Skip to main content

Assays for Monitoring Autophagy in Stem Cells

  • Chapter
  • First Online:
Autophagy in Stem Cell Maintenance and Differentiation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 73))

  • 295 Accesses

Abstract

Macroautophagy (Autophagy hereafter) mediates degradation of cytoplasmic components and organelles via the lysosome in all types of cells including stem cells. It is an evolutionarily conserved process which involves formation of a double membrane, the autophagosome, and is crucial for maintaining homeostasis within the cells. Numerous assays for measuring autophagy (autophagic flux) have been designed and described in detail in Klionsky et al. [72]. However, not all may be suitable for a particular stem cell type, and interpreting the assays is key to understanding autophagy in stem cells. Several researchers use drugs or transcription factors to induce stemness or in differentiation protocols, and it would be prudent to know if the treatments affect autophagy and in what way. This review is an attempt to put together the relevant assays that can be used to monitor autophagy along with the advantages and limitations of each assay. In addition, we also discuss autophagy assays that have been successfully used by researchers in a particular stem cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

A serine/threonine protein kinase

AMPK:

Adenosine 5’monophosphate activated protein kinase

ASC:

Adult stem cells

Atg:

Autophagy-related gene

ATP2A/SERCA:

Sarcoplasmic/endoplasmic reticulum calcium ATPase

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

CLEM:

Corelative light electron microscopy

CMA:

Chaperone-mediated autophagy

CQ:

Chloroquine

ESC:

Embryonic stem cells

ESCRTs:

Escort complexes

FIB-SEM:

Focused ion beam scanning electron microscopy

FIP200:

Focal adhesion kinase family interacting protein of 200 kDa

FOXO3:

Forkhead box transcription factors

FUNDC1:

Fun14 domain containing 1

FYVE:

(Cysteine-rich proteins) Fab1 YOTB Vac1 and EEA1

GABARAP:

Gamma amino butyric acid receptor-associated protein

GFP:

Green fluorescent protein

HSC:

Hematopoietic stem cells

Hsp:

Heat shock protein

LAMP:

Lysosome-associated membrane protein

LC3:

Microtubule-associated protein light chain 3

LIR:

LC3 interacting region

MAP:

Mannose-associated protein

MAPK14:

Mitogen-activated protein kinase

mCherry:

MFruits family of monomeric red fluorescent proteins

MSC:

Mesenchymal stem cells

mtHsp:

Mitochondrial Heat shock protein

mTORC:

Mammalian target of Rapamycin complex

MuSC:

Epithelial/Muscle stem cells

NBR1:

Neighbour of BRCA1 gene protein

P62:

Protein of 62 kDa

PI3K:

Phosphatidyl inositol 3 kinase

Pink1:

PTEN-induced kinase1

RB1CC1:

RB1 inducible coiled-coil protein 1

RFP:

Red fluorescent protein

SEM:

Scanning Electron Microscopy

SNARE:

Soluble NSF attachment protein receptor

SOD2:

Superoxide dismutase2

SQSTM1:

Sequestrosome

STX:

Syntaxin protein

TAX1BP1:

Tax1 binding protein1

TBK1:

TANK binding kinase1

TEM:

Transmission Electron Microscopy

TOMM:

Translocase of outer mitochondrial membrane

TSC:

Tuberous sclerosis protein

Ulk1:

Unc51-like autophagy activating kinase1

UVRAG:

UV Radiation resistance-associated gene

VDAC:

Voltage-dependent anion channel

VPS:

Vacuolar protein sorting

WIPI2:

WD repeat domain phosphoinositide interacting protein

References

  1. Guan JL, Simon AK, Prescott M et al (2013) Autophagy in stem cells. 9:830–849

    Google Scholar 

  2. Chang NC (2020) Autophagy and stem cells: self-eating for self-renewal 8

    Google Scholar 

  3. Klionsky DJ (2011) For the last time, it is GFP-Atg8, not Atg8-GFP (and the same goes for LC3) 7

    Google Scholar 

  4. Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve 4

    Google Scholar 

  5. Ohsumi Y (2014), Historical landmarks of autophagy research

    Google Scholar 

  6. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy 14

    Google Scholar 

  7. Melia TJ, Lystad AH, Simonsen A (2020) Autophagosome biogenesis: from membrane growth to closure

    Google Scholar 

  8. Majeski AE, Fred Dice J (2004), Mechanisms of chaperone-mediated autophagy

    Google Scholar 

  9. Dice JF (2007) Chaperone-mediated autophagy

    Google Scholar 

  10. Jung CH, Jun CB, Ro SH et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery 20:1992–2003

    Google Scholar 

  11. Russell RC, Tian Y, Yuan H et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase 15

    Google Scholar 

  12. Kim J, Kundu M, Viollet B et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 13:132–141

    Google Scholar 

  13. Pengo N, Agrotis A, Prak K et al (2017) A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B 8

    Google Scholar 

  14. Park JM, Jung CH, Seo M et al (2016) The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14 12

    Google Scholar 

  15. Park JM, Seo M, Jung CH et al (2018) ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction 14

    Google Scholar 

  16. Hosokawa N, Sasaki T, Iemura SI et al (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13 5

    Google Scholar 

  17. Papinski D, Schuschnig M, Reiter W et al (2014) Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 Kinase

    Google Scholar 

  18. Satoo K, Noda NN, Kumeta H et al (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy 53

    Google Scholar 

  19. Mizushima N (2020) The ATG conjugation systems in autophagy 63:1–10

    Google Scholar 

  20. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy 36:2503–2518

    Google Scholar 

  21. Sánchez-Wandelmer J, Kriegenburg F, Rohringer S et al (2017) Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation 28

    Google Scholar 

  22. Maruyama T, Noda NN (2018) Autophagy-regulating protease Atg4: structure, function, regulation and inhibition

    Google Scholar 

  23. Yu L, Chen Y, and Tooze SA (2018) Autophagy pathway: Cellular and molecular mechanisms 14

    Google Scholar 

  24. Schaaf MBE, Keulers TG, Vooijs MA et al (2016) LC3/GABARAP family proteins: autophagy-(un)related functions 30

    Google Scholar 

  25. Zhou C, Zhong W, Zhou J et al (2012) Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells 8:1215–1226

    Google Scholar 

  26. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3 3

    Google Scholar 

  27. Erskine D, Koss D, Korolchuk VI et al (2021) Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders 141

    Google Scholar 

  28. Tra T, Gong L, Kao LP et al (2011) Autophagy in human embryonic stem cells 6

    Google Scholar 

  29. Xu Y, Zhang Y, García-Cañaveras JC et al Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells

    Google Scholar 

  30. Chen X, He Y, Lu F (2018), Autophagy in stem cell biology: a perspective on stem cell self-renewal and differentiation

    Google Scholar 

  31. Nguyen TD, Shaid S, Vakhrusheva O et al (2019) Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy 133

    Google Scholar 

  32. Tang AH, Rando TA (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation 33

    Google Scholar 

  33. Fiacco E, Castagnetti F, Bianconi V et al (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles 23

    Google Scholar 

  34. Zhang Q, Gao M, Zhang Y et al (2016) The germline-enriched Ppp1r36 promotes autophagy 6

    Google Scholar 

  35. Chen P, Zhao X, Tian GG et al (2021) C28 induced autophagy of female germline stem cells in vitro with changes of H3K27 acetylation and transcriptomics 766

    Google Scholar 

  36. Li X, Hu X, Tian GG et al (2019) C89 induces autophagy of female germline stem cells via inhibition of the PI3K-Akt pathway in vitro 8:606

    Google Scholar 

  37. Mizushima N, Yamamoto A, Hatano M et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells 7

    Google Scholar 

  38. Warr MR, Binnewies M, Flach J et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells 494

    Google Scholar 

  39. Liu K, Zhao Q, Liu P et al (2016) ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance 12

    Google Scholar 

  40. Xiang G, Yang L, Long Q et al (2017) BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming 13

    Google Scholar 

  41. Zhang Z, Yang M, Wang Y et al (2016) Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway 40

    Google Scholar 

  42. Zhao S, Fortier TM, Baehrecke EH (2018) Autophagy promotes tumor-like stem cell niche occupancy 28:3056–3064.e3

    Google Scholar 

  43. Nilangekar K, Murmu N, Sahu G et al (2019) Generation and characterization of germline-specific autophagy and mitochondrial reactive oxygen species reporters in Drosophila 7

    Google Scholar 

  44. Chung H, Choi J, Park S (2018) Ghrelin protects adult rat hippocampal neural stem cells from excessive autophagy during oxygen-glucose deprivation 65

    Google Scholar 

  45. Orsini M, Chateauvieux S, Rhim J et al (2019) Sphingolipid-mediated inflammatory signaling leading to autophagy inhibition converts erythropoiesis to myelopoiesis in human hematopoietic stem/progenitor cells 26

    Google Scholar 

  46. Wang S, Xia P, Ye B et al (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency 13

    Google Scholar 

  47. Nuschke A, Rodrigues M, Stolz DB et al (2014) Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation 5

    Google Scholar 

  48. Leeman DS, Hebestreit K, Ruetz T et al (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging 359

    Google Scholar 

  49. Gong C, Bauvy C, Tonelli G et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells 32

    Google Scholar 

  50. Ha S, Jeong S-H, Yi K et al (2019) Autophagy mediates astrogenesis in adult hippocampal neural stem cells 28

    Google Scholar 

  51. Jung S, Choe S, Woo H et al (2020) Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits 16

    Google Scholar 

  52. Sênos Demarco R, Uyemura BS, Jones DL (2020) EGFR signaling stimulates autophagy to regulate stem cell maintenance and lipid homeostasis in the drosophila testis 30:1101–1116.e5

    Google Scholar 

  53. Ha S, Jeong S-H, Yi K et al (2017) Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells 292

    Google Scholar 

  54. Singh T, Lee EH, Hartman TR et al (2018) Opposing action of hedgehog and insulin signaling balances proliferation and autophagy to determine follicle stem cell lifespan 46:720–734.e6

    Google Scholar 

  55. Vazquez-Martin A, Haute C van den, Cufí S et al (2016) Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate 8

    Google Scholar 

  56. Xue F, Hu L, Ge R et al (2016) Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation 371

    Google Scholar 

  57. Lieber T, Jeedigunta SP, Palozzi JM et al (2019) Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline 570:380–384

    Google Scholar 

  58. Patterson GH (2002) A photoactivatable GFP for selective photolabeling of proteins and cells 297

    Google Scholar 

  59. Sanchez CG, Penfornis P, Oskowitz AZ et al (2011) Activation of autophagy in mesenchymal stem cells provides tumor stromal support 32

    Google Scholar 

  60. Audesse AJ, Dhakal S, Hassell L-A et al (2019) FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells 15

    Google Scholar 

  61. Maycotte P, Jones KL, Goodall ML et al (2015) Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion 13

    Google Scholar 

  62. Zhang Q, Yang Y-J, Wang H et al (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway 21

    Google Scholar 

  63. Liu P, Liu K, Gu H et al (2017) High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1 24

    Google Scholar 

  64. Rothe K, Lin H, Lin KBL et al (2014) The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells 123

    Google Scholar 

  65. Nazio F, Bordi M, Cianfanelli V et al (2019) Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications

    Google Scholar 

  66. Yazdankhah M, Farioli-Vecchioli S, Tonchev AB et al (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone 5

    Google Scholar 

  67. García-Prat L, Martínez-Vicente M, Perdiguero E et al (2016) Autophagy maintains stemness by preventing senescence 529

    Google Scholar 

  68. Gómez-Sánchez R, Pizarro-Estrella E, Yakhine-Diop SMS et al (2015) Routine Western blot to check autophagic flux: cautions and recommendations 477

    Google Scholar 

  69. Jung M, Choi H, Mun JY (2019) The autophagy research in electron microscopy 49

    Google Scholar 

  70. Yue Z, Jin S, Yang C et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor 100

    Google Scholar 

  71. Ueno T, Komatsu M (2020) Monitoring autophagy flux and activity: principles and applications 42

    Google Scholar 

  72. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy, 4 ed. 1

    Google Scholar 

  73. Chu CT (2010) A pivotal role for PINK1 and autophagy in mitochondrial quality control: Implications for Parkinson disease 19

    Google Scholar 

  74. Zhu J-H, Horbinski C, Guo F et al (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death 170:75–86

    Google Scholar 

  75. Razi M and Tooze SA (2009), Chapter 17 Correlative Light and Electron Microscopy, In Methods in Molecular Biology

    Google Scholar 

  76. Colasuonno F, Borghi R, Niceforo A et al (2017) Senescence-associated ultrastructural features of long-term cultures of induced pluripotent stem cells (iPSCs) 9:2209–2222

    Google Scholar 

  77. Al-Younes HM, Al-Zeer MA, Khalil H et al (2011) Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis 7:814–28

    Google Scholar 

  78. Costantini LM, Baloban M, Markwardt ML et al (2015) A palette of fluorescent proteins optimized for diverse cellular environments 6

    Google Scholar 

  79. Gomes LC, Odedra D, Dikic I et al (2016) Autophagy and modular restructuring of metabolism control germline tumor differentiation and proliferation in C. elegans 12:529–546

    Google Scholar 

  80. Ames K, Cunha DS da, Gonzalez B et al (2017) A non-cell-autonomous role of BEC-1/BECN1/Beclin1 in coordinating cell-cycle progression and stem cell proliferation during germline development 27:905–913

    Google Scholar 

  81. Li M, Hou Y, Wang J et al (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates 286:7327–38

    Google Scholar 

  82. Szeto J, Kaniuk NA, Canadien V et al ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy 2:189–99

    Google Scholar 

  83. Shu X, Shaner NC, Yarbrough CA et al (2006) Novel chromophores and buried charges control color in mFruits 45

    Google Scholar 

  84. Tanida I, Ueno T, Uchiyama Y (2014) A super-ecliptic, phluorin-mkate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy 9

    Google Scholar 

  85. Rosado C, Mijaljica D, Hatzinisiriou I et al (2008) Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast 4

    Google Scholar 

  86. Kaizuka T, Morishita H, Hama Y et al (2016) An autophagic flux probe that releases an internal control 64

    Google Scholar 

  87. Kogure T, Karasawa S, Araki T et al (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy 24

    Google Scholar 

  88. Katayama H, Hama H, Nagasawa K et al (2020) Visualizing and modulating mitophagy for therapeutic studies of neurodegeneration 181

    Google Scholar 

  89. Katayama H, Kogure T, Mizushima N et al (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery 18

    Google Scholar 

  90. Ding S, Hong Y (2020) The fluorescence toolbox for visualizing autophagy

    Google Scholar 

  91. Cho Y-H, Han K-M, Kim D et al (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs 32

    Google Scholar 

  92. Wang C, Chen S, Yeo S et al (2016) Elevated p62/SQSTM1 determines the fate of autophagy-deficient neural stem cells by increasing superoxide 212

    Google Scholar 

  93. Mulakkal NC, Nagy P, Takats S et al (2014) Autophagy in Drosophila: from historical studies to current knowledge 2014

    Google Scholar 

  94. Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 12:213–223

    Google Scholar 

  95. Lerner C, Bitto A, Pulliam D et al (2013) Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts 12:966–977

    Google Scholar 

  96. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice 131:1149–1163

    Google Scholar 

  97. Karanasios E, Stapleton E, Manifava M et al (2013) Dynamic association of the ULK1 complex with omegasomes during autophagy induction 126:5224–38

    Google Scholar 

  98. Itakura E, Kishi C, Inoue K, et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG 19:5360–72

    Google Scholar 

  99. Barve G, Sridhar S, Aher A et al (2018) Septins are involved at the early stages of macroautophagy in S. cerevisiae

    Google Scholar 

  100. Mastorci K, Montico B, Faè DA et al (2106) Phospholipid scramblase 1 as a critical node at the crossroad between autophagy and apoptosis in mantle cell lymphoma 7:41913–41928

    Google Scholar 

  101. Proikas-Cezanne T, Ruckerbauer S, Stierhof Y-D et al (2007) Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy 581:3396–404

    Google Scholar 

  102. Fan W, Nassiri A, Zhong Q (2011) Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L) 108:7769–74

    Google Scholar 

  103. Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER–mitochondria contact sites 495:389–393

    Google Scholar 

  104. Guo S, Liang Y, Murphy SF et al (2015) A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications 11

    Google Scholar 

  105. Ozeki N, Hase N, Hiyama T et al (2017) MicroRNA-211 and autophagy-related gene 14 signaling regulate osteoblast-like cell differentiation of human induced pluripotent stem cells 352

    Google Scholar 

  106. Bavister BD (2006) The mitochondrial contribution to stem cell biology 18

    Google Scholar 

  107. Ye G, Xie Z, Zeng H et al (2020) Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis 11

    Google Scholar 

  108. Wang Y, Zhang Y, Chen L et al (2016) Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans 7:12569

    Google Scholar 

  109. Geisler S, Holmström KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 12:119–131

    Google Scholar 

  110. Djavaheri-Mergny M, Amelotti M, Mathieu J et al (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy 281:30373–82

    Google Scholar 

  111. Wiemer EA, Wenzel T, Deerinck TJ et al (1997) Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules 136:71–80

    Google Scholar 

  112. Farré J-C, Krick R, Subramani S et al (2009) Turnover of organelles by autophagy in yeast 21:522–530

    Google Scholar 

  113. Shiba-Fukushima K, Ishikawa K-I, Inoshita T et al (2017) Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson’s disease

    Google Scholar 

  114. Hemelaar J, Lelyveld VS, Kessler BM et al (2003) A single protease, Apg4B, Is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L 278:51841–51850

    Google Scholar 

  115. Sarkar S, Korolchuk V, Renna M et al (2009) Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates 5:307–13

    Google Scholar 

  116. Tanida I, Minematsu-Ikeguchi N, Ueno T et al (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy 1:84–91

    Google Scholar 

  117. Farkas T, Høyer-Hansen M, Jäättelä M (2009) Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux 5:1018–25

    Google Scholar 

  118. Zappavigna S, Lombardi A, Misso G, et al (2017) Measurement of autophagy by flow cytometry In: Methods in Molecular Biology

    Google Scholar 

  119. Zhang T, Wolfe C, Pierle A et al (2017) Proteome-wide modulation of degradation dynamics in response to growth arrest 114

    Google Scholar 

  120. Liu X, Xiang M-H, Zhou W-J et al (2021) Clicking of organelle-enriched probes for fluorogenic imaging of autophagic and endocytic fluxes

    Google Scholar 

  121. Bernard A, Jin M, Xu Z et al (2015) A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy 11

    Google Scholar 

  122. Zhang Y, Xu X, Hu M et al (2021) SPATA33 is an autophagy mediator for cargo selectivity in germline mitophagy 28:1076–1090

    Google Scholar 

  123. Wang C, Yeo S, Haas MA et al (2017) Autophagy gene FIP200 in neural progenitors non–cell autonomously controls differentiation by regulating microglia 216

    Google Scholar 

  124. Mortensen M, Soilleux EJ, Djordjevic G et al (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance 208

    Google Scholar 

  125. Mikhaylova O, Stratton Y, Hall D et al (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma 21:532–546

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from DBT-Ramalingaswami Fellowship, DST-SERB grant number CRG/2020/002716 and DBT grant number BT/PR/12718/MED31/298/2015 to BS. BVS is affiliated to Savitribai Phule Pune University (SPPU), Pune, India, and is recognized by SPPU as a Ph.D. guide (Biotechnology and Zoology). The authors would also like to thank Director, ARI, and the entire ARI fraternity for facilitating our research activities in the Developmental Biology Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra V. Shravage .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

All the authors declare they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chhatre, A., Shravage, B.V. (2023). Assays for Monitoring Autophagy in Stem Cells. In: Shravage, B.V., Turksen, K. (eds) Autophagy in Stem Cell Maintenance and Differentiation. Stem Cell Biology and Regenerative Medicine, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-031-17362-2_1

Download citation

Publish with us

Policies and ethics