Skip to main content

High Spatial Resolution Remote Sensing Imagery Classification Based on Markov Random Field Model Integrating Granularity and Semantic Features

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

In remote sensing image classification, it is difficult to distinguish the homogeneity of same land class and the heterogeneity between different land classes. Moreover, high spatial resolution remote sensing images often show the phenomenon of ground object classes fragmentation and salt-and-pepper noise after classification. To improve the above phenomenon, Markov random field (MRF) is a widely used method for remote sensing image classification due to its effective spatial context description. Some MRF-based methods capture more image information by building interaction between pixel granularity and object granularity. Some other MRF-based methods construct representations at different semantic layers on the image to extract the spatial relationship of objects. This paper proposes a new MRF-based method that combines multi-granularity and different semantic layers of information to improve remote sensing image classification. A hierarchical interaction algorithm is proposed that iteratively updates information between different granularity and semantic layers to generate results. The experimental results demonstrate that: on the Gaofen-2 imagery, the proposed model shows a better classification performance than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, L., Huang, X., Zheng, C., Zhang, Y.: A Markov random field integrating spectral dissimilarity and class co-occurrence dependency for remote sensing image classification optimization. ISPRS J. Photogrammetry Remote Sensing. 128, 223–239 (2017)

    Google Scholar 

  2. Goel, P.K., Prasher, S.O., Patel, R.M., Landry, J.-A., Bonnell, R., Viau, A.A.: Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Comput. Electron. Agric. 39(2), 67–93 (2003)

    Article  Google Scholar 

  3. Li, R., et al.: Classifying forest types over a mountainous area in southwest china with landsat data composites and multiple environmental factors. Forests 13(1), 135 (2022)

    Article  Google Scholar 

  4. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intelligent Systems Technol. (TIST). 2(3), 1–27 (2011)

    Article  Google Scholar 

  6. Mũnoz-Marí, J., Bovolo, F., Gómez-Chova, L., Bruzzone, L., Camp-Valls, G.: Semisupervised one-class support vector machines for classification of remote sensing data. IEEE Trans. Geosci. Remote Sens. 48(8), 3188–3197 (2010)

    Article  Google Scholar 

  7. Breiman, L.: Random forests. Machine Learning. 45(1), 5-32 (2001)

    Google Scholar 

  8. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 65(1), 2–16 (2010)

    Article  Google Scholar 

  9. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(06), 583–598 (1991)

    Article  Google Scholar 

  10. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  11. Huang, X., Zhang, L., Li, P.: An adaptive multiscale information fusion approach for feature extraction and classification of IKONOS multispectral imagery over urban areas. IEEE Geosci. Remote Sens. Lett. 4(4), 654–658 (2007)

    Article  Google Scholar 

  12. Wang, L., Liu, G., Dai, Q.: Optimization of segmentation algorithms through mean-shift filtering preprocessing. IEEE Geosci. Remote Sens. Lett. 11(3), 622–626 (2013)

    Article  Google Scholar 

  13. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  15. Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, IEEE, p. II (2004)

    Google Scholar 

  16. Ren, X., Malik, J.: Learning a classification model for segmentation. In: IEEE International Conference on Computer Vision, p. 10. IEEE Computer Society (2003)

    Google Scholar 

  17. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  18. Xiang, S., Pan, C., Nie, F., Zhang, C.: Turbopixel segmentation using eigen-images. IEEE Trans. Image Process. 19(11), 3024–3034 (2010)

    Article  MathSciNet  Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  21. Benediktsson, J.A., Pesaresi, M., Amason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41(9), 1940–1949 (2003)

    Article  Google Scholar 

  22. Li, N., Huo, H., Fang, T.: A novel texture-preceded segmentation algorithm for high-resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(7), 2818–2828 (2010)

    Article  Google Scholar 

  23. Dai, Q., Luo, B., Zheng, C., Wang, L.: Regional multiscale Markov random field for remote sensing image classification. J. Remote Sensing (Chinese) 24(03), 245–253 (2020)

    Google Scholar 

  24. Malfait, M., Roose, D.: Wavelet-based image denoising using a Markov random field a priori model. IEEE Trans. Image Process. 6(4), 549–565 (1997)

    Article  Google Scholar 

  25. Chang, Y.-C.: Statistical Models for MRF Image Restoration and Segmentation. Purdue University (2000)

    Google Scholar 

  26. Wang, L., Dai, Q., Xu, Q.: Constructing hierarchical segmentation tree for feature extraction and land cover classification of high resolution MS imagery. IEEE J. Selected Topics Appl. Earth Observations Remote Sensing 8(5), 1946–1961 (2015)

    Article  Google Scholar 

  27. Zheng, C., Wang, L.: Semantic segmentation of remote sensing imagery using object-based Markov random field model with regional penalties. IEEE J. Selected Topics Applied Earth Observations Remote Sensing 8(5), 1924–1935 (2014)

    Article  Google Scholar 

  28. Zheng, C., Pan, X., Chen, X., Yang, X., Xin, X., Su, L.: An object-based Markov random field model with anisotropic penalty for semantic segmentation of high spatial resolution remote sensing imagery. Remote Sensing 11(23), 2878 (2019)

    Article  Google Scholar 

  29. Zheng, C., Wang, L., Chen, R., Chen, X.: Image segmentation using multiregion-resolution MRF model. IEEE Geosci. Remote Sens. Lett. 10(4), 816–820 (2012)

    Article  Google Scholar 

  30. Li, S.: Random Field Modeling in Image Analysis. Springer (2001)

    Google Scholar 

  31. Zheng, C., Wang, L., Zhao, H., Chen, X.: Urban area detection from high-spatial resolution remote sensing imagery using Markov random field-based region growing. J. Appl. Remote Sens. 8(1), 083566 (2014)

    Article  Google Scholar 

  32. Zheng, C., Zhang, Y., Wang, L.: Semantic segmentation of remote sensing imagery using an object-based Markov random field model with auxiliary label fields. IEEE Trans. Geosci. Remote Sens. 55(5), 3015–3028 (2017)

    Article  Google Scholar 

  33. Tong, X.-Y., et al.: Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 237, 111322 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinling Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Dai, Q., Wang, L., Zhao, Y., Fu, H., Zhang, Y. (2022). High Spatial Resolution Remote Sensing Imagery Classification Based on Markov Random Field Model Integrating Granularity and Semantic Features. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics