Skip to main content

Quantum Dot (QD)-Induced Toxicity and Biocompatibility

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

Group II–VI semiconductors (Cd, Zn, and Hg) along with group VI nonmetallic elements (O, S, Se, and Te) have generated sufficient interest owing to their prominent optoelectronic properties for biomedical applications that have been extensively researched. Due to their unique properties and applications in nanoscience and nanotechnology as phosphors, sensors, and optoelectronic devices, group II–VI semiconductors have been extensively reported in terms of their synthesis and optical characteristics. Since the initial QDs contained heavy toxic metals such as Cd, Hg, and Pb, it is imperative to explore alternative constituents with comparable optical properties but low cytotoxicity.

QDs are a unique class of nanomaterials that are in the forefront as attractive molecules for biological and biomedical applications. Due to their unique physiochemical properties, it not only provides commentative advantages but also imparts toxicity because of their accidental exposure to various biological receptacle and cellular process. Unfortunately, the innumerable studies on toxicity of QDs have rendered them as a threat to both environment and health.

In this chapter, we briefly introduce the structural and functional properties of QDs and ways to functionalize them for improved bioavailability. The main focus is on the underlying mechanistic pathways inducing toxicity of QDs – majorly on genotoxicity, cytotoxicity, and photo-induced toxicity as these effects remain poorly clarified and few studies combine the molecular consequences with the cellular effects. Oxidative stress caused by increased production of reactive oxygen species (ROS) may be critical in inducing in vitro toxicity. We have briefly discussed QDs structures, physicochemical properties, processing and biocompatible performance of QDs, and toxicity related to it in multimodal applications in diverse research fields. In the end, we concluded with the development of global regularity standards, to scrutinize and eliminate or control work-related hazards and risks in the field of nanotheranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60(6):535–537

    Article  Google Scholar 

  2. Mukherjee A, Shim Y, Myong Song J (2016) Quantum dot as probe for disease diagnosis and monitoring. Biotechnol J 11(1):31–42

    Article  Google Scholar 

  3. Fang M, Peng CW, Pang DW, Li Y (2012) Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 9(3):151–163

    Google Scholar 

  4. Ehzari H, Safari M, Shahlaei M (2019) A signal amplification by QDs used for ferrocene-labeled sandwich aptasensor for determination of Hg2+ in water samples. J Iran Chem Soc 16(12):2555–2564

    Article  Google Scholar 

  5. Ehzari H, Safari M, Shahlaei M (2019) A new sensing strategy based on thymine bases– Hg2+ Hg2+–methylene blue coordination on the electrospun PES–QDs platform for detection of Hg2+ in fruit juice samples. J Iran Chem Soc 16(10):2269–2279

    Article  Google Scholar 

  6. Kashani HM, Madrakian T, Afkhami A, Mahjoubi F, Moosavi MA (2019) Bottom-up and green-synthesis route of amino functionalized graphene quantum dot as a novel biocompatible and label-free fluorescence probe for in vitro cellular imaging of human ACHN cell lines. Mater Sci Eng B 251:114452

    Article  Google Scholar 

  7. Hoan BT, Thanh TT, Tam PD, Trung NN, Cho S, Pham VH (2019) A green luminescence of lemon derived carbon quantum dots and their applications for sensing of V5+ ions. Mater Sci Eng B 251:114455

    Article  Google Scholar 

  8. Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Zhang Z (2019) Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 13(3):192–197

    Article  Google Scholar 

  9. Shen X, Jia J, Lin Y, Zhou X (2015) Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges. J Power Sources 277:215–221

    Article  Google Scholar 

  10. Babentsov V, Sizov F (2008) Defects in quantum dots of IIB–VI semiconductors. Opto-Electron Rev 16(3):208–225

    Article  Google Scholar 

  11. Yoffe AD (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50(1):1–208

    Article  Google Scholar 

  12. Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R et al (2012) Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. J Am Chem Soc 134(48):19685–19693

    Article  Google Scholar 

  13. Cai X, Mirafzal H, Nguyen K, Leppert V, Kelley DF (2012) Spectroscopy of CdTe/CdSe type-II nanostructures: morphology, lattice mismatch, and band-bowing effects. J Phys Chem C 116(14):8118–8127

    Article  Google Scholar 

  14. Crooker SA, Barrick T, Hollingsworth JA, Klimov VI (2003) Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl Phys Lett 82(17):2793–2795

    Article  Google Scholar 

  15. Chin PT, de Mello Donegá C, van Bavel SS, Meskers SC, Sommerdijk NA, Janssen RA (2007) Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. J Am Chem Soc 129(48):14880–14886

    Article  Google Scholar 

  16. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  Google Scholar 

  17. Pathak S, Choi S-K, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104. [PubMed: 11457171]

    Article  Google Scholar 

  18. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. [PubMed: 9748157]

    Article  Google Scholar 

  19. Jańczewski D, Tomczak N, Han MY, Vancso GJ (2011) Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nat Protoc 6(10):1546–1553

    Article  Google Scholar 

  20. Potapova I, Mruk R, Hübner C, Zentel R, Basché T, Mews A (2005) CdSe/ZnS nanocrystals with dye-functionalized polymer ligands containing many anchor groups. Angew Chem Int Ed 44(16):2437–2440

    Article  Google Scholar 

  21. Nikolic MS, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45(39):6577–6580

    Article  Google Scholar 

  22. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  Google Scholar 

  23. Qian J, Gao X (2013) Triblock copolymer-encapsulated nanoparticles with outstanding colloidal stability for siRNA delivery. ACS Appl Mater Interfaces 5(8):2845–2852

    Article  Google Scholar 

  24. Schmidtke C, Pöselt E, Ostermann J, Pietsch A, Kloust H, Tran H, Weller H (2013) Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes. Nanoscale 5(16):7433–7444

    Article  Google Scholar 

  25. Anderson RE, Chan WC (2008) Systematic investigation of preparing biocompatible, single, and small ZnS-capped CdSe quantum dots with amphiphilic polymers. ACS Nano 2(7):1341–1352

    Article  Google Scholar 

  26. Geidel C, Schmachtel S, Riedinger A, Pfeiffer C, Müllen K, Klapper M, Parak WJ (2011) A general synthetic approach for obtaining cationic and anionic inorganic nanoparticles via encapsulation in amphiphilic copolymers. Small 7(20):2929–2934

    Article  Google Scholar 

  27. Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M (2006) Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir 22(5):2304–2310

    Article  Google Scholar 

  28. Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V (2009) Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region. Nanomed Nanotechnol Biol Med 5(2):216–224

    Article  Google Scholar 

  29. Balasubramanian SK, Poh KW, Ong CN, Kreyling WG, Ong WY, Liya EY (2013) The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials 34(22):5439–5452

    Article  Google Scholar 

  30. Kulkarni SA, Feng SS (2013) Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30(10):2512–2522

    Article  Google Scholar 

  31. Duan H, Kuang M, Wang YA (2010) Quantum dots with multivalent and compact polymer coatings for efficient fluorescence resonance energy transfer and self-assembled biotagging. Chem Mater 22(15):4372–4378

    Article  Google Scholar 

  32. Drozd D, Zhang H, Goryacheva I, De Saeger S, Beloglazova NV (2019) Silanization of quantum dots: challenges and perspectives. Talanta 205:120164

    Article  Google Scholar 

  33. Chen L, Chen C, Li R, Li Y, Liu S (2009) CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker. ChemComm 19:2670–2672

    Google Scholar 

  34. Tan TT, Selvan ST, Zhao L, Gao S, Ying JY (2007) Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots. Chem Mater 19(13):3112–3117

    Article  Google Scholar 

  35. Manshian BB, Abdelmonem AM, Kantner K, Pelaz B, Klapper M, Nardi Tironi C et al (2016) Evaluation of quantum dot cytotoxicity: interpretation of nanoparticle concentrations versus intracellular nanoparticle numbers. Nanotoxicology 10(9):1318–1328

    Article  Google Scholar 

  36. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110(1):138–155

    Article  Google Scholar 

  37. Dubavik A, Sezgin E, Lesnyak V, Gaponik N, Schwille P, Eychmüller A (2012) Penetration of amphiphilic quantum dots through model and cellular plasma membranes. ACS Nano 6(3):2150–2156

    Article  Google Scholar 

  38. Liu N, Tang M (2020) Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol 40(1):16–36

    Article  Google Scholar 

  39. Xu L, Dai Y, Wang Z, Zhao J, Li F, White JC, Xing B (2018) Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Part Fibre Toxicol 15(1):1–17

    Article  Google Scholar 

  40. Khan ZU, Uchiyama MK, Khan LU, Araki K, Goto H, Felinto MCFC, Gidlund M (2022) Wide visible-range activatable fluorescence ZnSe: Eu3+/Mn2+@ ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging. J Mater Chem B 10:247–261

    Article  Google Scholar 

  41. Liu H, Liu Y, Liu S, Pang DW, Xiao G (2011) Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. J Virol 85(13):6252–6262

    Article  Google Scholar 

  42. Zhang F, Guo H, Zhang J, Chen Q, Fang Q (2018) Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology 513:195–207

    Article  Google Scholar 

  43. Martynenko IV, Kuznetsova VA, Litvinov IK, Orlova AO, Maslov VG, Fedorov AV, Baranov AV (2016) Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology 27(7):075102

    Article  Google Scholar 

  44. Jiang X, Rocker C, Hafner M, Brandholt S, Dorlich RM, Nienhaus GU (2010) Endo-and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11):6787–6797

    Article  Google Scholar 

  45. Kuo TR, Lee CF, Lin SJ, Dong CY, Chen CC, Tan HY (2011) Studies of intracorneal distribution and cytotoxicity of quantum dots: risk assessment of eye exposure. Chem Res Toxicol 24(2):253–261

    Article  Google Scholar 

  46. Tu M, Sun S, Wang K, Peng X, Wang R, Li L et al (2013) Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 311(3):225–230

    Article  Google Scholar 

  47. Clift MJ, Brandenberger C, Rothen-Rutishauser B, Brown DM, Stone V (2011) The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology 286(1–3):58–68

    Article  Google Scholar 

  48. Mahto SK, Park C, Yoon TH, Rhee SW (2010) Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells. Toxicol In Vitro 24(4):1070–1077

    Article  Google Scholar 

  49. Liu Q, Li H, Xia Q, Liu Y, Xiao K (2015) Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots. Int J Nanomedicine 10:7073

    Google Scholar 

  50. Lee V, McMahan RS, Hu X, Gao X, Faustman EM, Griffith WC et al (2015) Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages. Nanotoxicology 9(3):336–343

    Article  Google Scholar 

  51. Manshian BB, Soenen SJ, Al-Ali A, Brown A, Hondow N, Wills J, Doak SH (2015) Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicol Sci 144(2):246–258

    Article  Google Scholar 

  52. Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129(47):14759–14766

    Article  Google Scholar 

  53. Yan M, Zhang Y, Qin H, Liu K, Guo M, Ge Y, Zheng X (2016) Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Int J Nanomedicine 11:529

    Google Scholar 

  54. Jiang S, Lin Y, Yao H, Yang C, Zhang L, Luo B, He C (2018) The role of unfolded protein response and ER-phagy in quantum dots-induced nephrotoxicity: an in vitro and in vivo study. Arch Toxicol 92(4):1421–1434

    Article  Google Scholar 

  55. Fan J, Wang S, Zhang X, Chen W, Li Y, Yang P, Ju D (2018) Quantum dots elicit hepatotoxicity through lysosome-dependent autophagy activation and reactive oxygen species production. ACS Biomater Sci Eng 4(4):1418–1427

    Article  Google Scholar 

  56. Peng L, He M, Chen B, Wu Q, Zhang Z, Pang D, Hu B (2013) Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells. Biomaterials 34(37):9545–9558

    Article  Google Scholar 

  57. Wu C, Shi L, Li Q, Jiang H, Selke M, Ba L, Wang X (2010) Probing the dynamic effect of cys-CdTe quantum dots toward cancer cells in vitro. Chem Res 23(1):82–88

    Google Scholar 

  58. Luo YH, Wu SB, Wei YH, Chen YC, Tsai MH, Ho CC, Lin P (2013) Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol 26(5):662–673

    Article  Google Scholar 

  59. Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Fan C (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5):1238–1244

    Article  Google Scholar 

  60. Dai T, Li N, Liu L, Liu Q, Zhang Y (2015) AMP-conjugated quantum dots: low immunotoxicity both in vitro and in vivo. Nanoscale Res Lett 10(1):1–9

    Article  Google Scholar 

  61. McConnachie LA, White CC, Botta D, Zadworny ME, Cox DP, Beyer RP, Kavanagh TJ (2013) Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology 7(2):181–191

    Article  Google Scholar 

  62. Lovrić J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83(5):377–385

    Article  Google Scholar 

  63. Kendall M, Ding P, Mackay RM, Deb R, McKenzie Z, Kendall K, Clark H (2013) Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles. Nanotoxicology 7(5):963–973

    Article  Google Scholar 

  64. Chen L, Miao Y, Chen L, Jin P, Zha Y, Chai Y, Wang M (2013) The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials 34(38):10172–10181

    Article  Google Scholar 

  65. Li Y, Zheng Y, Zhang K, Ying JY, Zink D (2012) Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generated in vitro. Nanotoxicology 6(2):121–133

    Article  Google Scholar 

  66. Soenen SJ, Manshian BB, Aubert T, Himmelreich U, Demeester J, De Smedt SC, Braeckmans K (2014) Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. Chem Res Toxicol 27(6):1050–1059

    Article  Google Scholar 

  67. Chen T, Li L, Xu G, Wang X, Wang J, Chen Y, Lin G (2018) Cytotoxicity of InP/ZnS quantum dots with different surface functional groups toward two lung-derived cell lines. Front Pharmacol 9:763

    Article  Google Scholar 

  68. Brunetti V, Chibli H, Fiammengo R, Galeone A, Malvindi MA, Vecchio G, Pompa PP (2013) InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5(1):307–317

    Article  Google Scholar 

  69. Buz PT, Duman FD, Erkisa M, Demirci G, Ari F, Ulukaya E, Acar HY (2019) Development of near-infrared region luminescent N-acetyl-L-cysteine-coated Ag2S quantum dots with differential therapeutic effect. Nanomedicine 14(8):969–987

    Article  Google Scholar 

  70. Wu T, Liang X, He K, Wei T, Wang Y, Zou L, Tang M (2019) The role of NLRP3 inflammasome activation in the neuroinflammatory responses to Ag2Se quantum dots in microglia. Nanoscale 11(43):20820–20836

    Article  Google Scholar 

  71. Wang Q, Bao Y, Zhang X, Coxon PR, Jayasooriya UA, Chao Y (2012) Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells. Adv Healthc Mater 1(2):189–198

    Article  Google Scholar 

  72. Ohta S, Inasawa S, Yamaguchi Y (2012) Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots. Biomaterials 33(18):4639–4645

    Article  Google Scholar 

  73. Cao Z, Peng F, Hu Z, Chu B, Zhong Y, Su Y et al (2017) In vitro cellular behaviors and toxicity assays of small-sized fluorescent silicon nanoparticles. Nanoscale 9(22):7602–7611

    Article  Google Scholar 

  74. Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Trajković V (2017) Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 146:13–28

    Article  Google Scholar 

  75. Mansur AA, Mansur HS, De Carvalho SM, Lobato ZI, Guedes MI, Leite MF (2016) Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: to be or not to be nanotoxic? Int J Nanomedicine 11:4669–4690

    Article  Google Scholar 

  76. Zhang Y, Zhang Y, Hong G, He W, Zhou K, Yang K, Wang Q (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34(14):3639–3646

    Article  Google Scholar 

  77. Lin CH, Yang MH, Chang LW, Yang CS, Chang H, Chang WH, Lin P (2011) Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice. Nanotoxicology 5(4):650–663

    Article  Google Scholar 

  78. Roberts JR, Antonini JM, Porter DW, Chapman RS, Scabilloni JF, Young SH, Mercer RR (2013) Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Part Fibre Toxicol 10(1):1–17

    Article  Google Scholar 

  79. Ho CC, Chang H, Tsai HT, Tsai MH, Yang CS, Ling YC, Lin P (2013) Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology 7(1):105–115

    Article  Google Scholar 

  80. Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P (2015) Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 45(10):837–872

    Article  Google Scholar 

  81. Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J, Prasad PN (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 7(7):453–458

    Article  Google Scholar 

  82. Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X, Liu Y (2016) Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS Appl Mater Interfaces 8(28):17859–17869

    Article  Google Scholar 

  83. Banerjee R, Goswami P, Chakrabarti M, Chakraborty D, Mukherjee A, Mukherjee A (2021) Cadmium selenide (CdSe) quantum dots cause genotoxicity and oxidative stress in Allium cepa plants. Mutat Res Genet Toxicol Environ Mutagen 865:503338

    Article  Google Scholar 

  84. Manshian BB, Soenen SJ, Brown A, Hondow N, Wills J, Jenkins GJ, Doak SH (2016) Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis 31(1):97–106

    Google Scholar 

  85. Nagy A, Hollingsworth JA, Hu B, Steinbruck A, Stark PC, Rios Valdez C, Iyer R (2013) Functionalization-dependent induction of cellular survival pathways by CdSe quantum dots in primary normal human bronchial epithelial cells. ACS Nano 7(10):8397–8411

    Article  Google Scholar 

  86. Tyagi A, Rawat K, Verma AK, Bohidar HB (2016) Mechanistic evaluation of the size dependent antimicrobial activity of water soluble QDs. Anal Methods 8(5):1060–1068

    Article  Google Scholar 

  87. Alaraby M, Demir E, Hernández A, Marcos R (2015) Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. Sci Total Environ 530:66–75

    Article  Google Scholar 

  88. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  Google Scholar 

  89. Dussert F, Wegner KD, Moriscot C, Gallet B, Jouneau PH, Reiss P, Carriere M (2021) Evaluation of the dermal toxicity of InZnP quantum dots before and after accelerated weathering: toward a safer-by-design strategy. Front Toxicol 3:6

    Article  Google Scholar 

  90. Cai M, Ding C, Cao X, Wang F, Zhang C, Xian Y (2019) Label-free fluorometric assay for cytochrome c in apoptotic cells based on near infrared Ag2S quantum dots. Anal Chim Acta 1056:153–160

    Article  Google Scholar 

  91. Bhanoth S, Kshirsagar A, Khanna PK, Tyagi A, Leekha A, Kumar V, Verma A (2017) Synthesis, characterization and bio-evaluation of core-shell QDs with ZnSe, CdS and CdSe combinations. Adv Mater Lett 8(4):352–361

    Article  Google Scholar 

  92. Pathakoti K, Hwang HM, Wang X, Aker WG (2013) Photoinduced toxicity of CdSe/ZnS quantum dots with different surface coatings to Escherichia coli. Int J Nanotechnol 10(12):1093–1108

    Article  Google Scholar 

  93. Bellanger X, Schneider R, Dezanet C, Arroua B, Balan L, Billard P, Merlin C (2020) Zn2+ leakage and photo-induced reactive oxidative species do not explain the full toxicity of ZnO core quantum dots. J Hazard Mater 396:122616

    Article  Google Scholar 

  94. Tang S, Allagadda V, Chibli H, Nadeau JL, Mayer GD (2013) Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots. Metallomics 5(10):1411–1422

    Article  Google Scholar 

  95. Nguyen KC, Rippstein P, Tayabali AF, Willmore WG (2015) Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci 146(1):31–42

    Article  Google Scholar 

  96. Lai L, Li YP, Mei P, Chen W, Jiang FL, Liu Y (2016) Size effects on the interaction of QDs with the mitochondrial membrane in vitro. Mol Membr Biol 249(6):757–767

    Article  Google Scholar 

  97. Khalil WKB, Girgis E, Emam AN, Mohamed MB, Rao KV (2011) Genotoxicity evaluation of nanomaterials: DNA damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice. Chem Res Toxicol 24(5):640–650

    Article  Google Scholar 

  98. Tyagi A, Kumari N, Leekha A, Mittal D, Verma AK (2019) Core shell quantum dots induced apoptosis in human hepatocellular carcinoma cells via reactive oxygen species-mediated mitochondrial-dependent pathway. Int J Life Sci Res 7:518–530

    Google Scholar 

  99. Oetiker N, Muñoz-Villagrán C, Vásquez CC, Bravo D, Pérez-Donoso JM (2021) Bacterial phototoxicity of biomimetic CdTe-GSH quantum dots. J Appl Microbiol 131(1):155–168

    Article  Google Scholar 

  100. Yaghini E, Turner H, Pilling A, Naasani I, MacRobert AJ (2018) In vivo biodistribution and toxicology studies of cadmium-free indium-based quantum dot nanoparticles in a rat model. Nanomed Nanotechnol Biol Med 14(8):2644–2655

    Article  Google Scholar 

  101. Katubi KM, Alzahrani FM, Ali D, Alarifi S (2019) Dose-and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure. Hum Exp Toxicol 38(8):914–926

    Article  Google Scholar 

  102. Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V (2008) Photosensitized breakage and damage of DNA by CdSe− ZnS quantum dots. J Phys Chem 112(32):10005–10011

    Article  Google Scholar 

  103. Peynshaert K, Soenen SJ, Manshian BB, Doak SH, Braeckmans K, De Smedt SC, Remaut K (2017) Coating of quantum dots strongly defines their effect on lysosomal health and autophagy. Acta Biomater 48:195–205

    Article  Google Scholar 

  104. Zou W, Li L, Chen Y, Chen T, Yang Z, Wang J, Wang X (2019) In vivo toxicity evaluation of PEGylated CuInS2/ZnS quantum dots in BALB/c mice. Front Pharmacol 10:437

    Article  Google Scholar 

  105. Nifontova G, Ramos-Gomes F, Baryshnikova M, Alves F, Nabiev I, Sukhanova A (2019) Cancer cell targeting with functionalized quantum dot-encoded polyelectrolyte microcapsules. Front Chem 7:34

    Article  Google Scholar 

  106. Wang M, Wang J, Sun H, Han S, Feng S, Shi L, Sun Z (2016) Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. Int J Nanomedicine 11:2319

    Google Scholar 

  107. Mo D, Hu L, Zeng G, Chen G, Wan J, Yu Z, Cheng M (2017) Cadmium-containing quantum dots: properties, applications, and toxicity. Appl Microbiol Biotechnol 101:2713–2733

    Article  Google Scholar 

  108. Sun H, Cui E, Liu R (2015) Molecular mechanism of copper-zinc superoxide dismutase activity change exposed to N-acetyl-L-cysteine- capped CdTe quantum dots-induced oxidative damage in mouse primary hepatocytes and nephrocytes. Environ Sci Pollut Res Int 22:18267–18277

    Article  Google Scholar 

  109. Richter M, Vidovic N, Honrath B, Mahavadi P, Dodel R, Dolga AM, Culmsee C (2016) Activation of SK2 channels preserves ER Ca2+ homeostasis and protects against ER stress-induced cell death. Cell Death Differ 23(5):814–827

    Article  Google Scholar 

  110. Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Ruan DY (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116(7):915–922

    Article  Google Scholar 

  111. Lu Y, Xu S, Chen H, He M, Deng Y, Cao Z, Zhou Z (2016) CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation. Biomaterials 90:27–39

    Article  Google Scholar 

  112. Bhanoth S, Tyagi A, Verma AK, Khanna PK (2017) Cytotoxicity studies of II-VI semiconductor quantum dots on various cancer cell lines, vol 8, pp 368–376

    Google Scholar 

  113. Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98(1):249–257

    Article  Google Scholar 

  114. Zhang T, Wang Y, Kong L, Xue Y, Tang M (2015) Threshold dose of three types of quantum dots (QDs) induces oxidative stress triggers DNA damage and apoptosis in mouse fibroblast L929 cells. Int J Environ Res Public Health 12(10):13435–13454

    Article  Google Scholar 

  115. Tang H, Yang ST, Ke DM, Yang YF, Liu JH, Chen X, Liu Y (2017) Biological behaviors and chemical fates of Ag2Se quantum dots in vivo: the effect of surface chemistry. Toxicol Res 6(5):693–704

    Article  Google Scholar 

  116. Zhou Y, Zhang Y, Zhong Y, Fu R, Wu S, Wang Q et al (2018) The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Res 11(5):2336–2346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita K. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niveria, K., Singh, P., Yadav, M., Verma, A.K. (2023). Quantum Dot (QD)-Induced Toxicity and Biocompatibility. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_8

Download citation

Publish with us

Policies and ethics