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Abstract The Irish transportation sector currently accounts for more than 30% of 
the energy related CO2 emissions of the country. Therefore, in order to reach the 
sustainable goals, the Irish government is working on multiple incentives to promote 
Electric Vehicles (EV) and infrastructure to decarbonize the sector, e.g., free domestic 
charging points, tool reductions, and the implementation of electric Buses (eBuses) 
in the medium to long term. In particular, eBuses operate with rechargeable batteries 
with a capacity to store approximately 300 kWh (and up to 600 kWh), equivalent to 
around 29.9 L of diesel, while reaching approx. 200 km. In order to ensure a proper 
transition from regular diesel buses to eBuses, charging times must be coordinated 
to ensure each bus has adequate energy to complete their operational route. In this 
work, we present a framework for an efficient management of renewable energies to 
charge a fleet of eBuses without perturbing the quality of service. Our framework 
starts by building a deep learning model for wind power forecasting to predict clean 
energy time windows, i.e., periods of time when the production of clean energy 
exceeds the demand of the country. Then, the optimization phase schedules charging 
events to reduce the use of non-clean energy to recharge eBuses while passengers 
are embarking or disembarking. The proposed framework is capable of overcoming 
the unstable and chaotic nature of wind power generation to operate the fleet without 
perturbing the quality of service. As expected, the size of the batteries does have a 
positive impact on the percentage of clean energy required to operate large fleets of 
eBuses. Methods developed in this paper help to mitigate potentially inaccuracies 
derived the prediction models. Our extensive empirical validation with real instances 
from Ireland suggests that our solutions can significantly reduce non-clean energy 
consumed on large datasets. 
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1 Introduction 

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimization 
problem with applications ranging from logistics to planning and scheduling. This 
problem involves the creation of optimal routes (e.g., minimizing the traveled distance 
or the required time to complete certain tasks). These routes might represent supply 
chains where vehicles deliver goods from a set of depots to customers (Laporte & 
Nobert, 1987). Research into the usage of EVs has spawned a variation of the VRP 
called the Electric Vehicle Routing Problem (EVRP). EVRP differs from traditional 
VRPs as the range of EVs is considerably shorter compared to traditional combustion 
vehicles. As pointed out above, the range of EVs varies depending on multiple factors, 
e.g., battery size, average speed, and ambient temperature. Furthermore, some form 
of charging must occur to complete the daily operations of the vehicles (in particular, 
for variations of the problem with pick-ups and deliveries (Olgun et al., 2021)). The 
EVRP focus mainly on minimizing the total cost of routing strategies (Lin et al., 
2016) and the placement of charging stations to minimize or even negate detours 
needed to charge (Funke et al., 2015, 2016). 

The Vehicle Routing Problem with Time Windows (VRPTW) is a popular vari-
ation of the traditional VRP, where vehicles must visit a set of customers within 
certain predefined time periods (e.g., outlined by the customers or local govern-
ments). This adds additional complexity to VRPs as a vehicle arriving early to a 
destination might be required to wait, and a vehicle arriving late may invalidate the 
solution (Desrochers et al., 1992). This has also spawned additional variations such 
as Time Window Assignment Vehicle Routing Problem (TWAVRP) focusing on 
assigning time windows to deliveries before the demand is known (Spliet & Gabor, 
2015). 

Variations of the VRPTW for EVs have also received significant attention recently. 
The Electric Vehicle Routing Problem with Time Windows (EVRPTW) aims at 
creating optimal routes as the traditional VRPTW, however the additional constraints 
of battery capacity and location on recharging stations are also taken into consider-
ation (Schneider et al., 2014). Another line of work considers the charging location 
problem of EVs. One notable work in this area focuses on the transition to eBuses 
and the authors proposed a Mixed Integer Programming (MIP) model to identify 
suitable locations of fast charging units to maintain the current level of service, i.e., 
same routes and similar timetables (Arbelaez & Climent, 2020). 

With the increase in research around EV there has also been a rising interest 
in using renewable energy to charge EVs. (Zhang et al., 2013) proposed the use 
of locally generated renewable energy to supplement the requirements of acquiring 
energy from the national grid. However, when creating a bus operation schedule 
information such as available renewable energy is needed ahead of time. Predict and 
Optimize (Elmachtoub & Grigas, 2021) is a relatively new paradigm which focuses 
on combining predictions and combinatorial optimization. The paradigm involves 
two stages: the first one involves training a model (e.g., a supervised learning or a time 
series model) to predict critical variables of the optimization problem. The second
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stage then uses these predicted values to solve an optimization problem e.g., weights 
in the weighted knapsack problem (Mandi et al., 2020) or scheduling of combinatorial 
problems with uncertain duration times (Duque et al., 2018). In this paper, we also use 
this two-stage paradigm. We start with a time series model to estimate surpluses of 
wind power in the national grid and then optimize the scheduling of charging events 
based on the predictions. A time series is a collection of consecutive measurements 
of powers in kWh recorded in equal intervals (15 min in this paper). The accuracy 
of the time series methods varies considerably with different forecasting horizons 
(number of future observations). In this paper we focus on medium-term horizons, 
i.e., the forecasting period ranges from 6 h to 1 day ahead. A 6, 12, 18, and 24 h 
ahead forecasting horizon will predict respectively a total of 24 (4 per hour × 6), 48, 
72, and 96 observations. (Shobana Devi et al., 2021) outlines alternative models for 
other forecasting horizons, i.e., very short-range (a few seconds to 30 min ahead), 
short-range (30 min–6 h ahead), and long-term range forecasting (1 day to a week 
ahead). 

Long Short-Term Memory (LSTM) is a popular deep learning architecture proven 
to be effective at energy forecasting (Lim & Zohren, 2021). Such models can be 
trained to make multi-step ahead predictions, where a variable n controls the number 
of future time-step predictions (Sangiorgio & Dercole, 2020). 

2 Predict then Optimize Framework 

The predict and optimize framework aims at guiding the optimization solver to tackle 
complex problems. In particular, we use a LSTM model to predict how much excess 
wind energy is available at any time period. This information is then passed to a MIP 
solver to identify suitable schedules to operate the fleet of eBuses while satisfying 
certain properties of the transportation system (Arbelaez & Climent, 2020). 

2.1 Prediction Models 

As pointed out above, we create four LSTM models for predicting excess wind 
energy 6, 12, 18, and 24 h in advance. Furthermore, we populate our models with 
historical data from the Irish nation grid in 15 min intervals and populate the training 
dataset with data from August 2013 to October 2021, and test dataset with data 
from November 2021 to January 2022 (demand and wind generated power dataset is 
available at http://smartgriddashboard.eirgrid.com/). The months of November 2021 
to January 2022 where selected due to the increased about of wind power gener-
ated in winter months, therefore the ability of the LSTM model to predict excess in 
clean energy can be more accurately determined. Furthermore, we reserve 33% of 
the training dataset as a validation dataset. The demand and wind generated power 
datasets are aggregated into one dataset which represents the excess of clean energy

http://smartgriddashboard.eirgrid.com/
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Table 1 MAPE and RMSE 
for LSTM models with 
different forecasts times in 
hours 

Forecast time MAPE RMSE 

6 113.0 313.56 

12 186.3 801.75 

18 251.1 1048.98 

24 292.2 1106.39 

Source Authors’ own elaboration 

at any time. However, at the moment Ireland’s national grid does not supply enough 
wind power to cover the demand. Therefore, we scaled the amount of wind power 
by a 1.4 factor to simulate a transition to eBuses with enough power to satisfy the 
current demand. This is in line with the estimations for Ireland’s growth in wind 
generated power by 2026/2027 (Department of Communications, Climate Action & 
Environment, 2019, p. 40). Therefore, we use a univariate dataset consisting of values 
between −5064.2 (representing a clean energy deficit of 5064.2) and 1005.8 (repre-
senting a clean energy surplus of 1005.8). The LSTM models are then trained on 
this data with a loss function of Root Mean Squared Error (RMSE) and using Adam 
optimizer (Kingma & Ba, 2014). We make the data stationary by applying a differ-
ence operation on each subsequent value and normalized to a range between −1 and 
1 with minMax normalization. 

Table 1 shows the Mean Absolute Percentage Error (MAPE) and RMSE of the 
LSTM models based on the results of the test dataset. We remark that these results are 
consistent with the literature, i.e., shorter prediction horizons produce more accurate 
results (Shobana Devi et al., 2021). This increase in error as the horizons become 
larger can be explained by the fact wind power is harder to predict due to the unstable 
and chaotic nature of wind power derived from multiple factors, e.g., wind speed, air 
density, wind turbines, etc. 

2.2 Optimization Model 

We extended the work of (Arbelaez & Climent, 2020) with additional constraints to 
determine whether the charge times of eBuses overlaps with times where there is 
an excess of clean energy. Furthermore, our solver aims at reducing CO2 emissions, 
and therefore, we minimize the total amount of non-clean energy used to operate the 
system. In our simulations, we assume that the eBuses travel at a constant speed of 
35 km/h and a charge rate of 10 kWh per minute. 

We also assume that the discharge rate of the batteries is 1 kWh per km. 
We test multiple battery capacities for the bus fleets, these include 120, 180, and 

240 kWh. We assert that the battery capacity must not fall below 12 kWh and only 
allow buses to charge up to 80% of their maximum capacity in a single charge. We 
also simulate a degree of overnight charging before the buses operational day begins. 
To represent this, we assume the buses start with a capacity of 30 kWh regardless
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of the selected battery capacity. It is assumed the placement of charging stations is a 
separate problem to the one covered in this paper (Loaiza Quintana et al., 2022), to 
this end the location of charging stations is passed as an argument to the optimization 
code. For this paper, we assume that charging stations are placed every × km on each 
bus route. Alternative placement methods involving cost functions will be explored 
in future works. 

We evaluate our framework on three Irish cities, i.e., Cork, Limerick, and Galway. 
The bus system in Cork includes 11 bus routes operated with 81 buses and 578 
stations; the network in Galway includes 6 bus routes operated with 24 buses and 
288 stations; and the network in Limerick includes 6 bus routes operated with 23 
buses and 253 routes (GPS location of bus stations and timetables are available at 
https://www.buseireann.ie). Furthermore, we assume two charging infrastructures. 
The first one, Inf-A, assumes that there is a charging unit every 12 km which results in 
53 charging stations for Cork, 13 for Limerick, and 19 for Galway. The second one, 
Inf-B assumes that there is charging unit every 15 km which results in 43 charging 
stations for Cork, 12 for Limerick, and 11 for Galway. 

We also assert a maximum deviation time for the newly created schedule, meaning 
the arrival times in the new schedules can be at most Δ different from the original 
schedule where Δ is an amount of time in minutes. For this paper we explore two 
values for Δ, 5 and 10 min. 

3 Experiments and Results 

Prediction models are used to predict wind energy excess for the two-week period 
of 14th to the 27th of February 2022. The month of February is chosen as it features 
a high amount of wind generated power, as a result there will be enough excess 
power to evaluate the performance of our framework. For the optimization model we 
assume three different scenarios regarding clean energy information. The first |┌|=0 
assumes the optimization model has no knowledge of clean energy information. The 
second uses the information generated by the prediction models previously outlined. 
Finally, we examine the ideal scenario, where we have perfect predictions (i.e., the 
actual historical values for excess wind energy). 

Figure 1 shows the amount of modified wind energy vs the demand of the electrical 
grid. Of note there are a number of days where the amount of modified wind energy 
does not exceed system demand at any point (i.e., the 17th, 18th, 21st, and 24th). As 
a result, experiments which use wind data from these days will produce poor results 
as there is no clean energy available. On the contrary, the 26th features a very high 
amount of wind energy throughout the day, as a result any charges which take place 
on this day would use clean energy. For the empirical analysis of our experiments, we 
removed the results from the previously mentioned 5 days as they would represent 
outliers in the amount of wind energy available. Such outliers would not provide any 
insights into the performance of our framework, as the framework aims to reduce

https://www.buseireann.ie
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Fig. 1 Energy demand versus 1.4 times modified wind energy for 14/02/2022–27/02/2022. Source 
Authors’ own elaboration 

the total amount of non-clean energy used and therefore requires clean energy to 
operate. 

Table 2 shows the results for the experiments using Inf-A and a deviation time of 
five minutes. As expected, when using predictions from our prediction models there 
is a notable decrease in the amount of non-clean energy used when compared to a 
naïve scenario with no knowledge of clean energy information. Therefore, while our 
LSTM models are not fully accurate there is a notable benefit in the integration of the 
learning component in our schedules. Also of note is that increasing battery capacity 
in the ideal scenario may not reduce the amount of non-clean energy consumed. This 
is because all of the available clean energy is already being consumed when capacity 
is set to 120. This is the case on the smaller datasets of Limerick and Galway; however, 
we see for the Cork dataset that increasing the capacity does reduce the non-clean 
energy consumed. Sometimes when using predictions from our LSTM models larger 
battery capacities consume more non-clean energy compared to smaller capacities, 
we attribute this to mispredictions in our LSTM models. Larger battery capacities 
can consume more energy in a single charge. As a result, any false positives in our 
prediction model (i.e., we predict there is a clean energy excess when there is actual 
a deficit) could result in the scheduling of a charge using non-clean energy.

Figure 2 shows a comparison between the average across all capacities for each 
scenario and each city. Here we see that the average difference between the three 
scenarios heavily demands on the dataset used. For example, smaller datasets like 
Limerick show minor differences between the three scenarios. However, the larger 
Cork dataset shows more significant difference. We attribute this to the higher energy 
requirements of the Cork dataset in addition to the longer operational times of the 
bus system. The Cork bus system begins operation earlier then both the Galway and 
Limerick datasets, and finishes operational routes later, as a result the Cork data-set 
is able to make use of any excess clean energy in the early morning and late night.

Experiments conducted using Δ = 10 min found that the solutions in the ideal 
scenario only improve by 0.685% on average. It should also be noted that experiments
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Table 2 Non-clean energy used (in kWh) for Inf-A and Δ = 5 min  

City Capacities |┌| = 0 Predicted Ideal 

Limerick 120 3338.7 3305.1 3108.5 

180 3347.8 3318.5 3108.5 

240 3337.4 3317.2 3108.5 

Galway 120 4279.9 4139.3 3850.3 

180 4282.9 4184.4 3850.3 

240 4286.1 4151.0 3850.3 

Cork 120 11,458.5 10,970.1 10,302.1 

180 11,446.3 10,987.4 10,180.2 

240 11,423.2 10,939.5 10,148.4 

Source Authors’ own elaboration

Fig. 2 Average scenario 
performance per city. Source 
Authors’ own elaboration

using Δ = 10 min took 27.39% longer to complete compared to Δ = 5 min. Results 
for experiments using Inf-B showed an increase in the amount of non-clean energy 
used on average. However, it should be noted, for the Cork dataset and capacity 240 
solutions where only 0.93% worse compared to experiments using Inf-A. As the 
reader recalls Inf-A for the Cork dataset features 53 charging stations, while Inf-B 
has 43. This suggests the relationship between number of charging stations present 
and solution quality are not directly proportional. 

4 Conclusions and Further Research 

In this work, we use a deep learning model for wind power forecasting to estimate the 
availability of clean energy in a day, we then integrate the output into an optimization 
model to schedule charging events. Experimentation results with actual data from the 
Irish national grid and a major bus operator in Ireland suggest our models can make a 
notable reduction in the non-clean energy consumed compared to a naïve optimizer. 
While our predictions do not generate solutions as high quality as the ideal scenario,
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a significant reduction in non-clean energy consumed can be observed on larger 
datasets. Therefore, the results of the evaluation confirm the high-quality performance 
of the proposed approach. In the future, we plan to extend our framework with Bus-
to-grid technology to help the national grid by returning energy when needed (i.e., 
during peak hours). We also plan to investigate the performance of our proposed 
framework with the charging infrastructure placement problem. 
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