as the resolution of satellite imagery is often insufficient. Geostatistical approaches
are important tools for downscaling as they can quantify uncertainty in sub-pixel
mapping. Downscaling using geostatistical algorithms can be grouped into two main
approaches. One approach is to use a pair of high-resolution and low-resolution
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images that provide a correspondence between resolutions to generate realizations
with improved resolution. Another one is to use a geostatistical simulation model to
determine the probability of class labels for each pixel based on a coarse resolution
classified map and a sparse set of class labels at some informed fine pixels.

In situ data is one of the information that should be used to interpret the infor-
mation from satellite observations. These data sets can be used as training data for
classification. It is essential to ensure the success of in situ data acquisition cam-
paigns. One application geostatistical is to design cost-efficient sampling schemes,
as these approaches can consider spatial variability and capture uncertain features
across realizations.

Last but not least, geostatistical simulation models have also been used to fill the
gaps that often occur in satellite data due to obstructions, such as clouds or clouds
shadows. As interpolations techniques mainly can create unrealistic spatial patterns
and generally do not provide uncertainty quantification, geostatistical simulation
models can be used in gap-filling by preserving spatial patterns in the realizations.

Our review shows a strong potential of geostatistical simulation approaches in
deriving spatial information. However, there is an untapped potential in applying
these models to other domains such as change detection and information fusion.
Moreover, more research is required to tailor the existing geostatistical simulation
algorithms to specific remote sensing applications.

Keywords: Remote sensing; Conditional simulation; Accuracy assessment; Down-
scaling

Probabilistic Volcanic Hazard Estimation Up to a Timeframe of 1 Ma with
Assimilation of Tectonics and Geophysics
Olivier Jaquet∗, Christian Lantuéjoul and Junichi Goto
∗olivier.jaquet@in2earth.com

Many industrial regions around the world are concerned by volcanic risk evalua-
tion; in particular, the Japanese archipelago due to its tectonically active nature. For
risk assessments related to the isolation of potential geological repository sites, the
quantification of long-term volcanic hazard becomes of fundamental importance.

For potential sites near volcanically active regions, long-term volcanic hazard
constitutes the dominant source of uncertainty as input for risk assessment studies.
Uncertainty is mainly related to an imperfect knowledge of volcanic processes, to
space-time variability of distribution and intensity of volcanic events, as well as to a
limited amount of data available.

In Japan, regions that are not obviously excluded on the basis of recent and current
volcanism will be considered for the siting of a geological high-level radioactive
waste (HLW) repository. The probabilistic methodology for volcanic and tectonic
hazard assessment, developed by the Nuclear Waste Management Organization of
Japan (NUMO) with an international team of geoscientists, addresses timeframes up



Appendix A: Appendix: Short Abstracts 271

to one million years. As part of this methodology, several stochastic models were
developed using specific geological conceptualizations based on various data sets
and information related to past and current volcanic activity, related tectonics and
their geophysical signature.

For the estimation of volcanic hazard for the one million years timeframe, a
representative range of plausible regional evolution scenarioswas assessed in relation
to plate tectonic dynamics. In particular, arc volcanism is likely to migrate within the
region of interest; such effects must be taken into account when making forecasts
of volcanic events for such long period into the future. Within the framework of
the Cox process, the potential of volcanism is described using an evolution equation,
and thus becomes non stationary in the space-time domain. Stochastic simulations of
patterns of future volcanic events are function of past volcanism location, migration
velocity, geophysical data and time scale considered. The estimation of volcanic
hazard represented in form of maps is performed by Monte Carlo simulation, for
various scenarioswith timeframes ranging fromone hundred thousand up to amillion
years.

Illustrations are provided using data from the regions of Kyushu, Chugoku and
Tohoku.We emphasize that these case studies are only used asmethodological exam-
ples; no region in Japan is yet considered specifically as a HLW candidate site.

Keywords: Risk assessment; Cox process; Data integration; Spatio-temporal mod-
eling

Optimizing Graduate Student Descent: Effectively Formulating Sparse Spatial
Problems for Machine Learning Algorithms with Lessons Learnt from Three
Applications
Jeff Boisvert∗, Camilla da Silva, Liam Bennett and Dale Schuurmans
∗jbb@ualberta.ca

Machine learning methods are becoming increasingly popular in many scientific
fields as they offer data driven approaches to solving complex nonlinear problems.
The field of Earth Sciences is no exception. Until the use of machine learning in
sparsely sampled spatial problems becomes a mature application of trusted algo-
rithms, we should take Nassim Nicholas Taleb’s advice “Learn to fail with pride -
and do so fast and cleanly. Maximize trial and error - by mastering the error part”.
This presentation provides suggestions to help you master the “error part” of apply-
ing machine learning methods to spatial problems, with sincere apologies if you
are a graduate student embarking on a machine-learning-assisted journey through
“graduate student descent”.

The video presentation is subdivided into three largely independent 5–10min
mini-presentations that could be viewed on their own if you are only interested
in one of these topics. The first video explores the impact on several fields that
have largely been replaced by machine learning, while discussing issues critical to
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sparse spatial problems; the second video presents three novel spatial applications
of machine learning techniques to provide a context for recommendations; and the
final video explores practical recommendations for machine learning problem for-
mulation, algorithm selection, parametrization and inputs/outputs to help reduce the
“error part” of trial-and-error.

Mini-Presentation 1: Many fields of study have been significantly impacted by
data driven machine learning approaches; classical approaches to automatic speech
recognition, machine vision, computational natural language understanding, and
machine translation have all been supplanted by machine learning algorithms. Dif-
ferences and similarities between Earth Sciences and these fields are explored. The
differentiating characteristic is the degree of data sparsity found in Earth Science
problems. Many mining and petroleum data sets are characterized by a large num-
ber of highly correlated and potentially biased samples that represent only a small
volume of the domain, often less than a trillionth of the total population.

Mini-Presentation 2: For the purposes of examining spatial applications, it is
convenient to characterize problems based on data density. Data driven approaches
perform best with dense data, indeed, many of the aforementioned scientific fields
have exhaustive data sets. Dense data is available in some spatial Earth Science
applications such as remote sensing, aerial mapping, and GIS. Three novel machine
learning implementations are presented that span the spectrum between sparse and
dense data: (1) identification and classification of tree stands for wildfire growth
modeling using exhaustive UAV and satellite imagery (2) spatial prediction of prob-
abilistic variables for grade control with dense blast hole data (3) prediction of well
decline curves from sparse data in an unconventional reservoir.

Mini-Presentation 3: Practical recommendations for problem formulation, algo-
rithm selection and parametrization are provided. This work provides practical rec-
ommendations derived from the authors’ significant experience with machine learn-
ing algorithms as well as various case studies. These specific recommendations are
generalized into insights into the future of machine learning in the Earth Sciences
based on the review of how machine learning has impacted other fields.

Keywords: Machine learning; Earth sciences; Sparse data

Unsupervised Modelling of Geoscientific Data via a Spatially Aware Random
Forests Algorithm
Hassan Talebi∗, Luk J. M. Peeters and Alex Otto
∗hassan.talebi@csiro.au

Unsupervised learning helps to find previously unknown patterns in geoscientific
datasets without pre-existing labels. Non-spatial learners generally look at the obser-
vations based on their relationships in the feature space, so they do not have themeans
to consider spatial relationships between the regionalized variables. This study intro-
duces a novel spatial random forests technique based on higher-order spatial statistics
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for unsupervisedmodelling of spatial data. The dimension of the input training data is
increased by adding information from the neighboring locations. A synthetic dataset
is generated from the original data via shuffling the locations of the surrounding
information followed by random sampling of the marginal distributions (destroying
statistical and spatial information). The random forest is trained to discriminate the
original data from the synthetic ones. The proximity between original observations is
measured by the frequency of sharing the same terminal node in the spatial decision
trees. The final spatially aware proximity matrix can be used for clustering the input
data. The superior performance and usefulness of the proposed algorithm are illus-
trated via one synthetic and one real case study, where the geophysical and remotely
sensed covariates in Yilgarn craton (Western Australia) are used as input data for
geological mapping and process discovery analysis.

Keywords:Spatial random forests; High-order spatial statistics; Unsupervised learn-
ing; Domaining; Spatial data

ToMPSorNot toMPS—Turning aGeological InterpretationModel into aProb-
abilistic Geological Model Rasmus Bødker Madsen∗, Ingelise Møller and Thomas
Mejer Hansen
∗rbm@geus.dk

Combining geophysical data with information such as from boreholes and expert
domain knowledge is nontrivial when generating geological models of the subsur-
face. One common solution is to deterministically invert the geophysical data and
grid it alongside e.g. boreholes in a visualization tool. This allows a skilled geolo-
gist to rationally interpret the geophysical data as geological units, formations etc.
and hence implicitly combine the geophysical data with geological knowledge and
borehole information. This procedure is known as cognitive geological modeling.
Several potential sources of uncertainty are present in cognitive modeling. From
the initial measurement errors on the geophysical instruments, to the way the data
is gridded, inverted, and processed, and finally in the combination process of the
actual interpretations. The final output of cognitive geological modeling is a single
model of the subsurface. Handling the described uncertainties is therefore difficult
if not impossible. These types of models consequently are also sensitive to bias that
accumulates through each step of the modeling procedure.

To remedy the shortcomings of this strategywepropose a novel stochasticmethod-
ology combining the efforts of probabilistic data integration and cognitive modeling.
We treat geological interpretation points from the cognitivemodel as uncertain “soft”
data. This data is then combined with analogous geology in a probabilistic model.
We test three ways of combining and sampling from such a probabilistic model.
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Firstly, two maximum entropy setups based on a two-point statistical approach. One
based on sequential Gaussian simulation (SGS) and one based on Cholesky decom-
position of a Gaussian covariance. Secondly, lower entropy (and conceivable more
realistic) geological solutions are obtained from multiple-point geostatistics (MPS).
We apply both ways of solving the problem at a study site near Egebjerg, Den-
mark, where Airborne TEM, seismic data, and borehole information are available
and interpreted in cognitivemodeling. Results show that both the two-point statistical
and multiple-point statistical approach allows satisfactory simulations of uncertain
geological interpretations and are consistent with prior geological knowledge. MPS
simulations are usually more computationally expensive than Gaussian simulation.
So how does one choose and adapt an appropriate scheme and avoid cracking a small
geostatistical nut with a MPS sledgehammer? Our results show that the number of
soft data points play a pivotal role in answering this question. MPS simulations allow
connectivity in scenarios with few data points due to the low entropy of the model.
Conversely, when the number of soft data increases, SGS is less prone to produce
simulation artifacts due to inconsistencies with the prior and is therefore advanta-
geous.

Keywords: Multiple-point statistics; Sequential gaussian simulation; Probabilistic
data integration

Domains

High-Order Geostatistical Simulation of Geological Units: Application at the
Saramacca Gold Deposit, Suriname
Daniel Morales∗ and Roussos Dimitrakopoulos
∗daniel.morales2@mail.mcgill.ca

A sequential, data-driven, high-order categorical simulation method (HOCSIM) is
used in this paper to simulate geological domains at the Saramacca gold deposit
in Suriname. Unlike multi-point simulation approaches, HOCSIM does not require
the use of training images and it is based on high-order spatial indicator moments
that consistently relate low and high-order moments via boundary conditions. For
the sequential simulation process, a recursive B-spline approximation algorithm is
employed leading to the reconstruction of the high-order spatial statistics of the avail-
able data in the simulated realizations. The step-by-step application of HOCSIM at
the Saramacca gold deposit demonstrates the related practical aspects. Given the six
nested geological domains of the Saramacca deposit, a hierarchical implementation
of themethod is adopted. In the first step, two units are generated reflecting the identi-
fied mineralized and non-mineralized deposit interpretations. Then, a second pair of
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categories are simulated corresponding to the Pillow Basalt and Fault Zone domains
within the mineralized part, simulated in the first step. Finally, three domains are
simulated within each of the two domains from the previous step. Validation of the
simulated realizations demonstrate the reproduction of data statistics, namely, pro-
portions, spatial indicator variograms, and third- and fourth-order spatial indicator
moments.

Keywords: Categorical simulation; Geologic domains; High-order moments

3D MPS Joint Simulation of Geology and Redox—An Applied Example from
Denmark
Rasmus Bødker Madsen∗, Ingelise Møller, Hyojin Kim, Anders Juhl Kallesøe, Peter
Sandersen and Birgitte Hansen
∗rbm@geus.dk

Nitrate contamination in subsurface aquifers is an existing issue due to intensive
nitrogen fertilization andmanagement in agriculture.As nitrate ismoving through the
subsurface via water, it is reduced only in the reduced zone coupled with oxidation of
naturally occurringgeologicalmaterial such as organic rich clays andpyrite. To assess
the state and vulnerability of aquifers and its potential as a water resource, spatial
information of both the water pathways and the redox conditions along the pathways
are therefore essential. The flow path of the groundwater is primarily governed by the
geology and the fate of nitrate is determined by the redox, and reduction rates of the
subsurface. Redox conditions are traditionally mapped by delineating an interface
between oxidizing and reducing conditions, while geology is modeled separately
either in cognitive modeling or through geostatistical simulation.
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We propose a novel approach to model both redox structure and geology simul-
taneously in high resolution 3D (25m × 25m × 2m) using multiple-point geosta-
tistical simulation (MPS). The proposed workflow is illustrated in previous figure.
Boreholes containing 1D densely sampled information about geology and sediment
color, which is translated into redox conditions, are available. Geophysical data, in
the form of land based towed transient electromagnetic measurements (tTEM), pro-
vides the spatial 3D architectural information. These data are combined with detailed
soil maps and digital elevation models to identify main geological elements in the
area. These elements are from a geological perspective considered independent. This
allows a computationally attractive solution as the simulation can be subdivided into
the smaller geological elements instead of the area as a whole. Our working hypoth-
esis is that geology and redox are coupled within each geological element. Hence, a
bivariate training image is constructed for each element. Boreholes and soil map data
are introduced to the modeling domain in the form of hard data. Geophysical data
are translated into soft probabilities of geology. The final realizations stitch together
the simulations of the geological elements as shown in the previous figure.

The ensemble of realizations represents a quantification of the uncertainty for the
given setup. MPS modeling allows mapping of complex connectivity in the geolog-
ical domain. In contrast to traditional redox surface modeling, our approach intro-
duces amoremulti-faceted description of the subsurface. The introduction of training
images makes the incorporation of expert geological and geochemical knowledge
easy and intuitive. Importantly, the use of bivariate training images ensures that
redox and geology realizations are consistent. This is crucial for a precise hydrolog-
ical modelling of the fate of nitrogen from the root zone to groundwater and surface
waters.

Keywords:Multiple-point statistics; Hydrologicalmodeling; Nitrate contamination;
Conditional simulation

Resistivity-Lithology Relations: A Tool in Geological Modelling Based on Elec-
trical and Electromagnetic Data
IngeliseMøller∗, Rasmus BødkerMadsen, Anders J. Kallesøe, Peter B. E. Sandersen
and Thomas M. Hansen
∗ilm@geus.dk

Working with geological interpretation of electrical and electromagnetic data it is
important to know how the resistivity of the involved lithologies or rocks are dis-
tributed. This relationship is affected, and hence complicated, by soil and rock con-
ditions and even pore fluid. Information on resistivity-lithology relations is impor-
tant, whenever it comes to cognitive or stochastic geological modelling or stochastic
inverse modelling involving geophysical data and resulting in an ensemble of geo-
logical models.
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Resistivity-lithology relations have over the years been studied in relation to local
or regional scale surveys, where the locally observed resistivities obtained by elec-
trical and electromagnetic surveys or borehole wire-line logging are compiled with
local geological well logs. There are only few examples on large-scale studies.When
it comes to stochastic geologicalmodelling the simple solution is to combine the near-
est geophysical sounding and borehole lithological log or look up the resistivity in a
3D resistivity grid at the position of the lithological log. If parts of the modelling area
are modelled manually in a cognitive manner, i.e. for construction of a 3D training
image, the resistivity-lithology relation can be constructed combining the 3D resis-
tivity grid and the voxels in the 3D lithological grid. The resistivity-lithology relation
then acts as the link between the resistivity data used as soft data and the lithological
classes used in the stochastic modelling setup.

In this paper we use resistivity-lithology relations established on local, regional
or country scale based on archives or databases with borehole wire-line resistivity
logs and bore-hole lithological logs, where resistivity measurements can be related
directly to specific and well described lithological samples. We use the Danish
national geophysical database containing resistivity wireline log and the geologi-
cal and hydrological database containing the lithological sample descriptions. The
procedure implies a restricted use of wire-line logging data resulting in resistivity
distributions for specific lithologies or geological formations. Quality controlled and
documented high-quality data ensures reliable results, reflecting the actual resistiv-
ity of a specific lithology. The method is flexible when it comes to defining, which
lithologies or classes of lithologies that are included in the resistivity-lithology dis-
tributions.

For computational reasons, stochasticmodelling or inversion procedures typically
run simplistic geological setups grouping many lithologies into a few classes. The
grouping of classes is typically carried out geologically taking for instance the grain-
size into account, so that clay-rich lithologies and sandy lithologies enters different
classes which also coincide with low and high permeabilities, but other grouping
may be used as well. However, these classes may not be optimal when it comes to
the resistivity distribution of these classes. If lithologies with similar resistivity goes
into different classes, the resistivity distributions will have great overlap and thereby
imply similar probability in the simulations.

We explore how the grouping of the lithologies can be carried out resulting in
classes with as little overlap in resistivity as possible. We both work with manual
grouping and grouping applying clustering. The different grouping approaches are
applied in two to three study sites with the purpose to see the impact on the ensem-
ble of realizations obtain by multiple-point statistical simulation setup or stochastic
inversion.

Keywords: Stochastic inverse modeling; Petrophysical data; Data integration.
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