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Abstract. In recent years, Internet of things (IoT) devices have been widely
implemented and industrially improved in manufacturing settings to monitor, col-
lect, analyze, and deliver data. Nevertheless, this evolution has increased the risk of
cyberattacks, significantly. Consequently, developing effective intrusion detection
systems based on deep learning algorithms has proven to become a dependable
intelligence tool to protect Industrial IoT devices against cyber-attacks. In the
current study, for the first time, two different classifications and detection long
short-term memory (LSTM) architectures were fine-tuned and implemented to
investigate cyber-security enhancement on a benchmark Industrial IoT dataset
(BoT-10T) which takes advantage of several deep learning algorithms. Further-
more, the combinations of LSTM with FCN and CNN demonstrated how these
two models can be used to accurately detect cyber security threats. A detailed
analysis of the performance of the proposed models is provided. Augmenting the
LSTM with FCN achieves state-of-the-art performance in detecting cybersecurity
threats.
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1 Introduction

In the last two decades, there has been growing interest in smart Internet of things
(IoT) devices in many applications of Industry 4.0 [1] such as smart manufacturing
due to increasing the integration of cyber-physical systems (CPS) into the internet [2].
Generally, large-scale CPS networks made smart manufacturing systems that are safety-
critical and rely on networked and distributed control architectures [3]. Recently, with
decreasing cost of sensors and superior access to high bandwidth wireless networks, the
usage of IoT devices in manufacturing systems has increased significantly [4]. Never-
theless, the implementation of IoT devices into manufacturing systems increases the risk
of cyber-attacks. Therefore, the security of IoT systems has become a vital concern to
businesses.
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According to the report of Industrial Control Systems Monito Newsletter, approxi-
mately one-third of the cyber-attacks target the manufacturing sector [5]. Furthermore,
based on the National Institute of Standards and Technology (NIST), these attacks via
cyberspace, target an enterprise’s use of cyberspace to destroy, or maliciously control a
computing infrastructure [6].

Realistic security and investigation countermeasures, such as network intrusion
detection and network forensic systems, must be designed effectively to face the ris-
ing threats and challenges of cyber-attacks [7]. Today, data analytics is at the forefront
of the war against cyber-attacks. Cybersecurity experts have been employing data ana-
Iytics not only to improve the cybersecurity monitoring levels over their network streams
but also to increase real-time detection of threat patterns [8, 9].

Neural Networks (NN) were inspired by the way the human brain works. NN algo-
rithms are well-suited for usage in a variety of Artificial Intelligence (AI) and (Machine
Learning) ML applications because they are made up of several data layers. Recurrent
Neural Networks (RNNs) transmit data back and forth from later processing stages to
earlier stages (networks with cyclic data flows that may be employed in natural language
processing and speech recognition) [10]. RNN was used to achieve a true positive rate
of 98.3% at a false positive rate of 0.1% in detecting malware [11]. In another paper,
Shibahara et al. [12] utilized RNN to detect malware based on network behavior with
high precision. Also, despite many advantages, one problem with RNN is that it can
only memorize part of the time series which results in lower accuracy when dealing
with long sequences (vanishing information problem). To solve this problem, the RNN
architecture is combined with Long Short-Term Memory (LSTM) [13]. An RNN-LSTM
approach has been used in intrusion detection systems to detect botnet activity within
consumer IoT devices and networks [14].

LSTM [13] refers to neural networks capable of learning order dependency in
sequence prediction and remembering a large amount of prior information via Back
Propagation (BP) or previous neuron outputs and incorporating them into present pro-
cessing. LSTM can be leveraged with various other architectures of NN. The most
notable application for such network builds is seen in text prediction, machine transla-
tion, speech recognition, and more [10]. By replacing the hidden layer nodes that act
on memory cells through the Sigmoid function, LSTM proposes an enhancement to the
RNN model. These memory cells are in charge of exchanging information by storing,
recording, and updating previous information [15].

Convolutional Neural Network (CNN) uses a feed-forward topology to propagate
signals, CNN is more often used in classification and computer vision recognition tasks
[10]. In a unique study, Yu et al. [16] suggested a neural network architecture that com-
bines CNN with autoencoders to evaluate network intrusion, detection models. Also,
Kolosnjaji et al. [17] proposed neural network architecture that consisted of CNN com-
bined with RNN to better detect malware from a VirusShare dataset showing that this
newly developed architecture was able to achieve an average precision of 85.6%. In
conclusion, CNN has a Deep Learning (DL) network architecture that learns directly
from data without the necessity of manual feature extraction.

Fully Convolutional Neural Network (FCN) is a CNN without fully connected lay-
ers [18]. A major advantage of using FCN models is that it does not require heavy
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preprocessing or feature engineering since the FCN neuron layers are not dense (fully
connected) [19]. FCN has been used [20] to detect fake fingerprints and it was shown
that FCN provides high detection accuracy in addition to less processing times and fewer
memory requirements compared to other NN.

Although progress has been made to solve and decrease the risk of cyber-attacks with
different machine learning models and algorithms, it is necessary to implement novel and
efficient methods to keep protections updated. In this study, for the first time, we propose
and compare the use of two novel models, reliable, and effective data analytics algorithms
for time-series classification on a Bot-IoT dataset. The first approach is Long Short-
Term Memory Fully Convolutional Network (LSTM-FCN) and the second approach
is Convolutional Neural Network with Long Short Term Memory (CNN-LSTM). The
results of the current study show how such approaches can be utilized to enhance the
deterrence level of malicious attacks in industrial IoT devices. This paper shows how DL
algorithms can be vital in detecting cybersecurity threats by proposing novel algorithms
and evaluating their efficiency and fidelity on a new dataset. The next three sections
discuss the preprocessing methodology of the dataset, the results and analysis of this
paper, and the conclusion.

2 Preprocessing of Datasets

Network Intrusion Detection Systems (NIDS) based on DL algorithms have proven to
be a reliable network protection tool against cyber-attacks [14]. In this paper, we applied
state-of-the-art DL algorithms on a benchmark NIDS dataset known as BoT-IoT [11].
This dataset was released by The Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) in 2018.

The Bot-IoT dataset [11] contains roughly 73 million records (instances). The BoT-
IoT dataset was created by the Cyber Range Lab of UNSW Canberra. The process
involved designing a realistic network environment that incorporated a combination of
normal and botnet traffic. For better handling of the dataset, only 5% of the original
set was randomly extracted using MySQL queries. The extracted 5%, is comprised of
4 files of approximately 1.07 GB total size, and about 3 million records, [21]. The
dataset includes a range of attack categories such as Denial-of-Service (DoS), Dis-
tributed Denial-of-Service (DDoS), Operating System Scan (OS Scan) also known as
Reconnaissance or Prope, Keylogging (Theft), Data Exfiltration (Theft), Benign (No
attack).

This dataset contains 45 explanatory features and one binary response feature (attack
or benign), only 16 of the 45 features were used as input to our models. In all conducted
deep learning models, feature selection was employed when the algorithm itself extracts
the important features. Furthermore, an upsampling technique [46] was used to over-
come the heavily imbalanced binary response feature. The feature contained only 13859
minority counts of benign compared to a whapping 586241 majority counts of attack.
Upsampling procedure prevents the model from being biased toward the majority label.
The existing data points corresponding to the outvoted labels were randomly selected
and duplicated into the training dataset.

Since input numerical features have different units which means that they have dif-
ferent scales, the SKlearn Standard Scaler was utilized to standardize numerical features
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by subtracting the mean and then scaling to unit variance by dividing all the values by the
standard deviation [22]. DL models require all features to be numeric. For categorical
features where no ordinal relationship is in existence, the integer encoding (assigning an
integer to each category) can be misleading to the model and results in poor performance
or unexpected results (predictions halfway between categories) as it allows the model to
assume a natural ordering between categories. In this case, a one-hot encoding can be
applied to the categorical representation [23].

3 Results and Analysis

To create our four main models on the dataset, two basic architectures were proposed:
CNN-LSTM. The suggested CNN-LSTM architecture employs a one-dimensional con-
volutional hidden layer with three filters (collection of kernels used to store values learned
during the training phase) and a kernel size of 32 that operates over a 1D sequence. Batch
normalization is used in conjunction with the convolutional hidden layer to normalize
its input by implementing a transformation that keeps the mean output near 0 and the
output standard deviation close to 1. The hidden layer is used to extract features. In
the hidden layers of a neural network, an activation function is employed to allow the
model to learn increasingly complicated functions. Rectified Linear Activation (ReLU)
was utilized in our design to improve the training performance. The ReLU is then fol-
lowed by a MaxPooling1D layer, to minimize the learning time by filtering the input
(prior layer’s output) to the most important new output. A dropout layer was included to
prevent overfitting, which is a typical problem with LSTM models. The added dropout
layer has a probability of 0.2, which means that the layer’s outputs are dropped out. The
dropout layer’s output is subsequently sent into the LSTM block. A single hidden layer
made up of 8 LSTM units and an output layer are used to create the LSTM block. After
the LSTM block, a Dense layer (which gets input from all neurons in the preceding
LSTM output layer) produces one output value for the sigmoid activation function. The
sigmoid function’s input values are all real integers, and its output values are in the range
of (0, 1), a binary result that reflects (benign, attack). As part of the optimization of the
algorithm, a Binary Cross-Entropy loss function was used to estimate the loss of the
proposed architecture on each iteration so that the weights can be updated to reduce the
loss on the next iteration [24, 25].

LSTM-FCN combines the exact classification of LSTM Neural Networks with the
quick classification performance of temporal convolutional layers [26]. For time series
classification tasks, temporal convolutions have proven to be an effective learning model
[19]. The proposed LSTM-FCN has a similar architecture to the proposed CNN-LSTM
architecture but instead, it utilizes a GlobalAveragePooling1D layer to retain much infor-
mation about the “less important” outputs [27]. The layers are then concatenated into a
single Dense final layer with Sigmoid activation.

Both models have utilized Adam Optimization Algorithm [28] with a steady learning
rate of 0.03 (the proportion that weights are updated throughout the 3 epochs of the
proposed architecture). The 0.03 is a mid-range value that allows for steady learning.
There was no need to optimize the hyperparameters (finding the optimal number of
LSTM cells) due to the almost 0% misclassification rate of the proposed models. The
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default weight initializer that was used in the proposed architecture is Xavier Uniform.
Since k-fold cross-validation (CV) is not commonly used in DL, here it is introduced
on each model to investigate if it produces different results by preventing overfitting.
Moreover, the k value is chosen as 5 which is very common in the field of ML [29, 30].
The models have utilized the StratifiedKFold [31] to ensure that each fold of the dataset
has the same proportion of observations (balanced) with the response feature. In the case
where k-fold CV was not introduced, the train_test_split function from Scikit-learn [32]
was utilized to split data into 80% for training and 20% for testing. A summary of the
accuracy and loss results for the applied models is listed in Table 1.

Accuracy describes just what percentage of test data are classified correctly. In any
of these models, there is a binary classification of Attack or Benign. When accuracy is
99.99%, it means that out of 10000 rows of data, the model can correctly classify 9999
rows. Table 2 shows that very high accuracy levels (—99.99%) were achieved for the BoT-
IoT datasets. The proposed LSTM-FCN models have shown slightly better performance
than the proposed CNN-LSTM models in detecting attacks using the BoT-IoT dataset
(100% vs 99.99%).

Table 1. Accuracy and Loss values for different methods.

Methods Accuracy Loss

CNN-LSTM 99.99% 0.0016
LSTM-FCN 100% 0.0068
CNN-LSTM 5-folds CV 99.99% 0.0020
LSTM-FCN 5-folds CV 100% 0.0015

The models use probabilities to predict binary class Attacks or Benign between 1
and 0. So if the probability of Attack is 0.6, then the probability of Benign is 0.4. In this
case, the outcome is classified as an Attack. The loss will be the sum of the difference
between the predicted probability of the real class of the test outcome and 1. Table 2
shows that very low loss values were achieved for the BoT-IoT dataset. At the same time,
using 5-folds CV reduced the loss values for the FCN-LSTM from 0.0068 to 0.0015.

The Area Under the Receiver Operating Characteristics (AUROC) is a performance
measurement for classification models. The AUROC reveals the model probability of
separating between various classes, Attack or Benign in this case. The AUROC is a
probability that measures the performance of a binary classifier averaged across all
possible decision thresholds. When AUROC value is 1, it indicates that the model has
an ideal capacity to distinguish between Attack or Benign. When the AUROC value
is 0, it indicates that the model is reciprocating the classes. Table 2 shows a summary
of AUROC values for all proposed models. The CNN-LSTM and LSTM-FCN models
showed high capacity (AUROC = 1.00) of predicting Attack or Benign classes.
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Table 2. Summary of AUROC values from different models.

CNN-LSTM LSTM-FCN CNN-LSTM 5-folds CV LSTM-FCN 5-folds CV
1 2 3 4 5 1 2 3 4 5
1.00 1.00 0.500 |0.500 |0.500 |0.500 |0.500 |0.998 |0976 |0.987 |0.993 |0.998

4 Conclusions

In this paper, novel deep learning models for attack classification and detection were
proposed utilizing the Industrial IoT dataset (BoT-IoT). The results revealed cutting-edge
performance in terms of detecting, classifying, and identifying cybersecurity threats. The
evaluation process has utilized accuracy and AUROC values as performance metrics
to show the effectiveness of the proposed models on the three benchmark datasets.
Deep learning algorithms were shown to be capable of successfully identifying and
categorizing assaults in more than 99.9% of cases in two of the three datasets used.
With the Attention LSTM block, future researchers may investigate the use of attention
processes to enhance time series classification. Future research might look at whether
having a similar or distinct collection of characteristics across different datasets affects
the NIDS’ performance using DL methods.

References

1. Shahin, M., Chen, F.F., Bouzary, H., Krishnaiyer, K.: Integration of lean practices and Industry
4.0 technologies: smart manufacturing for next-generation enterprises. Int. J. Adv. Manufact.
Technol. 107(5-6), 2927-2936 (2020). https://doi.org/10.1007/s00170-020-05124-0

2. Zheng, Y., Pal, A., Abuadbba, S., Pokhrel, S.R., Nepal, S., Janicke, H.: Towards IoT security
automation and orchestration. In: 2020 Second IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA), 2020 Second IEEE International
Conference on, TPS-ISA, pp. 55-63 (2020). https://doi.org/10.1109/TPS-ISA50397.2020.
00018

3. Baumann, D., Mager, F., Wetzker, U., Thiele, L., Zimmerling, M., Trimpe, S.: Wire-less
control for smart manufacturing: recent approaches and open challenges. Proc. IEEE 109(4),
441-467 (2021). https://doi.org/10.1109/JPROC.2020.3032633

4. Donnal, J., McDowell, R., Kutzer, M.: Decentralized IoT with wattsworth. In: 2020 IEEE 6th
World Forum on Internet of Things (WF-IoT), Internet of Things (WF-IoT), 2020 IEEE 6th
World Forum on, pp. 1-6, (2020). https://doi.org/10.1109/WF-10T48130.2020.9221350

5. Elhabashy, A.E., Wells, L.J., Camelio, J.A., Woodall, W.H.: A cyber-physical attack taxonomy
for production systems: a quality control perspective. J. Intell. Manuf. 30(6), 2489-2504
(2018). https://doi.org/10.1007/s10845-018-1408-9

6. O’Reilly, P.,, Rigopoulos, K., Feldman, L., Witte, G.: 2020 Cybersecurity and privacy annual
report. Natl. Inst. Stand. Technol. (2021). https://doi.org/10.6028/NIST.SP.800-214

7. Shahin, M., Chen, EF,, Bouzary, H., Zarreh, A.: Frameworks proposed to address the threat of
cyber-physical attacks to lean 4.0 systems. Procedia Manufact. 51, 1184—1191 (2020). https://
doi.org/10.1016/j.promfg.2020.10.166


https://doi.org/10.1007/s00170-020-05124-0
https://doi.org/10.1109/TPS-ISA50397.2020.00018
https://doi.org/10.1109/JPROC.2020.3032633
https://doi.org/10.1109/WF-IoT48130.2020.9221350
https://doi.org/10.1007/s10845-018-1408-9
https://doi.org/10.6028/NIST.SP.800-214
https://doi.org/10.1016/j.promfg.2020.10.166

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

Implementation of a Novel Fully Convolutional Network Approach 113

. Mahmood, T., Afzal, U.: Security analytics: big data analytics for cybersecurity: a review of

trends, techniques and tools. In: 2013 2nd National Conference on Infor-mation Assurance
(NCIA), pp. 129-134 (2013). https://doi.org/10.1109/NCIA.2013.6725337

Gaggero, G.B., Rossi, M., Girdinio, P., Marchese, M.: Neural network architecture to detect
system faults/cyberattacks anomalies within a photovoltaic system connected to the grid. In:
2019 International Symposium on Advanced Electrical and Communication Technologies
(ISAECT), pp. 1-4 (2019). https://doi.org/10.1109/ISAECT47714.2019.9069683

Ciaburro, G.: Neural Networks with R. Packt Publishing (2017). https://libproxy.txs
tate.edu/login?, https://search.ebsco-host.com/login.aspx?direct=true&db=cat00022a&AN=
txi.b5582708 &site=eds-live&scope=site. Accessed 18 Oct 2021

Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A.: Malware classification
with recurrent networks. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1916-1920 (2015). https://doi.org/10.1109/ICASSP.2015.
7178304

Shibahara, T., Yagi, T., Akiyama, M., Chiba, D., Yada, T.: Efficient dynamic mal-ware anal-
ysis based on network behavior using deep learning. In: 2016 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1-7 (2016). https://doi.org/10.1109/GLOCOM.2016.
7841778

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735-1780
(1997). https://doi.org/10.1162/nec0.1997.9.8.1735

Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural network
classifier for intrusion detection. In: 2016 International Conference on Plat-form Technology
and Service (PlatCon), pp. 1-5 (2016). https://doi.org/10.1109/PlatCon.2016.7456805
Zhao, Q., Zhu, Y., Wan, D., Yu, Y., Cheng, X.: Research on the data-driven quality control
method of hydrological time series data. Water (Switzer-land), 10(12), 23 (2018). https://doi.
org/10.3390/w10121712

Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated con-volutional
autoencoders. Secur. Commun. Netw. 16 (2017). https://www.hindawi.com/journals/scn/
2017/4184196/. Accessed 20 Jun 2020

Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware
system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992,
pp. 137-149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_11

. Karim, F., Majumdar, S., Darabi, H.: Insights into LSTM fully convolutional networks for

time series classification. IEEE Access 7, 67718-67725 (2019). https://doi.org/10.1109/ACC
ESS.2019.2916828

. Zhiguang, W., Yan, W., Oates, T.: Time series classification from scratch with deep neural

networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks
(IJCNN), Neural Networks (IICNN), pp. 1578-1585 (2017). https://doi.org/10.1109/IJCNN.
2017.7966039

Park, E., Cui, X., Nguyen, T.H.B., Kim, H.: Presentation attack detection using a tiny fully con-
volutional network. IEEE Trans. Inform. Forensic Secur. 14(11), 3016-3025 (2019). https://
doi.org/10.1109/T1FS.2019.2907184

Peterson, J.M., Leevy, J.L., Khoshgoftaar, T.M.: A review and analysis of the Bot-IoT dataset.
In: 2021 IEEE International Conference on Service-Oriented System En-gineering (SOSE),
Service-Oriented System Engineering (SOSE), pp. 20-27 (2021). https://doi.org/10.1109/
SOSES52839.2021.00007

Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press (1995).
https://lib-proxy.txstate.edu/login?, https://lib-proxy.txstate.edu/login?. Accessed 11 Dec
2021


https://doi.org/10.1109/NCIA.2013.6725337
https://doi.org/10.1109/ISAECT47714.2019.9069683
https://libproxy.txstate.edu/login?
https://search.ebsco-host.com/login.aspx?direct=true&amp;db=cat00022a&amp;AN=txi.b5582708&amp;site=eds-live&amp;scope=site
https://doi.org/10.1109/ICASSP.2015.7178304
https://doi.org/10.1109/GLOCOM.2016.7841778
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.3390/w10121712
https://www.hindawi.com/journals/scn/2017/4184196/
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1109/ACCESS.2019.2916828
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1109/TIFS.2019.2907184
https://doi.org/10.1109/SOSE52839.2021.00007
https://lib-proxy.txstate.edu/login?
https://search.ebscohost.com/login.aspx?di-rect=true&amp;db=cat00022a&amp;AN=txi.b1535649&amp;site=eds-live&amp;scope=site

114 M. Shahin et al.

23. Zheng, A., Casari, A.: Feature engineering for machine learning : principles and tech-
niques for data scientists, First edition. O’Reilly Media (2018). https://libproxy.txstate.
edu/login?, https://search.ebsco-host.com/login.aspx ?direct=true&db=cat00022a& AN=txi.
b5167004 &site=eds-live&scope=site. Accessed 11 Dec 2021

24. Livieris, LE., Pintelas, E., Pintelas, P..: A CNN-LSTM model for gold price time-series fore-
casting. Neural Comput. Appl. 32(23), 17351-17360 (2020). https://doi.org/10.1007/s00521-
020-04867-x

25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014)

26. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time
series classification. IEEE Access 6, 1662-1669 (2018). https://doi.org/10.1109/ACCESS.
2017.2779939

27. Chollet, E.: Deep learning with Python. Manning Publications (2018). https://libproxy.txs
tate.edu/login?, https://search.ebsco-host.com/login.aspx?direct=true&db=cat00022a&AN=
txi.b5162307 &site=eds-live&scope=site. Accessed 12 Dec 2021

28. Kingma, D.P,, Ba, J.: Adam: A Method for Stochastic Optimization (2017). arXiv:1412.6980
[cs]. http://arxiv.org/abs/1412.6980. Accessed 13 Dec 2021

29. Kuhn, M., Johnson, K.: Applied predictive modeling. Springer (2013). https:/libproxy.txs
tate.edu/login?, https://search.eb-scohost.com/login.aspx ?direct=true&db=cat00022a& AN=
txi.b2605857 &site=eds-live&scope=site. Accessed 13 Dec 2021

30. Alpaydin, E.: Introduction to Machine Learning, vol. Third edition. Cambridge, MA: The MIT
Press (2014). https://lib-proxy.txstate.edu/login?, https://search.ebscohost.com/login.aspx?
di-rect=true&db=nlebk& AN=836612&site=eds-live&scope=site. Accessed 13 Dec 2021

31. Adagbasa, E.G., Adelabu, S.A., Okello, T.W.: Application of deep learning with stratified
K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-
2 image. Geocarto Int. 37(01), 142-162 (2019). https://doi.org/10.1080/10106049.2019.170
4070

32. scikit-learn: machine learning in Python — scikit-learn 1.0.2 documentation. https://scikit-
learn.org/stable/index.html. Accessed 08 Jan 2022

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://libproxy.txstate.edu/login?
https://search.ebsco-host.com/login.aspx?direct=true&amp;db=cat00022a&amp;AN=txi.b5167004&amp;site=eds-live&amp;scope=site
https://doi.org/10.1007/s00521-020-04867-x
https://doi.org/10.1109/ACCESS.2017.2779939
https://libproxy.txstate.edu/login?
https://search.ebsco-host.com/login.aspx?direct=true&amp;db=cat00022a&amp;AN=txi.b5162307&amp;site=eds-live&amp;scope=site
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://libproxy.txstate.edu/login?
https://search.eb-scohost.com/login.aspx?direct=true&amp;db=cat00022a&amp;AN=txi.b2605857&amp;site=eds-live&amp;scope=site
https://lib-proxy.txstate.edu/login?
https://search.ebscohost.com/login.aspx?di-rect=true&amp;db=nlebk&amp;AN=836612&amp;site=eds-live&amp;scope=site
https://doi.org/10.1080/10106049.2019.1704070
https://scikit-learn.org/stable/index.html
http://creativecommons.org/licenses/by/4.0/

	Implementation of a Novel Fully Convolutional Network Approach to Detect and Classify Cyber-Attacks on IoT Devices in Smart Manufacturing Systems
	1 Introduction
	2 Preprocessing of Datasets
	3 Results and Analysis
	4 Conclusions
	References




