Skip to main content

Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment

  • Chapter
  • First Online:
Cancer Nanotechnology

Abstract

Monoclonal antibodies (mAbs) are valuable therapeutic tools for targeted therapies to attack tumor cells but preserve healthy tissues, therefore resulting in fewer side effects. With the rise of genetic engineering, recombinant human or humanized mAbs are available in the market for the treatment of cancer, either in monotherapy, in association or conjugated with other drugs. Thus, monovalent or bispecific mAbs find applicability for their antitumor cytotoxic activity, as well as for being able to be used in cancer immunotherapy. Although some antibody-drug conjugates are commercially available, immunoconjugates with nanoparticles are less developed. In this context, nanoparticles play an important role for improving drug delivery, allowing for controlled release and site-specific delivery, both passively, through the enhanced permeation and retention effect, and actively, through the functionalization of nanoparticles with antibodies or antibody fragments with high affinity for receptors overexpressed on tumor cells. The bioconjugation can be performed mainly by adsorption or covalent binding or through the use of adapter molecules. Immobilization of antibodies on the surface of nanoparticles must ensure the desired amount of antibodies per nanoparticle and proper antibody orientation and generate a stable binding in order to preserve its biological activity. In this chapter, the main strategies for conjugating antibodies to nanoparticles through covalent bonds, such as the chemistry of carbodiimide, maleimide, and click, and non-covalent bonds such as adsorption and the biotin-avidin system will be discussed. Herein, we will address the development of monoclonal antibodies, the functionalization strategies, and antibody-receptor-targeted nanoparticles of different compositions, such as lipid, polymeric, and inorganic, focusing on their preparation techniques, physicochemical characterization, and in vitro and in vivo biological activity. Overall, the main bioconjugation technique is provided by the maleimide chemistry, particularly employed in the functionalized of lipid nanoparticles, such as liposomes, the most advanced nanosystem. Cell culture studies have revealed that the functionalized nanoparticle undergoes specific and efficient uptake via receptor-mediated endocytosis. Nanoparticle immunoconjugates have also shown promising for cancer treatment following the success of preclinical studies with cancer xenografts; however, clinical trials have yet to show efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-MEA:

β-Mercaptoethylamine

5-FU:

5-Fluorouracil

A549:

Adenocarcinomic human basal alveolar epithelial cells

Abs:

Antibodies

Ab-SH:

Antibody with sulfhydryl thiolation reaction

ADC:

Antibody-drug conjugate

ADCC:

Antibody-dependent cellular cytotoxicity

AMF:

Magnetic fields

anti-GPC3:

Anti-glypican-3 antibody

AuNPs:

Inorganic gold nanoparticles

BME:

β-Mercaptoethanol

BsAbs:

Bispecific antibodies

BT474:

Human breast carcinoma with HER2 overexpression

BVZ:

Bevacizumab

C:

Constant

Calcein-AM:

Calcein acetoxymethyl ester

CDC:

Antibody-mediated complement-dependent cytotoxicity

CDR:

Complementarity-determining regions

CET:

Cetuximab

Chi:

Chitosan

CMD:

Carboxymethyl dextran

CNBr:

Cyanogen bromide

CPT:

Camptothecin

CTLA-4:

Cytotoxic T lymphocyte-associated antigen 4

CuAAC:

[3+2] Azide-alkyne cycloaddition reaction catalyzed by copper(I)

DA:

Diels-Alder reaction

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

DSPE:

1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine

DSPE-PEG2000:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]

DSPS:

1,2-Distearoyl-sn-glycero-3-phosphocholine

DTT:

Dithiothreitol

DTX:

Docetaxel

EDC:

1-Ethyl-3-(-3-dimethylaminopropyl) carbodiimide

EGFR vIII:

Epidermal growth factor receptor variant III

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

Fab:

Antigen-binding fragments

Fc:

Crystallizable fragment

FDA:

Food and Drug Administration

FITC:

Fluorescein isothiocyanate

FRET:

Fluorescence resonance energy transfer

GPC3:

Glypican-3

H:

Heavy

HACA:

Human anti-chimeric antibodies

HAMA:

Human anti-mouse antibodies

HCC:

Hepatocellular carcinoma

HCC827:

Lung cancer cell line

HCT 116:

Human colon cancer cell line

HepG2:

Hepatocellular carcinoma cell line

HER:

Herceptin

HER2:

Human epidermal growth factor receptor-type 2

HGC-27:

Human gastric carcinoma cell line derived from the metastatic lymph node of gastric cancer (undifferentiated carcinoma)

HKH-2:

Human colon cancer cell line

ICP-MS:

Inductively coupled plasma mass spectrometry

iEDDA:

Inverse electron demand hetero-Diels-Alder reaction

L:

Light

LN:

Lipid nanoparticles

mAb:

Monoclonal antibodies

MAC:

Membrane attack complex

Mal:

Maleimide

MCF-7:

Human breast cancer cell line

MDA-MB-231:

Breast cancer strain isolated from pleural effusion with low expression of HER2

MDA-MB-453:

Human breast cancer cell line

MEA:

2-Mercaptoethylamine

MES:

2-(N-Morpholino)ethanesulfonic acid

MGC-803:

Human gastric cancer cell line

MKN-45:

Gastric adenocarcinoma cells

MMAE:

Monomethyl auristatin E

MRI:

Magnetic resonance imaging

MSNPs:

Mesoporous silica nanoparticles

MTT:

Bromide of (4,5-dimetilltiazol-2-il)-2,5-difeniltetrazolium

mV:

Millivolts

NB:

Nanobubble

NHS:

N-Hydroxysuccinimide

NK:

Natural killer cell

NLC:

Nanostructured lipid carriers

nm:

Nanometer

NP:

Nanoparticle

P123:

Pluronic

PANC-1:

Human pancreatic cancer cell line isolated from pancreatic carcinoma of ductal cell origin

PCL:

Poly(ε-caprolactone)

PD-1:

Programmed cell death receptor 1

PD-L1:

Programmed death ligand 1

PDLA:

Poly(D-lactic acid)

PDLLA:

Poly(D,L-lactic acid)

PEG:

Polyethylene glycol

PGA:

Poly(glycolic acid)

pH:

Hydrogen potential

pI:

Isoelectric point

PLA:

Poly(lactic acid)

PLGA:

Poly(lactide-co-glycolide)

PLLA:

Poly(L-lactic acid)

PTT:

Photothermal therapy

PTX:

Paclitaxel

QD:

Quantum dots

RAPA:

Rapamycin

RES:

Reticuloendothelial system

SAMSA:

S-Acetylmercaptosuccinic anhydride

SATA:

N-Succinimidyl S-acetylthioacetate

SATP:

N-Succinimidyl S-acetylthiopropionate

scFv:

Single-chain variable fragment

SFB:

Sorafenib

SIA:

N-Succinimidyl iodoacetate

SKBR-3:

Human breast cancer cell lines that overexpress HER2

SLNs:

Solid lipid nanoparticles

SMCC:

Succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate

SMPT:

4-Succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene

SPAAC:

Strain-promoted [3+2] azide-alkyne cycloaddition reaction

SPDP:

N-Succinimidyl 3-(2-pyridyldithio)propionate

SPIONs:

Superparamagnetic nanoparticles

Sulfo-LC-SMPT:

Sulfosuccinimidyl 6-[α-methyl-α-(2-pyridyldithio)toluamido]hexanoate

Sulfo-LC-SPDP:

Sulfosuccinimidyl 6-[3′-(2-pyridyldithio)propionamido]hexanoate

Sulfo-NHS:

N-Hydroxysulfosuccinimide

Sulfo-SMCC:

Sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate

TCEP:

Tris-(2-carboxyethyl)phosphine

TCO:

Trans-cyclooctene

THF:

Tetrahydrofuran

THPP:

Tris-(3-hydroxypropyl)phosphine

Tmab:

Trastuzumab

TMZ:

Temozolomide

TPGS:

D-α-Tocopheryl polyethylene glycol succinate

TPGS-COOH:

Carboxyl-terminated TPGS

Tz:

Tetrazine diene

U87MG vIII:

Glioblastoma cells expressing mutant epidermal growth factor VIII receptor

U87MG:

Cell line with epithelial morphology isolated from malignant gliomas

US:

Ultrasound

V:

Variable

VEFGA:

Vascular endothelial growth factor A

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  • Abbas, A. K., Pillai, S., & Lichtman, A. H. (2019). Imunologia: Celular e Molecular (9th ed.). Elsevier Ltd.

    Google Scholar 

  • Acharya, S., Dilnawaz, F., & Sahoo, S. K. (2009). Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 30, 5737–5750.

    Article  CAS  Google Scholar 

  • Aldahhan, R., Almohazey, D., & Khan, F. A. (2021). Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment. Seminars in Cancer Biology.

    Google Scholar 

  • Alibakhshi, A., Abarghooi Kahaki, F., Ahangarzadeh, S., Yaghoobi, H., Yarian, F., Arezumand, R., Ranjbari, J., Mokhtarzadeh, A., & De La Guardia, M. (2017). Targeted cancer therapy through antibody fragments-decorated nanomedicines. Journal of Controlled Release, 268, 323–334.

    Article  CAS  Google Scholar 

  • Amin, M., Pourshohod, A., Kheirollah, A., Afrakhteh, M., Gholami-Borujeni, F., Zeinali, M., & Jamalan, M. (2018). Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. The Journal of Drug Delivery Science and Technology, 47, 209–214.

    Article  CAS  Google Scholar 

  • Andrade, L. M., Martins, E. M. N., Versiani, A. F., Reis, D. S., Da Fonseca, F. G., Souza, I. P. D., Paniago, R. M., Pereira-Maia, E., & Ladeira, L. O. (2020). The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Materials Science and Engineering, C 107.

    Google Scholar 

  • Antal, I., Koneracka, M., Kubovcikova, M., Zavisova, V., Jurikova, A., Khmara, I., Omastova, M., Micusik, M., Barathova, M., Jelenska, L., Kajanova, I., Zatovicova, M., & Pastorekova, S. (2021). Targeting of carbonic anhydrase IX-positive cancer cells by glycine-coated superparamagnetic nanoparticles. Colloids Surfaces B Biointerfaces, 205.

    Google Scholar 

  • Ashton, J. R., Gottlin, E. B., Patz, E. F., West, J. L., & Badea, C. T. (2018). A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One, 13, 1–21.

    Article  Google Scholar 

  • Bapat, R. A., Chaubal, T. V., Joshi, C. P., Bapat, P. R., Choudhury, H., Pandey, M., Gorain, B., & Kesharwani, P. (2018). An overview of application of silver nanoparticles for biomaterials in dentistry. Materials Science and Engineering: C, 91, 881–898.

    Article  CAS  Google Scholar 

  • Barrajón-Catalán, E., Menéndez-Gutiérrez, M. P., Falco, A., Carrato, A., Saceda, M., & Micol, V. (2010). Selective death of human breast cancer cells by lytic immunoliposomes: Correlation with their HER2 expression level. Cancer Letters, 290, 192–203.

    Article  Google Scholar 

  • Battaglia, L., Gallarate, M., Peira, E., Chirio, D., Solazzi, I., Giordano, S. M. A., Gigliotti, C. L., Riganti, C., & Dianzani, C. (2015). Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies. Nanotechnology, 26, 255102.

    Article  Google Scholar 

  • Bhattacharya, S. (2020). Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Patents on Anti-Cancer Drug Discovery, 16, 84–100.

    Google Scholar 

  • Binyamin, L., Borghaei, H., & Weiner, L. M. (2006). Cancer therapy with engineered monoclonal antibodies. Update Cancer Therapeutics, 2, 147–157.

    Article  Google Scholar 

  • Bregoli, L., Movia, D., Gavigan-Imedio, J. D., Lysaght, J., Reynolds, J., & Prina-Mello, A. (2016). Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine Nanotechnology, Biologie et Médecine, 12, 81–103.

    Article  CAS  Google Scholar 

  • Bummer, P. M. (2004). Physical chemical considerations of lipid-based oral drug delivery-solid lipid nanoparticles. Critical Reviews in Therapeutic Drug Carrier Systems, 21, 1–20.

    Article  CAS  Google Scholar 

  • Byzova, N. A., Safenkova, I. V., Slutskaya, E. S., Zherdev, A. V., & Dzantiev, B. B. (2017). Less is more: A comparison of antibody-gold nanoparticle conjugates of different ratios. Bioconjugate Chemistry, 28, 2737–2746.

    Article  CAS  Google Scholar 

  • Cai, Z., Chattopadhyay, N., Yang, K., Kwon, Y. L., Yook, S., Pignol, J. P., Reilly, R. M., (2016). 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nuclear Medicine and Biology, 43, 818–826.

    Google Scholar 

  • Cameron, D., Piccart-Gebhart, M. J., Gelber, R. D., Procter, M., Goldhirsch, A., De Azambuja, E., Castro, G., Untch, M., Smith, I., Gianni, L., Baselga, J., Al-Sakaff, N., Lauer, S., Mcfadden, E., Leyland-Jones, B., Bell, R., Dowsett, M., & Jackisch, C. (2017). 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin adjuvant (HERA) trial. Lancet (London, England), 389, 1195–1205.

    Article  CAS  Google Scholar 

  • Carrara, S. C., Ulitzka, M., Grzeschik, J., Kornmann, H., Hock, B., & Kolmar, H. (2021). From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. International Journal of Pharmaceutics, 594.

    Google Scholar 

  • Carter, P. J. (2006). Potent antibody therapeutics by design. Nature Reviews Immunology, 6, 343–357.

    Article  CAS  Google Scholar 

  • Chang, J., Yang, Z., Li, J., Jin, Y., Gao, Y., Sun, Y., Li, H., & Yu, T. (2020). Preparation and in vitro and in vivo antitumor effects of VEGF targeting micelles. Technology in Cancer Research & Treatment, 19, 1–8.

    Article  Google Scholar 

  • Choudhury, H., Gorain, B., Pandey, M., Khurana, R. K., & Kesharwani, P. (2019). Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. International Journal of Pharmaceutics, 565, 509–522.

    Article  CAS  Google Scholar 

  • De Mendoza, A. E.-H., Campanero, M. A., Mollinedo, F., & Blanco-Prieto, M. J. (2009). Lipid nanomedicines for anticancer drug therapy. Journal of Biomedical Nanotechnology, 5, 323–343.

    Article  Google Scholar 

  • De Mendoza, E.-H. A., Préat, V., Mollinedo, F., & Blanco-Prieto, M. J. (2011). In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. Journal of Controlled Release, 156, 421–426.

    Article  Google Scholar 

  • Desai, R., Coxon, A. T., & Dunn, G. P. (2022). Therapeutic applications of the cancer immunoediting hypothesis. Seminars in Cancer Biology, 78, 63–77.

    Article  CAS  Google Scholar 

  • Desnoyer, A., Broutin, S., Delahousse, J., Maritaz, C., Blondel, L., Mir, O., Chaput, N., & Paci, A. (2020). Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 2, immune checkpoint inhibitor antibodies. European Journal of Cancer, 128, 119–128.

    Article  CAS  Google Scholar 

  • Di Filippo, L. D., Lobato Duarte, J., Hofstätter Azambuja, J., Isler Mancuso, R., Tavares Luiz, M., Hugo Sousa Araújo, V., Delbone Figueiredo, I., Barretto-De-Souza, L., Miguel Sábio, R., Sasso-Cerri, E., Martins Baviera, A., Crestani, C. C., Teresinha Ollala Saad, S., & Chorilli, M. (2022). Glioblastoma multiforme targeted delivery of docetaxel using bevacizumab-modified nanostructured lipid carriers impair in vitro cell growth and in vivo tumor progression. International Journal of Pharmaceutics, 618, 121682.

    Article  Google Scholar 

  • Dougan, M., Luoma, A. M., Dougan, S. K., & Wucherpfennig, K. W. (2021). Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell, 184, 1575–1588.

    Article  CAS  Google Scholar 

  • Duwa, R., Banstola, A., Emami, F., Jeong, J. H., Lee, S., Yook, S., (2020). Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. Journal of Drug Delivery Science and Technology, 60, 101928.

    Google Scholar 

  • Eichenauer, D. A., Aleman, B. M. P., André, M., Federico, M., Hutchings, M., Illidge, T., Engert, A., & Ladetto, M. (2018). Hodgkin lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 29, iv19–iv29.

    Article  CAS  Google Scholar 

  • Eivazi, N., Rahmani, R., Paknejad, M., (2020). Specific cellular internalization and pH-responsive behavior of doxorubicin loaded PLGA-PEG nanoparticles targeted with anti EGFRvIII antibody. Life Sciences, 261, 118361.

    Google Scholar 

  • Eliasen, R., Andresen, T. L., & Larsen, J. B. (2019). PEG-lipid post insertion into drug delivery liposomes quantified at the single liposome level. Advanced Materials Interfaces, 6, 1801807.

    Article  Google Scholar 

  • Eloy, J. O., Petrilli, R., Brueggemeier, R. W., Marchetti, J. M., & Lee, R. J. (2017a). Rapamycin-loaded immunoliposomes functionalized with trastuzumab: A strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anti-Cancer Agents in Medicinal Chemistry, 17, 48–56.

    Article  CAS  Google Scholar 

  • Eloy, J. O., Petrilli, R., Chesca, D. L., Saggioro, F. P., Lee, R. J., & Marchetti, J. M. (2017b). Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 115, 159–167.

    Article  CAS  Google Scholar 

  • Eloy, J. O., Petrilli, R., Trevizan, L. N. F., & Chorilli, M. (2017c). Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surfaces B Biointerfaces, 159, 454–467.

    Article  CAS  Google Scholar 

  • Elzahhar, P., Belal, A. S. F., Elamrawy, F., Helal, N. A., & Nounou, M. I. (2019). Bioconjugation in drug delivery: Practical perspectives and future perceptions. Methods in Molecular Biology, 2000, 125–182.

    Article  CAS  Google Scholar 

  • Erbetta, C. D. C., Viegas, C. C. B., Freitas, R. F. S., & Sousa, R. G. (2011). Síntese e Caracterização Tẽrmica e Química do Copolímero Poli(D,L-lactídeo-co-glicolídeo). Polimeros, 21, 376–382.

    Article  CAS  Google Scholar 

  • Ernsting, M. J., Murakami, M., Roy, A., & Li, S. D. (2013). Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release, 172, 782–794.

    Article  CAS  Google Scholar 

  • Eroğlu, İ., & Ibrahim, M. (2020). Liposome–ligand conjugates: A review on the current state of art. Journal of Drug Targeting.

    Google Scholar 

  • Fan, L., Campagnoli, S., Wu, H., Grandi, A., Parri, M., De Camilli, E., Grandi, G., Viale, G., Pileri, P., Grifantini, R., Song, C., Jin, B., (2015). Negatively charged AuNP modified with monoclonal antibody against novel tumor antigen FAT1 for tumor targeting. Journal of Experimental & Clinical Cancer Research, 34, 1–13.

    Google Scholar 

  • Fernandes, L.C.C., Nogueira, K.A.B., Martins, J.R.P., Santos, E., De Freitas, P.G.C., Nogueira, B.A.B., Raspantini, G.L., Petrilli, R., Eloy, J.O., 2021. Nanotechnology: Concepts and potential applications in medicine.

    Google Scholar 

  • Foltz, I. N., Karow, M., & Wasserman, S. M. (2013). Evolution and emergence of therapeutic monoclonal antibodies: What cardiologists need to know. Circulation, 127, 2222–2230.

    Article  Google Scholar 

  • Formica, M. L., Legeay, S., Bejaud, J., Montich, G. G., Ullio Gamboa, G. V., Benoit, J. P., & Palma, S. D. (2021). Novel hybrid lipid nanocapsules loaded with a therapeutic monoclonal antibody – Bevacizumab – and Triamcinolone acetonide for combined therapy in neovascular ocular pathologies. Materials Science and Engineering: C, 119, 111398.

    Article  CAS  Google Scholar 

  • Freitas, L. B. O., Ruela, F. A., Pereira, G. R., Alves, R. B., & Freitas, R. P. (2011). A Reação “CLICK” Na Síntese DE 1,2,3-Triazóis: Aspectos Químicos E Aplicações. Quimica Nova, 34, 1791–1804.

    Article  CAS  Google Scholar 

  • Gan, H., Chen, L., Sui, X., Wu, B., Zou, S., Li, A., Zhang, Y., Liu, X., Wang, D., Cai, S., Liu, X., Liang, Y., & Tang, X. (2018). Enhanced delivery of sorafenib with anti-GPC3 antibody-conjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for targeted therapy of hepatocellular carcinoma. Materials Science and Engineering: C, 91, 395–403.

    Article  CAS  Google Scholar 

  • GCO-WHO, 2020. Global cancer observatory. .

    Google Scholar 

  • Gordon, M. R., Canakci, M., Li, L., Zhuang, J., Osborne, B., & Thayumanavan, S. (2015). A field guide to challenges and opportunities in antibody-drug conjugates for chemists. Bioconjugate Chemistry, 26, 2198–2215.

    Article  CAS  Google Scholar 

  • Guo, S., Zhang, Y., Wu, Z., Zhang, L., He, D., Li, X., & Wang, Z. (2019). Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomedicine & Pharmacotherapy, 118.

    Google Scholar 

  • Guo, Y.-Y., Huang, L., Zhang, Z., Fu, P., & Hao, D. (2020). Strategies for precise engineering and conjugation of antibody targeted-nanoparticles for cancer therapy. Current Medical Science, 40, 463–473.

    Article  CAS  Google Scholar 

  • Hafeez, U., Gan, H. K., & Scott, A. M. (2018). Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Current Opinion in Pharmacology, 41, 114–121.

    Article  CAS  Google Scholar 

  • Hasan, M. M., Laws, M., Jin, P., & Rahman, K. M. (2022). Factors influencing the choice of monoclonal antibodies for antibody-drug conjugates. Drug Discovery Today, 27, 354–361.

    Article  CAS  Google Scholar 

  • Hein, C. D., Liu, X. M., & Wang, D. (2008). Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical Research, 25, 2216–2230.

    Article  CAS  Google Scholar 

  • Hermanson, G. T. (2013a). Zero-length Crosslinkers. Bioconjugate Techniques, 259–273.

    Google Scholar 

  • Hermanson, G. T. (2013b). Antibody modification and conjugation. Bioconjugate Techniques, 867–920.

    Google Scholar 

  • Hermanson, G. T. (2013c). Functional targets for bioconjugation. Bioconjugate Techniques, 127–228.

    Google Scholar 

  • Hermanson, G. T. (2013d). Microparticles and nanoparticles. Bioconjugate Techniques, 549–587.

    Google Scholar 

  • Hoffmann, R.M., Coumbe, B.G.T., Josephs, D.H., Mele, S., Ilieva, K.M., Cheung, A., Tutt, A.N., Spicer, J.F., Thurston, D.E., Crescioli, S., Karagiannis, S.N., 2018. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCS).

    Book  Google Scholar 

  • Hou, Y., Liu, Y., Tang, C., Tan, Y., Zheng, X., Deng, Y., He, N., & Li, S. (2022). Recent advance in nanomaterials for cancer immunotherapy. Chemical Engineering Journal, 435, 134145.

    Article  CAS  Google Scholar 

  • Iden, D. L., & Allen, T. M. (2001). In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochimica et Biophysica Acta, 1513, 207–216.

    Article  CAS  Google Scholar 

  • Ivanova, A. V., Nikitin, A. A., Gabashvily, A. N., Vishnevskiy, D. A., & Abakumov, M. A. (2021). Synthesis and intensive analysis of antibody labeled single core magnetic nanoparticles for targeted delivery to the cell membrane. The Journal of Magnetism and Magnetic Materials, 521.

    Google Scholar 

  • Jain, A., & Cheng, K. (2017). The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release.

    Google Scholar 

  • Jain, A., Barve, A., Zhao, Z., Jin, W., & Cheng, K. (2017). Comparison of Avidin, neutravidin, and streptavidin as nanocarriers for efficient siRNA delivery. Molecular Pharmaceutics, 14, 1517–1527.

    Article  CAS  Google Scholar 

  • Jaramillo, M. L., Leon, Z., Grothe, S., Paul-Roc, B., Abulrob, A., & O’connor Mccourt, M. (2006). Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Experimental Cell Research, 312, 2778–2790.

    Article  CAS  Google Scholar 

  • Jazayeri, M. H., Amani, H., Pourfatollah, A. A., Pazoki-Toroudi, H., & Sedighimoghaddam, B. (2016). Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensing and Bio-Sensing Research, 9, 17–22.

    Article  Google Scholar 

  • Jeong, S., Park, J. Y., Cha, M. G., Chang, H., Kim, Y. I., Kim, H. M., Jun, B. H., Lee, D. S., Lee, Y. S., Jeong, J. M., Lee, Y. S., & Jeong, D. H. (2017). Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. Nanoscale, 9, 2548–2555.

    Article  CAS  Google Scholar 

  • Jiang, L., Luirink, J., Kooijmans, S. A. A., Van Kessel, K. P. M., Jong, W., Van Essen, M., Seinen, C. W., De Maat, S., De Jong, O. G., Gitz-François, J. F. F., Hennink, W. E., Vader, P., & Schiffelers, R. M. (2021). A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles. Biochimica et Biophysica Acta – General Subjects, 1865, 129763.

    Article  CAS  Google Scholar 

  • Jones, S., King, P. J., Antonescu, C. N., Sugiyama, M. G., Bhamra, A., Surinova, S., Angelopoulos, N., Kragh, M., Pedersen, M. W., Hartley, J. A., Futter, C. E., & Hochhauser, D. (2020). Targeting of EGFR by a combination of antibodies mediates unconventional EGFR trafficking and degradation. Scientific Reports, 10, 1–19.

    Article  Google Scholar 

  • Juan, A., Cimas, F. J., Bravo, I., Pandiella, A., Ocaña, A., & Alonso-Moreno, C. (2020). An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics, 12, 1–20.

    Article  Google Scholar 

  • Kantner, T., Watts, A. G., (2016). Characterization of Reactions between Water-Soluble Trialkylphosphines and Thiol Alkylating Reagents: Implications for Protein-Conjugation Reactions. Bioconjugate Chemistry, 27, 2400–2406.

    Google Scholar 

  • Karumanchi, D. K., Skrypai, Y., Thomas, A., & Gaillard, E. R. (2018). Rational design of liposomes for sustained release drug delivery of bevacizumab to treat ocular angiogenesis. The Journal of Drug Delivery Science and Technology, 47, 275–282.

    Article  CAS  Google Scholar 

  • Khaniabadi, P. M., Shahbazi-Gahrouei, D., Aziz, A. A., Dheyab, M. A., Khaniabadi, B. M., Mehrdel, B., & Jameel, M. S. (2020). Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: A potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagnosis and Photodynamic Therapy, 31.

    Google Scholar 

  • Kim, E., & Koo, H. (2019). Biomedical applications of copper-free click chemistry: In vitro, in vivo, and ex vivo. Chemical Science, 10, 7835–7851.

    Article  CAS  Google Scholar 

  • Koebel, C. M., Vermi, W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., Smyth, M. J., & Schreiber, R. D. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450, 903–907.

    Article  CAS  Google Scholar 

  • Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie – International.

    Google Scholar 

  • Krishnamurthy, A., & Jimeno, A. (2018). Bispecific antibodies for cancer therapy: A review. Pharmacology & Therapeutics, 185, 122–134.

    Article  CAS  Google Scholar 

  • Kuan, S. L., Wang, T., & Weil, T. (2016). Site-selective disulfide modification of proteins: Expanding diversity beyond the proteome. Chemistry—A European Journal, 22, 17112–17129.

    Article  CAS  Google Scholar 

  • Kubota, T., Kuroda, S., Kanaya, N., Morihiro, T., Aoyama, K., Kakiuchi, Y., Kikuchi, S., Nishizaki, M., Kagawa, S., Tazawa, H., Fujiwara, T., (2018). HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 14, 1919–1929.

    Google Scholar 

  • Kumar, A., & Kumar, A. (2019). Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: Versatility in biomedical applications, materials for biomedical engineering: Absorbable polymers. Elsevier Inc.

    Google Scholar 

  • Kumar, V., Abbas, A. K., & Aster, J. C. (2013). Robbins Patologia Básica (9th ed.). Elsevier.

    Google Scholar 

  • Kumar, A., White, J., James Christie, R., Dimasi, N., & Gao, C. (2017). Antibody-drug conjugates (1st ed.). Annual Reports in Medicinal Chemistry. Elsevier.

    Google Scholar 

  • Kumar, R., Parray, H. A., Shrivastava, T., Sinha, S., & Luthra, K. (2019). Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. International Journal of Biological Macromolecules, 135, 907–918.

    Article  CAS  Google Scholar 

  • Lee, Y. H., & Chang, D. S. (2017). Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicinencapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Scientific Reports, 7, 1–13.

    Google Scholar 

  • Lee, Y. T., Tan, Y. J., & Oon, C. E. (2018). Molecular targeted therapy: Treating cancer with specificity. European Journal of Pharmacology, 834, 188–196.

    Article  CAS  Google Scholar 

  • Li, M., Du, C., Guo, N., Teng, Y., Meng, X., Sun, H., Li, S., Yu, P., & Galons, H. (2019). Composition design and medical application of liposomes. European Journal of Medicinal Chemistry, 164, 640–653.

    Article  CAS  Google Scholar 

  • Li, Y., Gan, Y., Li, C., Yang, Y. Y., Yuan, P., & Ding, X. (2020). Cell membrane-engineered hybrid soft nanocomposites for biomedical applications. Journal of Materials Chemistry B, 8, 5578–5596.

    Article  CAS  Google Scholar 

  • Liébana, S., & Drago, G. A. (2016). Bioconjugation and stabilisation of biomolecules in biosensors. Essays in Biochemistry, 60, 59–68.

    Article  Google Scholar 

  • Lim, S. M., Pyo, K. H., Soo, R. A., & Cho, B. C. (2021). The promise of bispecific antibodies: Clinical applications and challenges. Cancer Treatment Reviews, 99, 102240.

    Article  CAS  Google Scholar 

  • Liszbinski, R. B., Romagnoli, G. G., Gorgulho, C. M., Basso, C. R., Pedrosa, V. A., & Kaneno, R. (2020). Anti-EGFR-coated gold nanoparticles in vitro carry 5-fluorouracil to colorectal cancer cells. Materials (Basel), 13.

    Google Scholar 

  • Liu, J. K. H. (2014). The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 3, 113–116.

    Article  Google Scholar 

  • Liu, Y., Hou, W., Sun, H., Cui, C., Zhang, L., Jiang, Y., Wu, Y., Wang, Y., Li, J., Sumerlin, B. S., Liu, Q., & Tan, W. (2017). Thiol–ene click chemistry: A biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chemical Science, 8, 6182–6187.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, H., Zhang, T., Wang, Y., Jiao, W., Lu, X., Gao, X., Xie, M., Shan, Q., Wen, N., Liu, C., Siang, W., Lee, V., & Fan, H. (2022). Magnetic nanomaterials-mediated cancer diagnosis and therapy. Progress in Biomedical Engineering, 4.

    Google Scholar 

  • Lonberg, N. (2008). Fully human antibodies from transgenic mouse and phage display platforms. Current Opinion in Immunology, 20, 450–459.

    Article  CAS  Google Scholar 

  • Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27, 1–30.

    Article  CAS  Google Scholar 

  • Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30, 592–599.

    Article  CAS  Google Scholar 

  • Manjappa, A. S., Chaudhari, K. R., Venkataraju, M. P., Dantuluri, P., Nanda, B., Sidda, C., Sawant, K. K., & Ramachandra Murthy, R. S. (2011). Antibody derivatization and conjugation strategies: Application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. Journal of Controlled Release, 150, 2–22.

    Article  CAS  Google Scholar 

  • Marques, A. C., Costa, P. J., Velho, S., & Amaral, M. H. (2020). Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of Controlled Release, 320, 180–200.

    Article  CAS  Google Scholar 

  • Marqués-Gallego, P., & De Kroon, A. I. P. M. (2014). Ligation strategies for targeting liposomal nanocarriers. BioMed Research International, 2014.

    Google Scholar 

  • Masood, F. (2015). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering: C, 60, 569–578.

    Article  Google Scholar 

  • McDaid, W. J., Greene, M. K., Johnston, M. C., Pollheimer, E., Smyth, P., McLaughlin, K., Van Schaeybroeck, S., Straubinger, R. M., Longley, D. B., Scott, C. J., (2019). Repurposing of Cetuximab in antibody-directed chemotherapy- loaded nanoparticles in EGFR therapy-resistant pancreatic tumours. Nanoscale 11, 20261–20273.

    Google Scholar 

  • Mckay, C. S., & Finn, M. G. (2014). Click chemistry in complex mixtures: Bioorthogonal bioconjugation. Chemistry & Biology, 21, 1075–1101.

    Article  CAS  Google Scholar 

  • Medici, S., Peana, M., Coradduzza, D., & Zoroddu, M. A. (2021). Gold nanoparticles and cancer: Detection, diagnosis and therapy. Seminars in Cancer Biology, 76, 27–37.

    Article  CAS  Google Scholar 

  • Mitra, A. K., Agrahari, V., Mandal, A., Cholkar, K., Natarajan, C., Shah, S., Joseph, M., Trinh, H. M., Vaishya, R., Yang, X., Hao, Y., Khurana, V., & Pal, D. (2015). Novel delivery approaches for cancer therapeutics. Journal of Controlled Release, 219, 248–268.

    Article  CAS  Google Scholar 

  • Montenegro, J. M., Grazu, V., Sukhanova, A., Agarwal, S., De La Fuente, J. M., Nabiev, I., Greiner, A., & Parak, W. J. (2013). Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Advanced Drug Delivery Reviews.

    Google Scholar 

  • Moradi, N., Muhammadnejad, S., Delavari, H., Pournoori, N., Oghabian, M. A., & Ghafouri, H. (2021). Bio-conjugation of anti-human CD3 monoclonal antibodies to magnetic nanoparticles by using cyanogen bromide: A potential for cell sorting and noninvasive diagnosis. International Journal of Biological Macromolecules, 192, 72–81.

    Article  CAS  Google Scholar 

  • Moraes, J. Z., Hamaguchi, B., Braggion, C., Speciale, E. R., Cesar, F. B. V., Soares, G. D. F., Da, S., Osaki, J. H., Pereira, T. M., & Aguiar, R. B. (2021). Hybridoma technology: Is it still useful? Current Research in Immunology, 2, 32–40.

    Article  CAS  Google Scholar 

  • Mozafarinia, M., Karimi, S., Farrokhnia, M., & Esfandiari, J. (2021). In vitro breast cancer targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: Towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis. Microporous and Mesoporous Materials, 316, 110950.

    Article  CAS  Google Scholar 

  • Nag, O. K., & Awasthi, V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics, 5, 542–569.

    Article  CAS  Google Scholar 

  • Narayanaswamy, R., & Torchilin, V. P. (2021). Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified Immunoliposomes for cancer therapy. Pharmaceutical Research, 38, 429–450.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., Tran, T. H., Thapa, R. K., Phung, C. D., Shin, B. S., Jeong, J. H., Choi, H. G., Yong, C. S., & Kim, J. O. (2017). Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. International Journal of Pharmaceutics, 527, 61–71.

    Article  CAS  Google Scholar 

  • Niza, E., Noblejas-López, M. D. M., Bravo, I., Nieto-Jiménez, C., Castro-Osma, J. A., Canales-Vázquez, J., Lara-Sanchez, A., Moya, E. M. G., Burgos, M., Ocaña, A., & Alonso-Moreno, C. (2019). Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. Nanomaterials, 9, 1–14.

    Article  Google Scholar 

  • Northfelt, D. W., Martin, F. J., Working, P., Volberding, P. A., Russell, J., Newman, M., Amantea, M. A., & Kaplan, L. D. (1996). Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: Pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. Journal of Clinical Pharmacology, 36, 55–63.

    Article  CAS  Google Scholar 

  • Parakh, S., King, D., Gan, H. K., & Scott, A. M. (2020). Current development of monoclonal antibodies in cancer therapy. Recent Results in Cancer Research.

    Google Scholar 

  • Parracino, M. A., Martín, B., & Grazú, V. (2019). State-of-the-art strategies for the biofunctionalization of photoactive inorganic nanoparticles for nanomedicine. Photoactive Inorganic Nanoparticles. Surface Composition and Nanosystem, Funct, 211–257.

    Article  Google Scholar 

  • Parray, H. A., Shukla, S., Samal, S., Shrivastava, T., Ahmed, S., Sharma, C., & Kumar, R. (2020). Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. International Immunopharmacology, 85, 106639.

    Article  CAS  Google Scholar 

  • Paszko, E., & Senge, M. O. (2012). Immunoliposomes. Current Medicinal Chemistry, 19, 5239–5277.

    Article  CAS  Google Scholar 

  • Peng, J., Chen, J., Xie, F., Bao, W., Xu, H., Wang, H., Xu, Y., & Du, Z. (2019). Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials, 222, 119420.

    Article  CAS  Google Scholar 

  • Peres, C., Matos, A. I., Conniot, J., Sainz, V., Zupančič, E., Silva, J. M., Graça, L., Sá Gaspar, R., Préat, V., & Florindo, H. F. (2017). Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia, 48, 41–57.

    Article  CAS  Google Scholar 

  • Petrilli, R., & Lopez, R. F. V. (2018). Physical methods for topical skin drug delivery: Concepts and applications. Brazilian Journal of Pharmaceutical Sciences.

    Google Scholar 

  • Petrilli, R., Eloy, J., Lopez, R., & Lee, R. (2016). Cetuximab Immunoliposomes enhance delivery of 5-FU to skin squamous carcinoma cells. Anti-Cancer Agents in Medicinal Chemistry, 17, 301–308.

    Article  Google Scholar 

  • Petrilli, R., Pinheiro, D. P., De Cássia Evangelista De Oliveira, F., Galvão, G. F., Marques, L. G. A., Lopez, R. F. V., Pessoa, C., & Eloy, J. O. (2020). Immunoconjugates for cancer targeting: A review of antibody-drug conjugates and antibody-functionalized nanoparticles. Current Medicinal Chemistry.

    Google Scholar 

  • Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A., & Berkland, C. J. (2018). Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjugate Chemistry, 29, 686–701.

    Article  CAS  Google Scholar 

  • Prantner, A. M., Nguyen, C. V., & Scholler, N. (2013). Facile immunotargeting of nanoparticles against tumor antigens using site-specific biotinylated antibody fragments. Journal of Biomedical Nanotechnology, 9, 1686–1697.

    Article  CAS  Google Scholar 

  • Presolski, S. I., Hong, V. P., & Finn, M. G. (2011). Copper-catalyzed azide–alkyne click chemistry for bioconjugation. Current Protocols in Chemical Biology, 3, 153–162.

    Article  Google Scholar 

  • Pugazhendhi, A., Edison, T. N. J. I., Karuppusamy, I., & Kathirvel, B. (2018). Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539, 104–111.

    Article  CAS  Google Scholar 

  • Ramil, C. P., & Lin, Q. (2013). Bioorthogonal chemistry: Strategies and recent developments. Chemical Communications, 49, 11007–11022.

    Article  CAS  Google Scholar 

  • Ramishetti, S., Kedmi, R., Goldsmith, M., Leonard, F., Sprague, A. G., Godin, B., Gozin, M., Cullis, P. R., Dykxhoorn, D. M., & Peer, D. (2015). Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano, 9, 6706–6716.

    Article  CAS  Google Scholar 

  • Ravasco, J. M. J. M., Faustino, H., Trindade, A., & Gois, P. M. P. (2019). Bioconjugation with maleimides: A useful tool for chemical biology. Chemistry—A European Journal, 25, 43–59.

    Article  CAS  Google Scholar 

  • Renault, K., Fredy, J. W., Renard, P. Y., & Sabot, C. (2018). Covalent modification of biomolecules through maleimide-based labeling strategies. Bioconjugate Chemistry, 29, 2497–2513.

    Article  CAS  Google Scholar 

  • Riener, C. K., Kada, G., & Gruber, H. J. (2002). Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Analytical and Bioanalytical Chemistry, 373, 266–276.

    Article  CAS  Google Scholar 

  • Rodallec, A., Brunel, J. M., Giacometti, S., Maccario, H., Correard, F., Mas, E., Orneto, C., Savina, A., Bouquet, F., Lacarelle, B., Ciccolini, J., & Fanciullino, R. (2018). Docetaxel–trastuzumab stealth immunoliposome: Development and in vitro proof of concept studies in breast cancer. International Journal of Nanomedicine, 13, 3451–3465.

    Article  CAS  Google Scholar 

  • Rodgers, K. R., & Chou, R. C. (2016). Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. Biotechnology Advances, 34, 1149–1158.

    Article  CAS  Google Scholar 

  • Ruan, J., Song, H., Qian, Q., Li, C., Wang, K., Bao, C., & Cui, D. (2012). HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials, 33, 7093–7102.

    Article  CAS  Google Scholar 

  • Ruiz, G., Tripathi, K., Okyem, S., & Driskell, J. D. (2019). PH impacts the orientation of antibody adsorbed onto gold nanoparticles. Bioconjugate Chemistry, 30, 1182–1191.

    Article  CAS  Google Scholar 

  • Saif, M. W. (2013). U.S. Food and Drug Administration approves paclitaxel protein-bound particles (Abraxane®) in combination with gemcitabine as first-line treatment of patients with metastatic pancreatic cancer. Journal of the Pancreas: JOP, 14, 686–688.

    Google Scholar 

  • Sakahara, H., & Saga, T. (1999). Avidin-biotin system for delivery of diagnostic agents. Advanced Drug Delivery Reviews.

    Google Scholar 

  • Sandeep, D., Alsawaftah, N. M., & Husseini, G. A. (2020). Immunoliposomes: Synthesis, structure, and their potential as drug delivery carriers. Current Cancer Therapy, 16, 306–319.

    Article  CAS  Google Scholar 

  • Santana, C. P., Mansur, A. A. P., Carvalho, S. M., Da Silva-Cunha, A., & Mansur, H. S. (2019). Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Materials Letters, 252, 333–337.

    Article  CAS  Google Scholar 

  • Santos, E. D. S., Nogueira, K. A. B., Fernandes, L. C. C., Martins, J. R. P., Reis, A. V. F., Neto, J. D. B. V., Júnior, I. J. D. S., Pessoa, C., Petrilli, R., & Eloy, J. O. (2021). EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. International Journal of Pharmaceutics, 592, 120082.

    Article  CAS  Google Scholar 

  • Shabbir, R., Mingarelli, M., Cabello, G., Van Herk, M., Choudhury, A., & Smith, T. A. D. (2021). EGFR targeting of [177Lu] gold nanoparticles to colorectal and breast tumour cells: Affinity, duration of binding and growth inhibition of Cetuximab-resistant cells. Journal of King Saud University, 33, 101573.

    Article  Google Scholar 

  • Shen, M., Rusling, J. F., & Dixit, C. K. (2017). Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods.

    Google Scholar 

  • Shukla, T., Upmanyu, N., Prakash Pandey, S., & Gosh, D. (2018). Lipid nanocarriers, lipid nanocarriers for drug targeting. Elsevier Inc.

    Google Scholar 

  • Shukla, R., Handa, M., Lokesh, S. B., Ruwali, M., Kohli, K., & Kesharwani, P. (2019). Conclusion and future prospective of polymeric nanoparticles for cancer therapy, polymeric nanoparticles as a promising tool for anti-cancer therapeutics. Elsevier Inc.

    Google Scholar 

  • Shuptrine, C. W., Surana, R., & Weiner, L. M. (2012). Monoclonal antibodies for the treatment of cancer. Seminars in Cancer Biology, 22, 3–13.

    Article  CAS  Google Scholar 

  • Si, Y., Melkonian, A. L., Curry, K. C., Xu, Y., Tidwell, M., Liu, M., Zaky, A. F., Liu, X. (Margaret), (2021). Monoclonal antibody-based cancer therapies. Chinese Journal of Chemical Engineering, 30, 301–307.

    Google Scholar 

  • Silva, V. de C. J. da, Silva, R. de N. O., Colli, L. G., Carvalho, M. H. C. de, Rodrigues, S. F., (2020). Gold nanoparticles carrying or not anti-VEGF antibody do not change glioblastoma multiforme tumor progression in mice. Heliyon 6.

    Google Scholar 

  • Silvestre, A. L. P., Oshiro-Júnior, J. A., Garcia, C., Turco, B. O., Da Silva Leite, J. M., De Lima Damasceno, B. P. G., Soares, J. C. M., & Chorilli, M. (2020). Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Current Medicinal Chemistry, 28, 401–418.

    Article  Google Scholar 

  • Singh, A., Mishra, A., & Verma, A. (2020). Antibodies: Monoclonal and polyclonal. Animal Biotechnology: Models in Discovery and Translation, 327–352.

    Google Scholar 

  • Sivaram, A. J., Wardiana, A., Howard, C. B., Mahler, S. M., & Thurecht, K. J. (2018). Recent advances in the generation of antibody–nanomaterial conjugates. Advanced Healthcare Materials.

    Google Scholar 

  • Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.

    Article  CAS  Google Scholar 

  • Son, S., Lee, W. R., Joung, Y. K., Kwon, M. H., Kim, Y. S., & Park, K. D. (2009). Optimized stability retention of a monoclonal antibody in the PLGA nanoparticles. International Journal of Pharmaceutics, 368, 178–185.

    Article  CAS  Google Scholar 

  • Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinskib, W. E. (2001). Biodegradable polymeric microparticles as drug delivery devices. Journal of Controlled Release, 70(70), 1–20.

    Article  CAS  Google Scholar 

  • Sousa, F., Fonte, P., Cruz, A., Kennedy, P. J., Pinto, I. M., & Sarmento, B. (2018). Polyester-based nanoparticles for the encapsulation of monoclonal antibodies. Methods in Molecular Biology, 1674, 239–253.

    Article  CAS  Google Scholar 

  • Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

    Google Scholar 

  • Spicer, C. D., & Davis, B. G. (2014). Selective chemical protein modification. Nature Communications 2014, 51(5), 1–14.

    Google Scholar 

  • Stern, M., & Herrmann, R. (2005). Overview of monoclonal antibodies in cancer therapy: Present and promise. Critical Reviews in Oncology/Hematology, 54, 11–29.

    Article  CAS  Google Scholar 

  • Sun, B., & Feng, S. S. (2009). Trastuzumab-functionalized nanoparticles of biodegradable copolymers for targeted delivery of docetaxel. Nanomedicine, 4, 431–445.

    Article  CAS  Google Scholar 

  • Takayama, Y., Kusamori, K., & Nishikawa, M. (2019). Click chemistry as a tool for cell engineering and drug delivery. Molecules 2019, 24, 172.

    Google Scholar 

  • Taleghani, A. S., Nakhjiri, A. T., Khakzad, M. J., Rezayat, S. M., Ebrahimnejad, P., Heydarinasab, A., Akbarzadeh, A., & Marjani, A. (2021). Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. Journal of Molecular Liquids, 328, 115417.

    Article  CAS  Google Scholar 

  • Ternant, D., & Paintaud, G. (2005). Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opinion on Biological Therapy, 5, 37–47.

    Article  Google Scholar 

  • Theuer, C. P., Leigh, B. R., Multani, P. S., Allen, R. S., & Liang, B. C. (2004). Radioimmunotherapy of non-Hodgkin’s lymphoma: Clinical development of the Zevalin regimen. Biotechnology Annual Review, 10, 265–295.

    Article  CAS  Google Scholar 

  • Thiruppathi, R., Mishra, S., Ganapathy, M., Padmanabhan, P., Gulyás, B., Thiruppathi, R., Mishra, S., Padmanabhan, P., Gulyás, B., & Ganapathy, M. (2017). Nanoparticle functionalization and its potentials for molecular imaging. Advancement of Science, 4, 1600279.

    Google Scholar 

  • Thomas, W.D., 2015. Production of full-length human monoclonal antibodies using transgenic mice. In Current laboratory techniques in rabies diagnosis, research and prevention (2nd ed.). Elsevier Inc.

    Google Scholar 

  • Trilling, A. K., Beekwilder, J., & Zuilhof, H. (2013). Antibody orientation on biosensor surfaces: A minireview. The Analyst.

    Google Scholar 

  • Tsuchikama, K., & An, Z. (2018). Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein & Cell, 9, 33–46.

    Article  CAS  Google Scholar 

  • U.S. Food and drug administration, https://www.fda.gov, FDA (2022).

    Google Scholar 

  • Varshochian, R., Jeddi-Tehrani, M., Mahmoudi, A. R., Khoshayand, M. R., Atyabi, F., Sabzevari, A., Esfahani, M. R., & Dinarvand, R. (2013). The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. European Journal of Pharmaceutical Sciences, 50, 341–352.

    Article  CAS  Google Scholar 

  • Walsh, S. J., Bargh, J. D., Dannheim, F. M., Hanby, A. R., Seki, H., Counsell, A. J., Ou, X., Fowler, E., Ashman, N., Takada, Y., Isidro-Llobet, A., Parker, J. S., Carroll, J. S., & Spring, D. R. (2021). Site-selective modification strategies in antibody-drug conjugates. Chemical Society Reviews, 50, 1305–1353.

    Article  CAS  Google Scholar 

  • Wang, J. K., Zhou, Y. Y., Guo, S. J., Wang, Y. Y., Nie, C. J., Wang, H. L., Wang, J. L., Zhao, Y., Li, X. Y., & Chen, X. J. (2017). Cetuximab conjugated and doxorubicin loaded silica nanoparticles for tumor-targeting and tumor microenvironment responsive binary drug delivery of liver cancer therapy. Materials Science and Engineering: C, 76, 944–950.

    Article  CAS  Google Scholar 

  • Werengowska-Ciećwierz, K., WIS Niewski, M., Terzyk, A. P., & Furmaniak, S. (2015). The chemistry of bioconjugation in nanoparticles-based drug delivery system. Advances in Condensed Matter Physics 2015.

    Google Scholar 

  • WHO. (2021). World Health Organization. Who, 2019, 5.

    Google Scholar 

  • Winter, G., & Harris, W. J. (1993). Humanized antibodies. Immunology Today, 14, 243–246.

    Article  CAS  Google Scholar 

  • Xu, S., Cui, F., Huang, D., Zhang, D., Zhu, A., Sun, X., Cao, Y., Ding, S., Wang, Y., Gao, E., & Zhang, F. (2019). PD-l1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. International Journal of Nanomedicine, 14, 17–32.

    Article  CAS  Google Scholar 

  • Yao, H., Jiang, F., Lu, A., & Zhang, G. (2016). Methods to design and synthesize antibody-drug conjugates (ADCs). International Journal of Molecular Sciences, 17.

    Google Scholar 

  • Yu, K., Zhou, Y., Li, Yuhuan, Sun, X., Sun, F., Wang, X., Mu, H., Li, J., Liu, X., Teng, L., Li, Youxin, (2016). Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles. Biomaterials Science, 4, 1219–1232.

    Google Scholar 

  • Zhang, Y., Guo, J., Zhang, X. L., Li, D. P., Zhang, T. T., Gao, F. F., Liu, N. F., & Sheng, X. G. (2015). Antibody fragment-armed mesoporous silica nanoparticles for the targeted delivery of bevacizumab in ovarian cancer cells. International Journal of Pharmaceutics, 496, 1026–1033.

    Article  CAS  Google Scholar 

  • Zhang, X., Liu, J., Li, X., Li, F., Lee, R. J., Sun, F., Li, Y., Liu, Z., & Teng, L. (2019). Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose-Response, 17, 1–12.

    Article  Google Scholar 

  • Zhang, L., Mazouzi, Y., Salmain, M., Liedberg, B., & Boujday, S. (2020). Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications. Biosensors and Bioelectronics, 165.

    Google Scholar 

  • Zhong, S., Ling, Z., Zhou, Z., He, J., Ran, H., Wang, Z., Zhang, Q., Song, W., Zhang, Y., & Luo, J. (2020). Herceptin-decorated paclitaxel-loaded poly(lactide-co-glycolide) nanobubbles: Ultrasound-facilitated release and targeted accumulation in breast cancers. Pharmaceutical Development and Technology, 25, 454–463.

    Article  CAS  Google Scholar 

  • Zimmermann, E., Müller, R. H., & Mäder, K. (2000). Influence of different parameters on reconstitution of lyophilized SLN. International Journal of Pharmaceutics, 196, 211–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council for Scientific and Technological Development (CNPq) (grants # 409362/2018-2; #409352/2018-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josimar O. Eloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Freitas, J.V.B. et al. (2023). Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. In: Almeida de Sousa, Â.M., Pienna Soares, C., Chorilli, M. (eds) Cancer Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-17831-3_5

Download citation

Publish with us

Policies and ethics