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Abstract. Carbon fiber composite materials are intensively used in many manu-
facturing domains such as aerospace, aviation, marine, automation and civil indus-
tries due to their excellent strength, corrosion resistance, and lightweight proper-
ties. However, their increased use requires a conscious awareness of their entire life
cycle and not only of their manufacturing. Therefore, to reduce waste and increase
sustainability, reparation, reuse, or recycling are recommended in case of defects
and wear. This can be largely improved with reliable and efficient non-destructive
defect detection techniques; those are able to identify damages automatically for
quality control inspection, supporting the definition of the best circular economy
options. Hyperspectral imaging techniques provide unique features for detecting
physical and chemical alterations of any material and, in this study, it is proposed
to identify the constitutive material and classify local defects of composite speci-
mens. AMiddleWave Infrared Hyperspectral Imaging (MWIR-HSI) system, able
to capture spectral signatures of the specimen surfaces in a range of wavelengths
between 2.6757 and 5.5056 µm, has been used. The resulting signatures feed a
deep neural network with three convolutional layers that filter the input and isolate
data-driven features of high significance. A complete experimental case study is
presented to validate the methodology, leading to an average classification accu-
racy of 93.72%. This opens new potential opportunities to enable sustainable life
cycle strategies for carbon fiber composite materials.

Keywords: Hyperspectral imaging · Automatic defect detection · Deep
learning · Convolutional neural network · Composite materials · Circular
economy

1 Introduction

In the past few decades, carbon fiber composite materials have been largely used in
many manufacturing domains such as aerospace, aviation, marine, automation, sports,

© The Author(s) 2023
K.-Y. Kim et al. (Eds.): FAIM 2022, LNME, pp. 404–412, 2023.
https://doi.org/10.1007/978-3-031-18326-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18326-3_39&domain=pdf
http://orcid.org/0000-0002-8944-6396
http://orcid.org/0000-0002-4784-5364
http://orcid.org/0000-0002-5599-903X
http://orcid.org/0000-0003-1473-7110
http://orcid.org/0000-0002-7653-0679
http://orcid.org/0000-0002-6144-2123
https://doi.org/10.1007/978-3-031-18326-3_39


Hyperspectral Imaging for Non-destructive Testing of Composite Materials 405

and civil industries, due to their excellent strength, corrosion resistance, low thermal
expansion, and lightweight properties.

It is estimated that by 2025, the annual global CFRP (Carbon fiber reinforced poly-
mers) waste will reach 20 kt; at this year the cumulative amount of CFRC (Carbon fiber
reinforced composites) waste which is ready to be recycled in Europe is estimated to
reach 144,724 t [1]. This poses great challenges, due to the current environmentally
unfriendly CFRC waste management, yet in disagreement with the European Compos-
ites Industry Association (EuCIA) directives, which in 2011 has set strict recycling and
reuse practices based on the European Union directives on End-of-Life (EOL) vehicles
2000/53/EC and waste 2008/98/EC [2].

1.1 Hyperspectral Imaging (HSI)

The defect detection techniques assist the life cycle assessment, structural performance
maintenance, value chain integration, reverse logistic strategy, ecological benefits, and
transition into a circular economymodel. Several non-destructive techniques (NDTs) are
often used for defect detection; however, they cannot usually identify the material and
have several disadvantages. Visual inspection and RGBmachine vision system methods
are extensively affected by the surrounding conditions and unsuitable for hazardous
material [3]. Due to the radiation hazard, safety protection tools are required for X-
ray imaging and neutron imaging methods [4, 5]. Eddy current tests detect surface
and subsurface cracks, but only for conductive materials [6]. The active infrared (IR)
thermography is safe and quick with respect to other NDTs [7], but the automatic data
processing is challenging despite the recentmethodologies such asmachine-learning [8],
deterministic-differential analyses [9], and deep learning [10]. The resonant inspection
method detects the resonant frequency shifts resulting from changes in mass or stiffness
of defected areas [11], but the accuracy is highly sensitive to the surrounding noise.
Ultrasonic testing is not suitable for the intricate shape of material surfaces [12]. The
shearography testing results are difficult to interpret and require a good light source [13].

Along with defect detection, precise material identification is also necessary to
address remanufacturing, repair, reuse, and recycling processes in a circular econ-
omy perspective. X-ray imaging [14], x-ray computed tomography (XCT) [15], optical
microscopy-based imaging [16], and scanning electron microscopy [17] can be utilized
for both defect and material identification. However, they require sample extraction,
preparation and measurement steps, which are very time-consuming and usually carried
out offline; while the online or inline identification of material is essential to set the
parameters of manufacturing, repair, remanufacturing, and recycling. This is particu-
larly relevant in the case of composite materials, since the material compositions and,
thus, process specifications vary according to different types, designs, manufacturers,
and applications.

HSI measures the continuous spectrum of the light for each pixel of the sample with
fine wavelength resolution and it can work online or inline directly on parts with no
sample preparation nor causing any damage. Therefore, it can perform a very powerful
quality control task, playing a vital role in EOL management.

HSI is able to extract a large variety of information on any kind of surface and
provides a promising solution to identify the material along with defect classifications.
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In compare to other HSI applications [18, 19], very few research studies are reported to
identify defects in carbon fiber composite material and still in their infancy [20]. Carbon
fiber composites are used inmany high precision applicationswhere, in addition to visual
and geometric quality control, other quality parameters of performance related defects
must be identified in order to comply with the safety of end-users. Therefore, the quality
control should be intelligent and robust, to handle the complexities, uncertainties, and
variability of the operations.

In this context, the traditional vision systems normally fail, while hyperspectral
acquisition system goes far beyond the RGB imaging; it captures the high-resolution
spectra at every pixel providing not only physical but also chemical information of the
specimen. The large amount of information provided by HSI system comes at the cost of
complex data acquisition and a huge volume of data. Indeed,HSI acquires two spatial and
one spectral dimension, requiring a complex image analysis for image preprocessing (i.e.
calibration, noise removal, data reduction), feature extraction, and classification. The use
of HSI integrated with remanufacturing processes will improve the ability of industries
to retrieve re-usable CFRC materials from composite components. Consequently, this
will reduce the usage of virgin materials, the energy required during manufacturing and
logistics operations and, ultimately, the CO2 footprint along the whole product lifecycle,
maintain the waste management legislation, and product emissions regulations.

In this work, a case study shows the possibility of using HSI method to identify
material and defects of CFRC. A defect apparatus has been developed to create different
defects on carbon fiber composites. A hyperspectral imaging system has been used for
acquiring the images and an image processing technique, based on a deep neural network,
has been designed to classify the types of defects and identify the different materials.

2 Material and Method

A material and defect identification method is proposed using the middle wave infrared
hyperspectral imaging system. Two different types of thermosetting carbon fiber rein-
forced composites have been studied and two types of defects have been generated on
the specimens. The specimens were scanned by the middle wave infrared hyperspectral
imaging system, and the spectra have been analyzed with a convolutional neural network
(CNN) to identify the unique response from the specimen material and defects.

Two types of thermosetting carbon fiber reinforced composites, FDCA 0.6 (5%CAT
4 layer) and AFD 60 (4 layers) [21], developed by Politecnico di Milano [22], have been
investigated. The used samples have square shapes with dimensions of about 10 cm x
10 cm and thickness between 1 and 1.5 mm. Since CFRC material appears black, it has
a very limited reflectance in the visible near-infrared and near-infrared spectral region,
thus, a MWIR-HSI has been used in this study: a SPECIM broom type camera with
spectral range from 2.6757 µm to 5.5056 µm.

The apparatus for defect creation, based on the drop weight impact test procedure,
consists of a hollow pipe, a falling body, an impactor holder, and two types of impactors.
The two cylindrical shape falling bodies with 0.995 kg and 2.046 kg of mass are used
to pass through a hollow pipe at the height of 1 m. The two main defects (conical and
hemispherical) (Fig. 1) have been created using a conical impactor generating an impact
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energy of 10 J and a pressure of 1.6 bar and a hemispherical impactor generating an
impact energy of 20 J and a pressure of 1.8 bar.

Fig. 1. (a) AFD 60 specimen, zoom of (b) a conical defect, and (c) a hemispherical defect

The approximate diameters of conical and hemispherical defects are 2.9 mm and
5.5 mm, respectively. For each specimen, before acquiring the specimen image (Iraw),
the dark (Idark) and white references (Iwhite) were captured with the camera cover and a
frosted aluminum alloy tile, respectively, and used for the calibration procedure to obtain
the reflectance values (Eq. 1).

Icorrected = Iraw−Idark
Iwhite−Idark

(1)

Hyperspectral images of three specimens of each material were acquired before and
after the creation of the defects. Figure 2a represents the hypercube of a CFRC-AFD
60 specimen and Fig. 2b three reference spectra, one for each defect type and one for
the material of that specimen. Each spectrum was preprocessed to feed a convolutional
neural network and used either for the training, the validation or the test. Each spectrum is
made of N samples representing the reflection contribution of the specimen at a specific
wavelength. Each point of the specimen surface produces a response labeled in one of
four classes: one for each material type and one for each defect type.

Fig. 2. HSI data pattern
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The network architecture is shown in Fig. 3. The convolutional layer (Conv 1D)
consists of a bank of 35 convolutional filters having 35-entries-length kernels and the
classification layer is made of three sublayers: fully connected layer - a neural network
receives the input features, processed by the previous convolution-based layers, a softmax
layer - the four outputs of the fully connected layer are arguments of a softmax function
and a classification layer - the probabilities are compared to select the class with the
maximum score (probability).

Fig. 3. Representation of the network architecture for data classification

It is worth noting that the network processes each spectral signature alone, without
considering further contributions from adjacent pixels. In this way, the defect detection
is independent of the shape of the training defects. The classification only depends on
the current response of the material for the specific pixel under analysis.

3 Results and Discussions

The acquisition parameters have been optimized to improve the quality of the images,
detect small features, and reduce the computational load. A high exposure time value is
desirable to increase the signal-to-noise ratio and thus, provide better spectra. However,
a trade-off has to be selected to avoid image saturation, in particular for the white
reference. Therefore, several tests have been carried out to identify the best exposure
time. Moreover, in order to acquire not distorted images of the samples, the correct
aspect ratio has to be found varying the frame rate and the scanning speed. Figure 4a and
4b show the effect of an incorrect setting. A proper aspect ratio (Fig. 4c) has been found
with a frame rate 21.5 times bigger than the scanning speed. Furthermore, the larger
the specimen the better the analysis. Accordingly, the field of view has been reduced as
much as possible, taking into account the depth of focus of the camera and the physical
constraints of the HSI system.

The classification performance of the proposed network has been proven through
the analysis of a complete dataset made of several acquisitions. Six specimens have
been used in this case study, which includes three specimens made of FDCA 0.6 and
three specimens of AFD 60. All the specimens were scanned by HSI system before and
after damaging them so that around 30 defects for each type (hemispherical and conical)
have been selected as a train set. The network training minimizes the loss function, i.e.
the mean distance between the expected and predicted class, with the Adam optimizer
considering each class of the same weight. The stop criterion is computed through a
validation procedure. The validation set is used to compute an accuracy value while
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Fig. 4. Aspect ratio to set scanning speed and frame rate parameter

learning a correct prediction ratio, helpful in stating whether the network is converging
towards a correct solution.

Due to the reduced dimension of impact areas, in comparison with the area of the
specimens, the populations of the classes are unbalanced. Therefore, since the loss opti-
mization is performed considering equally-weighted classes, the most populated classes
have been partially reduced but not matched to the least populated ones to induce an
implicit bias to the predictions of non-defective regions. The tuning of the network has
been completed in 34 epochs achieving an accuracy of 94.32% in label predictions,
thus suggesting the exact convergence of the optimization, confirmed by the balanced
accuracy, which scales the standard accuracy by the population of the reference class
[23]. The testing process confirms the network’s capability to classify the input spectra,
recognizing the specific constitutive material of the specimens and the defects. Specif-
ically, the global accuracy, considering all correct detections, reaches 93.72%, with an
average balanced accuracy of 85.55%. A prediction map of a test specimen is reported
in Fig. 5. Conical defects are identified with low sensitivity since they are often con-
fused with defects of the other classes, but not with homogeneous areas, which is very
promising for manufacturing quality control. As shown in Fig. 6, the sensitivity can
be easily improved, without inducing misclassifications of the hemispherical-shaped
defects, whose probabilities are much higher and close to 1 (refer Fig. 6(a)), setting the
threshold of classification scores of conical defects to 0.25.

In this work, HSI potential has been exploited with plastic composites with a very
limited reflectance. In comparison with another study that used HSI to detect surface
damage in carbon fiber reinforced polymer materials [20] no issues related to the back-
ground have been observed. Moreover, the low impact energy of the defects (11.9 J) and
the complex surface texture, which has been assumed in [20] as the cause of a reduced
detection accuracy, are very similar to the conditions of the present study, where good
overall classification accuracy is achieved due to a robust computation algorithm. Finally,
in this work not only the defects, but also the constituent materials have been detected
at the same time as required in industrial product management.
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Negligible areas 
AFD 60 homogeneous 
Hemispherical defects 
Conical defects 

Ground truth Predictions

Fig. 5. Prediction map and corresponding ground truth of a test specimen

Hemispherical defects Conical defects 

(a) (b) 

Fig. 6. Classification scores of the defective classes during testing.

4 Conclusions

In this paper, HSI method is proposed for accurate, fast, and reliable quality control of
carbon fiber composite parts and demonstrated with a simple case study, in which it was
combined with a deep neural network to identify material and defects of thermosetting
CFRC samples. The results confirm that HSI is very suitable for non-destructive defect
detection and allows not only an efficient classification of various types of defects, but
also a reliable identification of material differences in CFRC.

As a practical and managerial implication, this study demonstrated that HSI is a
very promising candidate as enabling technology for sustainable manufacturing and the
circular economy of composite materials. By systematically adopting HSI as a reliable
and accurate solution for in-line or online quality control of manufactured parts, com-
panies will be able to early detect defects and repair parts in order to limit non-quality
costs and customers’ complaints. In terms of circular economy, the precise identification
and characterization of materials and defects through HSI will provide companies the
necessary information to select the most appropriate strategies, including repair, reuse,
and recycling. This will minimize the production of new parts and, at the same time, will
maximize the value of products and materials with significant environmental benefits.
This research presents some limitations. First, this methodology can be exploited to all
types of materials and, thus, a large variety of product domains, but it is not applicable
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in the case of internal damage as HSI scans only external surfaces. Second, this research
was limited to plain specimens of CFRP, investigating defects bigger than 2.9 mm.
Third, from a business point of view, the economic and industrial sustainability of the
introduction of HSI was not investigated due to the explorative nature of this research.
Accordingly, further work, studies with a larger variety of materials, smaller dimensions
of the defect and other geometrical profiles of defects such as wrinkles, cracks, and
scratches have to be implemented to verify the sensitivity of the hyperspectral imaging
system.
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