
Chapter 9
Spin Codes

Vahid Ranjbar

Abstract This chapter reviews the approaches to numerically integrate the spin-
orbit and how they are applied in several spin codes.

9.1 Overview of Codes

Along with theoretical developments and polarized beam studies at the weak
focusing synchrotron ZGS (polarized proton beams were produced from 1973) and
at the strong focusing synchrotron Saturne 2 (proton and light ion beams, from
1981), a number of spin tracking techniques have been devised over the years along
with the design and operation of polarized beam facilities.

Early computer codes were based on matrix transport techniques, two early
instances were lattice design and spin dynamics studies for polarized ion beams
at Saturne 2 and its synchrotron injector Mimas [1], for electron beams accounting
for synchrotron radiation at SPEAR [2]. Numerical integration of the equations of
motion was later resorted to and allowed solving spin motion in arbitrary fields,
and to high order in particle coordinates, so allowing accurate treatment of spin
motion in special devices such as snakes and in field maps [3, 4]. With the increased
interest in polarized beams and the design and construction of accelerator facilities,
a number of analytical methods have been developed and used in spin codes.
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Indications regarding possible spin dynamics capabilities of existing beam optics
codes may be found in accelerator codes repositories [5, 6].

There are several direct spin-orbit tracking codes freely obtainable at the time
of this writing. These can be categorized based on their method of numerical
integration, order of accuracy, and also their inclusion of radiative effects necessary
when considering electron spin tracking.

• Bmad [7] is a Fortran 2008 platform which can make use of several different
spin-orbit tracking algorithms. These include Runge-Kutta style and Symplectic
PTC style orbit integrators. It reads lattices written using MAD like syntax
and can be run exploiting multi-threading with certain restrictions. It is well
documented and maintained. It has recently been used to help model several of
the future Electron-Ion Collider lattices including the Electron Storage Ring and
the Rapid Cycling Synchrotron.

• COSY Infinity [8] uses a differential algebraic method to generate transfer maps
for both orbit and spin. It accomplishes this by generating derivatives to arbitrary
order using automatic differentiation [9]. It includes higher-order nonlinearities,
normal form analysis, and symplectic tracking. It has been used for instance to
support Electric Dipole Moment lattice simulations at COSY [10].

• GPUSPINTRACK: a symplectic drift-kick, bend-kick and matrix-kick integra-
tor [11] (see Sect. 9.5).

• SITROS [12] was used at the HERA e-p collider, it was developed in the
early 1980s by Jorg Kewisch and updated in the 1990s and early 2000s. It
tracks a group of electrons or positrons through the lattice and applies radiative
kicks using a Monte-Carlo style algorithm to simulate the radiative effects on
longitudinal dynamics and spin. It first performs orbital tracking to generate an
equilibrium phase space distribution, later spin tracking is included. To speed
up the tracking time transfer maps are developed for whole sections of the ring
instead of tracking element by element. It is used today to model aspects of the
spin dynamics and compute polarization life-time in the EIC Electron Storage
Ring [13].

• SPINK: a symplectic kick based first order integrator [14] (see Sect. 9.4).
• SPRINT performs multi-turn spin-orbit tracking for linearized orbital motion,

but fully nonlinear spin motion and all orders of resonance [15].
• Zgoubi: Taylor based integrator, handles .E and .B fields, includes radiative

effects. Degree of non-symplecticity inherent to truncated Taylor series is mostly
controlled by the integration step size [16] (see Sect. 9.3).

Then there are several reduced spin tracking codes which integrate a reduced
form the T-BMT equation. These include the codes SLIM [2, 17] and T-BMT [18].

In addition to direct spin-orbit tracking codes there are codes which calculate
the spin resonances for a given energy range based on the optics for an accelerator
lattice. These include DEPOL [19], ASPIRRIN [20] and SPRINT [21].

To illustrate the general approaches for numerical integration, we explore the
three codes Zgoubi, SPINK and GPUSPINTRACK in more detail in the following
sections. DEPOL and T-BMT are also addressed in dedicated sections.
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9.2 Integration of the Spin and Orbit

As we learned in previous chapters the dynamics of the spin vector of a charged
particle in the laboratory frame is described by the T-BMT equation,

.
dS
dt

= q

γm
S ×

(
(1 + Gγ )B⊥ + (1 + G)B‖ +

(
1

γ + 1
+ G

)
γ
E × β

c

)
(9.1)

.S is the spin vector in the rest frame of the particle, .E and .B are fields in the
laboratory, the magnetic field components .B⊥ and .B‖ are defined with respect to
the particle’s velocity. .G = g−2

2 is the anomalous magnetic moment coefficient
which for protons is 1.7928474, and .γmc2 is the energy of the particle. We can
transform this equation by expanding about a reference orbit described by a Frénet-
Serret coordinate system. See Fig. 9.1. Thus we have

.
dx̂

ds
= ŝ

ρ
,

dŝ

ds
= − x̂

ρ
, and

dẑ

ds
= 0, (9.2)

Particle motion can be parameterized in this coordinate system as

.r = r0(s) + xx̂ + zẑ, (9.3)

where .r0(s) is the reference orbit, and .ŝ = dr0/ds.
The integration of the T-BMT equation requires the knowledge of the spatial

dependence of the fields, which in turn depend on the trajectory of the charged
particle in the optical elements. A particle traversing a quadrupole magnet off axis
will experience a different magnetic field than one going through the center. We
calculate this trajectory by integrating the Lorentz force equation.

.
dp
dt

= q (E + v × B) (9.4)

Fig. 9.1 The curvilinear
coordinate system for particle
motion in a circular
accelerator. The unit vectors
.x̂, .ŝ and .ẑ are the transverse
radial, longitudinal, and
transverse vertical basis
vectors; and .r0(s) is the
reference orbit
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This is the job which all accelerator codes need to accomplish and to do this they
use several standard approaches:

• Non-symplectic approaches. They typically use a Runge-Kutta type algorithm
or a ray tracing method which use the mechanics of a Taylor expansion of the
equations of motion.

• Symplectic Methods. These include both thin lens-kick and thick lens integrators.

9.3 Zgoubi

Step-wise ray-tracing has accompanied accelerator design concurrently with the
emergence of computers and magnetic field simulations in the early 1950s, with
Runge-Kutta being one of the early methods [22]. Step-wise integration of the
orbital motion allows the necessary accuracy for solving the Thomas-BMT dif-
ferential equation. This is especially important in small rings where lattice optics
field perturbations matter, and in beam transport lines which may include special
magnets and fancy spin manipulations; these were the main reasons why step-wise
spin tracking were developed in the late 1980s in Zgoubi (originally a spectrometer
code) in the context of partial snake plans at Saturne [3], and in Raytrace [23] (a
spectrometer code as well) at the AGS for polarized beam transport in AGS and
RHIC facility transfer lines [4]. A serendipity of step-wise integration is its yielding
6D motion ab initio as it handles the three components of the position and velocity
vectors, independently.

Zgoubi has been in use since the early 2000s at RHIC [24] and its injectors [25,
26], and at present for spin simulations in the EIC electron machines [27, 28].
Preservation of motion invariants, in relation with the truncated Taylor series
integration method, is controlled over millions of turns in RHIC size EIC rings,
via step size mostly.

In order to integrate the Lorentz equation (m is the particle mass, q its charge, .v
the velocity, .e and .b the local electric and magnetic fields)

.
d(γmv)

dt
= q (e + v × b) (9.5)

we rewrite it by nothing that .()′ = d()

ds
, .u = v

v
, .ds = v dt , .γmv = γmvu = q Bρ u,

and .Bρ the rigidity of the particle,

.(Bρ)′ u + Bρ u ′ = e
v

+ u × b, (9.6)
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Fig. 9.2 Position and
velocity of a particle in
Zgoubi reference frame
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Zgoubi uses truncated Taylor developments of the position .R and normalized
velocity .u vectors, namely,

.

R(M1) ≈ R(M0) + u(M0)�s + u ′(M0)
�s2

2! + ... + u ′′′′′(M0)
�s6

6!
u(M1) ≈ u(M0) + u ′(M0)�s + u ′′(M0)

�s2

2! + ... + u ′′′′′(M0)
�s5

5!

(9.7)

In these series .R(M0) and .u(M0) are the initial conditions, at point .M0, .R(M1) and
.u(M1) are one integration step .�s ahead, at point .M1 (Fig. 9.2). The rigidity varies
in the presence of electric field, it is calculated the same way using

.(Bρ)(M1) ≈ (Bρ)(M0) + (Bρ)′(M0)�s + ... + (Bρ) ′′′′′(M0)
�s5

5! (9.8)

The time of flight is expanded in a similar manner

.T (M1) ≈ T (M0) + T ′(M0)�s + T ′′(M0)
�s2

2
+ ... + T ′′′′′(M0)

�s5

5! (9.9)

which simplifies to .T (M1) = T (M0) + �s/v in the absence of electric field.

The derivatives .u(n) = dnu
dsn

and .(Bρ)(n) = dn(Bρ)

dsn
involved in these expressions

are calculated by recursive differentiation of Eq. 9.6, details can be found in the
Users’ Guide [16].

Spin in Zgoubi is evaluated in the same manner as the particle, with the three
spin vector components treated independently. The T-BMT equation is recast as,

.
dS
dt

= q

mγ
S × ω (9.10)
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with, in the laboratory frame,

.ω = (1 + γG)b − G(γ − 1)b‖ + γ (G + 1

1 + γ
)
e × v
c2

(9.11)

wherein .b and .e are the fields in the laboratory, .b‖ is the component of .b parallel
to the velocity .v of the particle. Equation (9.10) is normalized by introducing again

.v = ||v||, .v = vu, .ds = vdt the differential path, .
γmv

q
= Bρ the rigidity of the

particle, whereas .b =‖ b ‖, .S ′ = dS
ds

= 1

v

dS
dt

is the derivative of the spin with

respect to the path. This yields

.(Bρ)S ′ = S × ω or S ′ = S × � (9.12)

where, noting .B = b/Bρ, .E = e/Bρ,

.� = ω

Bρ
= (1 + γG)B + G(1 − γ )B‖ + βγ

c

(
G + 1

1 + γ

)
E × u (9.13)

From the initial conditions .�(M0) and .S(M0) of the particle at position .M0, the spin
.S(M1) at position .M1, following a displacement .�s (Fig. 9.2), is obtained from the
truncated Taylor expansion

.S(M1) ≈ S(M0) + S′(M0)�s + S′′ (M0)
�s2

2! + ... + S′′′′′ (M0)
�s5

5! (9.14)

The spin vector .S and its derivatives .S(n) = dnS/dsn are obtained by recursive
differentiation of Eq. 9.12, details in the Users’ Guide [16].

9.4 SPINK

SPINK code was developed in the 1990s by Alfredo Luccio and used to extensively
model the RHIC machine which was being built at the time. It employed the linear
transport matrices from the MAD8 code to track the orbit, estimating the position
of the charged particles inside each magnet and thus deducing the field. Beginning
from the T-BMT equation:

.
dS
dt

= e

γm
S × F (9.15)

now with .F defined as (we now assume no electric field)

.F = (1 + Gγ )B⊥ + (1 + G)B‖ (9.16)
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and with the perpendicular and parallel components of the magnet field expressed
as,

.B⊥ = 1

v2
(v × B) × v, B‖ = 1

v2
(v · B)v, (9.17)

.F can be expressed as,

.F = (1 + Gγ )B − G(γ − 1)
1

v2
(·B)v (9.18)

As discussed in previous sections the velocity vector can be expressed in terms of
the derivative of the spatial coordinates with respect to the longitudinal coordinate
s to obtain:

.v = dr
dt

=
[
x′x̂ + y′ŷ + (1 + x

ρ
ẑ
]
ds

dt
(9.19)

One can now rewrite the T-BMT equation as an s derivative,

.
dS
ds

= S × � (9.20)

with,

.� = h

Bρ

[
(1 + Gγ )B − G(γ − 1)(r′ · B)r′] (9.21)

and,

.
e

γm
= v

Bρ
(9.22)

h =
√

x′2 + y′2 + (1 + x/ρ)2

r′ = v
v
.

Using this the T-BMT equation can be reduced to a third order differential equation,

.S′′′ + ω(s)2S′ = 0 (9.23)

where,

.ω(s)2 = �x(s)
2 + (�y(s) − 1

ρ(s)
)2 + �z(s)

2 (9.24)
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In the case that both the fields and orbits are constant across a given portion of the
magnet then .ω(s) would likewise be constant and solutions in the form of transport
matrices can be developed yielding,

.

⎛
⎝ 1 − (B2 + C2)c ABc + Cs ACc − Bs

ABc − Cc 1 − (A2 + C2)c BCc + As

ACc + Bs BCc − As 1 − (A2 + B2)c

⎞
⎠ (9.25)

with

.c = 1 − cosωδs , s = sinωδs (9.26)

A = �x

ω
,B = �y − 1/ρ

ω
,C = �z

ω

9.4.1 Bends

Applied to the case of the rectangular bend magnet with .Bx = Bz = 0 and .By =
Bρ/ρ one obtains the matrix,

.

⎛
⎝ cos δψ 0 sin δψ

0 1 0
− sin δψ 0 cos δψ

⎞
⎠ . (9.27)

This represents a rotation about the vertical axis through an angle of,

.δψ = ωδs =
[
Gγ − (1 + Gγ )

x

ρ
)

]
δθ (9.28)

with .δθ = δs/ρ the bend angle.

9.4.2 Quadrupoles

For the quadrupole with a gradient of .k1 the fields become .Bx = k1Bρy, .By =
k1Bρx and .Bz = 0 with .

1
ρ

= 0. In this case the transport matrix becomes,

.
1

r2

⎛
⎝ y2 + x2 cos δψ xy(1 − cos δψ) −xr sin δψ

xy(1 − cos δψ) y2 + x2 cos δψ yr sin δψ

xr sin δψ −yr sin δψ cos δψ

⎞
⎠ (9.29)

with .ω = k1(1 + Gγ )r and .r = √
x2 + y2
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SPINK made use of the MAD8 generated Twiss functions to calculate the
transport matrices and thus coordinates at the beginning and exit of each element.
It takes the average of the position between the beginning and end of each sliced
transport element to estimate the field that acts on the spin. The accuracy of the
solution is controlled by increasing the number of slices in MAD8.

9.5 GPUSPINTRACK

GPUSPINTRACK was developed from a version of SPINK which uses a native
teapot integrator called UAL-SPINK. It reads lattices formatted in the SXF style.
The development of GPUSPINTRACK was motivated by problems with convergence
using the drift and thin kick style teapot orbit integrator. As a result a new orbit
integrator was developed which is detailed in [11]. It was observed that when
crossing strong spin resonance in the presence of snakes, the highly accurate
rendering of the orbital trajectory through the quadrupoles was essential to achieve
convergence with a reasonable number of slices.

9.5.1 How to Integrate the Quadrupole?

The Hamiltonian for quadrupole is given by,

.HQ = HD(Pt , Px, Py) + HK(X, Y ) (9.30)

HD(Pt , P ) = −
√
1 + 2

β0
Pt + P 2

t − P 2
x − P 2

y + 1

β0
Pt

HK(X, Y ) = k1

2

(
X2 − Y 2

)
.

Here .Pt = γ−γ0
β0γ0

with subscript .0 indicating on-momentum values for the relativistic
gamma and beta and .k1 the quadrupole gradient. The usual teapot approach is to
split this Hamiltonian into .HD for the drift and .HK for the kick. The effect of each
of these pieces can be exactly evaluated yielding a drift transport matrix and a thin
kick part. The drifts are then split in half and sandwiched around the thin kick. An
improved approach which yields higher accuracy is to split the Hamiltonian in a
different way, by adding and subtracting as follows,

.HM = 1

2

(
P 2

x + P 2
y

)
+ k1

2

(
X2 − Y 2

)
(9.31)

HK = −
√
1 + 2

β0
Pt + P 2

t − P 2
x − P 2

y + 1

β0
Pt − 1

2

(
P 2

x + P 2
y

)
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Here we add and subtract . 12

(
P 2

x + P 2
y

)
from each term to create a matrix transport

.HM . GPUSPINTRACK additionally divides the momentum term by the energy
contribution to momentum to get the correct tunes for the off energy particles
yielding,

.HM = 1

2

P 2
x + P 2

y√
1 + 2

β0
Pt + P 2

t

+ k1

2

(
X2 − Y 2

)
(9.32)

HK = −
√
1 + 2

β0
Pt + P 2

t − P 2
x − P 2

y + 1

β0
Pt − 1

2

P 2
x + P 2

y√
1 + 2

β0
Pt + P 2

t

9.5.2 Spin Precession Calculation

With the orbit the spin transport can be calculated across a given element slice
as was done in the original SPINK code. However GPUSPINTRACK accelerates
computation and the spin convergence by making use of Romberg quadrature with
quaternions to represent the spin transport using SPINK .�. The approach is to
calculate the quaternions for .q(h�) for different relative step sizes h across a given
magnetic element as follows,

.R0,2 = Q(h) = q(
1

2
h�4)q(h�3)q(h�2)q(h�1)q(

1

2
�0) (9.33)

R0,1 = Q(2h) = q(h�4)q(2h�2)q(h�0)

R0,0 = Q(4h) = q(2h�4)q(2h�0).

Here .�i represents the calculated spin precession vector at a given slice across
the magnetic element (see Fig. 9.3). With this, one can construct a ‘bootstrapped’

h

Magnet Element

Ω0 Ω1
Ω2 Ω3

Ω4

Orbital Slice

Fig. 9.3 Slicing up magnetic element for Romberg integration
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quaternion across the whole element to arbitrary order using,

.Rj+1,k = 4j+1Rj,k − Rj,k−1

4j+1 − 1
(9.34)

9.6 How to Integrate the T-BMT Equation by Hand

Aside from numerical integration, it is possible to integrate certain forms of it
analytically. Beginning with Eq. 9.20 in the absence of solenoid magnets and
vertical bends, the T-BMT equation can, to first order in the coordinates .(x, s, z),
be rewritten as (see Exercise 1).

.
dS
ds

≈ v

(
dt

ds

)
S × � ≈ S × �

�x = −(1 + Gγ )z′′

�s = (1 + Gγ )z′/ρ − (1 + G)

(
z

ρ

)′

�z = x′′(1 + Gγ ) − 1 + Gγ

ρ

Further, Accounting for the derivatives of the .x, s, z basis vectors of .Swe can obtain,

.
dSx

ds
= Ss(�z + 1/ρ) − �sSz

dSs

ds
= −Sx(�z + 1/ρ) + �xSz

dSz

ds
= Sx�s − �xSs

If we change to a basis vector which rotates with the beam .(ê1, ê2, ê3) we obtain,

.

dS
ds

= ω × S,

ω1 = (1 + Gγ )z′′,

ω2 = −(1 + Gγ )z′/ρ + (1 + G)

(
z

ρ

)′
,

ω3 = −(1 + Gγ )x′′ + Gγ

ρ
.

(9.35)
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This can be further transformed by defining a two-component spinor .� such that
the j -th component of the spin vector is given by

.Sj = 〈�|σj |�〉 = �†σj�. (9.36)

Here .� denotes a classical vector with components u and d, which are related to the
three components of .S by

.

S1 = u∗d + ud∗

S2 = −i(u∗d − ud∗)

S3 = |u|2 − |d|2.
(9.37)

Using .σ = (σx, σs, σz), the vector of the Pauli spin matrices, and .ζ(s) = −ω1+iω2,
it is possible to show (see Exercise 2) that Eq. 9.35 can be transformed into,

.
d�

ds
= − i

2
(σ · ω)� = − i

2
H� = − i

2

(
Gγ
ρ

−ζ(s)

−ζ(s)∗ −Gγ
ρ

)
�, (9.38)

where we have dropped the first term in .ω3, .−(1+Gγ )x′′, since it is small compared
to .Gγ .

Using the differential relation .dθ = ds/ρ, one may transform (9.38) so as to
make .θ the independent variable. Then, considering the effects of a single resonance,
wherein .ζ(θ) becomes .εKe−iKθ , the T-BMT equation becomes

.
d�

dθ
= − i

2

(
Gγ −εKe−iKθ

−ε∗
KeiKθ −Gγ

)
�. (9.39)

If we assume .Gγ = constant, and transform the spinor equation (9.39) into the
resonance precessing frame by defining

.�K(θ) = e
i
2Kθσz�(θ). (9.40)

one can obtain (see Exercise 3),

.
d�K

dθ
= i

2

(
K − Gγ εK

ε∗
K Gγ − K

)
�K. (9.41)

Since all the elements of the matrix are constant one can simply exponentiate the
matrix directly to obtain an exact solution to the differential equation. In the case
when .Gγ is not constant, but linearly accelerating, a solution is still possible and
ultimately yields the famous Froissart-Stora formula.

In the case when .Gγ = Gγ0 + αθ we can transform the spinor equation into the
spin precessing frame by defining,

.�(θ) = e− i
2

∫ θ
o Gγ (x)dxσ3�I (θ) (9.42)
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to obtain,

.
d�I

dθ
= i

2

(
0 εKei[(Gγ0−K)θ+ 1

2αθ2]

ε∗
Ke−i[(Gγ0−K)θ+ 1

2αθ2] 0

)
�I . (9.43)

which can be transformed into an ordinary second order homogeneous differential
equation,

.
d2�±

I

dθ2
∓ iαθ

d�±
I

dθ
+ |εK |2

4
�±

I = 0 (9.44)

which has confluent hyper-geometric functions as solutions. Using the asymptotic
expressions of these functions it is possible to show that, in the limit of large .|θ |,

.Sz = 2e− π |εK |2
2α − 1 (9.45)

which is the famous Froissart-Stora formula.

9.7 Calculating Spin Resonances

One of the first codes to calculate the strength of the intrinsic and imperfection
spin resonance strength was developed by Ruth and Courant in 1980 and is known
as DEPOL [19]. This code calculates the expansion of .ζ(s) by making use of the
linear transport matrix to derive an exact solution to the elements of the quasi Fourier
integral,

.εK = − 1

2πNT

∫ CNT

0

[
(1 + Gγ )(z′′ + iz′

ρ
) − iρ(1 + G)(

z

ρ
)′
]

eiKθ(s)ds

(9.46)

Here C is the circumference of the ring. The number of turns .NT depends on the
rationality of K . If K is an integer then .NT = 1; however if K is an irrational
number then we normally would need an infinite number of turns to approximate
the resonance strength. Decomposing the integral into a sum of integrals over each
element we obtain,

.εK =
∑

lattice

εKm

NT

(9.47)

εKm = − 1

2π

∫ s2

s1

[
(1 + Gγ )(z′′ + iz′

ρ
) − iρ(1 + G)(

z

ρ
)′
]

eiKθ(s)ds
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Assuming that .1/ρ is a step function, constant in the element and zero just
outside of the element, partial integration leads to an intermediate form,

.εKm = 1

2π

[
(1 + K)(χ1 + i)

ρ
z1e

iKθ1 + (1 + K)(χ2 − i)

ρ
z2e

iKθ2− (9.48)

(1 + K)

∫ s2

s1

z′′eiKθds − K

ρ2 (K − G)

∫ s2

s1

zeiKθds

]

Here .χi is the contribution due to edge focusing of the magnet and .zi = z(si).
Applying partial integration to the last two terms yields,

.εKm = 1

2π

[
(1 + K)(χ1 + i)

ρ
z1e

iKθ1 + (1 + K)(χ2 − i)

ρ
z2e

iKθ2− (9.49)

−(1 + K)

[
(z′

2 − iK

ρ
z2)e

iKθ2 − (z′
1 − iK

ρ
z1)e

iKθ1

]
+ (

K(K2 + G)

ρ2 )

∫ s2

s1

zeiKθds

]

In the uncoupled case the last term can be evaluated exactly using the homogeneous
equation .z′′ = −Kzz, where .Kz(s) is the focusing function of the guide field.
Substitution and integration by parts yields,

.

∫ s2

s1

zeiKθds = (z′
2 − iK

ρ
z2)e

iKθ2 − (z′
1 − iK

ρ
z1)e

iKθ1

Kz − K2/ρ2 . (9.50)

DEPOL uses Courant-Snyder parameters from the MAD output files to construct
the .z1,2 and .z′

1,2 values. In calculating the resonance integral, one can factor out the
phases which change with each period around the lattice. The remaining elements
in the sum remain constant for each pass. This permits the evaluation of the integral
over just one pass.

Later other more general algorithms have been developed to calculate spin res-
onances for arbitrary spin orientation [29]. Currently there exists the SPRINT [21]
code which also can perform these calculations. As well an extension to theDEPOL
algorithm was developed to handle resonance calculations in the case of linear
betatron coupling. More recently the code ASPIRRIN [20] was developed to
calculate spin resonances in the presence of snakes.

9.8 Integration of the Spinor T-BMT Equation for Many
Resonances

In the case that one wants to include the effects of two resonances an analytical
approximation has been derived [30], which makes use of the fact that the spinor
form of the T-BMT equation can be expressed as a parametric oscillator. However
these expressions are long and unwieldy. They do however permit the identification
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of regions in .θ where the system can be approximated using only the single
dominant resonance outside of the parametric resonance tongues.

In the case that one has more than two resonances, then numerical methods
should be used. The T-BMT c++ method performs this integration using a 4th
order Magnus Gaussian quadrature. With the spinor T-BMT equation expressed
compactly as,

.� ′ = A(θ)�, �(θ0) = �0 (9.51)

it evaluates .A(θ) at two orbital locations .θ + ( 12 ±
√
3
6 )h with step size h:

.A1 = A

[
θn +

(
1

2
−

√
3

6

)
h

]
(9.52)

A2 = A

[
θn +

(
1

2
+

√
3

6

)
h

]
.

These are then used to calculate the .� used to propagate the spinor:

.�[4](h) = h

2
(A1 + A2) − h2

√
3

12
[A1, A2] (9.53)

�n+1 = e�[4](h)�n

Here we use the identity,

.eia·σ = cos |a|I + i sin |a|a · σ

|a| (9.54)

to generate the two-by-two complex matrix to transport the spinors. To reduce
the number of integration steps necessary, the T-BMT code transforms first to the
interaction frame before performing the 4th order Magnus Gaussian quadrature.

9.9 Initialization of Spinors

For any realistic spin tracking it is necessary to initialize the spinors to the invariant
spin field (ISF) before tracking. For most lower energy machines the ISF trivially
points vertically along the dominant dipole guide field. In these cases initialization
involves setting the spinor to point vertically up or down. However at higher energies
or with machines having more complex guide fields the ISF can assume a very
complex and spread-out structure as shown in Fig. 9.4. If the spinors are not initially
aligned with the ISF then they will execute a precession around the local ISF. This
will make it appear that there is a spin resonance or depolarization mechanism when



232 V. Ranjbar

Fig. 9.4 Structure of the
Invariant Spin Field

in fact no polarization would be lost if the spins had be initially aligned with the ISF.
Several approaches using stroboscopic averaging were developed by K. Heinemann
and G.H.Hoffstatter [21]. T-BMT code and GPUSPINTRACK code employs one of
the forward tracking methods detailed in this paper. Here three spin vectors each of
which points along the .x̂ (.= (1, 0, 0)), .ẑ(.= (0, 1, 0)), and .ŝ (.= (0, 0, 1)) directions
are tracked for each orbital phase space point. These are then tracked through one
turn to establish the one turn spin transport matrix (.R0), the eigenvector of which is
calculated to give the spin closed orbit vector .n̂0. This is then dotted into subsequent
transport matrices .Rn each turn and accumulated in a total vector .b,

.bn+1 = bn + Rn · n̂0. (9.55)

which is then averaged and normalized to yield the ISF for each phase space point
which we want to track. One then needs to select an appropriate number of turns to
achieve convergence to the ISF. The number of turns depends on ones proximity to
a resonance and the overall nature of the ISF. Evidence that one has not converged
can be seen in the turn-by-turn precession of the spin vector for a particle which is
not aligned with the ISF.

9.10 Homework

•? Exercise 1

Show that in the absence of solenoid magnets and vertical bends, the T-BMT
equation can, to first order in the coordinates (x, s, z), be rewritten as

.
dS
ds

≈ v

(
dt

ds

)
S × � ≈ S × �
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�x = −(1 + Gγ )z′′

�s = (1 + Gγ )z′/ρ − (1 + G)

(
z

ρ

)′

�z = x′′(1 + Gγ ) − 1 + Gγ

ρ

Here you will use the fact that Bρ = γmv/e and approximate dt
ds ≈ 1/v since the

other terms will introduce orders of x, s, z and 1/ρ beyond our approximation. To
accomplish this you will also need to first express the perpendicular and parallel
magnetic field components in the forms

.B⊥ = 1

v2
(v × B) × v, B‖ = 1

v2
(v · B)v. (9.56)

Then use the Lorentz force equation to express v × B, hence also B⊥ in terms of
dv/dt :

.
dv
dt

= q

mγ
v × B, . (9.57)

B⊥ = mγ

qv2

dv
dt

× v. (9.58)

In addition, make use of the fact that

.
ds

dt
= v[(

1 + x
ρ

)2 + x′2 + z′2
]1/2 , (9.59)

where ρ denotes the radius of curvature of the local Frénet-Serret coordinate system.

Solution
The solution involves using 9.2 together with 9.56 through 9.59 in the T-BMT
equation 9.1 to obtain the first-order result 9.56. In the present context, “first-order”
means drop all terms of second order and higher in x, z, 1/ρ and their derivatives.
Also remember to make use of the initial assumption that solenoids and vertical
bends are absent.

You also need to use the fact that the vertical field can be approximated using
the strength of the dipole guide field, Bz ≈ −[Bρ]

ρ
. The longitudinal field can be

approximated using Ampere’s law and assuming that Bs(z = 0) = 0.

.
∂Bs

∂z
= ∂Bz

∂s
= −Bρ

(
1

ρ

)′
(9.60)
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Accounting for the derivatives of the x, s, z basis vectors of S we can obtain,

.
dSx

ds
= Ss(�z + 1/ρ) − �sSz

dSs

ds
= −Sx(�z + 1/ρ) + �xSz

dSz

ds
= Sx�s − �xSs

If we change to a basis vector which rotates with the beam (ê1, ê2, ê3) we obtain,

.

dS
ds

= f × S,

f1 = (1 + Gγ )z′′,

f2 = −(1 + Gγ )z′/ρ + (1 + G)

(
z

ρ

)′
,

f3 = −(1 + Gγ )x′′ + Gγ

ρ
.

(9.61)

More formally, we can use the following derivation steps, neglecting solenoid
magnets and vertical bends.

.B⊥ = (v × B) × v
v2

(9.62)

Using the Lorentz force equation we can express v × B as:

.
dv
dt

= e

γm
v × B. (9.63)

B⊥ = 1

v2

mγ

e

dv
dt

× v (9.64)

Now expressing v and its derivative in terms of its coordinates we get,

.
dv
dt

= d

dt

[
dr
dt

]
. (9.65)

dr
dt

= ds

dt

dr
ds

. (9.66)

v = ds

dt

(
dr0(s)

ds
+ dx

ds
x̂ + s

dx̂

ds
+ dz

ds
ẑ + z

dẑ

ds

)

= ds

dt

(
(1 + x/ρ) ŝ + x′x̂ + z′ẑ

)
. (9.67)
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dv
dt

=
(
ds

dt

)2 d

ds

[
(1 + x/ρ) ŝ + x′x̂ + z′ẑ

]
(9.68)

=
(
ds

dt

)2 [(
2x′

ρ
+ x

(
1

ρ

)′)
ŝ+

(
x′′ − 1

ρ
− x

ρ2

)
x̂ + z′′ẑ

]

Now calculating the cross product,

.
dv
dt

× v =
(
ds

dt

)3 [
x̂

[(
2x′

ρ
− x

(
1

ρ

)′)
z′ −

(
1 + x

ρ

)
z′′

]

−ŝ

[
z′

(
x′′ − 1

ρ
− x

ρ2

)
− x′z′′

]

+ẑ

[(
x′′ − 1

ρ
− x

ρ2

)(
1 + x

ρ

)
−

x′
(
2
x′

ρ
+ x

(
1

ρ

)′)]]

≈
(
ds

dt

)3 [
−x̂z′′ + ŝ

z′

ρ
+ ẑ

(
x′′ − 1

ρ

)]
(9.69)

Where at the last step we drop all terms higher than second order in x, z, s and 1
ρ

and their derivatives. The expression for B⊥ becomes,

.B⊥ ≈
mγv

e

[
−x̂z′′ + ŝ z′

ρ
+ ẑ

(
x′′ − 1

ρ

)]
[(

1 + x
ρ

)2 + x′2 + z′2
]3/2

≈ mγv

e

[
−x̂z′′ + ŝ

z′

ρ
+ ẑ

(
x′′ − 1

ρ

)]
. (9.70)

Here the denominator goes to 1 when we drop all the second order terms in x, z, s

and 1/ρ and their derivatives. We also used the fact that,

.
ds

dt
= v[(

1 + x
ρ

)2 + x′2 + z′2
]1/2 . (9.71)
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For the parallel field we get,

.B‖ = (v · B) v
v2

=
(
ds
dt

)2
v2

[(
1 + x

ρ

)
Bs + x′Bx + z′Bz

] [(
1 + x

ρ

)
ŝ

+x′x̂ + z′ẑ
]

=
[(

1 + x
ρ

)
Bs + x′Bx + z′Bz

] [(
1 + x

ρ

)
ŝ + x′x̂ + z′ẑ

]
[(

1 + x
ρ

)2 + x′2 + z′2
]

≈
(
1 − 2

x

ρ

) [
ŝ

(
Bs + 2

x

ρ
Bs + x′Bx + z′Bz

)
+

x̂x′Bs + ẑz′Bs

]
≈ (

Bs + z′Bz

)
ŝ (9.72)

Here the first approximation involves dropping terms x, z, s and 1/ρ and their
derivatives to second order and above. The second approximation involves assump-
tions of the relative magnitude of Bs and z′Bz to be >> Bsx/ρ, x′Bx, z

′Bs . This
assumes no solenoid type magnets. The vertical field can be approximated using
the strength of the dipole guide field, Bz ≈ −[Bρ]

ρ
. The longitudinal field can be

approximated using Ampere’s law and assuming that Bs(z = 0) = 0.

.
∂Bs

∂z
= ∂Bz

∂s
= −Bρ

(
1

ρ

)′

Bs = −Bρz

(
1

ρ

)′
ŝ (9.73)

B‖ ≈
(

−Bρz

(
1

ρ

)′
+ z′

ρ
Bρ

)
ŝ = −Bρ

(
z

ρ

)′
ŝ

Putting this into the T-BMT equation we obtain,

.
dS
ds

≈ v

(
dt

ds

)
S × � ≈ S × �

�x = −(1 + Gγ )z′′

�s = (1 + Gγ )z′/ρ − (1 + G)

(
z

ρ

)′

�z = x′′(1 + Gγ ) − 1 + Gγ

ρ
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Here we used Bρ = γmv/e and approximate dt
ds ≈ 1/v since the other terms will

introduce orders of x, s, z and 1/ρ beyond our approximation. Accounting for the
derivatives of the x, s, z basis vectors of S we can obtain,

.
dSx

ds
= Ss(�z + 1/ρ) − �sSz

dSs

ds
= −Sx(�z + 1/ρ) + �xSz

dSz

ds
= Sx�s − �xSs

If we change to a basis vector which rotates with the beam (ê1, ê2, ê3) we obtain,

.
dS
ds

= f × S

f1 = −�x = (1 + Gγ )z′′

f2 = −�s = −(1 + Gγ )z′/ρ + (1 + G)

(
z

ρ

)′

f3 = −(�z + 1/ρ) = −x′′(1 + Gγ ) + Gγ

ρ
(9.74)

•? Exercise 2

Define a two-component spinor � such that the j -th component of the spin
vector is given by

.Sj = 〈�|σj |�〉 = �†σj�. (9.75)

Here � denotes a classical vector with components u and d, which are related to the
three components of S by

.

S1 = u∗d + ud∗

S2 = −i(u∗d − ud∗)

S3 = |u|2 − |d|2.
(9.76)
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Using σ = (σx, σs, σz), the vector of the Pauli spin matrices, and ζ(s) = −ω1+iω2,
show that Eq. 9.61 can be transformed into,

.
d�

ds
= − i

2
(σ · f)� = − i

2
H� = − i

2

(
Gγ
ρ

−ζ(s)

−ζ(s)∗ −Gγ
ρ

)
�, (9.77)

where we have dropped the first term in ω3,−(1+Gγ )x′′, since it is small compared
to Gγ .

Solution

.
dS
ds

= f × S (9.78)

.S = �†σ� (9.79)

.

S′ = �†′σ� + �†σ� ′

= f × (�†σ�) = �†(f × σ )�

= − i

2
�†[(σ · f)(σ ) − (σ )(σ · f)]�

(9.80)

where we used the identity [σ · f, σ ] = 2i(f × σ ). We can then identify that

.� ′ = − i

2
(σ · f)� (9.81)

•? Exercise 3

Using the differential relation dθ = ds/ρ, one may transform 9.77 so as to make
θ the independent variable. Then, considering the effects of a single resonance,
wherein ζ(θ) becomes εKe−iKθ , the T-BMT equation becomes

.
d�

dθ
= − i

2

(
Gγ −εKe−iKθ

−ε∗
KeiKθ −Gγ

)
�. (9.82)

At this point, assume Gγ = constant, and transform the spinor equation 9.82 into
the resonance precessing frame by defining

.�K(θ) = e
i
2Kθσz�(θ). (9.83)
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Show that

.
d�K

dθ
= i

2

(
K − Gγ εK

ε∗
K Gγ − K

)
�K. (9.84)

Solution

.� =
(

e− iKθ
2 0

0 e
iKθ
2

)
�K (9.85)

.�K =
(

e
iKθ
2 0

0 e− iKθ
2

)
� (9.86)

.� ′
K = iK

2

(
e
iKθ
2 0

0 −e− iKθ
2

)
� +

(
e
iKθ
2 0

0 e− iKθ
2

)
� ′ (9.87)

.� ′
K = iK

2

(
e
iKθ
2 0

0 −e− iKθ
2

)
� − i

2

(
e
iKθ
2 0

0 e− iKθ
2

)(
Gγ −εKe−iKθ

−ε∗
KeiKθ −Gγ

)
�.

(9.88)

.� ′
K = iK

2

(
e
iKθ
2 0

0 −e− iKθ
2

)(
e− iKθ

2 0

0 e
iKθ
2

)
�K

− i
2

(
e
iKθ
2 0

0 e− iKθ
2

) (
Gγ −εKe−iKθ

−ε∗
KeiKθ −Gγ

) (
e− iKθ

2 0

0 e
iKθ
2

)
�K. (9.89)

.� ′
K = i

2

(
K 0
0 −K

)
�K − i

2

(
Gγ −εK

−ε∗
K −Gγ

)
�K. (9.90)

.� ′
K = i

2

(
K − Gγ εK

ε∗
K Gγ − K

)
�K. (9.91)

•? Exercise 4

The code SpinTrack.cc also known as T-BMT, integrates the single-
resonance T-BMT equation 9.84 with two orthogonal snakes located at θ = 0
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Table 9.1 T-BMT code’s input file Resonance.in
k0: 452
w0R,w0I: 0.0 0.0
k1: 453
w1R,w1I: 0.0 0.0
k2: 393
w2R,w2I: 0.432733 0.112896
k3: 392
w3R,w3I: 0.0 0.0
k4: 394
w4R,w4I: 0.0 0.0
k5: 422
w5R,w5I: 0.0 0.0
k6: 423
w6R,w6I: 0.0 0.0

and θ = π , with an axis of rotation oriented at angle φ = ±π/4, as is the case in
RHIC [31]. The code takes as input the file Resonance.in (Table 9.1 [31]).

In this version of the code, we integrate the single-resonance T-BMT equation
by taking the matrix exponential of Eq. 9.84. In this case, our single resonance is
located at K = k2 = 393 + Qy = 422.67 (Qy = 29.67), with strength εK =
0.432733 + i 0.112896. The code’s default initial value for Gγ0 is 414.8, with an
acceleration rate of dGγ

dθ = 3.74118×10−6 rad−1 (as in RHIC). The default number
of turns is NT = 670,000.

• With Resonance.in in your directory, run the code using:
mpiexec -n 1 ./SpinTrack.out

This will generate a file called:
TBTAmp1.000Tau5.000Qs8.900CV2.00Q29.670R0.dat

After some header information, it lists the turn number, value of Gγ , vertical
component of the spin vector Sy , and the estimated Envelope of the Spin vector
given by the following equation:

.

δ = K − Gγ

λ =
√

δ2 + |εk|2

b = |εK |
λ

sin
λπ

2

Senv = 1 − 8b2(1 − b2)

(9.92)

Identify the locations of the nodes and anti-nodes.
• Now run the same code using the command

mpiexec -n 1 ./SpinTrack.out \
nstrobe= 1 Ggam0= 420.0 NT= 250000
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In this case, you are now starting around an anti-node and turning off
stroboscopic averaging to orient your initial spin vector. What is different about
this tracking? How do you think you could compute the final polarization in this
case?

• Run it again turning back on stroboscopic averaging by using:
mpiexec -n 1 ./SpinTrack.out Ggam0= 420.0 NT=

250000
How does the spin vector behave now?

• Run the code again, now using more particles:
mpiexec -n 20 ./SpinTrack.out Ggam0= 420.0 NT= 250000
Now the code should produce 20 files one for each particle where the complex

phase of the spin resonance is distributed evenly over 0 to 2π . The “R0”, “R1”
indicate the particle number for each file. The python script AvgFiled.py lists all
the TBT*.dat files in the current directory and then reads them in calculating an
average for the vertical Spin component. Run it using:

python AvgFiled.py > YourFileName.dat
It generates a file listing turn number, Gγ , and average vertical Spin. Notice

how the average trajectory converges.
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