
Chapter 7
Spin Matching

Vadim Ptitsyn

Abstract When spin rotating devices are used in an electron accelerator ring the
stochastic depolarization caused by synchrotron radiation becomes an issue. Special
design of the ring optics is required in order to minimize harmful effect of stochastic
depolarization. Ring optics adjustments which help to minimize the depolarization
are called spin matching. In this lecture the formalism for deriving spin matching
conditions is presented. Then, spin matching conditions are derived for examples of
a spin rotator based on solenoidal magnets and a spin rotator based on vertical and
horizontal bending magnets.

7.1 Introduction

Consider designing two spin rotators, one for a proton ring, another for an electron
ring. Let’s assume that the energies of proton and electron rings are similar, say
5 GeV. At this energy we decide to use a spin rotator design based on interleaved
solenoidal and bending magnets since it does not create excessive beam orbit
excursions. During the design work in both electron and proton cases we have
found spin rotation angles of all rotator magnets required to transform the vertical
polarization at the rotator entrance into the longitudinal one at the rotator exit point.

This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No.
DE-SC0012704 with the U.S. Department of Energy. The United States Government and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.

V. Ptitsyn (�)
Electron-Ion Collider, Brookhaven National Laboratory, Upton, NY, USA
e-mail: vadimp@bnl.gov

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
F. Méot et al. (eds.), Polarized Beam Dynamics and Instrumentation
in Particle Accelerators, Particle Acceleration and Detection,
https://doi.org/10.1007/978-3-031-16715-7_7

183


 2353
179 a 2353 179 a
 

 66 4097 a 66 4097 a
 
vadimp@bnl.gov
vadimp@bnl.gov
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7
https://doi.org/10.1007/978-3-031-16715-7_7


184 V. Ptitsyn

Therefore requirements on the field strengths of the solenoidal and dipole magnets
become known. At this point the design for proton rotator is well defined. But the
electron rotator requires some more work: the spin matching is needed to minimize
the effect of stochastic depolarization (spin diffusion).

7.2 Electron Polarization Parameters

Synchrotron radiation determines the polarization evolution through Sokolov-
Ternov spin-flip emission and spin diffusion caused by quantum emission of SR
photons. Both processes combined define the equilibrium polarization Peq and
polarization relaxation time τ , according to

.P(t) = (P0 − Peq) e−t/τ + Peq (7.1)

where P0 is the initial polarization (at t = 0). Consideration of polarizing
and depolarizing effects caused by synchrotron radiation was done in [1] where
following expressions for Peq and τ were obtained:

.Peq = − 8

5
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where

.α− = 〈 b̂
ρ3 (n̂ − d)

〉
. (7.4)

α+ = 〈 1

ρ3

[
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9
(n̂v̂)2 + 11

18
|d|2]〉 (7.5)

and following notation is used:

• m is electron mass
• r0 is electron classic radius
• ρ is a bending radius of horizontal and vertical bending magnets
• unit vector .b̂ in direction of magnetic field
• unit vector .v̂ along the electron velocity,
• unit vector .n̂ describes so-called invariant spin field, composed of spin solutions

in the orbital phase space which are periodical with the ring azimuth and with
phases of orbital motion

Averaging in formulas (7.4), (7.5) is done over accelerator ring circumference and
over the orbital motion phase space. But away from spin resonances one can use
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.n̂0 instead of .n̂ and skip averaging over the phase space to get sufficiently accurate
evaluation of the polarization characteristics. Minus sign in formula (7.2) shows that
the build-up of the electron polarization over time happens in the direction opposite
to the magnetic field.

Depolarization caused by spin diffusion is defined by a derivative of invariant
spin field over δ = �E/E:

.d =
(

∂ n̂
∂δ

)

x,x ′,y,y ′
(7.6)

This derivative must be taken at constant values of x, x ′, y, y ′, and in terms of
complex betatron amplitudes can be rewritten as:

.d =
(

∂ n̂
∂δ

)

Ax,Ay

+
(

∂ n̂
∂Ax

)

δ,Ay

·
(

∂Ax

∂δ

)
+

(
∂ n̂
∂Ay

)

δ,Ax

·
(

∂Ay

∂δ

)
+ c.c. (7.7)

First term in the equation above come from direct electron energy change when
the photon is emitted, which happens in all bends. Second term contribute in the
horizontal bends where there is non-zero horizontal dispersion. And third term is
due to radiation in places with non-zero vertical dispersion that can appear due to
errors or betatron coupling or in spin rotators with vertical bends.

In order to minimize depolarization one needs to minimize the amplitude of
the vector d in elements where the synchrotron radiation happens, that is in
bending magnets. Let’s consider an ideal circular accelerator (Fig. 7.1). Such ideal
accelerator ring does not contain any spin rotators or snakes, thus, there is no
horizontal dipole or longitudinal fields on the design beam orbit. Also there is no
betatron coupling and no misalignment and magnet errors. The spin invariant field
.n̂ in this ideal accelerator ring is only coupled with the vertical betatron motion of
particle. Indeed, the stable spin direction .n̂ remains vertical for any particles having
Ay = 0 even if they have some energy offset or performing horizontal betatron

oscillations. Thus, .

(
∂n̂
∂δ

)
= 0 and .

(
∂n

∂Ax

)
= 0 on the beam orbit. The vertical

betatron oscillations lead to the deviation of .n̂ from vertical due to horizontal field
of the quadrupole magnets experienced by particles with non-zero Ay . Thus the

derivative of the invariant field over the vertical betatron amplitude Ay , .

(
∂n̂

∂Ay

)
,

Fig. 7.1 The ideal
accelerators has stable spin
direction vertical everywhere B-field

n0

d = 0



186 V. Ptitsyn

is non-zero. But, since the ideal ring has no betatron coupling and no vertical

dispersion, the .

(
∂Ay

∂δ

)
is equal to 0 everywhere, including bending magnets. Which

means that the vertical betatron motion is not affected by the synchrotron radiation
in this case. Since all terms contributing to the vector d in formula (7.7) are equal to
zero, the vector d is also zero all around ring in the ideal accelerator ring.

As soon as one adds a spin rotator or a Snake into the accelerator ring the vector
d is excited. Then a question arises on how to design the ring optics to minimize the
vector d and, hence, minimize the stochastic depolarization. We will go through a
technique of deriving the spin matching conditions on the optics in next sections.

Magnet misalignments and rolls can also excite d and enhance the stochastic
depolarization. For the errors we can not really design spin matching, unless
these errors are very localized. The standard way would be to establish tolerances
on misalignments and rolls during accelerator design stage in order to achieve
acceptable depolarization level. This studies are done by using spin simulation
codes.

7.3 Spin Matching Formalism

For calculation in this lecture the transverse orbital motion will be described by
using its presentation through components of betatron motion eigen-vectors fI ,fII

and horizontal and vertical dispersion functions Dx , Dy :

.x = fIxAx + f ∗
IxA

∗
x + fIIxAy + f ∗

IIxA∗
y + Dxδ

y = fIyAx + f ∗
IyA∗

x + fIIyAy + f ∗
IIyA∗

y + Dyδ (7.8)

where Ax and Ay are complex amplitudes of horizontal and vertical betatron
motion, δ = dp/p presents a particle momentum offset.

Without betatron coupling the transverse motion expressions are simplified to:

.x = fIxAx + f ∗
IxA

∗
x + Dxδ

y = fIIyAy + f ∗
IIyA∗

y + Dyδ (7.9)

where

.fIx = fx = √
βxe

i
x . (7.10)

fIIy = fy = √
βye

i
y . (7.11)


x,y =
∫ s

0

1

βx,y

ds (7.12)
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Let’s consider an accelerator ring which can include, besides the vertical guiding
fields of horizontal bending magnets, also solenoidal and vertical field in locations
where spin rotating devices are used. The spin motion on the design beam orbit
can be resolved and the periodical spin solution .n̂0 can be found all along the
ring circumference. One can also define two spin solutions on the design orbit
orthogonal to the vector .n̂0 and to each other, the vectors .̂l0 and .m̂0. The vector
set .(l̂0, m̂0, n̂0) form right-handed orthonormal triad, which is convenient for
considering spin motion perturbations. To simplify mathematical description one
can combine vectors .̂l0 and .m̂0 into the complex vector .k̂0 = l̂0−im̂0. Together with
.n̂0, the vectors .k̂0 and .k̂∗

0 are the eigenvectors of the one-turn spin transformation.

One turn transformation of .k̂0 at any accelerator azimuth s is written as:

.k̂0(s + C) = ei2πνsp k̂0(s) (7.13)

Arbitrary spin can be presented by a complex variable α:

.S =
√

1 − |α|2n̂0 + Re(iαk̂∗
0) (7.14)

Far from spin resonances the spin deviation from the .n̂0 due to momentum
deviation or betatron motion is expected to be small, therefore |α| � 1. In the
first order the spin deviation α is described by the following equation:

.
dα

ds
= −iw · k̂0. (7.15)

The components of perturbation spin precession vector w can be derived from
the BMT equation:

.wx = (1 + ν0)y
′′ + (ν0 + a

γ
)Kxδ + (1 + a)Ksx

′

ws = (1 + a)(K ′
xx + K ′

yy − Ksδ) − (ν0 − a)(Kxx
′ + Kyy ′) (7.16)

wy = −(1 + ν0)x
′′ + (ν0 + a

γ
)Kyδ + (1 + a)Ksy

′

where the magnet anomaly a = 0.00116 for electrons, ν0 = γ a and the fields of
bending and solenoidal magnets are presented by the normalized fields Kx,y,s =
Bx,s,y/(Bρ).

One can find a solution αinv of the Eq. (7.15) which is periodical not only with
ring azimuth, but also with betatron motion phases. This solution corresponds to the
invariant spin field .n̂, and thus defines also the derivatives o f the invariant spin field
over δ, Ax and Ay which is of interest when calculating the vector d (7.7).

Now let’s consider an accelerator ring with spin rotators (Fig. 7.2). Usually,
two spin rotators are installed around the collision point in order transform the
polarization direction from vertical to longitudinal, and then back to vertical. We
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Fig. 7.2 The ring with spin rotator insertion has the stable spin direction non-vertical inside the
insertion

Fig. 7.3 The EIC spin rotator utilizes a sequence of solenoidal magnets and horizontal bends in
order to create longitudinal stable spin direction in the experimental detector

call the spin rotator system to be spin matched if the spin invariant field (αinv)
dependence on horizontal betatron amplitude Ax and energy deviation δ is cancelled
outside the rotator system. The following integral over the whole spin rotator system
must be made 0 (or at least minimized) for terms proportional to Ax and δ:

.

∫ sout

sin

[wxk̂0x + wsk̂0s + wyk̂oy]ds (7.17)

We will demonstrate how the spin matching conditions are derived using two
examples of spin rotators systems:

1. Combination of solenoidal and horizontal bends, as in the spin rotator for EIC,
2. Combination of horizontal and vertical bends, as in the spin rotator for HERA.

7.4 Spin Matching for Solenoidal Spin Rotators

The EIC spin rotator [2] includes solenoidal magnets (spin rotation angle ϕj ) and
horizontal bends (spin rotation angle ψj ), as shown in Fig. 7.3.
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From spin matrix analysis of this rotator system one can derive conditions for
achieving the longitudinal polarization at the experimental point:

. tan ϕ1 = ± cos ψ2√− cos(ψ1 + ψ2) cos(ψ1 − ψ2)
. (7.18)

cos ϕ2 = cot ψ1 cot ψ2 (7.19)

From here the required solenoidal fields on all energy range can be found.
For spin-matching of this rotator system the spin-orbital integral (Eq. (7.17))

needs to be evaluated and made equal 0 if possible. For evaluating this integral one
can assume following reasonable optics conditions which are accommodated by the
rotator optics design:

1. betatron coupling is fully compensated individually for each solenoidal insertion,
2. the vertical dispersion function Dy does not leak into the horizontal bends.

When evaluating the integral the integration by parts can be used to get a simpler
form of spin matching condition:

.y ′′k0x = (y ′k̂0x)
′ − y ′k̂′

0x

x ′′k0y = (x ′k̂0y)
′ − x ′k̂′

0y (7.20)

Applying this one can find that the spin-orbit integral needs to be taken only over
bending and solenoidal magnets:

.
∫ se
sb

{−(1 + ν0)y
′(Ksk̂0y − ν0Kyk̂0s) + Ksx

′k̂0x + (K ′
yy − Ksδ − ν0Kyy

′)k̂0s −
−(1 + ν0)x

′Ksk̂0x + (ν0Kyδ + Ksy
′)k̂0y}ds =

∫
sol

{−ν0Ks(x
′k̂0x + y ′k̂0y) − Ksδk̂0s}ds + (7.21)

+ ∫
bends

{ν2
0Kyy ′k̂0s + K ′

yyk̂0s + ν0Kyδk̂0y}ds = 0

Thus the integration has two terms. One includes integration over solenoids and
another over horizontal bending magnets.

Selecting terms proportional to Ax , .A∗
x and δ one comes to the following form of

the spin matching conditions. The solenoids are assumed divided in two halves with
compensation quadrupoles between:

.

4∑

i=1

H(fI )i = 0 (7.22)
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where H(fI )i is:

. H(fI ) = φi

2 [
(
(f ′

Ix + Ks

2 fIy)k̂0x + (f ′
Iy − Ks

2 fIx)k̂0y

)

entr
+

(
(f ′

Ix + Ks

2 fIy)k̂0x + (f ′
Iy − Ks

2 fIx)k̂0y

)

exit
] (7.23)

where the entrance and the exit denote points just before the first solenoid of the
solenoidal insertion and right after the second solenoid.

A condition for the terms proportional to .A∗
I is derived the same way to get:

.

4∑

i=1

H(f ∗
I )i = 0 (7.24)

Next the terms in the integral proportional to δ should be considered. The
integration in solenoid of the term with .(D′

x k̂0x + D′
y k̂0y) is done the same way

as for horizontal betatron motion. Other terms are trivially integrated. As result one
gets the following spin-matching condition related electron energy deviation:

. − ν0

4∑

i=1

H(D)i −
4∑

i=1

(φi(k̂0s)i) +
4∑

j=1

(ψj (k̂0y)j ) = 0 (7.25)

Note that each of three conditions is complex. Thus, in fact there are total of six
conditions that needs to be satisfied by proper rotator layout and optics.

Spin matching conditions related with betatron motion can be satisfied for
each individual solenoidal insertion, using two solenoid halves and (at least) 6
quadrupoles between them (Fig. 7.4). In this case one can find a solution which
nullifies H(fI )i and .H(f ∗

I )i for each individual solenoid insertion. This solution
can be presented in optics matrix form: The configuration of solenoidal and bending
magnets in the EIC spin rotator has been chosen to satisfy the spin-matching

Fig. 7.4 The EIC rotator solenoidal insertion uses quadrupoles between two solenoid halves to
compensate for the betatron coupling and satisfy the spin matching condition
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condition for off-momentum motion at 18 GeV energy. For operation at lower
energies it is not fully satisfied.

.Tx =
(

− cos φ − 2
Ks

sin φ
Ks

2 sin φ − cos φ

)

; Ty = −Tx (7.26)

where

.Ks = Bs

Bρ
; φ = (1 + a)Ks (7.27)

Figures 7.5 and 7.6 demonstrate how the absolute value of the vector d looks like
without and with spin matching. In first case, shown in Fig. 7.5, large oscillation
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Fig. 7.5 The vector d along the EIC electron storage ring azimuth before the spin matching done

Fig. 7.6 The vector d along the EIC electron storage ring azimuth after the spin matching done
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Fig. 7.7 The effect of spin
matching on the
depolarization time in the
EIC electron storage ring

Fig. 7.8 The schematics of
HERA rotator based on a
sequence of horizontal and
vertical bending magnets

of d-function propagates all over the ring circumference. After spin matching
realized (Fig. 7.6) the vector d is only present in the area between rotators. Thus,
no stochastic depolarization comes from the machine arcs. The depolarization is
limited only to the area between rotators where non-zero d vector still exists. Spin
matched optics considerably reduces depolarization, making the spin resonances
narrower. An example demonstrating improvement from spin matching for the EIC
is shown in Fig. 7.7.

7.5 Spin Matching for Dipole Rotators

Let’s now consider the Steffen-Buon rotator based on dipole magnets [3] described
in the lecture on spin rotators and shown in Fig. 7.8. A variant of this rotator scheme
was used the electron ring of electron-proton collider HERA .

According to our recipe for calculations of spin matching conditions one needs
to know the spin eigenvectors. For instance in the interval between rotators the
eigenvectors are found to be:

.n̂0 = (− sin(γ aKy), cos(γ aKy), 0);
k̂0 = (cos(γ aKy), sin(γ aKy), i); (7.28)
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where .Ky = ∫ 0
s

Kyds.
Using (7.16) the precession vector components can be written as:

.wx = ν0y
′′ + ν0Kxδ

ws = 0 (7.29)

wy = −ν0x
′′ + ν0Kyδ

where only terms dominant at large energy are left for brevity.
Spin matching conditions can be separated into horizontal and vertical betatron

contributions, proportional to Ax and Ay correspondingly, and longitudinal con-
tribution, proportional to δ. From term proportional to Ax one gets the following
condition:

.

∫ sr

−sr

ν0f
′′
x k̂0yds =

∫ sr

−sr

−ν0gx(s)k̂0y

√
βx exp(i
x)ds = 0 (7.30)

And from term proportional to .A∗
x :

.

∫ sr

−sr

ν0f
∗′′
xk̂0yds =

∫ sr

−sr

−ν0gx(s)k̂0y

√
βx exp(−i
x)ds (7.31)

Condition derived from term proportional to δ is:

.

∫ sr

−sr

[ν0(D
′′
y k̂0x − D′′

x k̂0y) + ν0(Kxk̂0x + Kyk̂0y)]ds =

=
∫ sr

−sr

[ν0(gx(s)Dxk̂0y − gy(s)Dyk̂0x]ds (7.32)

At the derivation of the condition above the well-known equation for the orbital
motion functions fx , Dx and Dy were used:

.f ′′
x,y + gx,y(s)fx,y = 0

D′′
x + gx(s)Dx = Ky. (7.33)

D′′
y + gy(s)Dy = −Kx

In spin rotators which include vertical bends the synchrotron radiation happening
in the vertical bends couples with vertical betatron amplitude. Thus, in this case an
additional spin matching needs to be realized: minimizing the spin-orbital integral
terms proportional to Ay and .A∗

y . Since any quadrupole in the ring arc contributes to
the spin coupling with the vertical orbital motion the integration has to be done over
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the whole ring circumference. Thus, following integrals have to be minimized to
suppress depolarization effect coming from the synchrotron radiation in the rotator:

.

∫ sr

−sr

ν0f
′′
y k̂0xds =

∫ sr

−sr

−ν0gy(s)k̂0x

√
βy exp(i
y)ds

∫ sr

−sr

ν0f
∗
y

′′
k̂0xds =

∫ sr

−sr

−ν0gy(s)k̂0x

√
βy exp(−i
y)ds (7.34)

These integrals should be considered for both rotators on left and right sides from
the experimental point.

7.6 Calculating Vector d in Computer Programs

A popular algorithm for calculating the vector d in a spin program is SLIM.
Originated in the first-order SLIM code [4], it presently can be found in several
other accelerator codes (for instance, BMAD [5]).

In the SLIM algorithm the 8-D spin-orbital vector consisting of 6 orbit variables
(x, px, y, py, τ, δ) and 2 spin variables (α, β) is used to represent motion of a
particle and its spin. The spin-orbital vector transport is described by extending
standard 6-D matrices M6×6 for orbital transport to 8-D case:

.M̃(s1, s2) =
(

M6×6 06×2

G2×6 D2×2

)
(7.35)

Vector d is calculated using components v and w of one-turn 8-D transformation
eigenvectors qj:

.qj =
(
vj
wj

)
j = 1, . . . , 6

qj =
(
06
wj

)
j = 7, 8

∂ n̂
∂δ

= i

6∑

j=1

v∗
j5wj (7.36)

Another algorithm, ASPIRRIN [6], calculates vector d unified in one set with
other spin-orbital functions, called response functions, using standard transport
matrices of the orbital motion and special vectors for dipole and solenoidal magnets.

Calculations using SLIM and ASPIRRIN is done in first-order of orbital and
spin dynamics. On the basis of this first-order vector d the equilibrium polarization
as well as polarization relaxation time is calculated in both codes.
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When designing the spin rotators the first-order calculations are important to
realize the spin matching and confirm that it works as intended. But then further
spin studies has to be done using a spin tracking code and including different kind
of machine errors. These spin tracking studies will reveal also higher-order spin
resonances, not seen by the first-order codes, giving more complete evaluation of
the equilibrium polarization and the polarization relaxation time.

7.7 Summary

In order to minimize stochastic depolarization spin rotators in electron rings
require satisfying special lattice conditions, called spin matching. Main idea of spin
matching is to minimize or totally nullify the absolute value of vector .d = ∂ n̂/∂δ

in the accelerator arcs where synchrotron radiation happens. Analytically spin
matching conditions can be derived using spin-orbit integrals. In spin programs the
SLIM algorithm is often used for evaluating the d-vector.
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