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Abstract

This paper describes a comprehensive online database of
giant landslides on volcanic islands compiled by
researchers from the Institute of Rock Structure and
Mechanics, Czech Academy of Sciences, in the frame-
work of IPL Project 212. The database was constructed
from 2016 to 2018. It comprises a total of seventy-five
events from the Atlantic Ocean and Mediterranean Sea,
sixty-seven events from the Pacific Ocean, and forty
events from the Indian Ocean. In this paper some of the
main benefits of landslide inventories and thematic
databases are outlined and the global distribution of giant
landslides on volcanic islands is described in depth. The
database is hosted on the website of the Institute of Rock
Structure & Mechanics and records can be downloaded as
a spreadsheet or kml file for integration in a number of
geospatial programs including ArcGIS and Google Earth.
However, since completion of the database in 2018, a
number of potentially significant studies of giant land-
slides on volcanic islands have been published from
archipelagos in the Atlantic and Pacific Oceans while
outstanding modern analogues for past events are repre-
sented by the collapse of Anak Krakatau on 22 December
2018 and the collapse of Hunga Tonga-Hunga Haʻapai on
15 January 2022. Consequently, the recent literature will
be scrutinized with the aim of updating information
already contained in the database while two new layers
are planned: the first of these will provide information
about recent volcanic collapses and the second will
provide information about the long-term instrumental
monitoring of giant landslides. It is intended that the
second release of the database will be available online in
early 2023.
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1 Introduction

In the 1960s it was shown that the Hawaiian Ridge hosted a
pair of giant landslides (Moore 1964) but the geomorpho-
logical evidence used to document these events was not
greeted with universal enthusiasm (Langford and Brill
1972). Not only were the original observations corroborated
by later research but it has become clear that the vast
majority of volcanoes are prone to episodes of slope insta-
bility and subsequent structural failure (McGuire 1996).
Indeed it is now known that the structural failure of a vol-
cano can create some of the largest landforms generated in a
single geological moment (Whelan and Kelletat 2003).
Instability may be caused by magma emplacement, periph-
eral erosion, the overloading of slopes, or the oversteepening
of slopes while subsequent failure may be triggered by a
suite of climatic, magmagenic, or seismogenic processes
(McGuire 1996). The potential for instability may be
increased on oceanic island volcanoes due to edifice
spreading along weak sedimentary horizons or in response to
seaward creeping masses of olivine cumulate (Fig. 1). In
many instances, it is probable that more than one preparatory
factor is operating prior to the initiation of a specific trigger.

The seafloors and subsurfaces of numerous volcanic
archipelagos have now been imaged in unprecedented detail
thanks to advances in a range of geophysical techniques such
as single and multibeam echo sounders, sidescan sonar, and
reflection and refraction seismic surveys (e.g. Crutchley and
Kopp 2018; Hughes Clark 2018; Klaucke 2018). Giant
landslides on volcanic islands transport hundreds of thou-
sands of cubic metres to hundreds of cubic kilometres of
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material and create arcuate embayments and steep cliffs
(Fig. 2). Through time these features are degraded by ero-
sion and partially or completely hidden by further volcan-
ism. Their deposits can be transported for hundreds of
kilometres and can extend over areas of many hundreds of
square kilometres (Masson et al. 2002). In the sea, these
accumulations are often well preserved but they tend to lie at
considerable depths so investigating their internal structure
requires access to—usually proprietary—borehole data.
Consequently, giant landslides on volcanic islands remain
among the most poorly studied types of terrestrial landslide
despite their global distribution and potential to generate
catastrophic failures and tsunamis (Day et al. 2015; Ramalho
et al. 2015).

Insufficient information pertaining to the internal struc-
ture of giant landslides on volcanic islands means that such
events are poorly defined. They are usually interpreted as
either debris avalanches or slumps; debris avalanches are

thought to reflect a sudden single catastrophic event while
slumps are thought to reflect protracted slope deformation.
Evidence for both of these end members are sometimes
found in a single archipelago, occasionally even on a single
volcanic edifice, such as on the main island of Hawaiʻi and
on El Hierro in the Canary Islands. Furthermore, some debris
avalanches have been reinterpreted as multistage collapses
(Hunt et al. 2013) while some slumps present evidence for
recurring periods of rapid slip (Blahůt et al. 2020). It is also
possible that structural failure then triggers an eruption in
much the same way as was seen on Mount Saint Helens in
May 1980. In such a scenario, evidence for the initial
structural failure could disappear almost instantaneously.
There is also the possibility that slumps transition into
catastrophic debris avalanches but no unequivocal evidence
for this has yet been recognised.

Until recently, information about giant landslides on
volcanic islands had not been rationalised into a single
online resource. Here an outline of the first comprehensive
global database of giant landslides on volcanic islands is
presented. The database was compiled over a three year
period from 2016 to 2018: the first year concentrated on
investigating events in the Atlantic Ocean; the second year
concentrated on investigating events in the Pacific Ocean;
and the third year concentrated on investigating events in the
Indian Ocean. In this paper, attention focuses, first, on the
benefits of landslide inventories and thematic databases,
second, on the global distribution of giant landslides on
volcanic islands and, third, on plans to update the database
and implement some changes. It is hoped that the database
will be used by the research community to investigate the
spatial and temporal distribution of such landslides, to
investigate their morphometric characteristics in more detail,
and to assess the hazard and potential risks posed by future
events. The complete database is available at: https://www.
irsm.cas.cz/ext/giantlandslides.

Fig. 1 Factors contributing towards the development of structural
instability at active volcanoes (modified from McGuire 1996)

Fig. 2 An example of an arcuate
embayment and steep cliffs
formed by a giant landslide on a
volcanic island: the Las Playas
debris avalanche on El Hierro in
the Canary Islands (photograph
by Jan Klimeš)
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2 Landslide Inventories and Thematic
Databases

Landslide inventories and thematic databases provide
essential information needed to assess the spatial and tem-
poral distribution of landslides, their preparatory factors and
triggers, and their negative societal impacts (Guzzetti et al.
2012). The scope of such inventories and databases can be
regional (Blahůt et al. 2012; Strozzi et al. 2018) or global
(Kirschbaum et al. 2010; Froude and Petley 2018) or it can
extend beyond the Earth to cover extraterrestrial bodies such
as Mars (Brunetti et al. 2014; Crosta et al. 2018). Despite
their importance, it is sometimes difficult to access infor-
mation about landslide databases in terms of, for example,
their completeness, format, and structure and such infor-
mation is necessary in order to be able to generate reliable
susceptibility, hazard, and risk assessments (Van Den
Eeckhaut and Hervás 2012). Nonetheless, in many instances
the rapid preparation of more reliable and relevant landslide
inventories is being facilitated by advancing technologies
coupled with data mining from media reports (e.g. Kreuzer
and Damm 2020; Franceschini et al. 2022) or social net-
works (e.g. Pennington et al. 2015; Juang et al. 2019).

There is still the fundamental issue that landslide inven-
tories have only been prepared for a small proportion of the
globe. In terrestrial settings, it has been estimated that
inventory mapping covers only around one percent of the
total land surface (Guzzetti et al. 2012). In submarine set-
tings, this figure is thought to be lower, in light of the fact
that more than three quarters of the seafloor is still not
mapped at a resolution of 1 km (Jakobsson 2020). However,
there are an increasing number of inventories and databases
that have focused on compiling information about submarine
landslides (Camerlenghi et al. 2010; Urlaub et al. 2013;
Gamboa et al. 2021). These are particularly useful because
such landslides have the potential to cause devastating tsu-
namis in coastal regions far from the triggering event.
However, due to the financial and time constraints associated
with seafloor mapping, there is a tendency for submarine
landslide inventories to come from regions of high economic
importance (Chaytor et al. 2009; Katz et al. 2015). It is
anticipated that in the future an increasing number of giant
landslides will be recognised in more remote, less prosper-
ous volcanic islands such as those in the Subantarctic.

3 Database Structure

The term giant landslide is used here to refer to any mass
movement whose main body can be defined with some
degree of confidence and whose volume is in the order of
cubic kilometres while the term volcanic island is restricted

to only those islands whose origins are entirely volcanic
(Blahůt et al. 2018a, 2019). The majority of the information
found in the database has been sourced from peer reviewed
scientific publications—both manuscripts and book chapters
—while a small proportion comes from other sources such
as professionals reports and technical documents. This
information has been supplemented by insights gleaned from
altimetric and bathymetric models. For the European islands
—including those that comprise the autonomous community
of Spain, the Canary Islands, and those that comprise the two
autonomous regions of Portugal, Azores and Madeira—al-
timetric data were obtained from the Shuttle Radar Topog-
raphy Mission (SRTM 2019) and bathymetric data were
obtained from the European Marine Observation & Data
Network (EMODNET 2019). In all other cases—including
the French overseas department of La Réunion—the alti-
metric data and the bathymetric data were obtained from the
Global Multi Resolution Topography (GMRT 2019). To
define the spatial characteristics of each giant landslide it has
been necessary to georeference published maps using Arc-
GIS. The georeferenced maps have been subjected to rig-
orous accuracy assessments prior to inclusion of the data in
the database (Fig. 3). A complete list of all the parameters
included in the database is presented on Table 1.

4 Global Distribution

4.1 North Atlantic Ocean

In the North Atlantic Ocean, giant landslides have been
recognised in the archipelagos of Madeira, the Azores, the
Canary Islands, the Cape Verde Islands, and the Lesser
Antilles (Fig. 4). The database includes eight events from the

Fig. 3 Flow diagram outlining our approach to construction of the
giant landslides on volcanic islands database (modified from Blahůt
et al. 2018a)
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volcanoes of Madeira. Seafloor mapping of this region has
been performed using multibeam echosounder. Four giant
landslides are known from the main island of Madeira while
two are known from each of the islands of Desertas and Porto
Santo (Quartau et al. 2018). The database includes five events
from the volcanoes of the Azores. Seafloor mapping of this
region has also been performed using multibeam echo-
sounder. Four giant landslides are known from the island of
Pico (Costa et al. 2014; Omira et al. 2016) and one is known
from the island of São Miguel (Sibrant et al. 2015).

The database includes thirty two events from the volca-
noes of the Canary Islands. Seafloor mapping of this region
has been performed using side scan sonar and multibeam
echosounder. Nine giant landslides are known from the
island of La Gomera, seven are known from El Hierro, seven
are known from Tenerife, four are known from Gran
Canaria, three are known from La Palma, and one is known
from each of the islands of Fuerteventura and Lanzarote
(Carracedo et al. 1999; Urgeles et al. 1999; Gee et al. 2001;
Krastel et al. 2001; Masson et al. 2002; Acosta et al. 2003;
Ancochea et al. 2006; Casillas et al. 2010; Dávila Harris
et al. 2011; Hunt et al. 2011; Boulesteix et al. 2013; Hunt
et al. 2014; Becerril et al. 2016; León et al. 2017).

Table 1 Data compiled in the
giant landslide on volcanic island
database. Uncertainties in these
data are described in more detail
elsewhere (Blahůt et al. 2019)

Name The name of the giant landslide

Island The name of the volcanic island hosting the landslide

Archipelago The name of the archipelago to which the island belongs

Type The type of mass movement according to the source document

Island age The age—often given as a range—ascribed to the volcanic edifice

Island age: mean The mean of the age range ascribed to the volcanic edifice

Source Source document or documents used for georeferencing the landslide

Bathymetric method Method used to create the maps in the source document(s)

Landslide age The age—often given as a range—ascribed to the landslide

Landslide age: mean The mean of the age range ascribed to the landslide

Total volume The volume—often given as a range—ascribed to the landslide

Volume: mean The mean of the volume range ascribed to the landslide

Area The area of the landslide derived from the georeferenced map

Width The width of the landslide derived from the georeferenced map

Length The length of the landslide derived from the georeferenced map

Perimeter length The perimeter length of the landslide derived from the georeferenced map

W—gHM (J) The potential energy of the landslide (see Blahůt et al. 2019)

Hmax Maximum elevation of the landslide derived from the georeferenced map

Hmin Minimum elevation of the landslide derived from the georeferenced map

DH The fall height of the landslide derived from the georeferenced map

Complete Is a complete outline of the areal extent of the landslide defined

H/L The apparent friction coefficient of the landslide

Mean slope The mean gradient of the landslide

L/H The relative runout of the landslide

Fig. 4 Distribution of giant landslides on volcanic islands from the
Atlantic and Indian Oceans. Global relief model derived from Global
Bathymetry and Topography at 15 Arc Sec: SRTM15 + V2.1 (Tozer
et al. 2019)
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The database incorporates twelve events from the volca-
noes of Cape Verde. Seafloor mapping of this region has
been performed using multibeam echosounder. Four giant
landslides are known from each of the Barlavento Islands of
Santo Antão and São Nicolau, two are known from the
Sotavento Island of Fogo, one is known from the Barlavento
Island of São Vicente, and one is known from the Sotavento
Island of Santiago (Le Bas et al. 2007; Masson et al. 2008).
In addition, the database incorporates thirteen events from
the volcanoes of the Lesser Antilles. Seafloor mapping of
this region has also been performed using multibeam echo-
sounder. Seven giant landslides are known from the Leeward
Island of Montserrat, three are known from the Windward
Island of Martinique, and one is known from each of the
Windward Islands of Dominica, Santa Lucia, and St Vincent
(Deplus et al. 2001; Brunet et al. 2016; Coussens et al.
2016).

4.2 Mediterranean Sea

In the Mediterranean Sea giant landslides have been recog-
nised in the Aeolian Islands and the Cyclades (Fig. 4).
Seafloor mapping around the Aeolian Islands has been per-
formed using side scan sonar and multibeam echosounder
while it has been performed using multibeam echosounder
around the Cyclades. From the Aeolian Islands, one giant
landslide is known from the island of Stromboli (Romagnoli
et al. 2009). From the Cyclades, two giant landslides are
known from the island of Santorini (Hooft et al. 2017).

4.3 South Atlantic Ocean

In the South Atlantic Ocean, giant landslides have been
recognised in the archipelagos of Tristan da Cunha and the
South Sandwich Islands (Fig. 4). Seafloor mapping around
Tristan da Cunha has been performed using side scan sonar
while multibeam echosounder has been used around the
South Sandwich Islands. From Tristan da Cunha, one giant
landslide is known from the main island of Tristan da Cunha
(Holcomb and Searle 1991). From the South Sandwich
Islands, one giant landslide is known from the Traversay
Island of Zavodovski (Leat et al. 2010).

4.4 Indian Ocean

In the Indian Ocean giant landslides have been recognised in
the Mascarenhas Archipelago (Fig. 4). The database
includes forty events from the island of La Réunion (Oehler
et al. 2008). Seafloor mapping of this region has been per-
formed using deep tow side scan sonar and multibeam

echosounder. No other volcanic edifice is thought to have
hosted so many giant landslides and yet these are the only
events hitherto identified in the Indian Ocean.

4.5 Northern Pacific Ocean

In the northern Pacific Ocean giant landslides have been
recognised in the Aleutian Arc—including Alaska—and in
the Hawaiian Islands (Fig. 5). The database includes four
events from Alaska and nine events from the volcanoes of
the Aleutian Arc. Seafloor mapping around Alaska has been
performed using multibeam echosounder while side scan
sonar and multibeam echosounder has been used around
other parts of the Aleutian Arc. From Alaska, four giant
landslides are known from Augustine Island (Begét and
Kienle 1992; Waythomas et al. 2006). From the Aleutian
Arc, three giant landslides are known from the Delarof
Island of Gareloi, one is known from each of the Rat Islands
of Kiska and Segula, and one is known from each of the
Andreanof Islands of Great Sitkin, Bobrof, Kanaga, and
Tanaga (Coombs et al. 2007).

The database includes nineteen events from the volcanoes
of the Hawaiian Islands. Seafloor mapping in this region has
been performed using side scan sonar. Eleven giant land-
slides are known from the main island of Hawaiʻi, three are
known from the island of Oʻahu, two are known from the
island of Kauaʻi, and one is known from each of the islands

Fig. 5 Distribution of giant landslides on volcanic islands from the
Pacific Ocean. Global relief model derived from Global
Bathymetry and Topography at 15 Arc Sec: SRTM15 + V2.1 (Tozer
et al. 2019)
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of Lanaʻi, Maui, and Molokaʻi (Lipman et al. 1988; Moore
et al. 1989, 1994; McMurtry et al. 2004). The inventory of
giant landslides on the Hawaiian Islands is exceptional in the
sense that it includes the only instance of a sandrubble flow
—from the island of Hawaiʻi—as well as seven slumps from
three different islands—five from the island of Hawaiʻi, one
from Maui, and one from Oʻahu.

4.6 Southern Pacific Ocean

In the southern Pacific Ocean giant landslides have been
recognised in the Bismarck Archipelago and in French
Polynesia (Fig. 5). The database incorporates thirteen events
from the volcanoes of the Bismarck Archipelago. Seafloor
mapping in this region has been performed using side scan
sonar and multibeam echosounder. Two giant landslides are
known from each of the Madang Province islands of Crown
and Karkar, one is known from the Madang Province island
of Manam, one is known from each of the East Sepik Pro-
vince islands of Bam and Kadovar, one is known from each
of the Morobe Province islands of Ritter, Sakar, Tolokiwa,
one is known from each of the West New Britain Province
islands of Garove, Lolobau, and New Britain (Silver et al.
2009; Day et al. 2015).

The database includes twenty-two events from the vol-
canoes of French Polynesia. Seafloor mapping in this region
has been performed using single beam and multibeam
echosounder. From the Austral Islands, four giant landslides
are known from Rūrutu Island, three from Tupuaʻi Island,
three from Ra’ivāvae Island, and two from Rimatara Island
(Clouard and Bonneville 2004). From the Society Islands,
three giant landslides are known from the Leeward Island of
Bora Bora, two from the Leeward Island of Raiatea, two
from the Leeward Island of Taha’a, one from the Leeward
Island of Tupai (Clouard and Bonneville 2004) along with
two from the Windward Island of Tahiti (Clouard et al.
2001; Hildenbrand et al. 2006).

5 Future Plans for the Database

More than three years have passed since the full database of
giant landslides on volcanic islands first appeared as an
online resource. On the basis of information contained in the
database, it has been possible to investigate the basic mor-
phometric characteristics of the giant landslides and the
relationships that exist between these characteristics (Blahůt
et al. 2019). Until now, the database has not helped to shed
any light on the association between giant landslides and
megatsunamis, while the information contained in the data-
base has not yet been used as part of a susceptibility, hazard,
and risk assessment.

In the intervening period, important new research on giant
landslides has been published from many parts of the Atlantic
Ocean including Cape Verde (Martínez-Moreno et al. 2018;
Barrett et al. 2020; Cornu et al. 2021), the Azores (Hilden-
brand et al. 2018; Marques et al. 2020, 2021), the Canary
Islands (Coello-Bravo et al. 2020), and the Lesser Antilles
(Solaro et al. 2020) as well as the Bismarck Archipelago in
the Pacific Ocean (Watt et al. 2019). Moreover, the collapse
of Anak Krakatau on 22 December 2018 stimulated much
research (Williams et al. 2019; Grilli et al. 2019, 2021; Hunt
et al. 2021; Cutler et al. 2022) and it is anticipated that the
collapse of Hunga Tonga-Hunga Haʻapai on 15 January 2022
will provide the impetus for many new studies. Conse-
quently, this feels like an auspicious time to update the global
giant landslides on volcanic islands database.

First, the recent literature will be scrutinised with the aim
of updating the information already contained in the data-
base. Second, two new layers will be added. The first of
these layers will provide information about recent volcanic
collapses such as those of Anak Krakatau and Hunga
Tonga-Hunga Haʻapai. Synthesising information about these
events is important because they represent outstanding
analogues for past collapses. The second of these layers will
provide information about the long term monitoring of giant
landslides on volcanic islands through direct instrumental
methods such as dilatometric gauges (Blahůt et al. 2017,
2018b) and GNSS (Owen et al. 2000; Hildebrand et al.
2012). Such monitoring is important because it serves to
verify remote sensing observations, which could be espe-
cially helpful in relation to hazard assessment. It is intended
that the second release of the giant landslides on volcanic
islands database will be available online in early 2023.

6 Conclusions

Landslide inventories and thematic databases provide essential
information needed to assess the spatial and temporal distri-
bution of landslides, their preparatory factors and triggers, and
their negative societal impacts. In this paper, an online database
of giant landslides on volcanic islands has been described. The
database was constructed from 2016 to 2018 and comprises a
total of seventy-five events from the Atlantic Ocean and
Mediterranean Sea, sixty-seven events from the Pacific Ocean,
and forty events from the Indian Ocean. However, there is now
a clear need to update the existing database in light of poten-
tially significant recent research from archipelagos in the
Atlantic and Pacific Oceans coupled with major collapses on
Anak Krakatau and Hunga Tonga-Hunga Haʻapai. Two new
layers will provide information about recent volcanic collapses
and the long-term instrumental monitoring of giant landslides.
The second release of the database should be available online in
early 2023.
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