Skip to main content

Planning a Pregnancy with Artificial Intelligence

  • Chapter
  • First Online:
Pregnancy with Artificial Intelligence

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 234))

Abstract

The aim of this chapter is to present different state-of-the-art artificial intelligence methods that help planning up a pregnancy. The OB-GYN doctor + Artificial Intelligence combo can determine accurately by analyzing prenatal tests’ results regarding the couple’s chances to conceive naturally. In assisted reproduction techniques, artificial intelligence can speed up the process by indicating which embryos will result in a live birth or not.

A baby is an inestimable blessing and bother, Mark Twain

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yland, J.J., Wang, T., Zad, Z., Willis, S.K., Wang, T.R., Wesseling, A.K., Jiang, T., Hatch, E.E., Wise, L.A., Paschalidis, I.C.: Predictive models of pregnancy based on data from a preconception cohort study. Hum. Reprod. 37(3), 565–576 (2022). https://doi.org/10.1093/humrep/deab280

    Article  Google Scholar 

  2. Gurunath, S., Pandian, Z., Anderson, A.R., Bhattacharya, S.: Defining infertility—a systematic review of prevalence studies. Hum. Reprod. Update 17, 575–588 (2011). https://doi.org/10.1093/humupd/dmr015

    Article  Google Scholar 

  3. Cedars, M., Jaffe, R.B.: Infertility and women. J. Clin. Endocrinol. Metab. 90, 4 (2005). https://doi.org/10.1210/jcem.90.4.9997

    Article  Google Scholar 

  4. Masoumi, Z.S. et al.: An epidemiologic survey on the causes of infertility in patients referred to infertility center in Fatemieh Hospital in Hamadan, Iran. J. Reprod. Med. 13, 513–516 (2015)

    Google Scholar 

  5. Templeton, A., Morris, K.J., Parslow, W.: Factors that affect outcome of in-vitro fertilization. Lancet 348, 1402–1406 (1996). https://doi.org/10.1016/s0140-6736(96)05291-9

    Article  Google Scholar 

  6. Bhattarcharya, S., et al.: Female infertility. Clin Evid. 11, 819 (2010)

    Google Scholar 

  7. Lackner, J., et al.: Constant decline in sperm concentration in infertile males in an urban population: experience over 18 years. Fertil. Steril. 84, 1657–1661 (2005). https://doi.org/10.1016/j.fertnstert.2005.05.049

    Article  Google Scholar 

  8. Cooper, T.G., et al.: World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 16, 231–245 (2010). https://doi.org/10.1039/humupd/dmp048

    Article  Google Scholar 

  9. Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J., Toschi, M., Zisimopoulos, P., Sigaras, A., Lavery, S., Cooper, L.A.D., Hickman, C., Meseguer, M., Rosenwaks, Z., Elemento, O., Zanivoci, N., Hajirasouliha, I.: Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. Nat. NPJ Digit. Med. 2, 21 (2019). https://doi.org/10.1038/s41746-019-0096-y

    Article  Google Scholar 

  10. VerMilyea, M., Hall, J., Diakiw, S., Johnston, A., Nguyen, T., Perugini, D., Miller, A., Picou, A., Murphy, A.P., Perugini, M.: Development of an artificial-based assessment model prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 35(4), 770–784 (2020). https://doi.org/10.1092/humprep/deadd013

    Article  Google Scholar 

  11. Aparicio Ruiz, B., Bori, L., Paya, E., Valera, M.A., Quinonero, A., Dominguez, F., Meseguer, M.: P-203 applying artificial intelligence for ploidy prediction: the concentration of IL-6 in spent culture medium, blastocyst morphological grade and embryo morphokinetics as variables under consideration. Hum. Reprod. 36(1) (2021). https://doi.org/10.1093/humrep/deab127.066

  12. Goyal, A., Kuchana, M., Ayyagari, K.P.R.: Machine learning predicts life birth occurrence before in-vitro fertilization treatment. Sci. Rep. 10, 20925 (2020). https://doi.org/10.1038/s41598-020-76928-z

    Article  Google Scholar 

  13. Zabell, S.L., Stephen, S.M., Aldrich, J., Edwards, A.W.F., Seneta, E., Diaconis, P, Lehmann, E.: On student’s 1908 article: the probable error of a mean [with comments, rejoinder]. J. Am. Stat. Assoc. 103(481), 1–20 (2008)

    Google Scholar 

  14. Student: The probable error of a mean. Biometrika 6(1), 1–25 (1908)

    Google Scholar 

  15. Ziliak, S.T.: Retrospectives: guinnessometrics: the economic foundation of “student’s” t. J. Econ. Persp. 22(4), 199–216 (2008)

    Article  Google Scholar 

  16. Altman, D.G.: Practical Statistics for Medical Research. Chapman and Hall, London (1991)

    Google Scholar 

  17. Belciug, S.: Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment. Elsevier, Amsterdam (2020)

    Google Scholar 

  18. Hann, M., Roberts, S.A., D’Souza, S.W., Clayton, P., Macklon, N., Brison, D.R.: The growth of assisted reproductive treatment—conceived children from birth to 5 years: a national cohort study. BMC Med. 16, 224 (2018)

    Article  Google Scholar 

  19. Dalsgaard, T.H., Hvas, A.-M., Kirkegaards, K.S., Vestergaard, J., Knudsen, U.B.: Impact of frozen thawed embryo transfer in hormone substituted cycles on thrombotic risk markers. Thromb. Res. 209, 23–32 (2022). https://doi.org/10.1016/j.thromres.2021.11.016

    Article  Google Scholar 

  20. Shao, X., Wang, D., Xu, Y., Guo, L., Yang, H., Zhou, J. Sun, L., Ziang, Y.: The high platelet count as predictor for early foetal demise. Pregnancy Childbirth Women’s Health 53, 1505–1511 (2021). https://doi.org/10.1080/07853890.2021.1968027

  21. Ruxton, G.D.: The unequal variance t-test is an underused alternative to student’s t-test and the Mann-Whitney U test. Behav. Ecol. 17, 688–690 (2006)

    Article  Google Scholar 

  22. Zimmerman, D.W.: A note on preliminary tests for equality of variances. Br. J. Math. Stat. Psychol. 57, 173–181 (2004). https://doi.org/10.1348/000711004849222

    Article  MathSciNet  Google Scholar 

  23. Welch, B.L.: The significance of the difference between two means when the population variances are unequal. Biometrika 39(¾), 350–362 (1938)

    Google Scholar 

  24. Satterthwaite, F.E.: An approximate distribution of estimates of variances components. Biometrics Bull. 2(6), 110–114 (1946)

    Article  Google Scholar 

  25. Welch, B.L.: The generalization of Student’s problem when several different population variances are involved. Biometrika 34(½), 28–35 (1947)

    Google Scholar 

  26. Howell, D.: Statistical Methods for Psychology, 5th edn. (2002)

    Google Scholar 

  27. Cook, T.: Introduction to Statistical Methods for Clinical Trials, 1st edn. Chapman and Hall, CRC, London (2005)

    Google Scholar 

  28. Wheelan, C.: Naked Statistics. W.W. Norton & Company, New York (2014)

    Google Scholar 

  29. Holm, S.: A simple sequential rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MATH  Google Scholar 

  30. Dodge, Y.: The Concise Encyclopedia of Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  31. Gonick, L.: The Cartoon Guide to Statistics. Harper Perennial, New York (1993)

    Google Scholar 

  32. Klein, G.: The Cartoon Introduction to Statistics. Hill & Wamg, New York (2013)

    Google Scholar 

  33. Duncan, D.B.: Multiple range and multiple F tests. Biometrics 11(1), 1–42 (1955). https://doi.org/10.2307/3001478

    Article  MathSciNet  Google Scholar 

  34. Shaffer, J.P.: A semi-Bayesian study of Duncan’s Bayesian multiple comparison procedure. J. Stat. Plann. Infer. 82(1–2), 197–213 (1999). https://doi.org/10.1016/S0378-3758(99)00042-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Bewick, V., Cheek, L., Ball, J.: Statistics review 9: one-way analysis of variance. Crit. Care 8(2), 130–136 (2004). https://doi.org/10.1186/cc2836

    Article  Google Scholar 

  36. Student: Errors of routine analysis. Biometrika 19(1/2), 151–164 (1927). https://doi.org/10.2307/2332181

  37. Newman, D.: The distribution range in samples from a normal population expressed in terms of an independent estimate of standard deviation. Biometrika 31(1), 20–30 (1939). https://doi.org/10.1093/biomet/31.1-2.20

    Article  MathSciNet  MATH  Google Scholar 

  38. Keuls, M.: The use of “studentized range” in connection with an analysis of variance. Euphytica 1(2), 112–122 (1952). https://doi.org/10.1007/bf01908269

    Article  Google Scholar 

  39. De Muth, J.E.: Basic Statistics and Pharmaceutical Statistical Applications, 2nd ed., pp. 229–259. CRC, Boca Raton/Chapman and Hall, London (2006)

    Google Scholar 

  40. Scheffe, H.: The Analysis of Variance. Wiley, New York (1999)

    MATH  Google Scholar 

  41. Bohrer, R.: On Sharpening Scheffe Bounds. J. Roy. Stat. Soc. 29(1), 110–114 (1967)

    MathSciNet  MATH  Google Scholar 

  42. Tukey, J.: Comparing individual means in analysis of variance. Biometrics 5(2), 99–114 (1949)

    Article  MathSciNet  Google Scholar 

  43. Gurvich, V., Naumova, M.: Logical contradictions in the one-way ANOVA and Tukey-Kramer multiple comparisons tests with more than two groups of observations. Symmetry, 13(8), 1387 (2021)

    Google Scholar 

  44. Lee, S., Lee, D.K.: What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 71(5), 353–360 (2018)

    Article  Google Scholar 

  45. Goeman, J.J.: Comparing three groups. Am. Stat. (2021). https://doi.org/10.1080/00031305.2021.2002188

    Google Scholar 

  46. Benjamini, Y., Hochber, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995)

    Google Scholar 

  47. McDonald, J.H.: Handbook of Biological Statistics, 3rd edn. Sparky House Publishing, Baltimore (2014)

    Google Scholar 

  48. Kruskal, W., Wallis, A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 45(260), 583–621 (1952)

    Article  Google Scholar 

  49. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-statisticians, pp. 99–105. Wiley, New York (2009)

    Google Scholar 

  50. Agresti, A.: Categorical Data Analysis. Wiley, New York (1990)

    MATH  Google Scholar 

  51. Choi, W., Lee, J.W., Huh, M.H., Kang, S.H.: An algorithm for computing the exact distribution of the Kruskal–Wallis test. Commun. Stat. Simulat. Comput. 32(4), 1029–1040 (2003). https://doi.org/10.1081/SAC-120023876

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smaranda Belciug .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belciug, S., Iliescu, D. (2023). Planning a Pregnancy with Artificial Intelligence. In: Pregnancy with Artificial Intelligence. Intelligent Systems Reference Library, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-031-18154-2_2

Download citation

Publish with us

Policies and ethics