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Abstract. In this paper we make the case for cognitive robotics, that
we consider a prerequisite for next generation systems. We give a brief
account of current cognition-enabled systems, and viable cognitive archi-
tectures, discuss system requirements that are currently not sufficiently
addressed, and put forward our position and hypotheses for the develop-
ment of next-generation, AI-enabled robotics and intelligent systems.
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1 Introduction

Robots, and artificial systems more generally, are gradually evolving towards
intelligent machines that can function autonomously in the vicinity of humans
and interact directly with humans – e.g. drive our cars, work together with
humans, or help us with everyday chores. Current artificial systems are good
at performing relatively limited, repetitive, and well-defined tasks under specific
conditions, however, anything beyond that requires human supervision. At the
moment, it is not quite possible to deploy robots in new environments, broaden
the scope of their operation, and allow them perform diverse tasks autonomously,
as systems are not versatile, safe, nor reliable enough for that. Pre-programmed
and pre-configured robots lack the ability to adapt, learn new tasks, and adjust
to new domains, conditions, and missions.

Cognitive robotics is a multidisciplinary research field that has gained
increased interest recently as it has become apparent that an advanced system
architecture is a prerequisite for progressing from specialized “caged” systems
to real-life autonomous systems [10]. Cognition encompasses the mental func-
tions by which knowledge is acquired, retained, and used: perception, learning,
memory, and thinking [25]. In humans, it encompasses processes such as judg-
ment and evaluation, reasoning and computation, problem solving and decision
making, comprehension, and production of language.

In order to realize such functionality in artificial systems, one needs to define
an architecture that describes and governs these processes. Such system archi-
tectures are inspired by human cognition. They comprise the necessary modules
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for taking care of individual processes at many levels, and for overall system
operation, as well as define the way information flow takes place for knowledge
acquisition, reasoning, decision making, and detailed task execution. Ideally, a
cognitive robot shall be able to abstract goals and tasks, combine and manip-
ulate concepts, synthesize, make new plans, learn new behaviour, and execute
complex tasks - abilities that at the moment only humans acquire, and lie in the
core of human intelligence. Cognitive robots shall be able to interact safely and
meaningfully and collaborate effectively with humans. Cognition-enabled robots
should be able to infer and predict the human’s task intentions and objectives,
and provide appropriate assistance without being explicitly asked [24].

In this article we present work in progress, and our approach to cognitive
robotics for next-generation systems. Our approach builds on two hypothe-
ses/positions: i) Artificial Intelligence requires a robust cognitive architecture
in order to become intelligent enough to be deployed in real-life systems in the
vicinity of humans – interacting safely and meaningfully, and collaborating with
humans. ii) Artificial cognitive systems need to encompass some of the processes
of the right hemisphere of the human brain - such as holistic evaluation, holistic
perception, intuition, imagination, and moral evaluation and reasoning.

We elaborate on these in this paper that is organized as follows. Firstly, we
give an account of current cognition-enabled systems in Sect. 2. In Sect. 3 we
outline a selection of cognitive architectures, and then proceed to presenting our
approach and positions in Sect. 4. Finally, we conclude in Sect. 5.

2 Cognition-Enabled Robotics

Artificial cognitive systems are nowhere near human cognition at the moment,
however, isolated narrow-scope cognitive functionality has been implemented
in robotic systems to enable their operation. Cognition can be visualized as
a pyramid [40] (Fig. 1) that models the flow of sensory input and information
to realise cognitive functions and processes. The main cognitive processes are
[3]: Attention, Language, Learning, Memory, Perception, Thought, and Emotion.
Simpler processes, mostly related with behavioral elements closest to the sensory
input, are at the base of the pyramid. As we move towards the top of the pyramid,
more advanced and complex cognitive processes are found.

Perception is important for cognition as it provides agents with relevant infor-
mation from their environment. A plethora of sensors are exploited in current
systems, ranging from sensors simulating human senses (cameras, microphones
etc.) [7,11], to ambient sensors and IoT devices [9]. Beyond simple object recog-
nition, advanced perception attempts to analyze the whole scene and reason on
the content of the scene [31]. Scene understanding has been used for knowledge
acquisition in ambiguous situations [23].

Language-based cognitive capability has been shown to promote interaction,
communication and understanding of abstract concepts [16]. Robots able to
express thoughts and actions allow a better cooperation with humans [44]. An
agent with the ability to summarize its actions and gain new knowledge has been
demonstrated [14].
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Fig. 1. Objective pyramid of cognition [40].

Learning is the core function of a cognitive system [34]. Agents can learn
from expert demonstration through Imitation Learning [17], an approach that
is under development. Transfer Learning is another common approach that also
allows training in a simulated or protected environment [22]. Learning is cur-
rently closely woven with sensory-motor inputs and outputs, data processing,
and perception, hence primarily limited to the lower layers of the cognition
pyramid (Fig. 1).

The pinnacle of cognition is thinking, reasoning, decision making, planning.
Reactive architectures are part of higher cognition as they affect the decision and
thought process [45]. Planning and decision-making can benefit from cognition-
enabled agents. Reasoning on a recognized scene allows robots to calculate an
optimal path by accurately localizing itself, the goal and obstacles or dangerous
areas [30]. Safety rules applied on a robot and the ability to recognize areas
of potential hazard, promote a safe environment both for the robot and the
humans [43]. A holistic approach to thinking with human-like cognitive reasoning
and decision making processes, is far from realised, and thought processes are
relatively basic at the moment.

Social robots can greatly benefit from emotional cognition [16]. Robots with
the ability to recognize and express emotions (anthropomorphism) promote an
easier and more effective interaction with humans [38], and robots that express
empathy have been shown to help humans alter negative feelings to positive ones
[5,21].

3 Cognitive Architectures

Modeling human cognition has led to the formal definition of cognitive archi-
tectures. Although first order logic approaches [20] allowed the gradual refine-
ment of the performed actions, agents continued to lack the ability to merge new
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Fig. 2. A schematic of ACT-R (a) and KnowRob 2.0 (b) architectures.

information with existing beliefs. This led to the proposal of more complex archi-
tectures. A selection of often used cognitive architectures is briefly introduced
here (Fig. 2).

A commonly used architecture is ACT-R [2] where knowledge is divided
based on the type of information (facts or knowledge on how to do things). Each
component is accessed via a dedicated buffer, and the contents of these buffers
represent the state of the world. ACT-R is based on productions, i.e. “IF” -
“THEN” rules. When the current state of the world matches the precondition
(using a pattern matcher module), the rule is triggered executing the relevant
action. Productions, when executed, alter the state of the buffers and hence the
state of the system.

A more detailed representation of human cognition is attempted by LIDA
(Learning Intelligent Distribution Agent) cognitive architecture [18,19]. LIDA
assumes that cognition functions on cycles with distinct phases. The first phase
is perception and understanding allowing the agent to perceive the world and
update the understanding of the current state. The next phase is the attention
phase, where information is filtered, and the conscious content is broadcasted,
followed by the action and learning phase.

The KnowRob 2.0 architecture [4] is designed specifically for robots, allowing
them to perform complex tasks. At the core of the architecture are the ontologies
(a subject’s properties and relationships) and axioms (rules a priori true). A
photorealistic representation of the environment is used for reasoning, allowing
the agent to simulate its actions. Actions are stored as episodes allowing recall
or knowledge transfer.

Several cognitive architectures can be considered for artificial cognition, and
are extensively studied and presented by BICA [1]. In addition to the above
architectures, SOAR [26], Icarus [27], and Clarion [39] are often used.
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4 Position

Artificial cognitive architectures try to imitate human cognition - the epitome of
cognitive systems. Some of the cognitive architectures – such as ACT-R, SOAR,
LIDA – are primarily an attempt to model human cognition; whereas others – e.g.
KnowRob – are inspired by human cognition but aim primarily at an architecture
for artificial cognition. Cognitive architectures are progressing and gradually
moving closer to human cognition, however, there is still huge uncharted ground,
and a long way to go.

Semantic scene understanding, and holistic perception are only to a very
basic extent realised thus far, merely at a proof-of-concept level, and there is
considerable scope for further development in this area.

The importance of language in cognition was identified in early studies. Cog-
nitive structures and capabilities are affected by language [8,37]. Despite the
huge advances in speech analysis, translation, and synthesis, language is cur-
rently merely incorporated as an input/output interface in robotic systems, and
is hardly included in any of the artificial cognitive processes [14,44].

Emotions have only recently been recognized as a part of cognition in humans
[28,32,41] as they have previously been considered as innately hardwired into
our brains. In LIDA, emotions are expressed as nodes that when triggered lead
to experiencing the corresponding emotion. This is important in particular for
good interaction between artificial systems and humans [13,38]. However, emo-
tions are not incorporated in the thought process in any of the architectures or
implementations, whereas in humans they often play a central role in decision
making.

Currently robots are not explicitly ethical, and lack moral judgement. Ethical
and moral rules have been used to that end as they can potentially affect both
the acceptance of robotic applications and robotic decision making [29,33]. Norm
violation may decrease human trust in an agent, therefore the agent should
alter or completely discard a plan if it goes against moral values [6,12]. A fair
amount of work has been done on moral reasoning and logic [15,42]. Nevertheless,
moral reasoning and evaluation is not yet incorporated in cognitive architectures,
neither is it an integral part of a holistic decision process. Although ethics and
moral values may not be considered as part of cognition directly, in fact they
play an important role in human decision making, govern human behavior, and
will be instrumental for developing responsible robots.

Another relatively neglected area is artificial curiosity and imagination. While
KnowRob 2.0 implements a basic form of imagination to anticipate outcomes as
robots imagine the effect of their actions in their inner world representation, it is
only associated to sensory-motor action and planning. Innate curiosity for explo-
ration, global optimization, and knowledge acquisition is not explicitly accounted
for in any of the reviewed architectures. This ability is critical for robots operat-
ing autonomously in unknown environments, and will allow them to effectively
solve tasks even when their knowledge is not complete, and there is no human
to provide the necessary information [35,36].
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Moreover, current cognitive systems do not explicitly account for ingenuity.
Ingenuity is the ability to employ tools or existing knowledge and use them
to solve new problems in new unrelated domains. This will require complex
abstraction, and synthesis of knowledge and skills. This ability will enable artifi-
cial agents to solve complex problems, and invent good solutions even when they
do not have all required knowledge, sufficient experience, or the optimal tools at
their disposal.

The human brain comprises two interconnected hemispheres – the left and
the right – that have distinct functions and operate in different ways. The left
hemisphere stands for linear thinking, detail-oriented perception, facts process-
ing, computations, language processing, planning, logic. The right hemisphere
stands for holistic thinking, holistic perception, intuitive thinking, imagination,
creativity, emotional and moral evaluation. Current models of human cognition
are computational in nature and represent primarily the functions of the left
hemisphere. The operation and processes of the right hemisphere are by far
less understood, and they are not explicitly included in the models of human
cognition, let alone in robotic systems.

Our approach to attending to the above challenges in order to develop next
generation robotics and intelligent systems, builds upon two main hypotheses/
positions:

i) Artificial Intelligence requires a robust cognitive architecture in order to be
deployed in real-life autonomous systems in the vicinity of humans - interact-
ing safely and meaningfully, and collaborating with humans. This hypothesis
is not controversial as such, however, there is not enough awareness around
this in the robotics community. Research and development in Robotics and
intelligent systems has mainly targeted specific tasks and functionality - e.g.
navigation, specific skill learning, etc. - rather than the overall systems archi-
tecture.

ii) In order to progress to the next level, artificial cognitive systems need to
encompass some of the processes of the right hemisphere of the human brain
– such as holistic evaluation, holistic perception, intuition, imagination, and
moral evaluation and reasoning. This is a novel hypothesis, and needs to
be proven. Our approach is to show the importance of this approach by
demonstrating it in systems with superior performance.

5 Summary

In this paper we have made the case for cognitive robotics and presented our app-
roach to next generation advanced systems. We have given an overview of human
cognition, an account of cognition-enabled systems and the state of the art, and
a brief outline of a selection of cognitive architectures that can lend themselves
to artificial cognition. The validity of our approach remains to be demonstrated.
Artificial cognitive systems are emerging, and currently at a rather early stage of
development. In our opinion, they are the cornerstone towards next generation
advanced robotics, the key to unlocking the potential of robots and artificial
intelligence, and enabling their use in real-life applications.
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