
Chapter 5
Polarization Preservation and Spin
Manipulation

Haixin Huang

Abstract In this chapter, we will discuss how the polarization is preserved with
real accelerators, including both electrons and protons. In the end, we also present a
few examples of spin manipulations.

5.1 Introduction

Before we start, first let us summarize what we have learned so far:
As we learned from previous chapters, spin motion in external electromagnetic

fields is governed by Thomas-BMT equation. Spin motion in a synchrotron can be
treated with spinors in the form of one-turn matrix of spin. In periodic accelerator
structures, spin motion is periodic, which results in the spin tune concept. Because of
the periodicity, the spin precession experiences resonant motions. These resonances
can be divided into a few categories: imperfection resonances, intrinsic resonances,
synchrotron side band resonances, etc. The resonance strength is a function of
energy (.Gγ ), the lattice used (betatron tunes, beta functions), the magnitudes of field
errors and orbit errors. They can be calculated with Fourier analysis, by programs
such as DEPOL [1]. For an isolated resonance, the final spin can be determined
from the initial spin by the crossing speed .α and the resonance strength .ε, using the
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Froissart-Stora formula [2]. The depolarizing resonance is different from betatron
resonances where stronger resonances cause more damage. When the adiabatic

condition is satisfied, . |ε|
2

α
� 1, polarization amplitude can be preserved, by a full

spin flip.
A beam bunch is composed of particles with different betatron amplitudes and

phases. For an intrinsic resonance, the Froissart-Stora formula needs to be applied to
an ensemble of particles with a certain distribution. Themost common distribution is
Gaussian distribution. Let .ε be the Courant invariant of a particle and the distribution
function be .ρ(ε). The polarization of the beam after passing through an isolated
resonance is given by:

. < Pf /Pi >=
∫ ∞

0
(2e

−π |ε(ε)|2
2α − 1)ρ(ε)dε, ρ(ε) = 1

2ε0
e−ε/2ε0. (5.1)

Using the fact that the intrinsic resonance strength is proportional to the square of
the particle emittance,

.|ε(ε)|2 = |ε(ε0)|2 ε

ε0
(5.2)

With these conditions, the Froissart-Stora formula for a beam with Gaussian
distribution is given as

.Pf /Pi = 1 − πε2

α

1 + πε2

α

. (5.3)

It should be noted that Froissart-Stora formula can only be applied to isolated
resonances. The isolated resonance has to satisfy following condition: the distance
.δ between resonances (assume respective strengths .ε1, ε2) is much larger than the
resonance strengths. Namely: .δ � max(ε1, ε2).

From the Froissart-Stora formula, depending on the resonance strength, there
are two ways to preserve polarization through a depolarizing resonance. Very fast
crossing applies when .π |ε|2/(2α) � 1, which will result in .Pf /Pi → 1. The
adiabatic condition applies when .π |ε|2/(2α) � 1, which will result in .Pf /Pi →
−1.

To maintain the polarization through a resonance, one of two things should
happen:

1. strong enough resonance to generate a full spin flip;
2. very fast crossing speed so no or negligible depolarization effect.

In almost all cases we will discuss in this chapter, the isolated resonance condition
is satisfied.
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5.2 Overcome Resonances by Reducing Their Effects

This section reviews various techniques used to overcome depolarizing resonances
by reducing their effects.

5.2.1 Harmonic Orbit Correction

Since the imperfection resonance strength is proportional to the error harmonic of
the closed orbit (Sect. 2.3.5.1), by introducing the specific vertical harmonic orbit
correction, the resonance can be compensated so that the total resonance strength
is either zero or strong enough to fully flip the spin. This method has been used
by many accelerators such as Brookhaven AGS [3], KEK [4], KEK Booster [4],
Saturne [5] and COSY [6]. There are drawbacks of this method. It is tedious, and
the optimal setting could change with time and the tuning of the ring has to be
redone. This is a problem if many resonances need to be corrected.

Consider the AGS Booster as an example. In the AGS Booster, the polarized
proton beam comes in at .Gγ = 2.18 and normally is extracted at .Gγ = 4.5. The
vertical tune is set at 4.9 to avoid the intrinsic resonance at .0 + νy in the Booster.
There are two imperfection resonances in the energy range at .Gγ = 3 and 4. They
both are corrected by the harmonic correction: .Gγ = 3 resonance is corrected by
compensating the resonance strength to zero and .Gγ = 4 resonance is corrected
by introducing a full spin flip with strong harmonic orbit component. In the case
of .Gγ = 4, the resonance strength is enhanced instead. This is possible because
.Gγ = 4 resonance itself is strong enough that a modest corrector strength can
enhance it to get a full spin flip.

For a given corrector current, the effective resonance strength is the combination
of both the original imperfection resonance and the corrector resonance strengths.
Namely, the Froissart-Stora formula takes the form

.Pf = Pi(2 exp[−π |ε1 − ε2|2
2α

] − 1), (5.4)

where .ε1 and .ε2 are the resonance strengths of the original imperfection resonance
and the one introduced by the correctors. The resonance strength is a complex
number, it has real and imaginary parts or two orthogonal components: cosine and
sine (Eq. (2.29)). At proper current of the two orthogonal components, the effective
resonance strength is zero and polarization is fully preserved in this case. Since we
are going to scan the corrector current, we rewrite the above formula in a slightly
different form:

.Pf = Pi(2 e

−π(Is−Is0)2

2σ2s e

−π(Ic−Ic0)2

2σ2c − 1), (5.5)
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where .Is (.Ic) is the corrector current for sine (cosine) component, .Is0 (.Ic0) is the
sine (cosine) corrector current corresponding to the optimized polarization, and .σs

(.σc) will provide the width of the sine (cosine) current scan, or sensitivity of the
current variation. During the current scan, only one component, either .Ic or .Is , is
varied. The other component needs to be set as a constant. In other words, the fitting
is done with the following format for cosine and sine components separately:

.Pf = p0(2e
−π(I−p1)

2

2p22 − p3), (5.6)

where .p0, .p1, .p2 and .p3 are the fitting parameters. For the cosine component scan,

.p0 = Pi exp
−π(Is − Is0)

2

2σ 2
s

,

I − p1 = Ic − Ic0,

p2 = σc,

.p3 = 1/ exp[−π(Is − Is0)
2

2σ 2
s

] (5.7)

The terms related to the sine component are absorbed into the fitting parameters.
Exercise 2 (Sect. 5.6) addresses the matching of experimental data using

Eq. (5.6).

5.2.2 Speedup the Crossing Speed

The crossing speed can be increased in several ways. The maximum acceleration
rate for a beam in a synchrotron is usually set by engineering limits on the maximum
achievable ramp rate of the main dipole current and field, so typically increasing the
acceleration rate is not an option. The options to increase the crossing speed include
rapidly changing betatron tunes over one or a few orbit turns (tune jump); changing
radius rapidly while keeping main magnet field constant (radial jump). A complete
resonance crossing speed is given in the presence of tune jump:

.α = G
dγ

dθ
± dν

dθ
(5.8)

The crossing speed can be changed by acceleration speed, radial shift (RF manœu-
ver) and rapid tune jump.
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5.2.3 Radial Jump

In the case that magnet ramping speed is limited but the RF system is powerful
enough, the energy can be quickly changed by shifting the radius while maintaining
the main magnet field constant. It is called energy-jumpmethod. An experiment was
carried out at the AGS to demonstrate the idea [7]. In the presence of a solenoidal
partial snake, a strong coupling is introduced, which in turn generates coupling
resonances. The energy jump method was used to cross the coupling resonance near
intrinsic resonance .0+ νy , at .0 + νx (a horizontal resonance which is excited in the
presence of solenoidal partial snake). The energy-jumpwas accomplished by rapidly
changing the beam circumference by 88mm using the powerful AGS RF system
over 40 turns. Due to the momentum spread, not all the beam particles are crossing
the resonance during the jump unless the jump timing is centered. The polarization
was measured as function of the jump time .Tjump. As shown in Fig. 5.1, the final
polarization is optimized when the jump time is centered at the resonance .0 + νx .

5.2.4 Tune Jump (Both Fast and Benign)

The tune jump can be achieved by using pulsed quadrupoles to rapidly shift the
tune and thus make the resonance crossing rate .α very large. This method has been
applied in AGS [3], KEK, KEK Booster[4], COSY[8] and other accelerators. The
mechanism of the tune jump is illustrated in Fig. 5.2.

In the AGS, the rapid tune shifts were produced by special fast quadrupole
magnets; ten quadrupoles were installed in ten of the twelve superperiods. Sophisti-
cated power supplies, which generated pulses with a maximum output of 2250A
at 15 000V, were connected to 10 of these quadrupoles. The field in each fast
quadrupole had a 1.6 .µs rise time and then decayed back to zero in about 3ms.
Each quadrupole had a maximum field gradient of 11.7 kG/m. The AGS revolution
time is in the order of 3 .µs, and this fast tune jump is a one turn tune jump. It can
generate a tune jump in the order of 0.2 unit in one orbit turn. One example of
the tune jump effect on polarization is shown in Fig. 5.3. When the jump timing is
centered at the intrinsic resonance, the polarization is maximized. The plateau of
polarization means there is a tolerance of 0.1GeV/c for the jump timing.

The major problem of the fast tune jump is the emittance growth due to the large
and fast tune jump: non-adiabatic excitation of quadrupoles will generate emittance
growth due to the non-adiabatic excitation of closed orbit and the non-adiabatic
betatron amplitude mismatch. This is especially true if the center of the closed
orbit does not coincide with the center of the tune jump quadrupoles. Closed orbit
oscillations arising from the non-adiabatic dipole fields in tune jump quadrupoles
will generate emittance growth. Efforts were made to center tune jump quadrupoles
in the AGS and the emittance growth was greatly reduced [9]. Experimental tests in
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Fig. 5.1 Radial jump scheme and polarization gain with the jump. The hash lines represent the
beam with a certain momentum spread

1990s showed that the single turn tune jump can be further relaxed to multiple turns
(20–30 turns). The emittance growth in this case is further reduced [7].

These tune jump quadrupoles eventually were removed from AGS after AGS
polarization preservation switched to strong partial snakes (see below). However,
a new type of resonance, so-called horizontal intrinsic resonances [10], gives this
method a new life. In the presence of strong partial snakes, the stable spin direction
is not vertical. Therefore the perturbing fields that rotate the spin away from the
stable direction have vertical as well as horizontal components. Particles undergoing
horizontal betatron oscillations encounter vertical field deviations at the horizontal
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Fig. 5.2 Tune jump scheme illustration. The beam energy is shown as a thick line (to include the
momentum spread) and the intrinsic resonance is represented by the horizontal line with arrow in
the left plot. On the right plot, the resonance curve is shown along with the fast tune shift due to
the pulsed quadrupoles. The resonance crossing time is greatly reduced from .�t to .�τ

Fig. 5.3 The measured asymmetry (proportional to polarization) is plotted vs. the tune jump firing
energy in unit of Gauss Clock Counts (GCC). For a given radius, the beam energy is proportional
to the beam momentum. The GCC is converted to momentum at the top of the figure

oscillation frequency. As a result, resonances are driven by the horizontal betatron
oscillations, and will occur whenever the spin tune satisfies .νsp = k ± νx . This type
of resonance is called horizontal intrinsic resonance. Since the two partial snakes are
helical dipole magnets, the vertical magnetic field deviations distributed along the
snakes are the main parts of the polarization perturbation. They have been observed
in the AGS [10] (Fig. 5.4).

These resonances in general are weak but they are numerous. For an RMS
emittance of 2 .µm, the resonance strength is in the order of .10−5 to .10−4, but
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Fig. 5.4 The schematics of tune jump scheme. The blue trace is the spin tune as a function of .Gγ

during the acceleration. The red lines are the horizontal intrinsic resonance lines. The green lines
are vertical intrinsic resonance lines. Over one unit of .Gγ , two horizontal intrinsic resonances are
crossed. .M,K , and N are integers

there are over seventy of them! Given the AGS nominal ramp rate, a tune jump of
0.04 in 100 .µs should work. This increases the crossing speed by about 4 times.
Maintaining the adiabaticity of the particle motion is the key to minimize any
emittance growth, even for a small tune jump. A tune jump adiabatic enough to
produce negligible emittance growth is sometimes called “benign”. A pair of tune
jump quads were installed in straight sections in two adjacent superperiods in the
AGS, I5 and J5, where the .βx is at its maximum. It should be noted that the vertical
tune would also be affected by the tune jump quads, but at a small amplitude due to
the small beta function. As the vertical tune is fairly close to integer (.νy ∼ 8.98), the
perturbation to orbit motion needs to be minimized. Figure 5.5 shows the betatron
tune measurements along the energy ramp. The tune measurement time was chosen
such that it gave tunes alternatively as jump up value and jump down value (or no
jump value). The ramp starts at 149ms and reaches flattop at 581ms. The figure
shows that the horizontal tune jump amplitude is about 0.04 and the vertical tune
jump amplitude is about 0.02.

Figure 5.6 illustrate the resonance crossing with tune and energy spreads. They
are plotted for resonances near .Gγ = 45, but are representative for all resonances
when .Gγ > 19. To benefit from the tune jump, the beam particles have to cross
the resonance line during the jump. For the given beam parameters (tune jump
amplitude, chromaticity, beam momentum spread), about 76% beam will benefit
from the tune jumps above .Gγ > 19. The jump timing determination requires
accurate determination of beam energy as function of ramp time. The beam energy
information on the energy ramp comes from measuring the AGS main magnetic
field and measuring the beam momentum offset using the radial average from the
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Fig. 5.5 The measured betatron tunes along the ramp as a function of time from AGS T0. Note
that there was no tune jump around 300ms to avoid interference with other beam operation system

Fig. 5.6 Sketch of a resonance crossing on the increasing .νx side of the pulse (.Gγ = 54 − νx =
45.3). The horizontal axis is relative time to the resonance crossing. The vertical axis is energy
relative to the synchronous particle at jump time in units of .Gγ . The solid line applies to the
synchronous particle, and the two types of broken lines apply to the boundary particles at the
FWHM. The momentum FWHM width is assumed as .10−3, which is close to the real .dp/p in
the later part of the ramp. A chromaticity of .−8 is used for the plot. The ramp rate .dGγ/dt is
0.117/ms. The plot shows that particles within FWHM (76 % of the beam) benefit from the tune
jump
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Fig. 5.7 The measured polarization at the AGS extraction as a function of overall jump quad
timing. Error bars are statistical errors only. The solid line is a fit of Gaussian distribution with
.σ = 214µs

beam position measuring system. As a cross check, the second set of beam energy
information is derived from beam frequency and path length. The jump timing is
then derived from the beam energy and horizontal tune as a function of the ramp
time.

Since the polarization loss from an individual resonance is too small to measure,
it is only practical to do the overall timing scan to check the effect of tune jump on
the polarization (Fig. 5.7). With the assumption of Gaussian beam distribution, the
polarization distribution is expected to be Gaussian. From the beam parameters, the
width of this Gaussian is expected to be around 145 .µs. If there are errors in the
individual jump quad timing, the distribution .σ will be larger, which is what has
been observed.

In summary, the tune jump method is very powerful to overcome intrinsic
resonances. The associated emittance growth requires centering the beam orbit
inside the jump quads. When the tune jump speed can be relaxed to 20–30 turns,
the emittance growth is manageable at a few percents level. This method is still in
use such as the AGS horizontal tune jump system [11] and it is also planned for the
future EIC polarized deuteron program [12].

5.2.5 Fast Acceleration for Weak Resonance

The intrinsic resonance condition is given as .νsp = nP ± νy . If the superiodicity
P can be increased in the lattice design stage, the space between strong intrinsic
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resonances can be increased. It is possible that the resonance condition for strong
intrinsic resonances are pushed out of a given energy range. Specifically, for .P >

νy , the first two important intrinsic resonances occur at .Gγ = νy and at .Gγ =
P − νy . If we now ensure that both .νy and .P − νy are greater than the maximum
.Gγ value then all the major intrinsic spin resonances can be avoided. Alternatively,
one could also choose .νy to be greater than the maximum .Gγ and .P − νy less than
the lowest .Gγ value. This ingenious optical design has been used in the EIC RSC
ring design [13]. By choosing .P = 96 and integer part of the vertical betatron tune
to be .41 < [νy] < 55, polarized beam can be accelerated to .Gγ = 41 from low
energy without crossing a strong intrinsic resonance. Here .[νy] indicates the nearest
integer to the vertical betatron tune.

Unfortunately, the existing RHIC tunnel resembles a hexagon with rounded
corners rather than a circle, and therefore has a natural periodicity of six. However,
if we consider that the spin precession, which advances as .Gγ , occurs in the dipoles
and does not advance at all in a drift, one can recover the periodicity of 96 from the
point of view of .Gγ precession. This can be accomplished by designing the straight
sections such that their betatron phase advance is equal to .2πk with .k ∈ {1, 2, 3, ...}.
In this way the straight sections will not contribute to the integral which defines
the strength of the spin resonance (see Fig. 5.8). Thus the 96 periodicity can be
maintained from the point of view of the spin precession. High periodicity arcs are
used and unity transformation in the straight sections are used to transform the ring
to the hexagon shape of RHIC tunnel. This suppresses all systematic depolarizing
resonances up to .Gγ =41.

The RCS is designed to eliminate intrinsic spin resonances during the acceler-
ation cycle. However, any deviation from this ideal geometry, whether intentional,
like insertion regions or accidental, like survey errors, has the potential to spoil
the symmetry that keeps all the intrinsic resonance strengths sufficiently low. By
minimizing the contributions to the spin integral introduced by these insertions we
can ensure that polarization is maintained to emittances well beyond foreseeable

Fig. 5.8 Projecting the pure
ring lattice with 96
periodicity onto the RHIC
sixfold periodic ring

Spin transparent
straight section

Ring with pure P=96 super-periodicity
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operational conditions. The results in Fig. 5.9, show that for the slowest ramp time
of 200ms 94% polarization transmission can be achieved.

5.2.6 Full Siberian Snake

The snake magnet concept was first introduced by Russian physicists S. Derbenev
and A.M. Kondratenko and the trajectory inside the magnet is like a snake (as shown
in Fig 5.10). The idea is simple but genius: the spin is rotated by 180.◦ around an axis
in the horizontal plane. Any perturbation to the spin before the snake is unwounded
by similar perturbation in the following section or orbit turn. For this reason, full
snake is put into the category of overcoming resonances by reducing their effects.
Because of the Siberian origins of the idea and the serpentine shape of the particle

Fig. 5.9 ZGOUBI tracking results for 8 particles at 1000mm-mrad normalized emittance. Com-
paring ramp times 50–200ms. The vertical axis .〈Sy〉 represents the average vertical components
of the spin vector. The vertical line marks the location of .Gγ = 41

Fig. 5.10 Three-dimensional view of the trajectory through a RHIC Snake
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Fig. 5.11 Schematics of the
figure-8 ring principle. The
red and blue arrows are
possible spin components in
the ring: vertical or
horizontal. With two identical
halves of the ring except for
the dipole magnet fields
which are reversed, the
perturbation to spin motion in
the two half rings are
compensated

trajectory, these magnets were dubbed Siberian snakes by Ernest Courant. In RHIC,
dual full snakes are separated by half of the ring. Each snake rotates the spin vector
180.◦ around an axis in the horizontal plane. There are two consequences of two
snakes. First the stable spin direction of the whole ring is vertical. Second, for two
snakes with the axis perpendicular to each other, spin tune is 0.5.

In the presence of snakes, one would think that the polarization can be preserved.
However, there are additional high order depolarizing resonances, called snake
resonances [14]. The snake resonance condition is given as

.mνy = νsp + k (5.9)

where m and k are integers. m is called the snake resonance order. Examples of the
resonance conditions are .5 × 0.7 = 0.5 + 3 for .νy = 0.7; .2 × 0.75 = 0.5 + 1 for
.νy = 0.75. For two snakes in a synchrotron, the even order resonances do not exist
if the closed orbit is fully corrected, but the odd order resonances do. In the RHIC
operation, there is almost no polarization loss on the ramp below 100GeV, about
10%–15% polarization loss between 100 and 255GeV [15].

Another idea similar to the snake is the figure-8 ring (Fig. 5.11). The perturbation
to the spin motion in a figure-8 ring is also compensated in the two half rings,
because the magnetic fields reverse signs [16].

5.3 Resonance Enhancement Method

As the Froissart-Stora formula shows, with strong enough resonance strength, the
spin can be fully flipped when crossing the resonance adiabatically. Polarization is
preserved as the result. Options to enhance the resonance strength include running
an AC dipole to enhance the intrinsic resonances and running a partial snake to
enhance imperfection resonances. When the partial snake strength is strong enough,
it can also overpower the intrinsic resonances. In these cases, the two resonances
can be made to occur at nearly the same energy by choosing a tune very near an
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integer to create overlapping resonances. Condition for overlapping resonances is

.δ � min(ε1, ε2) (5.10)

This condition can be easily satisfied if using partial snake for the imperfection
resonance case, as the two resonances are at the exact same location, and .δ = 0.
From this condition, one can see that AC dipole is not usable for a weak resonance:
the required separation is not feasible.

5.3.1 AC Dipole

An AC dipole is a magnet that can be adiabatically excited and de-excited with a
continuous sine-wave in order to coherently move circulating beam out to large
betatron amplitudes without incurring the emittance blow up. It has also been
referred as RF dipole in some references.

Since the intrinsic spin resonance strength is proportional to the betatron
amplitude, the final polarization is an ensemble average of the Froissart-Stora
formula over the betatron amplitude of the beam particles. It is difficult to achieve
a full spin flip for all particles since the resonance strength of the beam core is
small. Alternatively, if the beam is kicked to induce a coherent betatron oscillation
so that the betatron oscillation amplitudes of all particles are large, a full spin flip
can be attained [17]. Essentially, the AC dipole field and the focusing potential of
the accelerator form a potential well that preserves the emittance of the beam. Such
a controlled coherent betatron oscillation can be obtained by using an AC dipole
magnet operating at a frequency close to a betatron sideband. The schematics of
the method is shown in Fig. 5.12. There are two requirements to use the AC dipole.
First, there should be a large enough physical aperture for the needed large betatron
motion amplitudes. Second, the original intrinsic resonance strength needs to be
strong enough that the needed artificial resonance strength can be achieved with
feasible tune separation. To preserve the emittance, the AC dipole amplitude was
ramped up and down adiabatically. The drive signal and the measured beam position
signals from the AGS AC dipole are shown in Fig. 5.13.

In a linear approximation, the amplitude of the coherent betatron motion is given
by

.ycoh = Bml

4π(Bρ)δ
βy (5.11)

where .Bml is the integrated field of the AC dipole, .Bρ is the magnetic rigidity
of the beam, .βy is the vertical betatron function at the AC dipole, and .δ is the
difference between the AC dipole tune and the tune of the nearest betatron sideband.
Equation 5.11 shows that although the coherent amplitude is larger with smaller
tune separation .δ, the beam is unstable at .δ = 0. Figure 5.14 shows the measured



5 Polarization Preservation and Spin Manipulation 127

Fig. 5.12 Beam in a quadrupole with and without AC dipole. The dash lines are the magnetic
fields of the quadrupole. Left: beam stays in the center of the quadrupole and particles experience
different magnetic fields. Right: the whole beam experiences large enough betatron amplitudes
which results in full spin flip

Fig. 5.13 Transverse displacement from BPM (top) and the AC dipole magnet field amplitude
(bottom) as a function of turn number of AGS
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Fig. 5.14 Measured proton polarization vs the coherent betatron oscillation amplitude for different
tune separations at spin depolarizing resonances .0 + νy (bottom plot), .12 + νy (middle plot), and
.36 − νy (upper plot). .Py stands for the vertical polarization, while .Ycoh stands for the vertical
coherent oscillation amplitude (Note that in Bai et al. [18] notations, vertical axis y is denoted
by z). The error bars show only the statistical errors. The resonance strength of the coherent spin
resonance due to the AC dipole is proportional to the coherent betatron amplitude. The lines are the
results of multi-particle spin simulations based on a model with two overlapping spin resonances

polarization at three energies versus the AC dipole strength, which is converted
to the corresponding coherent betatron amplitude [18]. The lines shown on the
figure correspond to results obtained from numerical spin simulations of a two spin
resonance model. The oscillatory behavior of the simulation result is due to the
interference between the coherent betatron oscillations and the intrinsic betatron
motion. The spin vector of each particle was tracked by multiplying its turn by turn
transform matrix. The beam polarization was then obtained from the spin ensemble
average of a Gaussian beam distribution. The agreement between experimental data
and simulations are very good.
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5.3.2 Partial Snake for Imperfection Resonances

Partial snake is a device to rotate the spin by an angle .φsp less than 180.◦ in one orbit
turn. Such a spin rotator can be constructed by using either solenoidal magnets,
or a sequence of interleaved horizontal and vertical dipole magnets producing
only local orbit distortions. For low energy synchrotrons like the Brookhaven
AGS with weak depolarizing resonances, one might consider solenoidal snake.
However, for practical field strengths, a full solenoidal snake would require 10 m
of straight section, which is not available in the AGS. Strong solenoids can also
cause undesirable coupling between horizontal and vertical betatron oscillations,
which would require compensation to maintain beam stability. Another option is to
use helical dipole as snake. The required magnet field is not practical to be ramped
quick enough along the energy ramp. For a constant field, the optical distortions at
lower energies would reduce the dynamic aperture. With the constraints in the AGS,
it is better to overcome the imperfection resonances with a partial snake [19].

To illustrate how a partial snake works, we consider a perfect synchrotron with a
solenoidal snake inserted. For an ideal particle (which moves on the betatron closed
orbit without displacement) in a perfect synchrotron, where .ξ = 0, the spinor is
transformed according to

.�(θf ) = e− 1
2 iGγ [θf −θi ]σ3�(θi) = T (θf , θi)�(θi), (5.12)

where .θi and .θf are the initial and final orbit angles, respectively. When .θf − θi =
2π , the spinor is transformed by a spin transfer matrix, called one turn map
(OTM) [20],

.T (θi + 2π, θi) = e−iGγπσ3, (5.13)

where the stable spin direction is vertical (.ê3). When solenoidal fields (rotating the
spin by .φsp radian along the longitudinal .ê2 direction) are present, the OTM, T , is
obtained as a product of a spin rotation in the Siberian snake by an angle .φsp around
the longitudinal direction and the precession in the main bending magnets around
the vertical direction by the angles .Gγθ (before the snake) and .Gγ (2π − θ) (after
the snake):

.T = e−i 12Gγ (2π−θ)σ3e−i 12φspσ2e−i 12Gγθσ3, (5.14)

where .θ is the orbit angle between the observation point and the snake. Complete-
ness of Pauli matrices guarantees that any succession of rotations in the 3-D space
is equivalent to a rotation around a specified axis. If the spin vector is lying on this
direction initially, it will stay on this direction. That is the so-called spin closed orbit.
The OTM can be rewritten as a precession around the spin close orbit .n̂co (canonical
form):

.T = e−iπνspn̂co·σ , n̂co = cosα3ê3 + cosα2ê2 + cosα1ê1, (5.15)
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where .νsp is the spin tune and .(cosα1, cosα2, cosα3) is direction cosine of .n̂co

along .(ê1, ê2, ê3) axes respectively. A spin vector lying along the .n̂co is invariant
under the transformation of the Eq. (5.15). On the other hand, any spin vector which
is not lying along the .n̂co, will precess around the .n̂co at a rate of .νsp precessing turns
per revolution around the synchrotron. Identifying matrix elements of Eq. (5.14)
with those of Eq. (5.15),

. cosπνsp = cos
φsp

2
cosGγπ (5.16)

and

. cosα3 = 1

sinπνsp

sin(πGγ ) cos(
φsp

2
), . (5.17)

cosα1 = − 1

sinπνsp

sinGγ (π − θ) sin(
φsp

2
), . (5.18)

cosα2 = 1

sinπνsp

cosGγ (π − θ) sin(
φsp

2
). (5.19)

For a .100% snake, .φsp = π , we have .νsp = 1/2. Neither resonance condition
discussed in Chapter 1 is therefore ever satisfied regardless of the beam energy.
For a partial snake, .φsp < π , when .φsp is small, the spin tune is nearly equal to
.Gγ except when .Gγ equals an integer n, where the spin tune .νsp obtained from
Eq. (5.16) is shifted from the integer by .±φsp/2. Thus, the partial snake creates a
gap at all integers in the spin tune, and since the spin tune never equals an integer,
the imperfection resonance condition is never satisfied. Thus the partial snake
can overcome all imperfection resonances, provided that the existing resonance
strengths in the lattice are much smaller than the gap created by the partial snake.
The denominator in Eqs .(5.17)–(5.19) can be calculated from Eq. (5.16):

. sinπνsp = ±
√
1 − cos2(πGγ ) cos2(φsp/2). (5.20)

The physics constraint is that the change of the stable spin direction has to be
continuous with .Gγ . Due to the gap .±φsp/2, .sinπνsp is not continuous when
changing the sign. So we should choose positive root in Eq. (5.20). The Eqs. (5.17)–
(5.19) can be rewritten as

. cosα3 = 1√
1 − cos2(πGγ ) cos2(φsp/2)

sin(πGγ ) cos(
φsp

2
). (5.21)

cosα1 = − 1√
1 − cos2(πGγ ) cos2(φsp/2)

sinGγ (π − θ) sin(
φsp

2
), . (5.22)
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cosα2 = 1√
1 − cos2(πGγ ) cos2(φsp/2)

cosGγ (π − θ) sin(
φsp

2
). (5.23)

The effect of a partial snake can also be analyzed in another view. The localized
spin rotation by a partial snake is

.φspδ(θ − θ0)

and the strength of generated resonance is the Fourier amplitude:

.
φsp

2π
einθ0 for all Gγ = n.

This means that the spin rotator is equivalent to imperfection resonances at
all integer harmonics with equal resonance strengths. With the presence of an
imperfection resonance and a partial snake, the Froissart-Stora formula can be
rewritten as

.
Pf

Pi

= 2 exp(− π

2α
|ε + φsp

2π
einθ0 |2) − 1. (5.24)

Complete spin-flip occurs if

.φsp � 2π |ε| + √
8πα.

For the AGS, .α = 4.5 × 10−5, |ε| < 0.01 from previous experiment [3, 9], thus
.φsp = 0.05π is enough to overcome all imperfection resonances. Then the spin
dynamics when crossing the imperfection resonances will be dominated by the
partial snake.

The experiment of a partial snake was carried out in the AGS [21]. Figure 5.15
shows the measured polarization as a function of .Gγ for a 10% partial snake. The
polarization was observed to follow the predicted spin flip in passing through each
imperfection resonance without loss of polarization. Without the snake, shown as
open circles, there was some depolarization at .Gγ = 8. The increased depolariza-
tion when .Gγ is slightly larger than an integer, particularly noticeable for .Gγ = 8,
is due to the reduced acceleration rate just before the polarization measuring flat top.
With the partial snake to overcome the imperfection resonances, the polarization
is maintained through the imperfection resonances at .Gγ =integers, but there are
losses at intrinsic resonances. Without the partial snake, polarization is lost after
.Gγ = 12.5 as shown in Fig. 5.16.
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Fig. 5.15 The measured vertical polarization as a function of the spin tune .Gγ for a 10% snake is
shown with and without a partial snake. Note that partial depolarization at .Gγ = 8 is avoided by
using a 10% snake. The error bars only represent the statistical errors. The solid line is the result
of Eq. (5.22). The measurement was done at betatron tunes of .νx = 8.7 and .νy=8.8

Fig. 5.16 The measured absolute value of the vertical polarization at .Gγ = n ± 1
2 , up to .Gγ =

22.5 (solid points). Note that partial depolarization is due to intrinsic spin resonances at .Gγ =
0 + νy, 24 − νy and .12 − νy



5 Polarization Preservation and Spin Manipulation 133

5.3.3 Strong Partial Snake to Overcome Intrinsic Resonances

For a full snake, the spin tune is 1/2 for all energies, the spin tune gap is 0.5. A strong
partial snake generates large spin tune gap for .Gγ = N , where N is an integer.
When the gap is large enough to put the vertical tune inside the spin tune gap,
the intrinsic resonance condition can never be satisfied. Then it can overcome both
intrinsic and imperfection resonances. The spin tune gaps for various partial snake
strengths are shown in Fig. 5.17. Alternatively, this can be understood by a strong
resonance at .Gγ = N which overpowers the nearby imperfection and intrinsic
resonances.

An experiment was carried out in the AGS with the solenoidal partial snake [22].
At low energies, the magnet can generate a stronger partial snake. The experiment
was carried out to overcome .0+ νy resonance located near .Gγ = 8.7 with solenoid
magnet running as an 11.4% partial snake. The polarization was measured at .Gγ =
12.5. The results are shown in Fig. 5.18. Note that with a strong snake, the stable
spin detection will deviate from vertical significantly. For example, it will be 18.◦ for
a 20% partial snake.

As shown in Fig. 5.18, the measured polarization reached a plateau when the
vertical betatron tune was very close to 9.00. The polarization loss in this region
was only about 6% and can be completely explained by spin mismatching at AGS
injection and depolarization from coupling resonances as discussed below.
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Fig. 5.17 Spin tune for various partial Siberian snake strengths. The straight line indicates a
possible value for the vertical betatron tune
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Fig. 5.18 The measured vertical polarization as a function of the vertical betatron tune for an
11.4% partial Siberian snake. The dashed straight line indicates the polarization level measured
at the end of the linac. Since the two imperfection resonances in the Booster have been corrected
by harmonic orbit correctors, this is also the beam polarization at AGS injection. The solid curve
shows the results of both multi-particle simulations and DEPOL calculations

These observations agree well with spin dynamics calculations.With a partial
Siberian snake inserted, there are two strong resonances in this energy region:
one located at .Gγ = 9 generated by the partial Siberian snake and the intrinsic
resonance at .Gγ = 0 + νy . When the intrinsic and artificial resonances do not
overlap (.νy � 8.85), the resonance at .Gγ = 9 should flip the spin completely
while the intrinsic resonance at .Gγ = 0 + νy causes some depolarization. When
the two resonances are very close, such as for .νy = 8.98, the intrinsic resonance is
overpowered by the resonance at .Gγ = 9. The particles essentially just experience
one resonance at .Gγ = 9, and full spin flip is observed. When the two resonances
are at intermediate separations, such as for .νy ≈ 8.90 to 8.95, they interfere with
each other.

Since there is linear coupling between the beam motion in the two transverse
planes, the following coupling resonances in the vicinity of .Gγ = 9 should also
be considered: .Gγ = 17 − νx, 0 + νx, 18 − νx , and .1 + νx . These resonances are
not in the spin-tune gap generated by the strong partial snake. Since .νx and .νy are
well separated, these resonances can be treated separately as isolated resonances.
Using the Froissart-Stora formula, the total polarization loss due to the coupling
resonances was calculated to be 5%. The polarization loss due to spin mismatching
at injection was calculated to be 1%. The difference of the injection polarization and
the measured one at .Gγ = 12.5 is well understood.
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5.3.4 Dual Partial Snakes

For a strong partial snake, however, polarization loss due to spin mismatch at
injection and extraction is no longer negligible. A 20% snake will lead to a 10%
polarization loss due to this spin direction mismatch. This could be solved with
appropriate spin rotators in the injection and extraction beam lines. However, a
single additional partial snake located in the synchrotron can provide the spin
direction matching at injection and extraction and also increase the effective partial
snake strength if its position is chosen properly.

The location and the precession axis direction of multiple partial snakes has to
be chosen very carefully to maintain control of the spin tune in a similar way as is
necessary for multiple full snakes. For practical partial snakes the precession axis
direction is always very close to longitudinal, which leaves only the location and
strength of the partial snakes as free parameters.

The spin tune for two partial snakes separated by the fraction 1/m of the ring
circumference is given by Roser et al. [23]:

. cosπνsp = cos
s1π

2
cos

s2π

2
cosGγπ −

sin
s1π

2
sin

s2π

2
cos

Gγπ(m − 2)

m
, (5.25)

where .s1π and .s2π are the rotation angles of the two partial snakes. The derivation
is similar to the one partial snake case by using OTM method.

Separating the two partial snakes by one third of the ring is of particular interest
since it will introduce a periodicity of three units in the spin tune dependence on
.Gγ . Since both the super-periodicity of the AGS (12) and the vertical betatron tune
(.∼9) are divisible by three, the spin tune will be the same at all strong intrinsic
resonances, namely .νsp = (s1 + s2)/2 for .Gγ = 3n, where n is an integer. With
both snakes at equal strength s, .νsp = s they effectively double the strength of one
partial snake. At the injection and extraction energies, for which .Gγ = 3n+1.5, the
two partial snakes cancel. The polarization direction in the AGS is therefore exactly
vertical and no polarization is lost due to spin direction mismatch.

Even using the 10% partial snake together with the presently installed warm
helical partial snake with a rotation angle of .10.6◦ (5.9%) at extraction energy,
a very substantial reduction of the injection and extraction spin mismatch can be
achieved. At the same time the effective strength of the partial snakes at the strong
intrinsic resonances is significantly increased. Since it is not practical to ramp the
two partial snake magnets, their fields are kept constant. The snake strength quoted
here is the strength at extraction energy. Figure 5.19 shows the spin tune and the
vertical betatron tune in the AGS with two partial snakes of 2.11T (10% partial
snake) and 1.53T (5.9% partial snake), respectively. The partial snakes have to be
located as shown in Fig. 5.20, spaced one third of the ring apart. In this case the
polarization loss due to injection and extraction mismatch is about 1%. For a single
partial snake with strength of 15.9%, the loss would be 6%.
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Fig. 5.19 Fractional part of measured vertical tune (dots connected with dashed line) along the
energy ramp and spin tune for the combination of 2.11 T and 1.53 T partial snakes

10−14%

5.9%

120 deg.

Fig. 5.20 Locations of the partial snakes and the injection and extraction regions that give
minimum polarization loss due to spin direction mismatch

To maintain polarization in the AGS, the vertical tunes along the energy ramp
have to be put into the spin tune gap generated by the two partial snakes. Moreover,
due to the so-called partial snake resonances[14], the available tune space is reduced
even further. The partial snake resonances occur when

.νsp = k ± lνy, (5.26)

where k and .l(> 1) are integers. This is the same condition as for full snake
resonances [24, 25]. The polarization was measured as a function of the vertical
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Fig. 5.21 Polarization as function of vertical tunes at two intrinsic resonances with different
resonance strength.The dash line shows the position of the spin tune gap for a combined 19.9%
(14%+ 5.9%) partial snake strength.The locations of high order (l .= 2, 3 and 4) snake resonances
near intrinsic resonance .36 + νy are marked

betatron tune in the vicinity of several intrinsic resonances. Figure 5.21 depicts
the effect of the partial snake resonances near the two intrinsic resonances for the
14% cold partial snake and 5.9% warm partial snake. Similar structure has also
been observed in the earlier experiment with single partial snake in Fig. 5.18. The
high order snake resonance locations can be calculated by solving Eqs. (5.25) and
(5.26) and they agree well with the measured values as marked in Fig. 5.21 [26].
The snake resonance strength is proportional to the strength of the nearby intrinsic
resonance. The intrinsic resonance strength can be calculated from DEPOL [1] for
a given lattice. For the weak intrinsic resonance (.12 + νy ), there is only a benign
effect from the snake resonances and polarization reaches a plateau above 8.96.
For the strong intrinsic resonance (.36 + νy ), the data shows the effect from the
second, third and forth order partial snake resonances. The vertical chromaticity
was set close to zero along the energy ramp to reduce the betatron tune spread due
to the momentum spread. This helps to reduce the depolarization from the snake
resonances. As expected, the higher the resonance order, the weaker the resonance
strength shown as less of a polarization dip. In addition, when the vertical tune
is pushed beyond 8.99, the associated large orbit distortions (see discussion after
Eq. (5.27) is likely the cause of the polarization drop of the last data point.
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In a synchrotron, the vertical rms closed orbit is given by

.yco,rms ≈ βav

2
√
2 | sinπνy |

√
Nθrms, (5.27)

where .βav, N, νy , and .θrms are respectively the average vertical .β-function, the
number of dipoles with field errors, the vertical betatron tune and the rms steering
errors. As seen from Eq. (5.27), the closed orbit amplitude is greatly enhanced
when the betatron tune is close to an integer for the same steering errors. As the
imperfection resonance strength is proportional to the closed orbit amplitude and
beam energy, the imperfection resonance can still be important at high energies
even with two partial snakes installed. Since the betatron tune is close to 9, the 9th
and multiple of 9 harmonics are strong. The strength of the imperfection resonance
calculated for AGS lattice with a large orbit distortion and vertical tune close to 9
could be comparable to the partial snake strength. If they have opposite phase, the
imperfection resonance just cancels the effect of the two partial snakes. In fact, we
observed polarization loss when the amplitudes of the 9th harmonic of the closed
orbit are large. A measurement of polarization as a function of the 9th harmonic
orbit amplitude is shown in Fig. 5.22. The depolarization occurs at the expected
amplitude.
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Fig. 5.22 Measured polarization as a function of the sine 9th harmonic amplitude at 36+.νy . The
dashed line is to guide the eyes. The location of the polarization dip agrees with calculation
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5.4 Spin Manipulations

5.4.1 Spin Flipper

In polarized proton collision experiments, it is highly advantageous to flip the spin
of each bunch of protons during the stores to reduce the systematic errors. The
Froissart-Stora formula shows that an artificial resonance can be introduced to flip
the spin.

The traditional spin flipping technique uses a single rf spin rotator that rotates the
spin around an axis in the horizontal plane. The spin rotator can be implemented as
a dipole or a solenoid running with certain rf frequency. It can be done by ramping
the frequency of the spin rotator tune .νosc across the spin tune .νsp adiabatically and
the spin can be flipped following the Froissart-Stora formula:

.
Pf

Pi

= 2 exp[−π

2

|ε|2
α

] − 1, (5.28)

where

.α = �νosc

2πN
(5.29)

where .�νosc is the range of the rf spin rotator tune sweep range,N is the number of
turns the sweep covers. As long as the spin tune is covered by the sweeping range
of the rf device, a resonance will be crossed. With proper sweeping speed, the spin
can be flipped. Simulations of such a process is shown in Figs. 5.23 and 5.24.

Experiments done at low energies (from 100MeV to 2GeV) have demonstrated
a spin flip efficiency over 99% [27, 28]. The spin flip is achieved by ramping the rf

Fig. 5.23 The AC dipole running with frequency sweeping over time
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Fig. 5.24 Simulations of spin of an ensemble beam particles in the presence of the artificial
resonance from a sweeping AC dipole

spin rotator tune .νosc across the spin tune .νsp adiabatically. The experimental results
are shown in Fig. 5.25.

It should be noted that such a single spin rotator generates two spin resonances,
one at .νsp = νosc, and one at .νsp = 1− νosc or the so-called “mirror” resonance. As
long as the spin tune is sufficiently far away from half integer, say at 0.47, then the
two spin resonances are sufficiently far from each other and each one can be treated
as an isolated resonance. This is the case for low energies when Siberian Snakes are
not needed and the spin tune is not at or near half integer. In high energy polarized
proton colliders such as RHIC, the spin tune is very close to half integer. The two
spin resonances overlap and their interference makes the full spin flip impossible
with such a single rf spin rotator. To reach a full spin flip, the “mirror” resonance
has to be eliminated [29].

For the spin flipper to work with a spin tune near 0.5 it has to induce only one
spin resonance at .νsp = νosc. In addition, it is critical to eliminate any global
vertical betatron oscillations driven by the AC dipole to achieve full spin flip [30].
Thus we have chosen a spin flipper design which consists of five AC dipoles with
horizontal magnetic field and four DC dipoles with vertical magnetic field, which
not only eliminates the “mirror” resonance, but also forms two closed vertical orbital
bumps and eliminates the global vertical oscillations outside the spin flipper [31].
Figure 5.26 shows the schematic drawing of the spin flipper design. The first three
AC dipoles form the first closed orbital bump and the last three AC dipoles form the
second closed orbital bump. The middle AC dipole (No. 3) is used twice. The four
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Fig. 5.25 The vertical polarization as a function of the flip time. When the flip time is long enough
to satisfy the adiabatic condition, the spin is flipped

Fig. 5.26 Schematics of the high energy spin flipper in RHIC. It consists of five AC dipoles and
four DC dipoles

DC dipoles yield spin rotation angles of +.ψ0/-.ψ0/-.ψ0/+.ψ0. The rotation angle .ψ0 is
given by

.ψ0 = (1 + Gγ )
BdcL

Bρ
(5.30)

where .Bρ is the beam particle magnetic rigidity, .BdcL is the integrated B field of
each DC dipole. These DC dipoles create a closed local horizontal bump leaving
the spin tune .νsp unchanged. The five AC dipoles are operated at the frequency
about half of revolution frequency, so that the tune .νosc is in the vicinity of .νsp. AC
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dipoles 1–3 and AC dipoles 3–5 create a local vertical orbit bump with a .+φosc/−2
.φosc/ + φosc spin rotation sequence. The rotation angle .φosc is given by

.φosc = (1 + Gγ )
Bacl

Bρ
(5.31)

where .Bacl is the integrated B field of AC dipole. This configuration induces a spin
resonance at .νosc = νsp while eliminating the “mirror” resonance at .1 − νsp and
therefore ensuring a single resonance crossing during a .νosc sweep through .νsp ≈ 1

2
and producing full spin flip. In the presence of a “mirror” resonance, the isolated
resonance crossing condition would otherwise require .νsp to be far enough away
from .

1
2 . The effective spin resonance strength of the spin flipper .εk then becomes

.εk = 2
φosc

π
sinψ0 sin

ψ0

2
(5.32)

In order to eliminate the global AC dipole driven vertical betatron oscillations,
the currents of the five AC dipoles have to satisfy Eq. (5.33) so that they excite only
two closed vertical orbit bumps:

.I2 = I0 sin(2πνosci + χ1)

.I4 = I0 sin(2πνosci + χ2)

.I1 = 1

2
I0 sin(2πνosci + χ1 + π) (5.33)

.I5 = 1

2
I0 sin(2πνosci + χ2 + π)

.I3 = I1 + I5

where .Ik is the current of .kth AC dipole and i is the .ith orbital revolution. .χ1 and .χ2
correspond to the initial phase of AC dipole bump 1 and 2, respectively. .χ1 − χ2 =
ψ0 is the condition for exciting a single isolated resonance at .νsp = νosc with the
spin flipper.

Besides eliminating the “mirror” resonance and any global vertical betatron
oscillation driven by AC dipoles, the reduction of the spin tune spread is also critical
for achieving full spin flip. The spin tune of a synchrotron with two Siberian Snakes
installed at opposite sides of the ring is given by

.νsp = 1

2
+ (1 + Gγ )(θ1 − θ2)

2π
, (5.34)
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where .θ1 and .θ2 are the integrated bending angles of the first half arc and second half
arc, respectively. For the on-energy and on-axis protons both .θ1 and .θ2 are equal (.π)
and the design-orbit spin tune is .

1
2 independent of the beam energy. This changes

when synchrotron motion and the resulting momentum spread .
�p
p

are considered.
The change in the bending angles are .�θ1 = (x ′

1 − x ′
2) and .�θ2 = (x ′

2 − x ′
1)

respectively, where .x ′
1 and .x ′

2 are the slopes of the beam trajectory at the first and
the second Siberian Snake. The spin tune then becomes .

1
2+(1+Gγ )(x ′

2−x ′
1)/π . To

the first order, .x ′ can be expressed as .x ′ = D′ �p
p
, which measures orbit difference

due to the momentum offset. Here .D′ is the slope of the dispersion function D,
which measures orbit difference due to momentum offset. The momentum spread
causes a spin tune spread when the dispersion slopes are different at the two Siberian
Snakes [32]:

.�νsp = (1 + Gγ )

π
(D′

1 − D′
2)

�p

p
(5.35)

In RHIC, this local dispersion slope difference between the two Siberian Snakes is
about 0.045 at 255GeV, which corresponds to 0.007 spin tune spread for a beam
with a momentum spread of 0.001. This is comparable to the proposed spin tune
sweep range of 0.02. Hence, successful full spin flipping requires to match the
dispersion slopes. Since the .Gγ values of 24GeV (.Gγ = 45.5) and 255GeV
(.Gγ = 487) differ by a factor of ten, the required .�D′ = (D′

1 − D′
2) is ten times

smaller at 255GeV than at 24GeV to maintain the same spin tune spread .�νsp.
Such a small .�D′ lattice was achieved by using .γtr transition jump quads [33].

In sweep measurements, the driving tune was swept over typical 0.005 range for
a certain time (such as 1 second). The polarization was measured before and after
each sweep. At injection, the final to initial polarization ratio was measured with
.�D′ as low as 0.003. The spin flipper was set to sweep from 0.4995 to 0.5045 and
the spin tune was 0.5025. The final to initial polarization ratio was measured as
function of .�D′ and the results are shown in Fig. 5.27. The spin flipper sweep time
was fixed as 3 seconds during these measurements. It clearly demonstrates that the
.�D′ suppression is critical to achieve a high spin flip efficiency. For a normal lattice
where the .�D′ was large, the polarization was lost with a single spin flipper sweep.

With the 0.005 tune sweep range and the given spin flipper strength, a 99% spin
flip efficiency is predicted for a sweep time of 0.6 second or longer at 24GeV from
Eq. (5.28) and numerical simulations [34]. The final to initial polarization ratio from
Eq. (5.28) for the given spin flipper strength at injection is plotted in Fig. 5.28 as
solid line. But this is an over-simplified model. In reality, the synchrotron motion
and residual spin tune spread can have an impact on the final spin flip efficiency.
The measured spin flip efficiencies for three different sweep times are also shown in
Fig. 5.28 [35]. Each efficiency is the average of 10 to 12 spin flip measurements.
The best final to initial polarization ratio .−97.5 ± 1.9% was obtained with a 1
second sweep time . This is close to the simple model prediction of .−99%. At
0.5 second, the final to initial polarization ratio is expected to be slightly worse due
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Fig. 5.27 The average final to initial polarization ratio for 3 seconds sweep time at injection as
function of .�D’ at the two Siberian Snakes. The small .�D′ is critical for full spin flip
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Fig. 5.28 The average final to initial polarization ratio at 24GeV and 255GeV. The solid line is
the polarization flip ratio from Eq. (5.28) for the resonance strength 0.00024 and the filled points
are the averaged spin flip efficiencies for three different sweep times at 24 GeV. The dashed line
and open points are for 255GeV and the resonance strength 0.00057

to faster crossing speed, and the measured value .−95 ± 2.6% is indeed slightly
smaller. For the slowest sweep time, 3 seconds, the final to initial polarization ratio
is only .−92.0± 1.5%. There are several reasons for this. First, with a slower sweep
speed, multiple spin resonance crossings with different resonance crossing speeds
can happen due to the synchrotron oscillation. Second, the polarization loss from
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weak higher order depolarizing resonances would be enhanced with a slow sweep
speed.

The final to initial polarization ratio obtained from the given spin flipper strength
at 255GeV is plotted in Fig. 5.28 as dashed line. The spin flip efficiencies for the
two different sweep times are also shown in Fig. 5.28. As before, each efficiency is
the average of 10 to 12 spin flip measurements. The better final to initial polarization
ratio .−97.2 ± 3.1% was obtained at the 0.5 second sweep time. This is close to the
simple model prediction of .−99%. For the slower sweep time of 1 second the final
to initial polarization ratio is .−90.2± 2.8%. Similar to the 24GeV case, the final to
initial polarization ratio is worse with slow sweep speed.

5.4.2 Spin Tune Measurement

In principle, the spin tune can be measured with a similar idea as the betatron
tune measurement: measuring the spin response to a driven spin coherence. Such a
method can also be non-destructive. A coherent spin precession around the vertical
direction can be adiabatically induced by driving the AC spin rotator at a drive tune
near the spin tune.

If the undisturbed stable spin direction on the designed orbit is vertical, the
vertical component of polarization P in the neighborhood of an isolated spin
resonance is given by Lee [20] and Bai and Roser [29]:

.Py = νsp − νosc√
|νsp − νosc|2 + |ε|2

, (5.36)

where .ε is the strength of the driven spin resonance and .νosc is the drive tune. The
horizontal component oscillates with .νosc:

.Px = |ε|√
|νsp − νosc|2 + |ε|2

cos(2πνosci − �) , (5.37)

where i is the ith orbital revolution and .� is the initial phase offset. Equations (5.36)
and (5.37) describe the vertical and horizontal components in a perfect accelerator
in the presence of a single isolated spin resonance. The ratio of .P̂x and .Py gives the
difference between .νs and .νosc:

. tan θ0 = P̂x

Py

= |ε|
νs − νosc

, (5.38)

where .θ0 is the opening angle of the polarization vector. With the known resonance
strength .ε from the spin flipper and the drive tune .νosc, the spin tune .νsp can be
derived from the measured quantity .tan θ0.
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This technique has two advantages. First, it is an adiabatic spin manipulation
and preserves the beam polarization. Second, it is a relatively fast measurement.
Hence, this technique is ideal for measuring the spin tune at the store energy of a
high-energy polarized synchrotron, such as RHIC or a future polarized electron ion
collider [36]. The spin tune measurement with coherent spin motion has been used
for deuteron beams [37] at low energy (.∼1GeV) in COSY, although the coherent
spin motion was not driven. Here the first spin tune measurement at high energies
(24 and 255GeV) for protons in RHIC using a driven coherent spin motion will be
discussed as examples [38].

The focus of this experiment is to measure .θsp, the azimuthal angle of the spin
vector in the plane transverse to the beam moving direction, and understand how
it is influenced by the coherent spin motion. To measure the driven coherent spin
motion, recoil carbon events from the proton-carbon (pC) polarimeter [39] need
to be recorded on a turn-by-turn basis. The polarimeter related information can be
found in Chap. 12 for the hadron polarimeter. Figure 5.29 shows the spin precession
projected onto the x-y plane transverse to the beam direction. The pC polarimeter
measures the spin vector projection in this plane.With a driven coherent spin motion
the spin vector in this plane oscillates over the range shown by the two dashed
arrows, with a period equal to that of the driven resonance. The amplitude of the
precession is .θ0 from Eq. (5.38); .θtilt is an arbitrary offset between vertical and the
stable spin direction. From .P̂x/Py the spin azimuthal angle .θsp measured by the pC
polarimeter with a possible tilt angle .θtilt will follow the precession

.
P̂x

Py

= tan(θsp − θtilt) = tan θ0 cos(2πνosci − �) . (5.39)

Fig. 5.29 Projection of the
spin vector into the transverse
plane when the spin tune is
near a spin resonance. The
spin oscillates around the
stable spin direction (solid
arrow) between the two
boundaries (dashed arrows)
over many orbit turns 0
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Fig. 5.30 Measured spin
azimuthal angle as a function
of the driven oscillation phase
at 24 GeV with drive tune as
0.498. All angles
(.θsp, θtilt, θ0, �) are in the
unit of radian. The nonzero
.θtilt means that the stable spin
direction is tilted away from
vertical
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Note that only the two transverse components of the polarization can be measured.
If the spin direction has a significant longitudinal component in addition to the angle
.θtilt, the simple form of Eq. (5.39) should be modified.

The experiment was carried out at injection energy of 24GeV and the store
energy of 255GeV. The revolution frequency in RHIC is about 78.20kHz. The
bunch pattern was 120 bunches in the ring and RHIC bunch crossings were used as
a clock signal for the analysis. For these measurements, a signal from the resonance
drive was provided to the polarimeter readout, which allowed the alignment of the
phase of carbon hits within one period of the resonance drive. The drive signal was
read with an accuracy of two bunch crossings, whereas the typical period of the
drive was .∼240 bunch crossings (for a drive tune near 0.5), so the phase of carbon
hits was known to within 1% of a period.

Figure 5.30 shows .θsp versus one cycle of drive phase for one drive setting. To
improve the statistical accuracy, the carbon hits were grouped in six bins of 40 bunch
crossings, spanning nearly one entire drive cycle; the mean spin azimuthal angle .θsp

was measured for each bin. The curve is fit to the function, from rearrangement of
Eq. (5.39):

.θsp(i) = θtilt + tan−1[tan θ0 cos(2πνosci − �)] . (5.40)

The arbitrary phase offset .� depends on the propagation time of proton bunches
from the drive to the polarimeter, and the cable delay of the signal from the drive to
the polarimeter readout. With the measured .θ0 = 0.1338± 0.01519 and the driving
tune at 0.498, the spin tune can be derived from Eq. (5.38) as .0.4998±0.0002, fairly
close to 0.5.

Driven coherent spin motion has been used to measure the spin tune in RHIC
at 24 and 255GeV. The results show that the spin tune can be measured by driven
spin coherence when the tune separation is small enough. The drive tune needs to
be close to the spin tune, which requires a small spin tune spread. In RHIC, where
a pair of Siberian snakes are used, the small spin tune spread was achieved by the
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reduction of the dispersion slope difference at the two Siberian snakes [32, 33].
These experimental results prove that it is possible to routinelymeasure the spin tune
of polarized proton beams—the most important polarized beam parameter. This will
lead to more stable and optimized operations of a high-energy polarized collider,
such as RHIC or a future polarized electron ion collider.

5.5 Summary

The preservation of polarization through the acceleration can be divided into two
big categories. The first one is to reduce or eliminate the effect of spin resonances.
Harmonic orbit correction, fast acceleration, radial jump, tune jump and full snake
are the mechanisms that can be applied in this category. Among them, the harmonic
orbit correction could be tedious if many are needed. The fast tune jump could lead
to a emittance growth as this is a non-adiabatic operation. The full snake eliminates
the resonance condition completely but the higher order resonances called snake
resonances are still present which requires special optical design to avoid and
mitigate them. The second category is to enhance the resonance strength. AC dipole,
partial snake (weak or strong) are in this category. An AC dipole requires a large
machine aperture and/or reasonable strong resonance strengths to overcome intrinsic
resonances, which in reality can not always be met. Most of these methods are based
on the Froissart-Stora formula. This formula is also the basis of spin manipulation in
a synchrotron. The examples of spin flip and spin tune measurement were presented
and discussed.

5.6 Homework

•? Exercise 1: Polarization of a Gaussian Beam

For a Gaussian distribution, derive the Froissart-Stora formula for the whole beam,
namely, Eq. (5.3).

Solution
In the integrand of < Pf /Pi >, Eq. (5.1):

– substitute the expression for the density ρ(ε) (Eq. (5.1), right hand side),
– substitute the expression for the strength |ε(ε)| (Eq. (5.2)).

Equation (5.1) can thus be recast under the form

. < Pf /Pi > =
∫ ∞

0
exp

−ε

2ε0

(
1 + π |ε(ε0)|2

α

)
dε

ε0
−

∫ ∞

0
ρ(ε) dε

︸ ︷︷ ︸
=1
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Introduce the change of variable ε
2ε0

(1 + π |ε(ε0)|2
α

) = x, then dε
ε0

= 2

1+ π |ε(ε0)|2
α

dx.

Substituting into the integral above gives the expected result:

. < Pf /Pi >= 2

1 + π |ε(ε0)|2
α

∫ ∞

0
e−xdx − 1 = 1 − π |ε(ε0)|2

α

1 + π |ε(ε0)|2
α

•? Exercise 2: Harmonic Orbit Correction, Experimental Data

Tables 5.1 and 5.2 provide the experimental data from a scan of the vertical third
harmonics (the cos3v and sin3v components of the vertical closed orbit) in the
AGS Booster. The polarization is given in an arbitrary unit. Actually, it is called
asymmetry and needs to be divided by the so-called analyzing power to give a
polarization value between −1 and +1. Use the Eq. (5.6) to fit these data. The
exercise is to find the corrector current value I0 (i.e., Ic0 and Is0 for respectively
the cosine and sine corrector families) to be used for a full correction of the third
orbit harmonic. For this purpose, we don’t care about the unit of the polarization.
There are three parameters for the data fitting (Eq. (5.7)): Pi , I0 and σ . Among the
three parameters, I0 is the most important one and σ provides sensitivity of the
polarization to the variation of the particular harmonic component. If possible, plot
the fitted curve and experiment data together on one plot.

Solution
The harmonic scan data need to be fitted with the following equation for the sine
and cosine components (see Eqs. (5.6) and (5.7)):

.Pf = p0

(
2 exp

−π(I − p1)
2

2p2
2

− p3

)

The fitting results are shown in Figs. 5.31 and 5.32. The experimental data of sin3v
was taken first followed by cos3v data taking. The optimized sin3v setting was put
in before cos3v scan. As one can see, the parameter p3 (Eq. (5.7)) in the cos3v fitting
is close to 1 as expected.

Note that since the p0 and p3 parameters are correlated, one can get different sets
of p0 and p3 from the fitting.
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Table 5.1 3rd harmonic sine
current scan

cos3v I (A) Asymmetry Error bar

10 270.471 4.096

9 187.052 4.719

8 123.548 4.211

7 40.727 4.15

6 −39.088 4.184

5 −124.047 4.225

4 −205.082 4.084

3 −303.959 5.397

2 −374.321 4.215

1 −438.749 4.064

0 −510.413 4.076

−1 −579.386 4.07

−2 −628.054 4.051

−3 −676.508 4.087

−4 −701.441 4.121

−5 −727.928 4.312

−6 −730.051 4.902

−7 −733.544 4.089

−8 −719.381 4.495

−9 −683.714 4.318

−10 −626.98 4.124

−11 −578.39 4.194

−12 −523.706 4.167

−13 −454.92 4.242

Table 5.2 3rd harmonic
cosine current scan

sin3v I (A) Asymmetry Error bar

5.2 −164.591 3.963

4.2 −297.504 4.098

3.2 −438.518 3.999

2.2 −569.737 4.015

1.2 −672.803 4.032

0.2 −719.652 3.988

−0.8 −756.134 4.035

−1.8 −737.453 4.095

−2.8 −694.489 4.086

−3.8 −595.165 4.006

−4.8 −481.373 4.162
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Fig. 5.31 The fitting results for sin3v data. The fitting parameter values are given at the top of the
plot
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Fig. 5.32 The fitting results for cos3v data. The fitting parameter values are given at the top of the
plot
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