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1 Introduction

Originating from distant storms, swell systems radiate across all ocean basins
(Snodgrass et al., 1966; Collard et al., 2009; Ardhuin et al., 2009). Far from their
sources, emerging surface waves have low steepness characteristics, with very
slow amplitude variations. Swell propagation then closely follows principles of
geometrical optics, i.e. the eikonal approximation to the wave equation, with a
constant wave period along geodesics, when following a wave packet at its group
velocity. The phase averaged evolution of quasi-linear wave fields is then dominated
by interactions with underlying current and/or topography changes (Phillips, 1977).
Comparable to the propagation of light in a slowly varying medium, over many
wavelengths, cumulative effects can lead to refraction, i.e. change of the direction of
propagation of a given wave packet, so that it departs from its initial ray-propagation
direction. This opens the possibility of using surface swell systems as probes to
estimate turbulence along their propagating path.

For a single progressive swell wave train, a description of the form

h(x, t) = a(x, t)eiφ(x,t), (1)
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is locally possible for most wave properties, i.e. the surface elevation, slope, orbital
velocities. If the wave-ray propagation is to be followed, or predicted, the phase,
φ(x, t), must vary smoothly along the wave’s path. Mathematically, φ(x, t) is
required to be differentiable, to define the relative frequency

ω = −∂tφ(x, t), (2)

and the wave number vector

k = ∇φ(x, t). (3)

These partial derivatives of φ(x, t) being independent of the differentiation order,
the kinematical conservation equation for the density of waves writes

− ∇ω = ∂tk, (4)

with the irrotational condition

∇ × k = 0, (5)

to serve as an initial condition for use with Kelvin’s circulation theorem. The rate
of change of the wave-number is balanced by the convergence of the frequency, the
number of wave crests passing a fixed point.

Let us now consider an ocean moving with velocity v, slowly varying with
respect to time and space. The frequency of wave crests passing a fixed point, i.e.
the apparent frequency, becomes

ω = ω0 + v · k, (6)

with ω0 = f (k,H), H the depth, the intrinsic frequency, whose functional
dependence on k is known. For gravity waves, this dispersion relationship is

ω0 = √
g‖k‖ tanh ‖k‖H, (7)

and thus

∂tk + ∂kω0∇k + ∂H ω0∇H + l · v∇‖k‖ + ‖k‖∇(l · v) = 0, (8)

with l is a unit vector in the direction of k and k = ‖k‖. Consequently, for a steady
wave train, the variation of the wave-number magnitude along the propagation s is

∂s‖k‖ = −(cg + l · v)−1[∂H ω0∂sH + ‖k‖∂s(l · v)], (9)

with cg = ∂kω0, the local group velocity. Using the irrotational condition, the
evolution of the ray direction, θ(s), follows
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∂sθ = −(cg + l · v)−1[ 1

‖k‖∂H ω0∂νH + ∂ν(l · v)], (10)

where ν is unit vector normal to the direction of the ray. Accordingly, wave
trajectories will bend with depth variations. For deep water, the dispersion rela-
tionship reduces to ω0 = √

g‖k‖, and θ(s) solely depends upon the ratio between
the cross-ray current gradient and the local group velocity. More generally, this
result extends to the ray curvature, being to first order controlled by ζ/cg , the
ratio between ζ = ∇ × v, the vertical component of the current vorticity, and
cg = ∂kω0 = ω/2‖k‖, the group velocity. Accordingly, the rays will bend in the
direction of decreasing (increasing) current speed. Moreover, a potential velocity
field will give little refraction. Yet, a potential velocity field will control the variation
of the wave-number magnitude, and thus the group velocity and bending, along the
propagation.

To specify the local linear wave propagation, a precise knowledge of the surface
currents, local gradients and/or vorticity, thus appears essential. In a realistic numer-
ical setting, Ardhuin et al. (2017) clearly demonstrated that wave energy variations
would largely be dominated by the effects of ocean currents at scales of about
10–100 km. From altimeter ocean surface wave energy measurements, Quilfen
and Chapron (2019) also showed that mesoscale and sub-mesoscale upper ocean
circulation can drive a significant part of the wave variability in the coupled ocean-
atmosphere system. Unfortunately, these small-scale currents are not observed
and certainly not resolved in operational models. Today, a precise spatio-temporal
information is thus largely missing. To overcome these observation difficulties, but
to best take into account unresolved small-scale currents, a stochastic framework
can be adopted. Such a stochastic model shall then provide means to perform fast
simulations and test ensembles of wave-propagation predictions, to best evaluate
impacts of underlying near-surface small-scale currents on the evolution of ocean
surface swell systems.

2 Random Swell-Rays

To first order in wave steepness, the group velocity vg is modified by the local
velocity of the currents v,

dx

dt
= vg = ∇kω = ∇kω0(k)︸ ︷︷ ︸

Group velocity
without currents

but changing wave vector

+v, (11)

where x is the centroid of a wave group. The ray direction can thus differ from
the direction of the wave vector, except in the case of parallel wave and current
directions. Unlike depth refraction, the crest alignment does not indicate the wave
propagation direction. The coupled wave vector evolution writes
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dk

dt
= −∇vT k. (12)

Along the propagation ray, velocity gradients induce linear variations. Decelerating
currents will shorten waves, and thus reduce the group velocity. The validity of this
coupled ray approximation largely depends on the condition ‖k‖ξ � 1, where ξ is
a length scale on which the current field is varying, physically corresponding to the
typical eddy size. This condition is well satisfied for wave numbers of interest, of
order ‖k‖ ∼ 2π/250 rad.m−1, and typical eddy size ξ ∼ 5 km or larger. Scattering
of the waves by currents can further be assumed to be weak, with ‖v‖ of order
0.5m/s, much smaller than ‖vg‖ of order 10m/s. Subsequently, each ray will be
appreciably deflected, with scattering angle of order ∼‖v‖/‖vg‖ after traveling a
typical correlation length ∼ξ along the mean wave vector direction.

To complete the wave field description, the wave action A(x, t) is considered to
be an adiabatic invariant. Wave action is crucial to anticipate wave transformations
by currents (White and Fornberg, 1998). This action is the integral of the action
spectrum N(x, k, t) over all the wave-vectors k:

A(x, t) =
∫

dk N(x, k, t). (13)

The wave action spectrum N is the action by unit of surface (unit of x) and by unit
of wave-vector surface (unit of k). For linear waves, the wave action spectrum is
simply related to the wave energy spectrum E:

E(x, k, t) = N(x, k, t) ω0(k). (14)

By the Liouville theorem, the (x, k) space does not contract nor dilate along
time1 Since the dissipation is neglected, the wave action spectrum N is thus
conserved (Lavrenov, 2013), i.e.

N (x(ti), k(ti), ti ) = N
(
x(tf ), k(tf ), tf

)
, (15)

along the following (x, k) variable change between initial time ti and the final time
tf :

(
x(ti)

k(ti)

)
�→

(
x(tf )

k(tf )

)
. (16)

1
[∇x

∇k

]
·
(

d
dt

[
x

k

])
=

[∇x

∇k

]
·
([

v

−∇xvT k

])
= ∇x · v − ∇x · v = 0.
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Subsequently, each Fourier mode of a swell wave train can be modified, indepen-
dently of the others. In absence of source terms, the action spectrum conservation
(15) then writes:

dN

dt
= ∂tN + vg ·∇xN +

(
−∇xvT k

)
·∇kN = 0. (17)

3 The Time-Decorrelation Assumption

Now, the Eulerian current v is decomposed into a large-scale component v and a
small-scale unresolved component v′:

v = v + v′. (18)

In a stochastic framework, we can work with the Stratonovich notations
(Oksendal, 1998; Kunita, 1997). Under Stratonovich calculus rules, expressions
become similar to deterministic ones. The Stratonovich dispersion relation is
analogous to the deterministic one (6). The method of characteristics is also valid,
(11), (12), and (15), with v′ defined by σ◦dBt/dt , where dBt/dt is a spatio-temporal
white noise and σ◦ denotes a spatial filter which encodes spatial correlations and
horizontal incompressibility (∇ · σ = 0). For a spatially stationary and isotropic
small-scale velocity, the wave characteristic dynamics equations (11), (12) and (15)
would then also remain the same with Ito notations (i.e. we can replace σ ◦ dBt by
σdBt to derive the evolution). With Ito notations, the action spectrum conservation
(17) writes

∂tN + vg · ∇xN +
(
−∇xvT k

)
· ∇kN =

[∇x

∇k

]
·
(

D

[∇x

∇k

]
N

)
, (19)

where vg and v include the random small-scale component v′ = σdBt/dt , and

D = 1

2dt
E

{[
σdBt

−∇x(σdBt)
T k

] [
σdBt

−∇x(σdBt)
T k

]T
}

. (20)

Compared to (17), a RHS diffusive term appears, likely acting to increase the initial
directional spread of the incident very directional swell components.

Voronovich (1991) and White and Fornberg (1998) discussed the joint random
evolution changes of the coupled (x, k), i.e. the location and the wave vector of
waves, subject to a random current v. Considering the wave train to undergo slow
changes over the typical time to travel through the typical correlation length of the
underlying current, the joint time evolution of (x, k) can be approximated to be
driven by a diffusion Markov process.
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3.1 The Ray Lagrangian Correlation Time

To apply (19), the covariance of the small-scale unresolved component v′ – in the
wave group frame – is thus to be assessed:

γ
Xr

v′ (t) = E
(
v′(t ′,Xr (t

′)) · v′(t ′ + t,Xr (t
′ + t))

) = γv′(t,Xr (t
′+t)−Xr (t

′)),
(21)

where γv′ is the (Eulerian) spatio-temporal covariance of v′, assuming statistical
homogeneity, and stationarity for v′. Assume a typical isotropic form for this
covariance:

γv′(t, x) = γ

( |t |
τv′

+ ‖x‖
lv′

)
, (22)

then,

γ
Xr

v′ (t) = γ

( |t |
τv′

+ ‖Xr (t
′ + t) − Xr (t

′)‖
lv′

)
= γ

((
1

τv′
+ ‖vg‖

lv′

)
|t | + O(t2)

)
,

(23)

for small time increment t . Therefore,
(

1
τv′ + ‖vg‖

lv′

)−1
is the correlation time of

v′(t,Xr (t)). The same derivation is valid for ∇(v′)T (t,Xr (t)). Over deep ocean,

the swell wave group velocity is ‖v0g‖ = ‖∇kω0‖ = 1
2

√
g

‖k‖ , and the along-ray

correlation time of the small-scale velocity can be approximated by lv′/‖v0g‖. The
ratio ε between this along-ray correlation time and the characteristic time of the
wave group properties evolution, will then control the time decorrelation assumption
of v′:

ε = lv′

‖v0g‖
‖∇vT ‖. (24)

Note the Eulerian small-scale velocity v′ is not necessarily time uncorrelated. Yet,
for small enough ε, the Lagrangian small-scale velocity along the ray can be
considered time uncorrelated. From the expression of ε, such a condition depends
upon:

– ‖v0g‖, increasing with the square root of the wave-group wave number. Hence, ε
decreases with the square root of the wave-group wave-length.

– lv′ , defined by the separation between large scales v and small scales v′, e.g. the
spatial filtering cutoff of the large-scale velocity v.

– ‖∇vT ‖ – which is different from ‖∇(v′)T ‖ –, related to the overall kinetic energy
(KE) and its high-wavenumber spectral slope.
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3.2 Ray Absolute Diffusivity

The absolute diffusivity (or Kubo-type formula) usually corresponds, in the so-
called diffusive regime, to the variance per unit of time of a fluid particle Lagrangian
path dX

dt
= v. It is approximately equal to the velocity variance times its correlation

time. The Eulerian velocity covariance (22) will thus induce an absolute diffusivity

a =
∫ ∞

0
dt γv′(t,X(t ′ + t) − X(t ′)) ≈ γ (0) τv′ . (25)

Here, a wave group is followed along its propagation, and a ray absolute diffusivity
slightly differs from the usual absolute diffusivity to become

aXr =
∫ ∞

0
dt γ

Xr

v′ (t) ≈
(

1

τv′
+ ‖vg‖

lv′

)−1

γ (0) ≈ lv′

‖v0g‖
γ (0). (26)

In the Fourier space, the current Absolute Diffusivity Spectral Densisty (ADSD)
(Resseguier et al., 2020) associated with the wave dynamics is defined by

AXr (k) = 1/k

‖v0g(kXr )‖ Ek(k), (27)

where kXr denotes the wave wave-vector, k the current wave number and Ek the
current kinetic energy spectra. Accordingly, for noise calibration, we assume AXr

self-similar and we choose a divergence-free spatial filter ∇⊥ψσ such that v′ =
σdBt/dt = ∇⊥ψ̆σ � dBt/dt and ‖σ̂dBt(k)‖2/dt = |k ̂̆

ψσ (k)|2 = A
Xr

v′ (k).

3.3 A Practical Estimation

To simplify (20), let us consider the solution for an homogeneous and isotropic
small-scale velocity v′ = σdBt/dt = ∇⊥ψ̆σ � dBt/dt and Matérn stream function
covariance, (ψ̆σ ∗ ψ̆σ ), leading to

D = 1

2dt

⎡

⎢⎢⎢
⎣

E

{
(σdBt )(σdBt )

T
} 0 0

0 0

0 0

0 0

∑2
ij=1 kikj E

{
(∇x(σdBt )i)(∇x(σdBt )j )T

}

⎤

⎥⎥⎥
⎦

, (28)

=

⎡

⎢⎢⎢
⎣

a0
2 Id

0 0

0 0

0 0

0 0

cκM
2

(
kkT + 3k⊥ (

k⊥)T
)

⎤

⎥⎥⎥
⎦

, (29)
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where a0 = 1
2dt

E‖σdBt‖2 and cκM
= 1

8dt
E‖∇x(σdBt)

T ‖2 are constants depending
on both the correlation length and the spectrum slope of the small-scale velocity.
The Ito action spectrum equation (19) then reads:

∂tN + vg ·∇xN +
(
−∇xvT k

)
·∇kN

= ∇x ·
(
1
2a0∇xN

)
+ ∇k ·

(
1
2cκM

[
kkT + 3k⊥ (

k⊥)T
]

∇kN

)
, (30)

= 1
2a0ΔxN + 1

2cκM

1

‖k‖∂‖k‖
(
‖k‖3∂‖k‖N

)
+ 31

2cκM
∂2θk

N. (31)

The ensemble mean then follows:

∂tEN + vg ·∇xEN +
(
−∇xvT k

)
·∇kEN

= 1
2a0ΔxEN + 1

2cκM

1

‖k‖∂‖k‖
(
‖k‖3∂‖k‖EN

)
+ 31

2cκM
∂2θk

EN, (32)

This last RHS diffusion term along the ray-direction θ is then reminiscent to Eq.
3.16 in Bôas and Young (2020) and Eq. 36 in Smit and Janssen (2019) derived
under the same isotropic and homogeneous turbulence assumptions.

4 Numerical Simulations

To illustrate our purpose, we consider the Surface Quasi-Geostrophic dynamics
(Pierrehumbert, 1994; Lapeyre, 2017), abbreviated SQG:

(∂t + v ·∇)

(
− b

N

)
= 0 with v = vSQG = −∇⊥(−Δ)−1/2

(
− b

N

)
. (33)

Note, real-upper-ocean currents may not strictly follow SQG. Still, after a wind
burst, it can be a good approximation at many mid-latitude locations. SQG
corresponds to dynamics with extreme locality, i.e a KE spectrum with a shallow
slope −5/3. Hence, for fixed KE value, a larger current gradient ‖∇vT ‖ is expected.
The validity of the time-decorrelation assumption of Sect. 3 will then depend upon
the scale separation, defining the correlation length of the unresolved scales.

A reference simulation is obtained at a resolution 512 × 512 for a 1000-km
squared domain, through a pseudo-spectral code (Resseguier et al., 2017, 2020).

Once initialized, the current velocity v is about 0.1m.s−1.
A swell system enters the southern boundary, propagating to the north. The

carrier incident wave has a wave length λ = 250 m. Its envelope is Gaussian
with an isotropic spatial extension of 30λ. Figure 1 illustrates the branched regime



Random Ocean Swell-Rays 267

Fig. 1 Swell interacting with
a high-resolution (512 × 512)
deterministic SQG current.
The left panel shows ray
trajectories computed by
forward advection and
superimposed on the current
vorticity ω = ∇⊥ · v. The
right panel shows
bidirectional wave spectra,
computed by backward
advection, at 8 locations
along a meridional axis (the
mean wave propagation
direction)
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in this homogeneous SQG turbulence. This regime spreads the positions (left
panel) and wavevectors (right panel) of the incoming waves. From south to north,
spectral diffusion occurs (right panel), in the direction orthogonal (here kx) to
the propagation (here ky). This accelerates – along the propagation – the zonal
wave position spread, to create the branched regime visible in the left panel. This
acceleration is explained by the ray equation (11) dominated by the intrinsic wave
group velocity ∇kω0 = ‖∇kω0‖‖k‖ k.

To mimic a badly resolved v, the current v is smoothed at a resolution 32 × 32.
Wave dynamics, using this coarse-scale current, are obtained Fig. 2. The branched
regime is strongly weakened, i.e. the spectral small-scale turbulence diffusion is
missing.

A stochastic current is then added to this coarse deterministic one. That stochastic
component is divergence-free and has a self-similar distribution of energy across
spatial scales. Its precise parametrisation is a modification of the ADSD calibration
(Resseguier et al., 2020) (see Sect. 3.2). Figure 3 displays the wave simulations.
This white-in-time model appears to work for a sufficiently well-resolved large-
scale current. Indeed, the decorrelation ratio ε = (lv′/‖v0g‖)‖∇vT ‖ depends on this
resolution through lv′ . Specifically, for this SQG flow, the large-scale current v needs
to be resolved at least on a 32 × 32 grid, i.e. with a resolution lv′ = 31.3 km. As
such, we obtain ε = 3.23 × 10−2 (computed with 1/‖∇vT ‖ = 1.38 × 105 s and
Cg � 10m.s−1).

5 Conclusion

The presence of velocity variations results in random scattering of swell-wave rays.
Interactions are weak, but cumulative effects can become significant, to increase
the average path length taken by the swell energy to reach an observer. Nowadays,
sufficiently precise measurements can then open the possibility to use along-ray
measurements to probe the near-surface ocean turbulence. Under a Lagrangian
time-decorrelation assumption and using geometrical optics, a practical stochastic
framework helps express these scattering effects on the mean swell-action statistics,
directly in terms of the KE spectrum of the unresolved surface current field. Results
are presented in both Lagrangian and Eulerian forms, where the latter augments
the initial radiative transport equation with a diffusive term in directional space.
Measured delays in swell arrivals, estimated wave height spectral characteristics
and decays, and/or varying directional spread of the swell field shall then be more
quantitatively interpreted to infer regional and seasonal upper ocean dynamical
properties.
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project 856408-STUOD, the European Space Agency World Ocean Current project (ESA Contract
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Fig. 2 Swell interacting with
a low-resolution (32 × 32)
deterministic SQG current.
The left panel shows ray
trajectories computed by
forward advection and
superimposed on the
low-resolution current
vorticity ω = ∇⊥ · v. The
right panel shows
bidirectional wave spectra,
computed by backward
advection, at 8 locations
along a meridional axis (the
mean wave propagation
direction)
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Fig. 3 Swell interacting with
a low-resolution (32 × 32)
deterministic SQG current
plus (one realization of) the
time-uncorrelated stochastic
model. Ray trajectories are
computed by forward
advection and superimposed
on the low-resolution current
vorticity ω = ∇⊥ · v
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